futex-prevent-requeue-pi-on-same-futex.patch futex: Forbid uaddr == uaddr2 in futex_r...
[firefly-linux-kernel-4.4.55.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66 #include <linux/bootmem.h>
67
68 #include <asm/futex.h>
69
70 #include "locking/rtmutex_common.h"
71
72 /*
73  * READ this before attempting to hack on futexes!
74  *
75  * Basic futex operation and ordering guarantees
76  * =============================================
77  *
78  * The waiter reads the futex value in user space and calls
79  * futex_wait(). This function computes the hash bucket and acquires
80  * the hash bucket lock. After that it reads the futex user space value
81  * again and verifies that the data has not changed. If it has not changed
82  * it enqueues itself into the hash bucket, releases the hash bucket lock
83  * and schedules.
84  *
85  * The waker side modifies the user space value of the futex and calls
86  * futex_wake(). This function computes the hash bucket and acquires the
87  * hash bucket lock. Then it looks for waiters on that futex in the hash
88  * bucket and wakes them.
89  *
90  * In futex wake up scenarios where no tasks are blocked on a futex, taking
91  * the hb spinlock can be avoided and simply return. In order for this
92  * optimization to work, ordering guarantees must exist so that the waiter
93  * being added to the list is acknowledged when the list is concurrently being
94  * checked by the waker, avoiding scenarios like the following:
95  *
96  * CPU 0                               CPU 1
97  * val = *futex;
98  * sys_futex(WAIT, futex, val);
99  *   futex_wait(futex, val);
100  *   uval = *futex;
101  *                                     *futex = newval;
102  *                                     sys_futex(WAKE, futex);
103  *                                       futex_wake(futex);
104  *                                       if (queue_empty())
105  *                                         return;
106  *   if (uval == val)
107  *      lock(hash_bucket(futex));
108  *      queue();
109  *     unlock(hash_bucket(futex));
110  *     schedule();
111  *
112  * This would cause the waiter on CPU 0 to wait forever because it
113  * missed the transition of the user space value from val to newval
114  * and the waker did not find the waiter in the hash bucket queue.
115  *
116  * The correct serialization ensures that a waiter either observes
117  * the changed user space value before blocking or is woken by a
118  * concurrent waker:
119  *
120  * CPU 0                                 CPU 1
121  * val = *futex;
122  * sys_futex(WAIT, futex, val);
123  *   futex_wait(futex, val);
124  *
125  *   waiters++; (a)
126  *   mb(); (A) <-- paired with -.
127  *                              |
128  *   lock(hash_bucket(futex));  |
129  *                              |
130  *   uval = *futex;             |
131  *                              |        *futex = newval;
132  *                              |        sys_futex(WAKE, futex);
133  *                              |          futex_wake(futex);
134  *                              |
135  *                              `------->  mb(); (B)
136  *   if (uval == val)
137  *     queue();
138  *     unlock(hash_bucket(futex));
139  *     schedule();                         if (waiters)
140  *                                           lock(hash_bucket(futex));
141  *   else                                    wake_waiters(futex);
142  *     waiters--; (b)                        unlock(hash_bucket(futex));
143  *
144  * Where (A) orders the waiters increment and the futex value read through
145  * atomic operations (see hb_waiters_inc) and where (B) orders the write
146  * to futex and the waiters read -- this is done by the barriers in
147  * get_futex_key_refs(), through either ihold or atomic_inc, depending on the
148  * futex type.
149  *
150  * This yields the following case (where X:=waiters, Y:=futex):
151  *
152  *      X = Y = 0
153  *
154  *      w[X]=1          w[Y]=1
155  *      MB              MB
156  *      r[Y]=y          r[X]=x
157  *
158  * Which guarantees that x==0 && y==0 is impossible; which translates back into
159  * the guarantee that we cannot both miss the futex variable change and the
160  * enqueue.
161  *
162  * Note that a new waiter is accounted for in (a) even when it is possible that
163  * the wait call can return error, in which case we backtrack from it in (b).
164  * Refer to the comment in queue_lock().
165  *
166  * Similarly, in order to account for waiters being requeued on another
167  * address we always increment the waiters for the destination bucket before
168  * acquiring the lock. It then decrements them again  after releasing it -
169  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
170  * will do the additional required waiter count housekeeping. This is done for
171  * double_lock_hb() and double_unlock_hb(), respectively.
172  */
173
174 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
175 int __read_mostly futex_cmpxchg_enabled;
176 #endif
177
178 /*
179  * Futex flags used to encode options to functions and preserve them across
180  * restarts.
181  */
182 #define FLAGS_SHARED            0x01
183 #define FLAGS_CLOCKRT           0x02
184 #define FLAGS_HAS_TIMEOUT       0x04
185
186 /*
187  * Priority Inheritance state:
188  */
189 struct futex_pi_state {
190         /*
191          * list of 'owned' pi_state instances - these have to be
192          * cleaned up in do_exit() if the task exits prematurely:
193          */
194         struct list_head list;
195
196         /*
197          * The PI object:
198          */
199         struct rt_mutex pi_mutex;
200
201         struct task_struct *owner;
202         atomic_t refcount;
203
204         union futex_key key;
205 };
206
207 /**
208  * struct futex_q - The hashed futex queue entry, one per waiting task
209  * @list:               priority-sorted list of tasks waiting on this futex
210  * @task:               the task waiting on the futex
211  * @lock_ptr:           the hash bucket lock
212  * @key:                the key the futex is hashed on
213  * @pi_state:           optional priority inheritance state
214  * @rt_waiter:          rt_waiter storage for use with requeue_pi
215  * @requeue_pi_key:     the requeue_pi target futex key
216  * @bitset:             bitset for the optional bitmasked wakeup
217  *
218  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
219  * we can wake only the relevant ones (hashed queues may be shared).
220  *
221  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
222  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
223  * The order of wakeup is always to make the first condition true, then
224  * the second.
225  *
226  * PI futexes are typically woken before they are removed from the hash list via
227  * the rt_mutex code. See unqueue_me_pi().
228  */
229 struct futex_q {
230         struct plist_node list;
231
232         struct task_struct *task;
233         spinlock_t *lock_ptr;
234         union futex_key key;
235         struct futex_pi_state *pi_state;
236         struct rt_mutex_waiter *rt_waiter;
237         union futex_key *requeue_pi_key;
238         u32 bitset;
239 };
240
241 static const struct futex_q futex_q_init = {
242         /* list gets initialized in queue_me()*/
243         .key = FUTEX_KEY_INIT,
244         .bitset = FUTEX_BITSET_MATCH_ANY
245 };
246
247 /*
248  * Hash buckets are shared by all the futex_keys that hash to the same
249  * location.  Each key may have multiple futex_q structures, one for each task
250  * waiting on a futex.
251  */
252 struct futex_hash_bucket {
253         atomic_t waiters;
254         spinlock_t lock;
255         struct plist_head chain;
256 } ____cacheline_aligned_in_smp;
257
258 static unsigned long __read_mostly futex_hashsize;
259
260 static struct futex_hash_bucket *futex_queues;
261
262 static inline void futex_get_mm(union futex_key *key)
263 {
264         atomic_inc(&key->private.mm->mm_count);
265         /*
266          * Ensure futex_get_mm() implies a full barrier such that
267          * get_futex_key() implies a full barrier. This is relied upon
268          * as full barrier (B), see the ordering comment above.
269          */
270         smp_mb__after_atomic_inc();
271 }
272
273 /*
274  * Reflects a new waiter being added to the waitqueue.
275  */
276 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
277 {
278 #ifdef CONFIG_SMP
279         atomic_inc(&hb->waiters);
280         /*
281          * Full barrier (A), see the ordering comment above.
282          */
283         smp_mb__after_atomic_inc();
284 #endif
285 }
286
287 /*
288  * Reflects a waiter being removed from the waitqueue by wakeup
289  * paths.
290  */
291 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
292 {
293 #ifdef CONFIG_SMP
294         atomic_dec(&hb->waiters);
295 #endif
296 }
297
298 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
299 {
300 #ifdef CONFIG_SMP
301         return atomic_read(&hb->waiters);
302 #else
303         return 1;
304 #endif
305 }
306
307 /*
308  * We hash on the keys returned from get_futex_key (see below).
309  */
310 static struct futex_hash_bucket *hash_futex(union futex_key *key)
311 {
312         u32 hash = jhash2((u32*)&key->both.word,
313                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
314                           key->both.offset);
315         return &futex_queues[hash & (futex_hashsize - 1)];
316 }
317
318 /*
319  * Return 1 if two futex_keys are equal, 0 otherwise.
320  */
321 static inline int match_futex(union futex_key *key1, union futex_key *key2)
322 {
323         return (key1 && key2
324                 && key1->both.word == key2->both.word
325                 && key1->both.ptr == key2->both.ptr
326                 && key1->both.offset == key2->both.offset);
327 }
328
329 /*
330  * Take a reference to the resource addressed by a key.
331  * Can be called while holding spinlocks.
332  *
333  */
334 static void get_futex_key_refs(union futex_key *key)
335 {
336         if (!key->both.ptr)
337                 return;
338
339         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
340         case FUT_OFF_INODE:
341                 ihold(key->shared.inode); /* implies MB (B) */
342                 break;
343         case FUT_OFF_MMSHARED:
344                 futex_get_mm(key); /* implies MB (B) */
345                 break;
346         }
347 }
348
349 /*
350  * Drop a reference to the resource addressed by a key.
351  * The hash bucket spinlock must not be held.
352  */
353 static void drop_futex_key_refs(union futex_key *key)
354 {
355         if (!key->both.ptr) {
356                 /* If we're here then we tried to put a key we failed to get */
357                 WARN_ON_ONCE(1);
358                 return;
359         }
360
361         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
362         case FUT_OFF_INODE:
363                 iput(key->shared.inode);
364                 break;
365         case FUT_OFF_MMSHARED:
366                 mmdrop(key->private.mm);
367                 break;
368         }
369 }
370
371 /**
372  * get_futex_key() - Get parameters which are the keys for a futex
373  * @uaddr:      virtual address of the futex
374  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
375  * @key:        address where result is stored.
376  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
377  *              VERIFY_WRITE)
378  *
379  * Return: a negative error code or 0
380  *
381  * The key words are stored in *key on success.
382  *
383  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
384  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
385  * We can usually work out the index without swapping in the page.
386  *
387  * lock_page() might sleep, the caller should not hold a spinlock.
388  */
389 static int
390 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
391 {
392         unsigned long address = (unsigned long)uaddr;
393         struct mm_struct *mm = current->mm;
394         struct page *page, *page_head;
395         int err, ro = 0;
396
397         /*
398          * The futex address must be "naturally" aligned.
399          */
400         key->both.offset = address % PAGE_SIZE;
401         if (unlikely((address % sizeof(u32)) != 0))
402                 return -EINVAL;
403         address -= key->both.offset;
404
405         if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
406                 return -EFAULT;
407
408         /*
409          * PROCESS_PRIVATE futexes are fast.
410          * As the mm cannot disappear under us and the 'key' only needs
411          * virtual address, we dont even have to find the underlying vma.
412          * Note : We do have to check 'uaddr' is a valid user address,
413          *        but access_ok() should be faster than find_vma()
414          */
415         if (!fshared) {
416                 key->private.mm = mm;
417                 key->private.address = address;
418                 get_futex_key_refs(key);  /* implies MB (B) */
419                 return 0;
420         }
421
422 again:
423         err = get_user_pages_fast(address, 1, 1, &page);
424         /*
425          * If write access is not required (eg. FUTEX_WAIT), try
426          * and get read-only access.
427          */
428         if (err == -EFAULT && rw == VERIFY_READ) {
429                 err = get_user_pages_fast(address, 1, 0, &page);
430                 ro = 1;
431         }
432         if (err < 0)
433                 return err;
434         else
435                 err = 0;
436
437 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
438         page_head = page;
439         if (unlikely(PageTail(page))) {
440                 put_page(page);
441                 /* serialize against __split_huge_page_splitting() */
442                 local_irq_disable();
443                 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
444                         page_head = compound_head(page);
445                         /*
446                          * page_head is valid pointer but we must pin
447                          * it before taking the PG_lock and/or
448                          * PG_compound_lock. The moment we re-enable
449                          * irqs __split_huge_page_splitting() can
450                          * return and the head page can be freed from
451                          * under us. We can't take the PG_lock and/or
452                          * PG_compound_lock on a page that could be
453                          * freed from under us.
454                          */
455                         if (page != page_head) {
456                                 get_page(page_head);
457                                 put_page(page);
458                         }
459                         local_irq_enable();
460                 } else {
461                         local_irq_enable();
462                         goto again;
463                 }
464         }
465 #else
466         page_head = compound_head(page);
467         if (page != page_head) {
468                 get_page(page_head);
469                 put_page(page);
470         }
471 #endif
472
473         lock_page(page_head);
474
475         /*
476          * If page_head->mapping is NULL, then it cannot be a PageAnon
477          * page; but it might be the ZERO_PAGE or in the gate area or
478          * in a special mapping (all cases which we are happy to fail);
479          * or it may have been a good file page when get_user_pages_fast
480          * found it, but truncated or holepunched or subjected to
481          * invalidate_complete_page2 before we got the page lock (also
482          * cases which we are happy to fail).  And we hold a reference,
483          * so refcount care in invalidate_complete_page's remove_mapping
484          * prevents drop_caches from setting mapping to NULL beneath us.
485          *
486          * The case we do have to guard against is when memory pressure made
487          * shmem_writepage move it from filecache to swapcache beneath us:
488          * an unlikely race, but we do need to retry for page_head->mapping.
489          */
490         if (!page_head->mapping) {
491                 int shmem_swizzled = PageSwapCache(page_head);
492                 unlock_page(page_head);
493                 put_page(page_head);
494                 if (shmem_swizzled)
495                         goto again;
496                 return -EFAULT;
497         }
498
499         /*
500          * Private mappings are handled in a simple way.
501          *
502          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
503          * it's a read-only handle, it's expected that futexes attach to
504          * the object not the particular process.
505          */
506         if (PageAnon(page_head)) {
507                 /*
508                  * A RO anonymous page will never change and thus doesn't make
509                  * sense for futex operations.
510                  */
511                 if (ro) {
512                         err = -EFAULT;
513                         goto out;
514                 }
515
516                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
517                 key->private.mm = mm;
518                 key->private.address = address;
519         } else {
520                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
521                 key->shared.inode = page_head->mapping->host;
522                 key->shared.pgoff = basepage_index(page);
523         }
524
525         get_futex_key_refs(key); /* implies MB (B) */
526
527 out:
528         unlock_page(page_head);
529         put_page(page_head);
530         return err;
531 }
532
533 static inline void put_futex_key(union futex_key *key)
534 {
535         drop_futex_key_refs(key);
536 }
537
538 /**
539  * fault_in_user_writeable() - Fault in user address and verify RW access
540  * @uaddr:      pointer to faulting user space address
541  *
542  * Slow path to fixup the fault we just took in the atomic write
543  * access to @uaddr.
544  *
545  * We have no generic implementation of a non-destructive write to the
546  * user address. We know that we faulted in the atomic pagefault
547  * disabled section so we can as well avoid the #PF overhead by
548  * calling get_user_pages() right away.
549  */
550 static int fault_in_user_writeable(u32 __user *uaddr)
551 {
552         struct mm_struct *mm = current->mm;
553         int ret;
554
555         down_read(&mm->mmap_sem);
556         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
557                                FAULT_FLAG_WRITE);
558         up_read(&mm->mmap_sem);
559
560         return ret < 0 ? ret : 0;
561 }
562
563 /**
564  * futex_top_waiter() - Return the highest priority waiter on a futex
565  * @hb:         the hash bucket the futex_q's reside in
566  * @key:        the futex key (to distinguish it from other futex futex_q's)
567  *
568  * Must be called with the hb lock held.
569  */
570 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
571                                         union futex_key *key)
572 {
573         struct futex_q *this;
574
575         plist_for_each_entry(this, &hb->chain, list) {
576                 if (match_futex(&this->key, key))
577                         return this;
578         }
579         return NULL;
580 }
581
582 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
583                                       u32 uval, u32 newval)
584 {
585         int ret;
586
587         pagefault_disable();
588         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
589         pagefault_enable();
590
591         return ret;
592 }
593
594 static int get_futex_value_locked(u32 *dest, u32 __user *from)
595 {
596         int ret;
597
598         pagefault_disable();
599         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
600         pagefault_enable();
601
602         return ret ? -EFAULT : 0;
603 }
604
605
606 /*
607  * PI code:
608  */
609 static int refill_pi_state_cache(void)
610 {
611         struct futex_pi_state *pi_state;
612
613         if (likely(current->pi_state_cache))
614                 return 0;
615
616         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
617
618         if (!pi_state)
619                 return -ENOMEM;
620
621         INIT_LIST_HEAD(&pi_state->list);
622         /* pi_mutex gets initialized later */
623         pi_state->owner = NULL;
624         atomic_set(&pi_state->refcount, 1);
625         pi_state->key = FUTEX_KEY_INIT;
626
627         current->pi_state_cache = pi_state;
628
629         return 0;
630 }
631
632 static struct futex_pi_state * alloc_pi_state(void)
633 {
634         struct futex_pi_state *pi_state = current->pi_state_cache;
635
636         WARN_ON(!pi_state);
637         current->pi_state_cache = NULL;
638
639         return pi_state;
640 }
641
642 static void free_pi_state(struct futex_pi_state *pi_state)
643 {
644         if (!atomic_dec_and_test(&pi_state->refcount))
645                 return;
646
647         /*
648          * If pi_state->owner is NULL, the owner is most probably dying
649          * and has cleaned up the pi_state already
650          */
651         if (pi_state->owner) {
652                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
653                 list_del_init(&pi_state->list);
654                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
655
656                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
657         }
658
659         if (current->pi_state_cache)
660                 kfree(pi_state);
661         else {
662                 /*
663                  * pi_state->list is already empty.
664                  * clear pi_state->owner.
665                  * refcount is at 0 - put it back to 1.
666                  */
667                 pi_state->owner = NULL;
668                 atomic_set(&pi_state->refcount, 1);
669                 current->pi_state_cache = pi_state;
670         }
671 }
672
673 /*
674  * Look up the task based on what TID userspace gave us.
675  * We dont trust it.
676  */
677 static struct task_struct * futex_find_get_task(pid_t pid)
678 {
679         struct task_struct *p;
680
681         rcu_read_lock();
682         p = find_task_by_vpid(pid);
683         if (p)
684                 get_task_struct(p);
685
686         rcu_read_unlock();
687
688         return p;
689 }
690
691 /*
692  * This task is holding PI mutexes at exit time => bad.
693  * Kernel cleans up PI-state, but userspace is likely hosed.
694  * (Robust-futex cleanup is separate and might save the day for userspace.)
695  */
696 void exit_pi_state_list(struct task_struct *curr)
697 {
698         struct list_head *next, *head = &curr->pi_state_list;
699         struct futex_pi_state *pi_state;
700         struct futex_hash_bucket *hb;
701         union futex_key key = FUTEX_KEY_INIT;
702
703         if (!futex_cmpxchg_enabled)
704                 return;
705         /*
706          * We are a ZOMBIE and nobody can enqueue itself on
707          * pi_state_list anymore, but we have to be careful
708          * versus waiters unqueueing themselves:
709          */
710         raw_spin_lock_irq(&curr->pi_lock);
711         while (!list_empty(head)) {
712
713                 next = head->next;
714                 pi_state = list_entry(next, struct futex_pi_state, list);
715                 key = pi_state->key;
716                 hb = hash_futex(&key);
717                 raw_spin_unlock_irq(&curr->pi_lock);
718
719                 spin_lock(&hb->lock);
720
721                 raw_spin_lock_irq(&curr->pi_lock);
722                 /*
723                  * We dropped the pi-lock, so re-check whether this
724                  * task still owns the PI-state:
725                  */
726                 if (head->next != next) {
727                         spin_unlock(&hb->lock);
728                         continue;
729                 }
730
731                 WARN_ON(pi_state->owner != curr);
732                 WARN_ON(list_empty(&pi_state->list));
733                 list_del_init(&pi_state->list);
734                 pi_state->owner = NULL;
735                 raw_spin_unlock_irq(&curr->pi_lock);
736
737                 rt_mutex_unlock(&pi_state->pi_mutex);
738
739                 spin_unlock(&hb->lock);
740
741                 raw_spin_lock_irq(&curr->pi_lock);
742         }
743         raw_spin_unlock_irq(&curr->pi_lock);
744 }
745
746 static int
747 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
748                 union futex_key *key, struct futex_pi_state **ps,
749                 struct task_struct *task)
750 {
751         struct futex_pi_state *pi_state = NULL;
752         struct futex_q *this, *next;
753         struct task_struct *p;
754         pid_t pid = uval & FUTEX_TID_MASK;
755
756         plist_for_each_entry_safe(this, next, &hb->chain, list) {
757                 if (match_futex(&this->key, key)) {
758                         /*
759                          * Another waiter already exists - bump up
760                          * the refcount and return its pi_state:
761                          */
762                         pi_state = this->pi_state;
763                         /*
764                          * Userspace might have messed up non-PI and PI futexes
765                          */
766                         if (unlikely(!pi_state))
767                                 return -EINVAL;
768
769                         WARN_ON(!atomic_read(&pi_state->refcount));
770
771                         /*
772                          * When pi_state->owner is NULL then the owner died
773                          * and another waiter is on the fly. pi_state->owner
774                          * is fixed up by the task which acquires
775                          * pi_state->rt_mutex.
776                          *
777                          * We do not check for pid == 0 which can happen when
778                          * the owner died and robust_list_exit() cleared the
779                          * TID.
780                          */
781                         if (pid && pi_state->owner) {
782                                 /*
783                                  * Bail out if user space manipulated the
784                                  * futex value.
785                                  */
786                                 if (pid != task_pid_vnr(pi_state->owner))
787                                         return -EINVAL;
788                         }
789
790                         /*
791                          * Protect against a corrupted uval. If uval
792                          * is 0x80000000 then pid is 0 and the waiter
793                          * bit is set. So the deadlock check in the
794                          * calling code has failed and we did not fall
795                          * into the check above due to !pid.
796                          */
797                         if (task && pi_state->owner == task)
798                                 return -EDEADLK;
799
800                         atomic_inc(&pi_state->refcount);
801                         *ps = pi_state;
802
803                         return 0;
804                 }
805         }
806
807         /*
808          * We are the first waiter - try to look up the real owner and attach
809          * the new pi_state to it, but bail out when TID = 0
810          */
811         if (!pid)
812                 return -ESRCH;
813         p = futex_find_get_task(pid);
814         if (!p)
815                 return -ESRCH;
816
817         if (!p->mm) {
818                 put_task_struct(p);
819                 return -EPERM;
820         }
821
822         /*
823          * We need to look at the task state flags to figure out,
824          * whether the task is exiting. To protect against the do_exit
825          * change of the task flags, we do this protected by
826          * p->pi_lock:
827          */
828         raw_spin_lock_irq(&p->pi_lock);
829         if (unlikely(p->flags & PF_EXITING)) {
830                 /*
831                  * The task is on the way out. When PF_EXITPIDONE is
832                  * set, we know that the task has finished the
833                  * cleanup:
834                  */
835                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
836
837                 raw_spin_unlock_irq(&p->pi_lock);
838                 put_task_struct(p);
839                 return ret;
840         }
841
842         pi_state = alloc_pi_state();
843
844         /*
845          * Initialize the pi_mutex in locked state and make 'p'
846          * the owner of it:
847          */
848         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
849
850         /* Store the key for possible exit cleanups: */
851         pi_state->key = *key;
852
853         WARN_ON(!list_empty(&pi_state->list));
854         list_add(&pi_state->list, &p->pi_state_list);
855         pi_state->owner = p;
856         raw_spin_unlock_irq(&p->pi_lock);
857
858         put_task_struct(p);
859
860         *ps = pi_state;
861
862         return 0;
863 }
864
865 /**
866  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
867  * @uaddr:              the pi futex user address
868  * @hb:                 the pi futex hash bucket
869  * @key:                the futex key associated with uaddr and hb
870  * @ps:                 the pi_state pointer where we store the result of the
871  *                      lookup
872  * @task:               the task to perform the atomic lock work for.  This will
873  *                      be "current" except in the case of requeue pi.
874  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
875  *
876  * Return:
877  *  0 - ready to wait;
878  *  1 - acquired the lock;
879  * <0 - error
880  *
881  * The hb->lock and futex_key refs shall be held by the caller.
882  */
883 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
884                                 union futex_key *key,
885                                 struct futex_pi_state **ps,
886                                 struct task_struct *task, int set_waiters)
887 {
888         int lock_taken, ret, force_take = 0;
889         u32 uval, newval, curval, vpid = task_pid_vnr(task);
890
891 retry:
892         ret = lock_taken = 0;
893
894         /*
895          * To avoid races, we attempt to take the lock here again
896          * (by doing a 0 -> TID atomic cmpxchg), while holding all
897          * the locks. It will most likely not succeed.
898          */
899         newval = vpid;
900         if (set_waiters)
901                 newval |= FUTEX_WAITERS;
902
903         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
904                 return -EFAULT;
905
906         /*
907          * Detect deadlocks.
908          */
909         if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
910                 return -EDEADLK;
911
912         /*
913          * Surprise - we got the lock. Just return to userspace:
914          */
915         if (unlikely(!curval))
916                 return 1;
917
918         uval = curval;
919
920         /*
921          * Set the FUTEX_WAITERS flag, so the owner will know it has someone
922          * to wake at the next unlock.
923          */
924         newval = curval | FUTEX_WAITERS;
925
926         /*
927          * Should we force take the futex? See below.
928          */
929         if (unlikely(force_take)) {
930                 /*
931                  * Keep the OWNER_DIED and the WAITERS bit and set the
932                  * new TID value.
933                  */
934                 newval = (curval & ~FUTEX_TID_MASK) | vpid;
935                 force_take = 0;
936                 lock_taken = 1;
937         }
938
939         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
940                 return -EFAULT;
941         if (unlikely(curval != uval))
942                 goto retry;
943
944         /*
945          * We took the lock due to forced take over.
946          */
947         if (unlikely(lock_taken))
948                 return 1;
949
950         /*
951          * We dont have the lock. Look up the PI state (or create it if
952          * we are the first waiter):
953          */
954         ret = lookup_pi_state(uval, hb, key, ps, task);
955
956         if (unlikely(ret)) {
957                 switch (ret) {
958                 case -ESRCH:
959                         /*
960                          * We failed to find an owner for this
961                          * futex. So we have no pi_state to block
962                          * on. This can happen in two cases:
963                          *
964                          * 1) The owner died
965                          * 2) A stale FUTEX_WAITERS bit
966                          *
967                          * Re-read the futex value.
968                          */
969                         if (get_futex_value_locked(&curval, uaddr))
970                                 return -EFAULT;
971
972                         /*
973                          * If the owner died or we have a stale
974                          * WAITERS bit the owner TID in the user space
975                          * futex is 0.
976                          */
977                         if (!(curval & FUTEX_TID_MASK)) {
978                                 force_take = 1;
979                                 goto retry;
980                         }
981                 default:
982                         break;
983                 }
984         }
985
986         return ret;
987 }
988
989 /**
990  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
991  * @q:  The futex_q to unqueue
992  *
993  * The q->lock_ptr must not be NULL and must be held by the caller.
994  */
995 static void __unqueue_futex(struct futex_q *q)
996 {
997         struct futex_hash_bucket *hb;
998
999         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1000             || WARN_ON(plist_node_empty(&q->list)))
1001                 return;
1002
1003         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1004         plist_del(&q->list, &hb->chain);
1005         hb_waiters_dec(hb);
1006 }
1007
1008 /*
1009  * The hash bucket lock must be held when this is called.
1010  * Afterwards, the futex_q must not be accessed.
1011  */
1012 static void wake_futex(struct futex_q *q)
1013 {
1014         struct task_struct *p = q->task;
1015
1016         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1017                 return;
1018
1019         /*
1020          * We set q->lock_ptr = NULL _before_ we wake up the task. If
1021          * a non-futex wake up happens on another CPU then the task
1022          * might exit and p would dereference a non-existing task
1023          * struct. Prevent this by holding a reference on p across the
1024          * wake up.
1025          */
1026         get_task_struct(p);
1027
1028         __unqueue_futex(q);
1029         /*
1030          * The waiting task can free the futex_q as soon as
1031          * q->lock_ptr = NULL is written, without taking any locks. A
1032          * memory barrier is required here to prevent the following
1033          * store to lock_ptr from getting ahead of the plist_del.
1034          */
1035         smp_wmb();
1036         q->lock_ptr = NULL;
1037
1038         wake_up_state(p, TASK_NORMAL);
1039         put_task_struct(p);
1040 }
1041
1042 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
1043 {
1044         struct task_struct *new_owner;
1045         struct futex_pi_state *pi_state = this->pi_state;
1046         u32 uninitialized_var(curval), newval;
1047
1048         if (!pi_state)
1049                 return -EINVAL;
1050
1051         /*
1052          * If current does not own the pi_state then the futex is
1053          * inconsistent and user space fiddled with the futex value.
1054          */
1055         if (pi_state->owner != current)
1056                 return -EINVAL;
1057
1058         raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1059         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1060
1061         /*
1062          * It is possible that the next waiter (the one that brought
1063          * this owner to the kernel) timed out and is no longer
1064          * waiting on the lock.
1065          */
1066         if (!new_owner)
1067                 new_owner = this->task;
1068
1069         /*
1070          * We pass it to the next owner. (The WAITERS bit is always
1071          * kept enabled while there is PI state around. We must also
1072          * preserve the owner died bit.)
1073          */
1074         if (!(uval & FUTEX_OWNER_DIED)) {
1075                 int ret = 0;
1076
1077                 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1078
1079                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1080                         ret = -EFAULT;
1081                 else if (curval != uval)
1082                         ret = -EINVAL;
1083                 if (ret) {
1084                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1085                         return ret;
1086                 }
1087         }
1088
1089         raw_spin_lock_irq(&pi_state->owner->pi_lock);
1090         WARN_ON(list_empty(&pi_state->list));
1091         list_del_init(&pi_state->list);
1092         raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1093
1094         raw_spin_lock_irq(&new_owner->pi_lock);
1095         WARN_ON(!list_empty(&pi_state->list));
1096         list_add(&pi_state->list, &new_owner->pi_state_list);
1097         pi_state->owner = new_owner;
1098         raw_spin_unlock_irq(&new_owner->pi_lock);
1099
1100         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1101         rt_mutex_unlock(&pi_state->pi_mutex);
1102
1103         return 0;
1104 }
1105
1106 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
1107 {
1108         u32 uninitialized_var(oldval);
1109
1110         /*
1111          * There is no waiter, so we unlock the futex. The owner died
1112          * bit has not to be preserved here. We are the owner:
1113          */
1114         if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
1115                 return -EFAULT;
1116         if (oldval != uval)
1117                 return -EAGAIN;
1118
1119         return 0;
1120 }
1121
1122 /*
1123  * Express the locking dependencies for lockdep:
1124  */
1125 static inline void
1126 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1127 {
1128         if (hb1 <= hb2) {
1129                 spin_lock(&hb1->lock);
1130                 if (hb1 < hb2)
1131                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1132         } else { /* hb1 > hb2 */
1133                 spin_lock(&hb2->lock);
1134                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1135         }
1136 }
1137
1138 static inline void
1139 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1140 {
1141         spin_unlock(&hb1->lock);
1142         if (hb1 != hb2)
1143                 spin_unlock(&hb2->lock);
1144 }
1145
1146 /*
1147  * Wake up waiters matching bitset queued on this futex (uaddr).
1148  */
1149 static int
1150 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1151 {
1152         struct futex_hash_bucket *hb;
1153         struct futex_q *this, *next;
1154         union futex_key key = FUTEX_KEY_INIT;
1155         int ret;
1156
1157         if (!bitset)
1158                 return -EINVAL;
1159
1160         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1161         if (unlikely(ret != 0))
1162                 goto out;
1163
1164         hb = hash_futex(&key);
1165
1166         /* Make sure we really have tasks to wakeup */
1167         if (!hb_waiters_pending(hb))
1168                 goto out_put_key;
1169
1170         spin_lock(&hb->lock);
1171
1172         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1173                 if (match_futex (&this->key, &key)) {
1174                         if (this->pi_state || this->rt_waiter) {
1175                                 ret = -EINVAL;
1176                                 break;
1177                         }
1178
1179                         /* Check if one of the bits is set in both bitsets */
1180                         if (!(this->bitset & bitset))
1181                                 continue;
1182
1183                         wake_futex(this);
1184                         if (++ret >= nr_wake)
1185                                 break;
1186                 }
1187         }
1188
1189         spin_unlock(&hb->lock);
1190 out_put_key:
1191         put_futex_key(&key);
1192 out:
1193         return ret;
1194 }
1195
1196 /*
1197  * Wake up all waiters hashed on the physical page that is mapped
1198  * to this virtual address:
1199  */
1200 static int
1201 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1202               int nr_wake, int nr_wake2, int op)
1203 {
1204         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1205         struct futex_hash_bucket *hb1, *hb2;
1206         struct futex_q *this, *next;
1207         int ret, op_ret;
1208
1209 retry:
1210         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1211         if (unlikely(ret != 0))
1212                 goto out;
1213         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1214         if (unlikely(ret != 0))
1215                 goto out_put_key1;
1216
1217         hb1 = hash_futex(&key1);
1218         hb2 = hash_futex(&key2);
1219
1220 retry_private:
1221         double_lock_hb(hb1, hb2);
1222         op_ret = futex_atomic_op_inuser(op, uaddr2);
1223         if (unlikely(op_ret < 0)) {
1224
1225                 double_unlock_hb(hb1, hb2);
1226
1227 #ifndef CONFIG_MMU
1228                 /*
1229                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1230                  * but we might get them from range checking
1231                  */
1232                 ret = op_ret;
1233                 goto out_put_keys;
1234 #endif
1235
1236                 if (unlikely(op_ret != -EFAULT)) {
1237                         ret = op_ret;
1238                         goto out_put_keys;
1239                 }
1240
1241                 ret = fault_in_user_writeable(uaddr2);
1242                 if (ret)
1243                         goto out_put_keys;
1244
1245                 if (!(flags & FLAGS_SHARED))
1246                         goto retry_private;
1247
1248                 put_futex_key(&key2);
1249                 put_futex_key(&key1);
1250                 goto retry;
1251         }
1252
1253         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1254                 if (match_futex (&this->key, &key1)) {
1255                         if (this->pi_state || this->rt_waiter) {
1256                                 ret = -EINVAL;
1257                                 goto out_unlock;
1258                         }
1259                         wake_futex(this);
1260                         if (++ret >= nr_wake)
1261                                 break;
1262                 }
1263         }
1264
1265         if (op_ret > 0) {
1266                 op_ret = 0;
1267                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1268                         if (match_futex (&this->key, &key2)) {
1269                                 if (this->pi_state || this->rt_waiter) {
1270                                         ret = -EINVAL;
1271                                         goto out_unlock;
1272                                 }
1273                                 wake_futex(this);
1274                                 if (++op_ret >= nr_wake2)
1275                                         break;
1276                         }
1277                 }
1278                 ret += op_ret;
1279         }
1280
1281 out_unlock:
1282         double_unlock_hb(hb1, hb2);
1283 out_put_keys:
1284         put_futex_key(&key2);
1285 out_put_key1:
1286         put_futex_key(&key1);
1287 out:
1288         return ret;
1289 }
1290
1291 /**
1292  * requeue_futex() - Requeue a futex_q from one hb to another
1293  * @q:          the futex_q to requeue
1294  * @hb1:        the source hash_bucket
1295  * @hb2:        the target hash_bucket
1296  * @key2:       the new key for the requeued futex_q
1297  */
1298 static inline
1299 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1300                    struct futex_hash_bucket *hb2, union futex_key *key2)
1301 {
1302
1303         /*
1304          * If key1 and key2 hash to the same bucket, no need to
1305          * requeue.
1306          */
1307         if (likely(&hb1->chain != &hb2->chain)) {
1308                 plist_del(&q->list, &hb1->chain);
1309                 hb_waiters_dec(hb1);
1310                 plist_add(&q->list, &hb2->chain);
1311                 hb_waiters_inc(hb2);
1312                 q->lock_ptr = &hb2->lock;
1313         }
1314         get_futex_key_refs(key2);
1315         q->key = *key2;
1316 }
1317
1318 /**
1319  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1320  * @q:          the futex_q
1321  * @key:        the key of the requeue target futex
1322  * @hb:         the hash_bucket of the requeue target futex
1323  *
1324  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1325  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1326  * to the requeue target futex so the waiter can detect the wakeup on the right
1327  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1328  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1329  * to protect access to the pi_state to fixup the owner later.  Must be called
1330  * with both q->lock_ptr and hb->lock held.
1331  */
1332 static inline
1333 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1334                            struct futex_hash_bucket *hb)
1335 {
1336         get_futex_key_refs(key);
1337         q->key = *key;
1338
1339         __unqueue_futex(q);
1340
1341         WARN_ON(!q->rt_waiter);
1342         q->rt_waiter = NULL;
1343
1344         q->lock_ptr = &hb->lock;
1345
1346         wake_up_state(q->task, TASK_NORMAL);
1347 }
1348
1349 /**
1350  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1351  * @pifutex:            the user address of the to futex
1352  * @hb1:                the from futex hash bucket, must be locked by the caller
1353  * @hb2:                the to futex hash bucket, must be locked by the caller
1354  * @key1:               the from futex key
1355  * @key2:               the to futex key
1356  * @ps:                 address to store the pi_state pointer
1357  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1358  *
1359  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1360  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1361  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1362  * hb1 and hb2 must be held by the caller.
1363  *
1364  * Return:
1365  *  0 - failed to acquire the lock atomically;
1366  * >0 - acquired the lock, return value is vpid of the top_waiter
1367  * <0 - error
1368  */
1369 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1370                                  struct futex_hash_bucket *hb1,
1371                                  struct futex_hash_bucket *hb2,
1372                                  union futex_key *key1, union futex_key *key2,
1373                                  struct futex_pi_state **ps, int set_waiters)
1374 {
1375         struct futex_q *top_waiter = NULL;
1376         u32 curval;
1377         int ret, vpid;
1378
1379         if (get_futex_value_locked(&curval, pifutex))
1380                 return -EFAULT;
1381
1382         /*
1383          * Find the top_waiter and determine if there are additional waiters.
1384          * If the caller intends to requeue more than 1 waiter to pifutex,
1385          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1386          * as we have means to handle the possible fault.  If not, don't set
1387          * the bit unecessarily as it will force the subsequent unlock to enter
1388          * the kernel.
1389          */
1390         top_waiter = futex_top_waiter(hb1, key1);
1391
1392         /* There are no waiters, nothing for us to do. */
1393         if (!top_waiter)
1394                 return 0;
1395
1396         /* Ensure we requeue to the expected futex. */
1397         if (!match_futex(top_waiter->requeue_pi_key, key2))
1398                 return -EINVAL;
1399
1400         /*
1401          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1402          * the contended case or if set_waiters is 1.  The pi_state is returned
1403          * in ps in contended cases.
1404          */
1405         vpid = task_pid_vnr(top_waiter->task);
1406         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1407                                    set_waiters);
1408         if (ret == 1) {
1409                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1410                 return vpid;
1411         }
1412         return ret;
1413 }
1414
1415 /**
1416  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1417  * @uaddr1:     source futex user address
1418  * @flags:      futex flags (FLAGS_SHARED, etc.)
1419  * @uaddr2:     target futex user address
1420  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1421  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1422  * @cmpval:     @uaddr1 expected value (or %NULL)
1423  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1424  *              pi futex (pi to pi requeue is not supported)
1425  *
1426  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1427  * uaddr2 atomically on behalf of the top waiter.
1428  *
1429  * Return:
1430  * >=0 - on success, the number of tasks requeued or woken;
1431  *  <0 - on error
1432  */
1433 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1434                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1435                          u32 *cmpval, int requeue_pi)
1436 {
1437         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1438         int drop_count = 0, task_count = 0, ret;
1439         struct futex_pi_state *pi_state = NULL;
1440         struct futex_hash_bucket *hb1, *hb2;
1441         struct futex_q *this, *next;
1442
1443         if (requeue_pi) {
1444                 /*
1445                  * Requeue PI only works on two distinct uaddrs. This
1446                  * check is only valid for private futexes. See below.
1447                  */
1448                 if (uaddr1 == uaddr2)
1449                         return -EINVAL;
1450
1451                 /*
1452                  * requeue_pi requires a pi_state, try to allocate it now
1453                  * without any locks in case it fails.
1454                  */
1455                 if (refill_pi_state_cache())
1456                         return -ENOMEM;
1457                 /*
1458                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1459                  * + nr_requeue, since it acquires the rt_mutex prior to
1460                  * returning to userspace, so as to not leave the rt_mutex with
1461                  * waiters and no owner.  However, second and third wake-ups
1462                  * cannot be predicted as they involve race conditions with the
1463                  * first wake and a fault while looking up the pi_state.  Both
1464                  * pthread_cond_signal() and pthread_cond_broadcast() should
1465                  * use nr_wake=1.
1466                  */
1467                 if (nr_wake != 1)
1468                         return -EINVAL;
1469         }
1470
1471 retry:
1472         if (pi_state != NULL) {
1473                 /*
1474                  * We will have to lookup the pi_state again, so free this one
1475                  * to keep the accounting correct.
1476                  */
1477                 free_pi_state(pi_state);
1478                 pi_state = NULL;
1479         }
1480
1481         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1482         if (unlikely(ret != 0))
1483                 goto out;
1484         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1485                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1486         if (unlikely(ret != 0))
1487                 goto out_put_key1;
1488
1489         /*
1490          * The check above which compares uaddrs is not sufficient for
1491          * shared futexes. We need to compare the keys:
1492          */
1493         if (requeue_pi && match_futex(&key1, &key2)) {
1494                 ret = -EINVAL;
1495                 goto out_put_keys;
1496         }
1497
1498         hb1 = hash_futex(&key1);
1499         hb2 = hash_futex(&key2);
1500
1501 retry_private:
1502         hb_waiters_inc(hb2);
1503         double_lock_hb(hb1, hb2);
1504
1505         if (likely(cmpval != NULL)) {
1506                 u32 curval;
1507
1508                 ret = get_futex_value_locked(&curval, uaddr1);
1509
1510                 if (unlikely(ret)) {
1511                         double_unlock_hb(hb1, hb2);
1512                         hb_waiters_dec(hb2);
1513
1514                         ret = get_user(curval, uaddr1);
1515                         if (ret)
1516                                 goto out_put_keys;
1517
1518                         if (!(flags & FLAGS_SHARED))
1519                                 goto retry_private;
1520
1521                         put_futex_key(&key2);
1522                         put_futex_key(&key1);
1523                         goto retry;
1524                 }
1525                 if (curval != *cmpval) {
1526                         ret = -EAGAIN;
1527                         goto out_unlock;
1528                 }
1529         }
1530
1531         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1532                 /*
1533                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1534                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1535                  * bit.  We force this here where we are able to easily handle
1536                  * faults rather in the requeue loop below.
1537                  */
1538                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1539                                                  &key2, &pi_state, nr_requeue);
1540
1541                 /*
1542                  * At this point the top_waiter has either taken uaddr2 or is
1543                  * waiting on it.  If the former, then the pi_state will not
1544                  * exist yet, look it up one more time to ensure we have a
1545                  * reference to it. If the lock was taken, ret contains the
1546                  * vpid of the top waiter task.
1547                  */
1548                 if (ret > 0) {
1549                         WARN_ON(pi_state);
1550                         drop_count++;
1551                         task_count++;
1552                         /*
1553                          * If we acquired the lock, then the user
1554                          * space value of uaddr2 should be vpid. It
1555                          * cannot be changed by the top waiter as it
1556                          * is blocked on hb2 lock if it tries to do
1557                          * so. If something fiddled with it behind our
1558                          * back the pi state lookup might unearth
1559                          * it. So we rather use the known value than
1560                          * rereading and handing potential crap to
1561                          * lookup_pi_state.
1562                          */
1563                         ret = lookup_pi_state(ret, hb2, &key2, &pi_state, NULL);
1564                 }
1565
1566                 switch (ret) {
1567                 case 0:
1568                         break;
1569                 case -EFAULT:
1570                         double_unlock_hb(hb1, hb2);
1571                         hb_waiters_dec(hb2);
1572                         put_futex_key(&key2);
1573                         put_futex_key(&key1);
1574                         ret = fault_in_user_writeable(uaddr2);
1575                         if (!ret)
1576                                 goto retry;
1577                         goto out;
1578                 case -EAGAIN:
1579                         /* The owner was exiting, try again. */
1580                         double_unlock_hb(hb1, hb2);
1581                         hb_waiters_dec(hb2);
1582                         put_futex_key(&key2);
1583                         put_futex_key(&key1);
1584                         cond_resched();
1585                         goto retry;
1586                 default:
1587                         goto out_unlock;
1588                 }
1589         }
1590
1591         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1592                 if (task_count - nr_wake >= nr_requeue)
1593                         break;
1594
1595                 if (!match_futex(&this->key, &key1))
1596                         continue;
1597
1598                 /*
1599                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1600                  * be paired with each other and no other futex ops.
1601                  *
1602                  * We should never be requeueing a futex_q with a pi_state,
1603                  * which is awaiting a futex_unlock_pi().
1604                  */
1605                 if ((requeue_pi && !this->rt_waiter) ||
1606                     (!requeue_pi && this->rt_waiter) ||
1607                     this->pi_state) {
1608                         ret = -EINVAL;
1609                         break;
1610                 }
1611
1612                 /*
1613                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1614                  * lock, we already woke the top_waiter.  If not, it will be
1615                  * woken by futex_unlock_pi().
1616                  */
1617                 if (++task_count <= nr_wake && !requeue_pi) {
1618                         wake_futex(this);
1619                         continue;
1620                 }
1621
1622                 /* Ensure we requeue to the expected futex for requeue_pi. */
1623                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1624                         ret = -EINVAL;
1625                         break;
1626                 }
1627
1628                 /*
1629                  * Requeue nr_requeue waiters and possibly one more in the case
1630                  * of requeue_pi if we couldn't acquire the lock atomically.
1631                  */
1632                 if (requeue_pi) {
1633                         /* Prepare the waiter to take the rt_mutex. */
1634                         atomic_inc(&pi_state->refcount);
1635                         this->pi_state = pi_state;
1636                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1637                                                         this->rt_waiter,
1638                                                         this->task, 1);
1639                         if (ret == 1) {
1640                                 /* We got the lock. */
1641                                 requeue_pi_wake_futex(this, &key2, hb2);
1642                                 drop_count++;
1643                                 continue;
1644                         } else if (ret) {
1645                                 /* -EDEADLK */
1646                                 this->pi_state = NULL;
1647                                 free_pi_state(pi_state);
1648                                 goto out_unlock;
1649                         }
1650                 }
1651                 requeue_futex(this, hb1, hb2, &key2);
1652                 drop_count++;
1653         }
1654
1655 out_unlock:
1656         double_unlock_hb(hb1, hb2);
1657         hb_waiters_dec(hb2);
1658
1659         /*
1660          * drop_futex_key_refs() must be called outside the spinlocks. During
1661          * the requeue we moved futex_q's from the hash bucket at key1 to the
1662          * one at key2 and updated their key pointer.  We no longer need to
1663          * hold the references to key1.
1664          */
1665         while (--drop_count >= 0)
1666                 drop_futex_key_refs(&key1);
1667
1668 out_put_keys:
1669         put_futex_key(&key2);
1670 out_put_key1:
1671         put_futex_key(&key1);
1672 out:
1673         if (pi_state != NULL)
1674                 free_pi_state(pi_state);
1675         return ret ? ret : task_count;
1676 }
1677
1678 /* The key must be already stored in q->key. */
1679 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1680         __acquires(&hb->lock)
1681 {
1682         struct futex_hash_bucket *hb;
1683
1684         hb = hash_futex(&q->key);
1685
1686         /*
1687          * Increment the counter before taking the lock so that
1688          * a potential waker won't miss a to-be-slept task that is
1689          * waiting for the spinlock. This is safe as all queue_lock()
1690          * users end up calling queue_me(). Similarly, for housekeeping,
1691          * decrement the counter at queue_unlock() when some error has
1692          * occurred and we don't end up adding the task to the list.
1693          */
1694         hb_waiters_inc(hb);
1695
1696         q->lock_ptr = &hb->lock;
1697
1698         spin_lock(&hb->lock); /* implies MB (A) */
1699         return hb;
1700 }
1701
1702 static inline void
1703 queue_unlock(struct futex_hash_bucket *hb)
1704         __releases(&hb->lock)
1705 {
1706         spin_unlock(&hb->lock);
1707         hb_waiters_dec(hb);
1708 }
1709
1710 /**
1711  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1712  * @q:  The futex_q to enqueue
1713  * @hb: The destination hash bucket
1714  *
1715  * The hb->lock must be held by the caller, and is released here. A call to
1716  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1717  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1718  * or nothing if the unqueue is done as part of the wake process and the unqueue
1719  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1720  * an example).
1721  */
1722 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1723         __releases(&hb->lock)
1724 {
1725         int prio;
1726
1727         /*
1728          * The priority used to register this element is
1729          * - either the real thread-priority for the real-time threads
1730          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1731          * - or MAX_RT_PRIO for non-RT threads.
1732          * Thus, all RT-threads are woken first in priority order, and
1733          * the others are woken last, in FIFO order.
1734          */
1735         prio = min(current->normal_prio, MAX_RT_PRIO);
1736
1737         plist_node_init(&q->list, prio);
1738         plist_add(&q->list, &hb->chain);
1739         q->task = current;
1740         spin_unlock(&hb->lock);
1741 }
1742
1743 /**
1744  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1745  * @q:  The futex_q to unqueue
1746  *
1747  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1748  * be paired with exactly one earlier call to queue_me().
1749  *
1750  * Return:
1751  *   1 - if the futex_q was still queued (and we removed unqueued it);
1752  *   0 - if the futex_q was already removed by the waking thread
1753  */
1754 static int unqueue_me(struct futex_q *q)
1755 {
1756         spinlock_t *lock_ptr;
1757         int ret = 0;
1758
1759         /* In the common case we don't take the spinlock, which is nice. */
1760 retry:
1761         lock_ptr = q->lock_ptr;
1762         barrier();
1763         if (lock_ptr != NULL) {
1764                 spin_lock(lock_ptr);
1765                 /*
1766                  * q->lock_ptr can change between reading it and
1767                  * spin_lock(), causing us to take the wrong lock.  This
1768                  * corrects the race condition.
1769                  *
1770                  * Reasoning goes like this: if we have the wrong lock,
1771                  * q->lock_ptr must have changed (maybe several times)
1772                  * between reading it and the spin_lock().  It can
1773                  * change again after the spin_lock() but only if it was
1774                  * already changed before the spin_lock().  It cannot,
1775                  * however, change back to the original value.  Therefore
1776                  * we can detect whether we acquired the correct lock.
1777                  */
1778                 if (unlikely(lock_ptr != q->lock_ptr)) {
1779                         spin_unlock(lock_ptr);
1780                         goto retry;
1781                 }
1782                 __unqueue_futex(q);
1783
1784                 BUG_ON(q->pi_state);
1785
1786                 spin_unlock(lock_ptr);
1787                 ret = 1;
1788         }
1789
1790         drop_futex_key_refs(&q->key);
1791         return ret;
1792 }
1793
1794 /*
1795  * PI futexes can not be requeued and must remove themself from the
1796  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1797  * and dropped here.
1798  */
1799 static void unqueue_me_pi(struct futex_q *q)
1800         __releases(q->lock_ptr)
1801 {
1802         __unqueue_futex(q);
1803
1804         BUG_ON(!q->pi_state);
1805         free_pi_state(q->pi_state);
1806         q->pi_state = NULL;
1807
1808         spin_unlock(q->lock_ptr);
1809 }
1810
1811 /*
1812  * Fixup the pi_state owner with the new owner.
1813  *
1814  * Must be called with hash bucket lock held and mm->sem held for non
1815  * private futexes.
1816  */
1817 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1818                                 struct task_struct *newowner)
1819 {
1820         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1821         struct futex_pi_state *pi_state = q->pi_state;
1822         struct task_struct *oldowner = pi_state->owner;
1823         u32 uval, uninitialized_var(curval), newval;
1824         int ret;
1825
1826         /* Owner died? */
1827         if (!pi_state->owner)
1828                 newtid |= FUTEX_OWNER_DIED;
1829
1830         /*
1831          * We are here either because we stole the rtmutex from the
1832          * previous highest priority waiter or we are the highest priority
1833          * waiter but failed to get the rtmutex the first time.
1834          * We have to replace the newowner TID in the user space variable.
1835          * This must be atomic as we have to preserve the owner died bit here.
1836          *
1837          * Note: We write the user space value _before_ changing the pi_state
1838          * because we can fault here. Imagine swapped out pages or a fork
1839          * that marked all the anonymous memory readonly for cow.
1840          *
1841          * Modifying pi_state _before_ the user space value would
1842          * leave the pi_state in an inconsistent state when we fault
1843          * here, because we need to drop the hash bucket lock to
1844          * handle the fault. This might be observed in the PID check
1845          * in lookup_pi_state.
1846          */
1847 retry:
1848         if (get_futex_value_locked(&uval, uaddr))
1849                 goto handle_fault;
1850
1851         while (1) {
1852                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1853
1854                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1855                         goto handle_fault;
1856                 if (curval == uval)
1857                         break;
1858                 uval = curval;
1859         }
1860
1861         /*
1862          * We fixed up user space. Now we need to fix the pi_state
1863          * itself.
1864          */
1865         if (pi_state->owner != NULL) {
1866                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1867                 WARN_ON(list_empty(&pi_state->list));
1868                 list_del_init(&pi_state->list);
1869                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1870         }
1871
1872         pi_state->owner = newowner;
1873
1874         raw_spin_lock_irq(&newowner->pi_lock);
1875         WARN_ON(!list_empty(&pi_state->list));
1876         list_add(&pi_state->list, &newowner->pi_state_list);
1877         raw_spin_unlock_irq(&newowner->pi_lock);
1878         return 0;
1879
1880         /*
1881          * To handle the page fault we need to drop the hash bucket
1882          * lock here. That gives the other task (either the highest priority
1883          * waiter itself or the task which stole the rtmutex) the
1884          * chance to try the fixup of the pi_state. So once we are
1885          * back from handling the fault we need to check the pi_state
1886          * after reacquiring the hash bucket lock and before trying to
1887          * do another fixup. When the fixup has been done already we
1888          * simply return.
1889          */
1890 handle_fault:
1891         spin_unlock(q->lock_ptr);
1892
1893         ret = fault_in_user_writeable(uaddr);
1894
1895         spin_lock(q->lock_ptr);
1896
1897         /*
1898          * Check if someone else fixed it for us:
1899          */
1900         if (pi_state->owner != oldowner)
1901                 return 0;
1902
1903         if (ret)
1904                 return ret;
1905
1906         goto retry;
1907 }
1908
1909 static long futex_wait_restart(struct restart_block *restart);
1910
1911 /**
1912  * fixup_owner() - Post lock pi_state and corner case management
1913  * @uaddr:      user address of the futex
1914  * @q:          futex_q (contains pi_state and access to the rt_mutex)
1915  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
1916  *
1917  * After attempting to lock an rt_mutex, this function is called to cleanup
1918  * the pi_state owner as well as handle race conditions that may allow us to
1919  * acquire the lock. Must be called with the hb lock held.
1920  *
1921  * Return:
1922  *  1 - success, lock taken;
1923  *  0 - success, lock not taken;
1924  * <0 - on error (-EFAULT)
1925  */
1926 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1927 {
1928         struct task_struct *owner;
1929         int ret = 0;
1930
1931         if (locked) {
1932                 /*
1933                  * Got the lock. We might not be the anticipated owner if we
1934                  * did a lock-steal - fix up the PI-state in that case:
1935                  */
1936                 if (q->pi_state->owner != current)
1937                         ret = fixup_pi_state_owner(uaddr, q, current);
1938                 goto out;
1939         }
1940
1941         /*
1942          * Catch the rare case, where the lock was released when we were on the
1943          * way back before we locked the hash bucket.
1944          */
1945         if (q->pi_state->owner == current) {
1946                 /*
1947                  * Try to get the rt_mutex now. This might fail as some other
1948                  * task acquired the rt_mutex after we removed ourself from the
1949                  * rt_mutex waiters list.
1950                  */
1951                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1952                         locked = 1;
1953                         goto out;
1954                 }
1955
1956                 /*
1957                  * pi_state is incorrect, some other task did a lock steal and
1958                  * we returned due to timeout or signal without taking the
1959                  * rt_mutex. Too late.
1960                  */
1961                 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1962                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1963                 if (!owner)
1964                         owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1965                 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1966                 ret = fixup_pi_state_owner(uaddr, q, owner);
1967                 goto out;
1968         }
1969
1970         /*
1971          * Paranoia check. If we did not take the lock, then we should not be
1972          * the owner of the rt_mutex.
1973          */
1974         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1975                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1976                                 "pi-state %p\n", ret,
1977                                 q->pi_state->pi_mutex.owner,
1978                                 q->pi_state->owner);
1979
1980 out:
1981         return ret ? ret : locked;
1982 }
1983
1984 /**
1985  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1986  * @hb:         the futex hash bucket, must be locked by the caller
1987  * @q:          the futex_q to queue up on
1988  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
1989  */
1990 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1991                                 struct hrtimer_sleeper *timeout)
1992 {
1993         /*
1994          * The task state is guaranteed to be set before another task can
1995          * wake it. set_current_state() is implemented using set_mb() and
1996          * queue_me() calls spin_unlock() upon completion, both serializing
1997          * access to the hash list and forcing another memory barrier.
1998          */
1999         set_current_state(TASK_INTERRUPTIBLE);
2000         queue_me(q, hb);
2001
2002         /* Arm the timer */
2003         if (timeout) {
2004                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2005                 if (!hrtimer_active(&timeout->timer))
2006                         timeout->task = NULL;
2007         }
2008
2009         /*
2010          * If we have been removed from the hash list, then another task
2011          * has tried to wake us, and we can skip the call to schedule().
2012          */
2013         if (likely(!plist_node_empty(&q->list))) {
2014                 /*
2015                  * If the timer has already expired, current will already be
2016                  * flagged for rescheduling. Only call schedule if there
2017                  * is no timeout, or if it has yet to expire.
2018                  */
2019                 if (!timeout || timeout->task)
2020                         freezable_schedule();
2021         }
2022         __set_current_state(TASK_RUNNING);
2023 }
2024
2025 /**
2026  * futex_wait_setup() - Prepare to wait on a futex
2027  * @uaddr:      the futex userspace address
2028  * @val:        the expected value
2029  * @flags:      futex flags (FLAGS_SHARED, etc.)
2030  * @q:          the associated futex_q
2031  * @hb:         storage for hash_bucket pointer to be returned to caller
2032  *
2033  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2034  * compare it with the expected value.  Handle atomic faults internally.
2035  * Return with the hb lock held and a q.key reference on success, and unlocked
2036  * with no q.key reference on failure.
2037  *
2038  * Return:
2039  *  0 - uaddr contains val and hb has been locked;
2040  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2041  */
2042 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2043                            struct futex_q *q, struct futex_hash_bucket **hb)
2044 {
2045         u32 uval;
2046         int ret;
2047
2048         /*
2049          * Access the page AFTER the hash-bucket is locked.
2050          * Order is important:
2051          *
2052          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2053          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2054          *
2055          * The basic logical guarantee of a futex is that it blocks ONLY
2056          * if cond(var) is known to be true at the time of blocking, for
2057          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2058          * would open a race condition where we could block indefinitely with
2059          * cond(var) false, which would violate the guarantee.
2060          *
2061          * On the other hand, we insert q and release the hash-bucket only
2062          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2063          * absorb a wakeup if *uaddr does not match the desired values
2064          * while the syscall executes.
2065          */
2066 retry:
2067         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2068         if (unlikely(ret != 0))
2069                 return ret;
2070
2071 retry_private:
2072         *hb = queue_lock(q);
2073
2074         ret = get_futex_value_locked(&uval, uaddr);
2075
2076         if (ret) {
2077                 queue_unlock(*hb);
2078
2079                 ret = get_user(uval, uaddr);
2080                 if (ret)
2081                         goto out;
2082
2083                 if (!(flags & FLAGS_SHARED))
2084                         goto retry_private;
2085
2086                 put_futex_key(&q->key);
2087                 goto retry;
2088         }
2089
2090         if (uval != val) {
2091                 queue_unlock(*hb);
2092                 ret = -EWOULDBLOCK;
2093         }
2094
2095 out:
2096         if (ret)
2097                 put_futex_key(&q->key);
2098         return ret;
2099 }
2100
2101 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2102                       ktime_t *abs_time, u32 bitset)
2103 {
2104         struct hrtimer_sleeper timeout, *to = NULL;
2105         struct restart_block *restart;
2106         struct futex_hash_bucket *hb;
2107         struct futex_q q = futex_q_init;
2108         int ret;
2109
2110         if (!bitset)
2111                 return -EINVAL;
2112         q.bitset = bitset;
2113
2114         if (abs_time) {
2115                 to = &timeout;
2116
2117                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2118                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2119                                       HRTIMER_MODE_ABS);
2120                 hrtimer_init_sleeper(to, current);
2121                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2122                                              current->timer_slack_ns);
2123         }
2124
2125 retry:
2126         /*
2127          * Prepare to wait on uaddr. On success, holds hb lock and increments
2128          * q.key refs.
2129          */
2130         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2131         if (ret)
2132                 goto out;
2133
2134         /* queue_me and wait for wakeup, timeout, or a signal. */
2135         futex_wait_queue_me(hb, &q, to);
2136
2137         /* If we were woken (and unqueued), we succeeded, whatever. */
2138         ret = 0;
2139         /* unqueue_me() drops q.key ref */
2140         if (!unqueue_me(&q))
2141                 goto out;
2142         ret = -ETIMEDOUT;
2143         if (to && !to->task)
2144                 goto out;
2145
2146         /*
2147          * We expect signal_pending(current), but we might be the
2148          * victim of a spurious wakeup as well.
2149          */
2150         if (!signal_pending(current))
2151                 goto retry;
2152
2153         ret = -ERESTARTSYS;
2154         if (!abs_time)
2155                 goto out;
2156
2157         restart = &current_thread_info()->restart_block;
2158         restart->fn = futex_wait_restart;
2159         restart->futex.uaddr = uaddr;
2160         restart->futex.val = val;
2161         restart->futex.time = abs_time->tv64;
2162         restart->futex.bitset = bitset;
2163         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2164
2165         ret = -ERESTART_RESTARTBLOCK;
2166
2167 out:
2168         if (to) {
2169                 hrtimer_cancel(&to->timer);
2170                 destroy_hrtimer_on_stack(&to->timer);
2171         }
2172         return ret;
2173 }
2174
2175
2176 static long futex_wait_restart(struct restart_block *restart)
2177 {
2178         u32 __user *uaddr = restart->futex.uaddr;
2179         ktime_t t, *tp = NULL;
2180
2181         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2182                 t.tv64 = restart->futex.time;
2183                 tp = &t;
2184         }
2185         restart->fn = do_no_restart_syscall;
2186
2187         return (long)futex_wait(uaddr, restart->futex.flags,
2188                                 restart->futex.val, tp, restart->futex.bitset);
2189 }
2190
2191
2192 /*
2193  * Userspace tried a 0 -> TID atomic transition of the futex value
2194  * and failed. The kernel side here does the whole locking operation:
2195  * if there are waiters then it will block, it does PI, etc. (Due to
2196  * races the kernel might see a 0 value of the futex too.)
2197  */
2198 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2199                          ktime_t *time, int trylock)
2200 {
2201         struct hrtimer_sleeper timeout, *to = NULL;
2202         struct futex_hash_bucket *hb;
2203         struct futex_q q = futex_q_init;
2204         int res, ret;
2205
2206         if (refill_pi_state_cache())
2207                 return -ENOMEM;
2208
2209         if (time) {
2210                 to = &timeout;
2211                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2212                                       HRTIMER_MODE_ABS);
2213                 hrtimer_init_sleeper(to, current);
2214                 hrtimer_set_expires(&to->timer, *time);
2215         }
2216
2217 retry:
2218         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2219         if (unlikely(ret != 0))
2220                 goto out;
2221
2222 retry_private:
2223         hb = queue_lock(&q);
2224
2225         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2226         if (unlikely(ret)) {
2227                 switch (ret) {
2228                 case 1:
2229                         /* We got the lock. */
2230                         ret = 0;
2231                         goto out_unlock_put_key;
2232                 case -EFAULT:
2233                         goto uaddr_faulted;
2234                 case -EAGAIN:
2235                         /*
2236                          * Task is exiting and we just wait for the
2237                          * exit to complete.
2238                          */
2239                         queue_unlock(hb);
2240                         put_futex_key(&q.key);
2241                         cond_resched();
2242                         goto retry;
2243                 default:
2244                         goto out_unlock_put_key;
2245                 }
2246         }
2247
2248         /*
2249          * Only actually queue now that the atomic ops are done:
2250          */
2251         queue_me(&q, hb);
2252
2253         WARN_ON(!q.pi_state);
2254         /*
2255          * Block on the PI mutex:
2256          */
2257         if (!trylock)
2258                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2259         else {
2260                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2261                 /* Fixup the trylock return value: */
2262                 ret = ret ? 0 : -EWOULDBLOCK;
2263         }
2264
2265         spin_lock(q.lock_ptr);
2266         /*
2267          * Fixup the pi_state owner and possibly acquire the lock if we
2268          * haven't already.
2269          */
2270         res = fixup_owner(uaddr, &q, !ret);
2271         /*
2272          * If fixup_owner() returned an error, proprogate that.  If it acquired
2273          * the lock, clear our -ETIMEDOUT or -EINTR.
2274          */
2275         if (res)
2276                 ret = (res < 0) ? res : 0;
2277
2278         /*
2279          * If fixup_owner() faulted and was unable to handle the fault, unlock
2280          * it and return the fault to userspace.
2281          */
2282         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2283                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2284
2285         /* Unqueue and drop the lock */
2286         unqueue_me_pi(&q);
2287
2288         goto out_put_key;
2289
2290 out_unlock_put_key:
2291         queue_unlock(hb);
2292
2293 out_put_key:
2294         put_futex_key(&q.key);
2295 out:
2296         if (to)
2297                 destroy_hrtimer_on_stack(&to->timer);
2298         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2299
2300 uaddr_faulted:
2301         queue_unlock(hb);
2302
2303         ret = fault_in_user_writeable(uaddr);
2304         if (ret)
2305                 goto out_put_key;
2306
2307         if (!(flags & FLAGS_SHARED))
2308                 goto retry_private;
2309
2310         put_futex_key(&q.key);
2311         goto retry;
2312 }
2313
2314 /*
2315  * Userspace attempted a TID -> 0 atomic transition, and failed.
2316  * This is the in-kernel slowpath: we look up the PI state (if any),
2317  * and do the rt-mutex unlock.
2318  */
2319 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2320 {
2321         struct futex_hash_bucket *hb;
2322         struct futex_q *this, *next;
2323         union futex_key key = FUTEX_KEY_INIT;
2324         u32 uval, vpid = task_pid_vnr(current);
2325         int ret;
2326
2327 retry:
2328         if (get_user(uval, uaddr))
2329                 return -EFAULT;
2330         /*
2331          * We release only a lock we actually own:
2332          */
2333         if ((uval & FUTEX_TID_MASK) != vpid)
2334                 return -EPERM;
2335
2336         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2337         if (unlikely(ret != 0))
2338                 goto out;
2339
2340         hb = hash_futex(&key);
2341         spin_lock(&hb->lock);
2342
2343         /*
2344          * To avoid races, try to do the TID -> 0 atomic transition
2345          * again. If it succeeds then we can return without waking
2346          * anyone else up:
2347          */
2348         if (!(uval & FUTEX_OWNER_DIED) &&
2349             cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2350                 goto pi_faulted;
2351         /*
2352          * Rare case: we managed to release the lock atomically,
2353          * no need to wake anyone else up:
2354          */
2355         if (unlikely(uval == vpid))
2356                 goto out_unlock;
2357
2358         /*
2359          * Ok, other tasks may need to be woken up - check waiters
2360          * and do the wakeup if necessary:
2361          */
2362         plist_for_each_entry_safe(this, next, &hb->chain, list) {
2363                 if (!match_futex (&this->key, &key))
2364                         continue;
2365                 ret = wake_futex_pi(uaddr, uval, this);
2366                 /*
2367                  * The atomic access to the futex value
2368                  * generated a pagefault, so retry the
2369                  * user-access and the wakeup:
2370                  */
2371                 if (ret == -EFAULT)
2372                         goto pi_faulted;
2373                 goto out_unlock;
2374         }
2375         /*
2376          * No waiters - kernel unlocks the futex:
2377          */
2378         if (!(uval & FUTEX_OWNER_DIED)) {
2379                 ret = unlock_futex_pi(uaddr, uval);
2380                 if (ret == -EFAULT)
2381                         goto pi_faulted;
2382         }
2383
2384 out_unlock:
2385         spin_unlock(&hb->lock);
2386         put_futex_key(&key);
2387
2388 out:
2389         return ret;
2390
2391 pi_faulted:
2392         spin_unlock(&hb->lock);
2393         put_futex_key(&key);
2394
2395         ret = fault_in_user_writeable(uaddr);
2396         if (!ret)
2397                 goto retry;
2398
2399         return ret;
2400 }
2401
2402 /**
2403  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2404  * @hb:         the hash_bucket futex_q was original enqueued on
2405  * @q:          the futex_q woken while waiting to be requeued
2406  * @key2:       the futex_key of the requeue target futex
2407  * @timeout:    the timeout associated with the wait (NULL if none)
2408  *
2409  * Detect if the task was woken on the initial futex as opposed to the requeue
2410  * target futex.  If so, determine if it was a timeout or a signal that caused
2411  * the wakeup and return the appropriate error code to the caller.  Must be
2412  * called with the hb lock held.
2413  *
2414  * Return:
2415  *  0 = no early wakeup detected;
2416  * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2417  */
2418 static inline
2419 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2420                                    struct futex_q *q, union futex_key *key2,
2421                                    struct hrtimer_sleeper *timeout)
2422 {
2423         int ret = 0;
2424
2425         /*
2426          * With the hb lock held, we avoid races while we process the wakeup.
2427          * We only need to hold hb (and not hb2) to ensure atomicity as the
2428          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2429          * It can't be requeued from uaddr2 to something else since we don't
2430          * support a PI aware source futex for requeue.
2431          */
2432         if (!match_futex(&q->key, key2)) {
2433                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2434                 /*
2435                  * We were woken prior to requeue by a timeout or a signal.
2436                  * Unqueue the futex_q and determine which it was.
2437                  */
2438                 plist_del(&q->list, &hb->chain);
2439                 hb_waiters_dec(hb);
2440
2441                 /* Handle spurious wakeups gracefully */
2442                 ret = -EWOULDBLOCK;
2443                 if (timeout && !timeout->task)
2444                         ret = -ETIMEDOUT;
2445                 else if (signal_pending(current))
2446                         ret = -ERESTARTNOINTR;
2447         }
2448         return ret;
2449 }
2450
2451 /**
2452  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2453  * @uaddr:      the futex we initially wait on (non-pi)
2454  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2455  *              the same type, no requeueing from private to shared, etc.
2456  * @val:        the expected value of uaddr
2457  * @abs_time:   absolute timeout
2458  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2459  * @uaddr2:     the pi futex we will take prior to returning to user-space
2460  *
2461  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2462  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2463  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2464  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2465  * without one, the pi logic would not know which task to boost/deboost, if
2466  * there was a need to.
2467  *
2468  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2469  * via the following--
2470  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2471  * 2) wakeup on uaddr2 after a requeue
2472  * 3) signal
2473  * 4) timeout
2474  *
2475  * If 3, cleanup and return -ERESTARTNOINTR.
2476  *
2477  * If 2, we may then block on trying to take the rt_mutex and return via:
2478  * 5) successful lock
2479  * 6) signal
2480  * 7) timeout
2481  * 8) other lock acquisition failure
2482  *
2483  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2484  *
2485  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2486  *
2487  * Return:
2488  *  0 - On success;
2489  * <0 - On error
2490  */
2491 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2492                                  u32 val, ktime_t *abs_time, u32 bitset,
2493                                  u32 __user *uaddr2)
2494 {
2495         struct hrtimer_sleeper timeout, *to = NULL;
2496         struct rt_mutex_waiter rt_waiter;
2497         struct rt_mutex *pi_mutex = NULL;
2498         struct futex_hash_bucket *hb;
2499         union futex_key key2 = FUTEX_KEY_INIT;
2500         struct futex_q q = futex_q_init;
2501         int res, ret;
2502
2503         if (uaddr == uaddr2)
2504                 return -EINVAL;
2505
2506         if (!bitset)
2507                 return -EINVAL;
2508
2509         if (abs_time) {
2510                 to = &timeout;
2511                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2512                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2513                                       HRTIMER_MODE_ABS);
2514                 hrtimer_init_sleeper(to, current);
2515                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2516                                              current->timer_slack_ns);
2517         }
2518
2519         /*
2520          * The waiter is allocated on our stack, manipulated by the requeue
2521          * code while we sleep on uaddr.
2522          */
2523         debug_rt_mutex_init_waiter(&rt_waiter);
2524         RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2525         RB_CLEAR_NODE(&rt_waiter.tree_entry);
2526         rt_waiter.task = NULL;
2527
2528         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2529         if (unlikely(ret != 0))
2530                 goto out;
2531
2532         q.bitset = bitset;
2533         q.rt_waiter = &rt_waiter;
2534         q.requeue_pi_key = &key2;
2535
2536         /*
2537          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2538          * count.
2539          */
2540         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2541         if (ret)
2542                 goto out_key2;
2543
2544         /*
2545          * The check above which compares uaddrs is not sufficient for
2546          * shared futexes. We need to compare the keys:
2547          */
2548         if (match_futex(&q.key, &key2)) {
2549                 ret = -EINVAL;
2550                 goto out_put_keys;
2551         }
2552
2553         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2554         futex_wait_queue_me(hb, &q, to);
2555
2556         spin_lock(&hb->lock);
2557         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2558         spin_unlock(&hb->lock);
2559         if (ret)
2560                 goto out_put_keys;
2561
2562         /*
2563          * In order for us to be here, we know our q.key == key2, and since
2564          * we took the hb->lock above, we also know that futex_requeue() has
2565          * completed and we no longer have to concern ourselves with a wakeup
2566          * race with the atomic proxy lock acquisition by the requeue code. The
2567          * futex_requeue dropped our key1 reference and incremented our key2
2568          * reference count.
2569          */
2570
2571         /* Check if the requeue code acquired the second futex for us. */
2572         if (!q.rt_waiter) {
2573                 /*
2574                  * Got the lock. We might not be the anticipated owner if we
2575                  * did a lock-steal - fix up the PI-state in that case.
2576                  */
2577                 if (q.pi_state && (q.pi_state->owner != current)) {
2578                         spin_lock(q.lock_ptr);
2579                         ret = fixup_pi_state_owner(uaddr2, &q, current);
2580                         spin_unlock(q.lock_ptr);
2581                 }
2582         } else {
2583                 /*
2584                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2585                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2586                  * the pi_state.
2587                  */
2588                 WARN_ON(!q.pi_state);
2589                 pi_mutex = &q.pi_state->pi_mutex;
2590                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2591                 debug_rt_mutex_free_waiter(&rt_waiter);
2592
2593                 spin_lock(q.lock_ptr);
2594                 /*
2595                  * Fixup the pi_state owner and possibly acquire the lock if we
2596                  * haven't already.
2597                  */
2598                 res = fixup_owner(uaddr2, &q, !ret);
2599                 /*
2600                  * If fixup_owner() returned an error, proprogate that.  If it
2601                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
2602                  */
2603                 if (res)
2604                         ret = (res < 0) ? res : 0;
2605
2606                 /* Unqueue and drop the lock. */
2607                 unqueue_me_pi(&q);
2608         }
2609
2610         /*
2611          * If fixup_pi_state_owner() faulted and was unable to handle the
2612          * fault, unlock the rt_mutex and return the fault to userspace.
2613          */
2614         if (ret == -EFAULT) {
2615                 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2616                         rt_mutex_unlock(pi_mutex);
2617         } else if (ret == -EINTR) {
2618                 /*
2619                  * We've already been requeued, but cannot restart by calling
2620                  * futex_lock_pi() directly. We could restart this syscall, but
2621                  * it would detect that the user space "val" changed and return
2622                  * -EWOULDBLOCK.  Save the overhead of the restart and return
2623                  * -EWOULDBLOCK directly.
2624                  */
2625                 ret = -EWOULDBLOCK;
2626         }
2627
2628 out_put_keys:
2629         put_futex_key(&q.key);
2630 out_key2:
2631         put_futex_key(&key2);
2632
2633 out:
2634         if (to) {
2635                 hrtimer_cancel(&to->timer);
2636                 destroy_hrtimer_on_stack(&to->timer);
2637         }
2638         return ret;
2639 }
2640
2641 /*
2642  * Support for robust futexes: the kernel cleans up held futexes at
2643  * thread exit time.
2644  *
2645  * Implementation: user-space maintains a per-thread list of locks it
2646  * is holding. Upon do_exit(), the kernel carefully walks this list,
2647  * and marks all locks that are owned by this thread with the
2648  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2649  * always manipulated with the lock held, so the list is private and
2650  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2651  * field, to allow the kernel to clean up if the thread dies after
2652  * acquiring the lock, but just before it could have added itself to
2653  * the list. There can only be one such pending lock.
2654  */
2655
2656 /**
2657  * sys_set_robust_list() - Set the robust-futex list head of a task
2658  * @head:       pointer to the list-head
2659  * @len:        length of the list-head, as userspace expects
2660  */
2661 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2662                 size_t, len)
2663 {
2664         if (!futex_cmpxchg_enabled)
2665                 return -ENOSYS;
2666         /*
2667          * The kernel knows only one size for now:
2668          */
2669         if (unlikely(len != sizeof(*head)))
2670                 return -EINVAL;
2671
2672         current->robust_list = head;
2673
2674         return 0;
2675 }
2676
2677 /**
2678  * sys_get_robust_list() - Get the robust-futex list head of a task
2679  * @pid:        pid of the process [zero for current task]
2680  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2681  * @len_ptr:    pointer to a length field, the kernel fills in the header size
2682  */
2683 SYSCALL_DEFINE3(get_robust_list, int, pid,
2684                 struct robust_list_head __user * __user *, head_ptr,
2685                 size_t __user *, len_ptr)
2686 {
2687         struct robust_list_head __user *head;
2688         unsigned long ret;
2689         struct task_struct *p;
2690
2691         if (!futex_cmpxchg_enabled)
2692                 return -ENOSYS;
2693
2694         rcu_read_lock();
2695
2696         ret = -ESRCH;
2697         if (!pid)
2698                 p = current;
2699         else {
2700                 p = find_task_by_vpid(pid);
2701                 if (!p)
2702                         goto err_unlock;
2703         }
2704
2705         ret = -EPERM;
2706         if (!ptrace_may_access(p, PTRACE_MODE_READ))
2707                 goto err_unlock;
2708
2709         head = p->robust_list;
2710         rcu_read_unlock();
2711
2712         if (put_user(sizeof(*head), len_ptr))
2713                 return -EFAULT;
2714         return put_user(head, head_ptr);
2715
2716 err_unlock:
2717         rcu_read_unlock();
2718
2719         return ret;
2720 }
2721
2722 /*
2723  * Process a futex-list entry, check whether it's owned by the
2724  * dying task, and do notification if so:
2725  */
2726 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2727 {
2728         u32 uval, uninitialized_var(nval), mval;
2729
2730 retry:
2731         if (get_user(uval, uaddr))
2732                 return -1;
2733
2734         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2735                 /*
2736                  * Ok, this dying thread is truly holding a futex
2737                  * of interest. Set the OWNER_DIED bit atomically
2738                  * via cmpxchg, and if the value had FUTEX_WAITERS
2739                  * set, wake up a waiter (if any). (We have to do a
2740                  * futex_wake() even if OWNER_DIED is already set -
2741                  * to handle the rare but possible case of recursive
2742                  * thread-death.) The rest of the cleanup is done in
2743                  * userspace.
2744                  */
2745                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2746                 /*
2747                  * We are not holding a lock here, but we want to have
2748                  * the pagefault_disable/enable() protection because
2749                  * we want to handle the fault gracefully. If the
2750                  * access fails we try to fault in the futex with R/W
2751                  * verification via get_user_pages. get_user() above
2752                  * does not guarantee R/W access. If that fails we
2753                  * give up and leave the futex locked.
2754                  */
2755                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2756                         if (fault_in_user_writeable(uaddr))
2757                                 return -1;
2758                         goto retry;
2759                 }
2760                 if (nval != uval)
2761                         goto retry;
2762
2763                 /*
2764                  * Wake robust non-PI futexes here. The wakeup of
2765                  * PI futexes happens in exit_pi_state():
2766                  */
2767                 if (!pi && (uval & FUTEX_WAITERS))
2768                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2769         }
2770         return 0;
2771 }
2772
2773 /*
2774  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2775  */
2776 static inline int fetch_robust_entry(struct robust_list __user **entry,
2777                                      struct robust_list __user * __user *head,
2778                                      unsigned int *pi)
2779 {
2780         unsigned long uentry;
2781
2782         if (get_user(uentry, (unsigned long __user *)head))
2783                 return -EFAULT;
2784
2785         *entry = (void __user *)(uentry & ~1UL);
2786         *pi = uentry & 1;
2787
2788         return 0;
2789 }
2790
2791 /*
2792  * Walk curr->robust_list (very carefully, it's a userspace list!)
2793  * and mark any locks found there dead, and notify any waiters.
2794  *
2795  * We silently return on any sign of list-walking problem.
2796  */
2797 void exit_robust_list(struct task_struct *curr)
2798 {
2799         struct robust_list_head __user *head = curr->robust_list;
2800         struct robust_list __user *entry, *next_entry, *pending;
2801         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2802         unsigned int uninitialized_var(next_pi);
2803         unsigned long futex_offset;
2804         int rc;
2805
2806         if (!futex_cmpxchg_enabled)
2807                 return;
2808
2809         /*
2810          * Fetch the list head (which was registered earlier, via
2811          * sys_set_robust_list()):
2812          */
2813         if (fetch_robust_entry(&entry, &head->list.next, &pi))
2814                 return;
2815         /*
2816          * Fetch the relative futex offset:
2817          */
2818         if (get_user(futex_offset, &head->futex_offset))
2819                 return;
2820         /*
2821          * Fetch any possibly pending lock-add first, and handle it
2822          * if it exists:
2823          */
2824         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2825                 return;
2826
2827         next_entry = NULL;      /* avoid warning with gcc */
2828         while (entry != &head->list) {
2829                 /*
2830                  * Fetch the next entry in the list before calling
2831                  * handle_futex_death:
2832                  */
2833                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2834                 /*
2835                  * A pending lock might already be on the list, so
2836                  * don't process it twice:
2837                  */
2838                 if (entry != pending)
2839                         if (handle_futex_death((void __user *)entry + futex_offset,
2840                                                 curr, pi))
2841                                 return;
2842                 if (rc)
2843                         return;
2844                 entry = next_entry;
2845                 pi = next_pi;
2846                 /*
2847                  * Avoid excessively long or circular lists:
2848                  */
2849                 if (!--limit)
2850                         break;
2851
2852                 cond_resched();
2853         }
2854
2855         if (pending)
2856                 handle_futex_death((void __user *)pending + futex_offset,
2857                                    curr, pip);
2858 }
2859
2860 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2861                 u32 __user *uaddr2, u32 val2, u32 val3)
2862 {
2863         int cmd = op & FUTEX_CMD_MASK;
2864         unsigned int flags = 0;
2865
2866         if (!(op & FUTEX_PRIVATE_FLAG))
2867                 flags |= FLAGS_SHARED;
2868
2869         if (op & FUTEX_CLOCK_REALTIME) {
2870                 flags |= FLAGS_CLOCKRT;
2871                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2872                         return -ENOSYS;
2873         }
2874
2875         switch (cmd) {
2876         case FUTEX_LOCK_PI:
2877         case FUTEX_UNLOCK_PI:
2878         case FUTEX_TRYLOCK_PI:
2879         case FUTEX_WAIT_REQUEUE_PI:
2880         case FUTEX_CMP_REQUEUE_PI:
2881                 if (!futex_cmpxchg_enabled)
2882                         return -ENOSYS;
2883         }
2884
2885         switch (cmd) {
2886         case FUTEX_WAIT:
2887                 val3 = FUTEX_BITSET_MATCH_ANY;
2888         case FUTEX_WAIT_BITSET:
2889                 return futex_wait(uaddr, flags, val, timeout, val3);
2890         case FUTEX_WAKE:
2891                 val3 = FUTEX_BITSET_MATCH_ANY;
2892         case FUTEX_WAKE_BITSET:
2893                 return futex_wake(uaddr, flags, val, val3);
2894         case FUTEX_REQUEUE:
2895                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2896         case FUTEX_CMP_REQUEUE:
2897                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2898         case FUTEX_WAKE_OP:
2899                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2900         case FUTEX_LOCK_PI:
2901                 return futex_lock_pi(uaddr, flags, val, timeout, 0);
2902         case FUTEX_UNLOCK_PI:
2903                 return futex_unlock_pi(uaddr, flags);
2904         case FUTEX_TRYLOCK_PI:
2905                 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2906         case FUTEX_WAIT_REQUEUE_PI:
2907                 val3 = FUTEX_BITSET_MATCH_ANY;
2908                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2909                                              uaddr2);
2910         case FUTEX_CMP_REQUEUE_PI:
2911                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2912         }
2913         return -ENOSYS;
2914 }
2915
2916
2917 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2918                 struct timespec __user *, utime, u32 __user *, uaddr2,
2919                 u32, val3)
2920 {
2921         struct timespec ts;
2922         ktime_t t, *tp = NULL;
2923         u32 val2 = 0;
2924         int cmd = op & FUTEX_CMD_MASK;
2925
2926         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2927                       cmd == FUTEX_WAIT_BITSET ||
2928                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
2929                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2930                         return -EFAULT;
2931                 if (!timespec_valid(&ts))
2932                         return -EINVAL;
2933
2934                 t = timespec_to_ktime(ts);
2935                 if (cmd == FUTEX_WAIT)
2936                         t = ktime_add_safe(ktime_get(), t);
2937                 tp = &t;
2938         }
2939         /*
2940          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2941          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2942          */
2943         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2944             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2945                 val2 = (u32) (unsigned long) utime;
2946
2947         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2948 }
2949
2950 static void __init futex_detect_cmpxchg(void)
2951 {
2952 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
2953         u32 curval;
2954
2955         /*
2956          * This will fail and we want it. Some arch implementations do
2957          * runtime detection of the futex_atomic_cmpxchg_inatomic()
2958          * functionality. We want to know that before we call in any
2959          * of the complex code paths. Also we want to prevent
2960          * registration of robust lists in that case. NULL is
2961          * guaranteed to fault and we get -EFAULT on functional
2962          * implementation, the non-functional ones will return
2963          * -ENOSYS.
2964          */
2965         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2966                 futex_cmpxchg_enabled = 1;
2967 #endif
2968 }
2969
2970 static int __init futex_init(void)
2971 {
2972         unsigned int futex_shift;
2973         unsigned long i;
2974
2975 #if CONFIG_BASE_SMALL
2976         futex_hashsize = 16;
2977 #else
2978         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
2979 #endif
2980
2981         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
2982                                                futex_hashsize, 0,
2983                                                futex_hashsize < 256 ? HASH_SMALL : 0,
2984                                                &futex_shift, NULL,
2985                                                futex_hashsize, futex_hashsize);
2986         futex_hashsize = 1UL << futex_shift;
2987
2988         futex_detect_cmpxchg();
2989
2990         for (i = 0; i < futex_hashsize; i++) {
2991                 atomic_set(&futex_queues[i].waiters, 0);
2992                 plist_head_init(&futex_queues[i].chain);
2993                 spin_lock_init(&futex_queues[i].lock);
2994         }
2995
2996         return 0;
2997 }
2998 __initcall(futex_init);