'mod i2c read bug' and 'add i2c read/write interface'
[firefly-linux-kernel-4.4.55.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/module.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62
63 #include <asm/futex.h>
64
65 #include "rtmutex_common.h"
66
67 int __read_mostly futex_cmpxchg_enabled;
68
69 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
70
71 /*
72  * Priority Inheritance state:
73  */
74 struct futex_pi_state {
75         /*
76          * list of 'owned' pi_state instances - these have to be
77          * cleaned up in do_exit() if the task exits prematurely:
78          */
79         struct list_head list;
80
81         /*
82          * The PI object:
83          */
84         struct rt_mutex pi_mutex;
85
86         struct task_struct *owner;
87         atomic_t refcount;
88
89         union futex_key key;
90 };
91
92 /**
93  * struct futex_q - The hashed futex queue entry, one per waiting task
94  * @task:               the task waiting on the futex
95  * @lock_ptr:           the hash bucket lock
96  * @key:                the key the futex is hashed on
97  * @pi_state:           optional priority inheritance state
98  * @rt_waiter:          rt_waiter storage for use with requeue_pi
99  * @requeue_pi_key:     the requeue_pi target futex key
100  * @bitset:             bitset for the optional bitmasked wakeup
101  *
102  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
103  * we can wake only the relevant ones (hashed queues may be shared).
104  *
105  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
106  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
107  * The order of wakup is always to make the first condition true, then
108  * the second.
109  *
110  * PI futexes are typically woken before they are removed from the hash list via
111  * the rt_mutex code. See unqueue_me_pi().
112  */
113 struct futex_q {
114         struct plist_node list;
115
116         struct task_struct *task;
117         spinlock_t *lock_ptr;
118         union futex_key key;
119         struct futex_pi_state *pi_state;
120         struct rt_mutex_waiter *rt_waiter;
121         union futex_key *requeue_pi_key;
122         u32 bitset;
123 };
124
125 /*
126  * Hash buckets are shared by all the futex_keys that hash to the same
127  * location.  Each key may have multiple futex_q structures, one for each task
128  * waiting on a futex.
129  */
130 struct futex_hash_bucket {
131         spinlock_t lock;
132         struct plist_head chain;
133 };
134
135 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
136
137 /*
138  * We hash on the keys returned from get_futex_key (see below).
139  */
140 static struct futex_hash_bucket *hash_futex(union futex_key *key)
141 {
142         u32 hash = jhash2((u32*)&key->both.word,
143                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
144                           key->both.offset);
145         return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
146 }
147
148 /*
149  * Return 1 if two futex_keys are equal, 0 otherwise.
150  */
151 static inline int match_futex(union futex_key *key1, union futex_key *key2)
152 {
153         return (key1 && key2
154                 && key1->both.word == key2->both.word
155                 && key1->both.ptr == key2->both.ptr
156                 && key1->both.offset == key2->both.offset);
157 }
158
159 /*
160  * Take a reference to the resource addressed by a key.
161  * Can be called while holding spinlocks.
162  *
163  */
164 static void get_futex_key_refs(union futex_key *key)
165 {
166         if (!key->both.ptr)
167                 return;
168
169         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
170         case FUT_OFF_INODE:
171                 atomic_inc(&key->shared.inode->i_count);
172                 break;
173         case FUT_OFF_MMSHARED:
174                 atomic_inc(&key->private.mm->mm_count);
175                 break;
176         }
177 }
178
179 /*
180  * Drop a reference to the resource addressed by a key.
181  * The hash bucket spinlock must not be held.
182  */
183 static void drop_futex_key_refs(union futex_key *key)
184 {
185         if (!key->both.ptr) {
186                 /* If we're here then we tried to put a key we failed to get */
187                 WARN_ON_ONCE(1);
188                 return;
189         }
190
191         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
192         case FUT_OFF_INODE:
193                 iput(key->shared.inode);
194                 break;
195         case FUT_OFF_MMSHARED:
196                 mmdrop(key->private.mm);
197                 break;
198         }
199 }
200
201 /**
202  * get_futex_key() - Get parameters which are the keys for a futex
203  * @uaddr:      virtual address of the futex
204  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
205  * @key:        address where result is stored.
206  *
207  * Returns a negative error code or 0
208  * The key words are stored in *key on success.
209  *
210  * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
211  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
212  * We can usually work out the index without swapping in the page.
213  *
214  * lock_page() might sleep, the caller should not hold a spinlock.
215  */
216 static int
217 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
218 {
219         unsigned long address = (unsigned long)uaddr;
220         struct mm_struct *mm = current->mm;
221         struct page *page;
222         int err;
223         struct vm_area_struct *vma;
224
225         /*
226          * The futex address must be "naturally" aligned.
227          */
228         key->both.offset = address % PAGE_SIZE;
229         if (unlikely((address % sizeof(u32)) != 0))
230                 return -EINVAL;
231         address -= key->both.offset;
232
233         /*
234          * PROCESS_PRIVATE futexes are fast.
235          * As the mm cannot disappear under us and the 'key' only needs
236          * virtual address, we dont even have to find the underlying vma.
237          * Note : We do have to check 'uaddr' is a valid user address,
238          *        but access_ok() should be faster than find_vma()
239          */
240         if (!fshared) {
241                 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
242                         return -EFAULT;
243                 key->private.mm = mm;
244                 key->private.address = address;
245                 get_futex_key_refs(key);
246                 return 0;
247         }
248
249         /*
250          * The futex is hashed differently depending on whether
251          * it's in a shared or private mapping.  So check vma first.
252          */
253         vma = find_extend_vma(mm, address);
254         if (unlikely(!vma))
255                 return -EFAULT;
256
257         /*
258          * Permissions.
259          */
260         if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
261                 return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
262
263         /*
264          * Private mappings are handled in a simple way.
265          *
266          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
267          * it's a read-only handle, it's expected that futexes attach to
268          * the object not the particular process.  Therefore we use
269          * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
270          * mappings of _writable_ handles.
271          */
272         if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
273                 key->both.offset |= FUT_OFF_MMSHARED; /* reference taken on mm */
274                 key->private.mm = mm;
275                 key->private.address = address;
276                 get_futex_key_refs(key);
277                 return 0;
278         }
279
280 again:
281         err = get_user_pages_fast(address, 1, 1, &page);
282         if (err < 0)
283                 return err;
284
285         page = compound_head(page);
286         lock_page(page);
287         if (!page->mapping) {
288                 unlock_page(page);
289                 put_page(page);
290                 goto again;
291         }
292
293         /*
294          * Private mappings are handled in a simple way.
295          *
296          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
297          * it's a read-only handle, it's expected that futexes attach to
298          * the object not the particular process.
299          */
300         if (PageAnon(page)) {
301                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
302                 key->private.mm = mm;
303                 key->private.address = address;
304         } else {
305                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
306                 key->shared.inode = page->mapping->host;
307                 key->shared.pgoff = page->index;
308         }
309
310         get_futex_key_refs(key);
311
312         unlock_page(page);
313         put_page(page);
314         return 0;
315 }
316
317 static inline
318 void put_futex_key(int fshared, union futex_key *key)
319 {
320         drop_futex_key_refs(key);
321 }
322
323 /**
324  * fault_in_user_writeable() - Fault in user address and verify RW access
325  * @uaddr:      pointer to faulting user space address
326  *
327  * Slow path to fixup the fault we just took in the atomic write
328  * access to @uaddr.
329  *
330  * We have no generic implementation of a non destructive write to the
331  * user address. We know that we faulted in the atomic pagefault
332  * disabled section so we can as well avoid the #PF overhead by
333  * calling get_user_pages() right away.
334  */
335 static int fault_in_user_writeable(u32 __user *uaddr)
336 {
337         struct mm_struct *mm = current->mm;
338         int ret;
339
340         down_read(&mm->mmap_sem);
341         ret = get_user_pages(current, mm, (unsigned long)uaddr,
342                              1, 1, 0, NULL, NULL);
343         up_read(&mm->mmap_sem);
344
345         return ret < 0 ? ret : 0;
346 }
347
348 /**
349  * futex_top_waiter() - Return the highest priority waiter on a futex
350  * @hb:         the hash bucket the futex_q's reside in
351  * @key:        the futex key (to distinguish it from other futex futex_q's)
352  *
353  * Must be called with the hb lock held.
354  */
355 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
356                                         union futex_key *key)
357 {
358         struct futex_q *this;
359
360         plist_for_each_entry(this, &hb->chain, list) {
361                 if (match_futex(&this->key, key))
362                         return this;
363         }
364         return NULL;
365 }
366
367 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
368 {
369         u32 curval;
370
371         pagefault_disable();
372         curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
373         pagefault_enable();
374
375         return curval;
376 }
377
378 static int get_futex_value_locked(u32 *dest, u32 __user *from)
379 {
380         int ret;
381
382         pagefault_disable();
383         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
384         pagefault_enable();
385
386         return ret ? -EFAULT : 0;
387 }
388
389
390 /*
391  * PI code:
392  */
393 static int refill_pi_state_cache(void)
394 {
395         struct futex_pi_state *pi_state;
396
397         if (likely(current->pi_state_cache))
398                 return 0;
399
400         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
401
402         if (!pi_state)
403                 return -ENOMEM;
404
405         INIT_LIST_HEAD(&pi_state->list);
406         /* pi_mutex gets initialized later */
407         pi_state->owner = NULL;
408         atomic_set(&pi_state->refcount, 1);
409         pi_state->key = FUTEX_KEY_INIT;
410
411         current->pi_state_cache = pi_state;
412
413         return 0;
414 }
415
416 static struct futex_pi_state * alloc_pi_state(void)
417 {
418         struct futex_pi_state *pi_state = current->pi_state_cache;
419
420         WARN_ON(!pi_state);
421         current->pi_state_cache = NULL;
422
423         return pi_state;
424 }
425
426 static void free_pi_state(struct futex_pi_state *pi_state)
427 {
428         if (!atomic_dec_and_test(&pi_state->refcount))
429                 return;
430
431         /*
432          * If pi_state->owner is NULL, the owner is most probably dying
433          * and has cleaned up the pi_state already
434          */
435         if (pi_state->owner) {
436                 spin_lock_irq(&pi_state->owner->pi_lock);
437                 list_del_init(&pi_state->list);
438                 spin_unlock_irq(&pi_state->owner->pi_lock);
439
440                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
441         }
442
443         if (current->pi_state_cache)
444                 kfree(pi_state);
445         else {
446                 /*
447                  * pi_state->list is already empty.
448                  * clear pi_state->owner.
449                  * refcount is at 0 - put it back to 1.
450                  */
451                 pi_state->owner = NULL;
452                 atomic_set(&pi_state->refcount, 1);
453                 current->pi_state_cache = pi_state;
454         }
455 }
456
457 /*
458  * Look up the task based on what TID userspace gave us.
459  * We dont trust it.
460  */
461 static struct task_struct * futex_find_get_task(pid_t pid)
462 {
463         struct task_struct *p;
464         const struct cred *cred = current_cred(), *pcred;
465
466         rcu_read_lock();
467         p = find_task_by_vpid(pid);
468         if (!p) {
469                 p = ERR_PTR(-ESRCH);
470         } else {
471                 pcred = __task_cred(p);
472                 if (cred->euid != pcred->euid &&
473                     cred->euid != pcred->uid)
474                         p = ERR_PTR(-ESRCH);
475                 else
476                         get_task_struct(p);
477         }
478
479         rcu_read_unlock();
480
481         return p;
482 }
483
484 /*
485  * This task is holding PI mutexes at exit time => bad.
486  * Kernel cleans up PI-state, but userspace is likely hosed.
487  * (Robust-futex cleanup is separate and might save the day for userspace.)
488  */
489 void exit_pi_state_list(struct task_struct *curr)
490 {
491         struct list_head *next, *head = &curr->pi_state_list;
492         struct futex_pi_state *pi_state;
493         struct futex_hash_bucket *hb;
494         union futex_key key = FUTEX_KEY_INIT;
495
496         if (!futex_cmpxchg_enabled)
497                 return;
498         /*
499          * We are a ZOMBIE and nobody can enqueue itself on
500          * pi_state_list anymore, but we have to be careful
501          * versus waiters unqueueing themselves:
502          */
503         spin_lock_irq(&curr->pi_lock);
504         while (!list_empty(head)) {
505
506                 next = head->next;
507                 pi_state = list_entry(next, struct futex_pi_state, list);
508                 key = pi_state->key;
509                 hb = hash_futex(&key);
510                 spin_unlock_irq(&curr->pi_lock);
511
512                 spin_lock(&hb->lock);
513
514                 spin_lock_irq(&curr->pi_lock);
515                 /*
516                  * We dropped the pi-lock, so re-check whether this
517                  * task still owns the PI-state:
518                  */
519                 if (head->next != next) {
520                         spin_unlock(&hb->lock);
521                         continue;
522                 }
523
524                 WARN_ON(pi_state->owner != curr);
525                 WARN_ON(list_empty(&pi_state->list));
526                 list_del_init(&pi_state->list);
527                 pi_state->owner = NULL;
528                 spin_unlock_irq(&curr->pi_lock);
529
530                 rt_mutex_unlock(&pi_state->pi_mutex);
531
532                 spin_unlock(&hb->lock);
533
534                 spin_lock_irq(&curr->pi_lock);
535         }
536         spin_unlock_irq(&curr->pi_lock);
537 }
538
539 static int
540 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
541                 union futex_key *key, struct futex_pi_state **ps)
542 {
543         struct futex_pi_state *pi_state = NULL;
544         struct futex_q *this, *next;
545         struct plist_head *head;
546         struct task_struct *p;
547         pid_t pid = uval & FUTEX_TID_MASK;
548
549         head = &hb->chain;
550
551         plist_for_each_entry_safe(this, next, head, list) {
552                 if (match_futex(&this->key, key)) {
553                         /*
554                          * Another waiter already exists - bump up
555                          * the refcount and return its pi_state:
556                          */
557                         pi_state = this->pi_state;
558                         /*
559                          * Userspace might have messed up non PI and PI futexes
560                          */
561                         if (unlikely(!pi_state))
562                                 return -EINVAL;
563
564                         WARN_ON(!atomic_read(&pi_state->refcount));
565
566                         /*
567                          * When pi_state->owner is NULL then the owner died
568                          * and another waiter is on the fly. pi_state->owner
569                          * is fixed up by the task which acquires
570                          * pi_state->rt_mutex.
571                          *
572                          * We do not check for pid == 0 which can happen when
573                          * the owner died and robust_list_exit() cleared the
574                          * TID.
575                          */
576                         if (pid && pi_state->owner) {
577                                 /*
578                                  * Bail out if user space manipulated the
579                                  * futex value.
580                                  */
581                                 if (pid != task_pid_vnr(pi_state->owner))
582                                         return -EINVAL;
583                         }
584
585                         atomic_inc(&pi_state->refcount);
586                         *ps = pi_state;
587
588                         return 0;
589                 }
590         }
591
592         /*
593          * We are the first waiter - try to look up the real owner and attach
594          * the new pi_state to it, but bail out when TID = 0
595          */
596         if (!pid)
597                 return -ESRCH;
598         p = futex_find_get_task(pid);
599         if (IS_ERR(p))
600                 return PTR_ERR(p);
601
602         /*
603          * We need to look at the task state flags to figure out,
604          * whether the task is exiting. To protect against the do_exit
605          * change of the task flags, we do this protected by
606          * p->pi_lock:
607          */
608         spin_lock_irq(&p->pi_lock);
609         if (unlikely(p->flags & PF_EXITING)) {
610                 /*
611                  * The task is on the way out. When PF_EXITPIDONE is
612                  * set, we know that the task has finished the
613                  * cleanup:
614                  */
615                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
616
617                 spin_unlock_irq(&p->pi_lock);
618                 put_task_struct(p);
619                 return ret;
620         }
621
622         pi_state = alloc_pi_state();
623
624         /*
625          * Initialize the pi_mutex in locked state and make 'p'
626          * the owner of it:
627          */
628         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
629
630         /* Store the key for possible exit cleanups: */
631         pi_state->key = *key;
632
633         WARN_ON(!list_empty(&pi_state->list));
634         list_add(&pi_state->list, &p->pi_state_list);
635         pi_state->owner = p;
636         spin_unlock_irq(&p->pi_lock);
637
638         put_task_struct(p);
639
640         *ps = pi_state;
641
642         return 0;
643 }
644
645 /**
646  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
647  * @uaddr:              the pi futex user address
648  * @hb:                 the pi futex hash bucket
649  * @key:                the futex key associated with uaddr and hb
650  * @ps:                 the pi_state pointer where we store the result of the
651  *                      lookup
652  * @task:               the task to perform the atomic lock work for.  This will
653  *                      be "current" except in the case of requeue pi.
654  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
655  *
656  * Returns:
657  *  0 - ready to wait
658  *  1 - acquired the lock
659  * <0 - error
660  *
661  * The hb->lock and futex_key refs shall be held by the caller.
662  */
663 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
664                                 union futex_key *key,
665                                 struct futex_pi_state **ps,
666                                 struct task_struct *task, int set_waiters)
667 {
668         int lock_taken, ret, ownerdied = 0;
669         u32 uval, newval, curval;
670
671 retry:
672         ret = lock_taken = 0;
673
674         /*
675          * To avoid races, we attempt to take the lock here again
676          * (by doing a 0 -> TID atomic cmpxchg), while holding all
677          * the locks. It will most likely not succeed.
678          */
679         newval = task_pid_vnr(task);
680         if (set_waiters)
681                 newval |= FUTEX_WAITERS;
682
683         curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
684
685         if (unlikely(curval == -EFAULT))
686                 return -EFAULT;
687
688         /*
689          * Detect deadlocks.
690          */
691         if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
692                 return -EDEADLK;
693
694         /*
695          * Surprise - we got the lock. Just return to userspace:
696          */
697         if (unlikely(!curval))
698                 return 1;
699
700         uval = curval;
701
702         /*
703          * Set the FUTEX_WAITERS flag, so the owner will know it has someone
704          * to wake at the next unlock.
705          */
706         newval = curval | FUTEX_WAITERS;
707
708         /*
709          * There are two cases, where a futex might have no owner (the
710          * owner TID is 0): OWNER_DIED. We take over the futex in this
711          * case. We also do an unconditional take over, when the owner
712          * of the futex died.
713          *
714          * This is safe as we are protected by the hash bucket lock !
715          */
716         if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
717                 /* Keep the OWNER_DIED bit */
718                 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
719                 ownerdied = 0;
720                 lock_taken = 1;
721         }
722
723         curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
724
725         if (unlikely(curval == -EFAULT))
726                 return -EFAULT;
727         if (unlikely(curval != uval))
728                 goto retry;
729
730         /*
731          * We took the lock due to owner died take over.
732          */
733         if (unlikely(lock_taken))
734                 return 1;
735
736         /*
737          * We dont have the lock. Look up the PI state (or create it if
738          * we are the first waiter):
739          */
740         ret = lookup_pi_state(uval, hb, key, ps);
741
742         if (unlikely(ret)) {
743                 switch (ret) {
744                 case -ESRCH:
745                         /*
746                          * No owner found for this futex. Check if the
747                          * OWNER_DIED bit is set to figure out whether
748                          * this is a robust futex or not.
749                          */
750                         if (get_futex_value_locked(&curval, uaddr))
751                                 return -EFAULT;
752
753                         /*
754                          * We simply start over in case of a robust
755                          * futex. The code above will take the futex
756                          * and return happy.
757                          */
758                         if (curval & FUTEX_OWNER_DIED) {
759                                 ownerdied = 1;
760                                 goto retry;
761                         }
762                 default:
763                         break;
764                 }
765         }
766
767         return ret;
768 }
769
770 /*
771  * The hash bucket lock must be held when this is called.
772  * Afterwards, the futex_q must not be accessed.
773  */
774 static void wake_futex(struct futex_q *q)
775 {
776         struct task_struct *p = q->task;
777
778         /*
779          * We set q->lock_ptr = NULL _before_ we wake up the task. If
780          * a non futex wake up happens on another CPU then the task
781          * might exit and p would dereference a non existing task
782          * struct. Prevent this by holding a reference on p across the
783          * wake up.
784          */
785         get_task_struct(p);
786
787         plist_del(&q->list, &q->list.plist);
788         /*
789          * The waiting task can free the futex_q as soon as
790          * q->lock_ptr = NULL is written, without taking any locks. A
791          * memory barrier is required here to prevent the following
792          * store to lock_ptr from getting ahead of the plist_del.
793          */
794         smp_wmb();
795         q->lock_ptr = NULL;
796
797         wake_up_state(p, TASK_NORMAL);
798         put_task_struct(p);
799 }
800
801 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
802 {
803         struct task_struct *new_owner;
804         struct futex_pi_state *pi_state = this->pi_state;
805         u32 curval, newval;
806
807         if (!pi_state)
808                 return -EINVAL;
809
810         /*
811          * If current does not own the pi_state then the futex is
812          * inconsistent and user space fiddled with the futex value.
813          */
814         if (pi_state->owner != current)
815                 return -EINVAL;
816
817         spin_lock(&pi_state->pi_mutex.wait_lock);
818         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
819
820         /*
821          * This happens when we have stolen the lock and the original
822          * pending owner did not enqueue itself back on the rt_mutex.
823          * Thats not a tragedy. We know that way, that a lock waiter
824          * is on the fly. We make the futex_q waiter the pending owner.
825          */
826         if (!new_owner)
827                 new_owner = this->task;
828
829         /*
830          * We pass it to the next owner. (The WAITERS bit is always
831          * kept enabled while there is PI state around. We must also
832          * preserve the owner died bit.)
833          */
834         if (!(uval & FUTEX_OWNER_DIED)) {
835                 int ret = 0;
836
837                 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
838
839                 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
840
841                 if (curval == -EFAULT)
842                         ret = -EFAULT;
843                 else if (curval != uval)
844                         ret = -EINVAL;
845                 if (ret) {
846                         spin_unlock(&pi_state->pi_mutex.wait_lock);
847                         return ret;
848                 }
849         }
850
851         spin_lock_irq(&pi_state->owner->pi_lock);
852         WARN_ON(list_empty(&pi_state->list));
853         list_del_init(&pi_state->list);
854         spin_unlock_irq(&pi_state->owner->pi_lock);
855
856         spin_lock_irq(&new_owner->pi_lock);
857         WARN_ON(!list_empty(&pi_state->list));
858         list_add(&pi_state->list, &new_owner->pi_state_list);
859         pi_state->owner = new_owner;
860         spin_unlock_irq(&new_owner->pi_lock);
861
862         spin_unlock(&pi_state->pi_mutex.wait_lock);
863         rt_mutex_unlock(&pi_state->pi_mutex);
864
865         return 0;
866 }
867
868 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
869 {
870         u32 oldval;
871
872         /*
873          * There is no waiter, so we unlock the futex. The owner died
874          * bit has not to be preserved here. We are the owner:
875          */
876         oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
877
878         if (oldval == -EFAULT)
879                 return oldval;
880         if (oldval != uval)
881                 return -EAGAIN;
882
883         return 0;
884 }
885
886 /*
887  * Express the locking dependencies for lockdep:
888  */
889 static inline void
890 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
891 {
892         if (hb1 <= hb2) {
893                 spin_lock(&hb1->lock);
894                 if (hb1 < hb2)
895                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
896         } else { /* hb1 > hb2 */
897                 spin_lock(&hb2->lock);
898                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
899         }
900 }
901
902 static inline void
903 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
904 {
905         spin_unlock(&hb1->lock);
906         if (hb1 != hb2)
907                 spin_unlock(&hb2->lock);
908 }
909
910 /*
911  * Wake up waiters matching bitset queued on this futex (uaddr).
912  */
913 static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
914 {
915         struct futex_hash_bucket *hb;
916         struct futex_q *this, *next;
917         struct plist_head *head;
918         union futex_key key = FUTEX_KEY_INIT;
919         int ret;
920
921         if (!bitset)
922                 return -EINVAL;
923
924         ret = get_futex_key(uaddr, fshared, &key);
925         if (unlikely(ret != 0))
926                 goto out;
927
928         hb = hash_futex(&key);
929         spin_lock(&hb->lock);
930         head = &hb->chain;
931
932         plist_for_each_entry_safe(this, next, head, list) {
933                 if (match_futex (&this->key, &key)) {
934                         if (this->pi_state || this->rt_waiter) {
935                                 ret = -EINVAL;
936                                 break;
937                         }
938
939                         /* Check if one of the bits is set in both bitsets */
940                         if (!(this->bitset & bitset))
941                                 continue;
942
943                         wake_futex(this);
944                         if (++ret >= nr_wake)
945                                 break;
946                 }
947         }
948
949         spin_unlock(&hb->lock);
950         put_futex_key(fshared, &key);
951 out:
952         return ret;
953 }
954
955 /*
956  * Wake up all waiters hashed on the physical page that is mapped
957  * to this virtual address:
958  */
959 static int
960 futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
961               int nr_wake, int nr_wake2, int op)
962 {
963         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
964         struct futex_hash_bucket *hb1, *hb2;
965         struct plist_head *head;
966         struct futex_q *this, *next;
967         int ret, op_ret;
968
969 retry:
970         ret = get_futex_key(uaddr1, fshared, &key1);
971         if (unlikely(ret != 0))
972                 goto out;
973         ret = get_futex_key(uaddr2, fshared, &key2);
974         if (unlikely(ret != 0))
975                 goto out_put_key1;
976
977         hb1 = hash_futex(&key1);
978         hb2 = hash_futex(&key2);
979
980 retry_private:
981         double_lock_hb(hb1, hb2);
982         op_ret = futex_atomic_op_inuser(op, uaddr2);
983         if (unlikely(op_ret < 0)) {
984
985                 double_unlock_hb(hb1, hb2);
986
987 #ifndef CONFIG_MMU
988                 /*
989                  * we don't get EFAULT from MMU faults if we don't have an MMU,
990                  * but we might get them from range checking
991                  */
992                 ret = op_ret;
993                 goto out_put_keys;
994 #endif
995
996                 if (unlikely(op_ret != -EFAULT)) {
997                         ret = op_ret;
998                         goto out_put_keys;
999                 }
1000
1001                 ret = fault_in_user_writeable(uaddr2);
1002                 if (ret)
1003                         goto out_put_keys;
1004
1005                 if (!fshared)
1006                         goto retry_private;
1007
1008                 put_futex_key(fshared, &key2);
1009                 put_futex_key(fshared, &key1);
1010                 goto retry;
1011         }
1012
1013         head = &hb1->chain;
1014
1015         plist_for_each_entry_safe(this, next, head, list) {
1016                 if (match_futex (&this->key, &key1)) {
1017                         wake_futex(this);
1018                         if (++ret >= nr_wake)
1019                                 break;
1020                 }
1021         }
1022
1023         if (op_ret > 0) {
1024                 head = &hb2->chain;
1025
1026                 op_ret = 0;
1027                 plist_for_each_entry_safe(this, next, head, list) {
1028                         if (match_futex (&this->key, &key2)) {
1029                                 wake_futex(this);
1030                                 if (++op_ret >= nr_wake2)
1031                                         break;
1032                         }
1033                 }
1034                 ret += op_ret;
1035         }
1036
1037         double_unlock_hb(hb1, hb2);
1038 out_put_keys:
1039         put_futex_key(fshared, &key2);
1040 out_put_key1:
1041         put_futex_key(fshared, &key1);
1042 out:
1043         return ret;
1044 }
1045
1046 /**
1047  * requeue_futex() - Requeue a futex_q from one hb to another
1048  * @q:          the futex_q to requeue
1049  * @hb1:        the source hash_bucket
1050  * @hb2:        the target hash_bucket
1051  * @key2:       the new key for the requeued futex_q
1052  */
1053 static inline
1054 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1055                    struct futex_hash_bucket *hb2, union futex_key *key2)
1056 {
1057
1058         /*
1059          * If key1 and key2 hash to the same bucket, no need to
1060          * requeue.
1061          */
1062         if (likely(&hb1->chain != &hb2->chain)) {
1063                 plist_del(&q->list, &hb1->chain);
1064                 plist_add(&q->list, &hb2->chain);
1065                 q->lock_ptr = &hb2->lock;
1066 #ifdef CONFIG_DEBUG_PI_LIST
1067                 q->list.plist.lock = &hb2->lock;
1068 #endif
1069         }
1070         get_futex_key_refs(key2);
1071         q->key = *key2;
1072 }
1073
1074 /**
1075  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1076  * @q:          the futex_q
1077  * @key:        the key of the requeue target futex
1078  * @hb:         the hash_bucket of the requeue target futex
1079  *
1080  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1081  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1082  * to the requeue target futex so the waiter can detect the wakeup on the right
1083  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1084  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1085  * to protect access to the pi_state to fixup the owner later.  Must be called
1086  * with both q->lock_ptr and hb->lock held.
1087  */
1088 static inline
1089 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1090                            struct futex_hash_bucket *hb)
1091 {
1092         get_futex_key_refs(key);
1093         q->key = *key;
1094
1095         WARN_ON(plist_node_empty(&q->list));
1096         plist_del(&q->list, &q->list.plist);
1097
1098         WARN_ON(!q->rt_waiter);
1099         q->rt_waiter = NULL;
1100
1101         q->lock_ptr = &hb->lock;
1102 #ifdef CONFIG_DEBUG_PI_LIST
1103         q->list.plist.lock = &hb->lock;
1104 #endif
1105
1106         wake_up_state(q->task, TASK_NORMAL);
1107 }
1108
1109 /**
1110  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1111  * @pifutex:            the user address of the to futex
1112  * @hb1:                the from futex hash bucket, must be locked by the caller
1113  * @hb2:                the to futex hash bucket, must be locked by the caller
1114  * @key1:               the from futex key
1115  * @key2:               the to futex key
1116  * @ps:                 address to store the pi_state pointer
1117  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1118  *
1119  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1120  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1121  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1122  * hb1 and hb2 must be held by the caller.
1123  *
1124  * Returns:
1125  *  0 - failed to acquire the lock atomicly
1126  *  1 - acquired the lock
1127  * <0 - error
1128  */
1129 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1130                                  struct futex_hash_bucket *hb1,
1131                                  struct futex_hash_bucket *hb2,
1132                                  union futex_key *key1, union futex_key *key2,
1133                                  struct futex_pi_state **ps, int set_waiters)
1134 {
1135         struct futex_q *top_waiter = NULL;
1136         u32 curval;
1137         int ret;
1138
1139         if (get_futex_value_locked(&curval, pifutex))
1140                 return -EFAULT;
1141
1142         /*
1143          * Find the top_waiter and determine if there are additional waiters.
1144          * If the caller intends to requeue more than 1 waiter to pifutex,
1145          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1146          * as we have means to handle the possible fault.  If not, don't set
1147          * the bit unecessarily as it will force the subsequent unlock to enter
1148          * the kernel.
1149          */
1150         top_waiter = futex_top_waiter(hb1, key1);
1151
1152         /* There are no waiters, nothing for us to do. */
1153         if (!top_waiter)
1154                 return 0;
1155
1156         /* Ensure we requeue to the expected futex. */
1157         if (!match_futex(top_waiter->requeue_pi_key, key2))
1158                 return -EINVAL;
1159
1160         /*
1161          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1162          * the contended case or if set_waiters is 1.  The pi_state is returned
1163          * in ps in contended cases.
1164          */
1165         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1166                                    set_waiters);
1167         if (ret == 1)
1168                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1169
1170         return ret;
1171 }
1172
1173 /**
1174  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1175  * uaddr1:      source futex user address
1176  * uaddr2:      target futex user address
1177  * nr_wake:     number of waiters to wake (must be 1 for requeue_pi)
1178  * nr_requeue:  number of waiters to requeue (0-INT_MAX)
1179  * requeue_pi:  if we are attempting to requeue from a non-pi futex to a
1180  *              pi futex (pi to pi requeue is not supported)
1181  *
1182  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1183  * uaddr2 atomically on behalf of the top waiter.
1184  *
1185  * Returns:
1186  * >=0 - on success, the number of tasks requeued or woken
1187  *  <0 - on error
1188  */
1189 static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
1190                          int nr_wake, int nr_requeue, u32 *cmpval,
1191                          int requeue_pi)
1192 {
1193         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1194         int drop_count = 0, task_count = 0, ret;
1195         struct futex_pi_state *pi_state = NULL;
1196         struct futex_hash_bucket *hb1, *hb2;
1197         struct plist_head *head1;
1198         struct futex_q *this, *next;
1199         u32 curval2;
1200
1201         if (requeue_pi) {
1202                 /*
1203                  * requeue_pi requires a pi_state, try to allocate it now
1204                  * without any locks in case it fails.
1205                  */
1206                 if (refill_pi_state_cache())
1207                         return -ENOMEM;
1208                 /*
1209                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1210                  * + nr_requeue, since it acquires the rt_mutex prior to
1211                  * returning to userspace, so as to not leave the rt_mutex with
1212                  * waiters and no owner.  However, second and third wake-ups
1213                  * cannot be predicted as they involve race conditions with the
1214                  * first wake and a fault while looking up the pi_state.  Both
1215                  * pthread_cond_signal() and pthread_cond_broadcast() should
1216                  * use nr_wake=1.
1217                  */
1218                 if (nr_wake != 1)
1219                         return -EINVAL;
1220         }
1221
1222 retry:
1223         if (pi_state != NULL) {
1224                 /*
1225                  * We will have to lookup the pi_state again, so free this one
1226                  * to keep the accounting correct.
1227                  */
1228                 free_pi_state(pi_state);
1229                 pi_state = NULL;
1230         }
1231
1232         ret = get_futex_key(uaddr1, fshared, &key1);
1233         if (unlikely(ret != 0))
1234                 goto out;
1235         ret = get_futex_key(uaddr2, fshared, &key2);
1236         if (unlikely(ret != 0))
1237                 goto out_put_key1;
1238
1239         hb1 = hash_futex(&key1);
1240         hb2 = hash_futex(&key2);
1241
1242 retry_private:
1243         double_lock_hb(hb1, hb2);
1244
1245         if (likely(cmpval != NULL)) {
1246                 u32 curval;
1247
1248                 ret = get_futex_value_locked(&curval, uaddr1);
1249
1250                 if (unlikely(ret)) {
1251                         double_unlock_hb(hb1, hb2);
1252
1253                         ret = get_user(curval, uaddr1);
1254                         if (ret)
1255                                 goto out_put_keys;
1256
1257                         if (!fshared)
1258                                 goto retry_private;
1259
1260                         put_futex_key(fshared, &key2);
1261                         put_futex_key(fshared, &key1);
1262                         goto retry;
1263                 }
1264                 if (curval != *cmpval) {
1265                         ret = -EAGAIN;
1266                         goto out_unlock;
1267                 }
1268         }
1269
1270         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1271                 /*
1272                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1273                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1274                  * bit.  We force this here where we are able to easily handle
1275                  * faults rather in the requeue loop below.
1276                  */
1277                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1278                                                  &key2, &pi_state, nr_requeue);
1279
1280                 /*
1281                  * At this point the top_waiter has either taken uaddr2 or is
1282                  * waiting on it.  If the former, then the pi_state will not
1283                  * exist yet, look it up one more time to ensure we have a
1284                  * reference to it.
1285                  */
1286                 if (ret == 1) {
1287                         WARN_ON(pi_state);
1288                         drop_count++;
1289                         task_count++;
1290                         ret = get_futex_value_locked(&curval2, uaddr2);
1291                         if (!ret)
1292                                 ret = lookup_pi_state(curval2, hb2, &key2,
1293                                                       &pi_state);
1294                 }
1295
1296                 switch (ret) {
1297                 case 0:
1298                         break;
1299                 case -EFAULT:
1300                         double_unlock_hb(hb1, hb2);
1301                         put_futex_key(fshared, &key2);
1302                         put_futex_key(fshared, &key1);
1303                         ret = fault_in_user_writeable(uaddr2);
1304                         if (!ret)
1305                                 goto retry;
1306                         goto out;
1307                 case -EAGAIN:
1308                         /* The owner was exiting, try again. */
1309                         double_unlock_hb(hb1, hb2);
1310                         put_futex_key(fshared, &key2);
1311                         put_futex_key(fshared, &key1);
1312                         cond_resched();
1313                         goto retry;
1314                 default:
1315                         goto out_unlock;
1316                 }
1317         }
1318
1319         head1 = &hb1->chain;
1320         plist_for_each_entry_safe(this, next, head1, list) {
1321                 if (task_count - nr_wake >= nr_requeue)
1322                         break;
1323
1324                 if (!match_futex(&this->key, &key1))
1325                         continue;
1326
1327                 /*
1328                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1329                  * be paired with each other and no other futex ops.
1330                  */
1331                 if ((requeue_pi && !this->rt_waiter) ||
1332                     (!requeue_pi && this->rt_waiter)) {
1333                         ret = -EINVAL;
1334                         break;
1335                 }
1336
1337                 /*
1338                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1339                  * lock, we already woke the top_waiter.  If not, it will be
1340                  * woken by futex_unlock_pi().
1341                  */
1342                 if (++task_count <= nr_wake && !requeue_pi) {
1343                         wake_futex(this);
1344                         continue;
1345                 }
1346
1347                 /* Ensure we requeue to the expected futex for requeue_pi. */
1348                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1349                         ret = -EINVAL;
1350                         break;
1351                 }
1352
1353                 /*
1354                  * Requeue nr_requeue waiters and possibly one more in the case
1355                  * of requeue_pi if we couldn't acquire the lock atomically.
1356                  */
1357                 if (requeue_pi) {
1358                         /* Prepare the waiter to take the rt_mutex. */
1359                         atomic_inc(&pi_state->refcount);
1360                         this->pi_state = pi_state;
1361                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1362                                                         this->rt_waiter,
1363                                                         this->task, 1);
1364                         if (ret == 1) {
1365                                 /* We got the lock. */
1366                                 requeue_pi_wake_futex(this, &key2, hb2);
1367                                 drop_count++;
1368                                 continue;
1369                         } else if (ret) {
1370                                 /* -EDEADLK */
1371                                 this->pi_state = NULL;
1372                                 free_pi_state(pi_state);
1373                                 goto out_unlock;
1374                         }
1375                 }
1376                 requeue_futex(this, hb1, hb2, &key2);
1377                 drop_count++;
1378         }
1379
1380 out_unlock:
1381         double_unlock_hb(hb1, hb2);
1382
1383         /*
1384          * drop_futex_key_refs() must be called outside the spinlocks. During
1385          * the requeue we moved futex_q's from the hash bucket at key1 to the
1386          * one at key2 and updated their key pointer.  We no longer need to
1387          * hold the references to key1.
1388          */
1389         while (--drop_count >= 0)
1390                 drop_futex_key_refs(&key1);
1391
1392 out_put_keys:
1393         put_futex_key(fshared, &key2);
1394 out_put_key1:
1395         put_futex_key(fshared, &key1);
1396 out:
1397         if (pi_state != NULL)
1398                 free_pi_state(pi_state);
1399         return ret ? ret : task_count;
1400 }
1401
1402 /* The key must be already stored in q->key. */
1403 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1404 {
1405         struct futex_hash_bucket *hb;
1406
1407         get_futex_key_refs(&q->key);
1408         hb = hash_futex(&q->key);
1409         q->lock_ptr = &hb->lock;
1410
1411         spin_lock(&hb->lock);
1412         return hb;
1413 }
1414
1415 static inline void
1416 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1417 {
1418         spin_unlock(&hb->lock);
1419         drop_futex_key_refs(&q->key);
1420 }
1421
1422 /**
1423  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1424  * @q:  The futex_q to enqueue
1425  * @hb: The destination hash bucket
1426  *
1427  * The hb->lock must be held by the caller, and is released here. A call to
1428  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1429  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1430  * or nothing if the unqueue is done as part of the wake process and the unqueue
1431  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1432  * an example).
1433  */
1434 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1435 {
1436         int prio;
1437
1438         /*
1439          * The priority used to register this element is
1440          * - either the real thread-priority for the real-time threads
1441          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1442          * - or MAX_RT_PRIO for non-RT threads.
1443          * Thus, all RT-threads are woken first in priority order, and
1444          * the others are woken last, in FIFO order.
1445          */
1446         prio = min(current->normal_prio, MAX_RT_PRIO);
1447
1448         plist_node_init(&q->list, prio);
1449 #ifdef CONFIG_DEBUG_PI_LIST
1450         q->list.plist.lock = &hb->lock;
1451 #endif
1452         plist_add(&q->list, &hb->chain);
1453         q->task = current;
1454         spin_unlock(&hb->lock);
1455 }
1456
1457 /**
1458  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1459  * @q:  The futex_q to unqueue
1460  *
1461  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1462  * be paired with exactly one earlier call to queue_me().
1463  *
1464  * Returns:
1465  *   1 - if the futex_q was still queued (and we removed unqueued it)
1466  *   0 - if the futex_q was already removed by the waking thread
1467  */
1468 static int unqueue_me(struct futex_q *q)
1469 {
1470         spinlock_t *lock_ptr;
1471         int ret = 0;
1472
1473         /* In the common case we don't take the spinlock, which is nice. */
1474 retry:
1475         lock_ptr = q->lock_ptr;
1476         barrier();
1477         if (lock_ptr != NULL) {
1478                 spin_lock(lock_ptr);
1479                 /*
1480                  * q->lock_ptr can change between reading it and
1481                  * spin_lock(), causing us to take the wrong lock.  This
1482                  * corrects the race condition.
1483                  *
1484                  * Reasoning goes like this: if we have the wrong lock,
1485                  * q->lock_ptr must have changed (maybe several times)
1486                  * between reading it and the spin_lock().  It can
1487                  * change again after the spin_lock() but only if it was
1488                  * already changed before the spin_lock().  It cannot,
1489                  * however, change back to the original value.  Therefore
1490                  * we can detect whether we acquired the correct lock.
1491                  */
1492                 if (unlikely(lock_ptr != q->lock_ptr)) {
1493                         spin_unlock(lock_ptr);
1494                         goto retry;
1495                 }
1496                 WARN_ON(plist_node_empty(&q->list));
1497                 plist_del(&q->list, &q->list.plist);
1498
1499                 BUG_ON(q->pi_state);
1500
1501                 spin_unlock(lock_ptr);
1502                 ret = 1;
1503         }
1504
1505         drop_futex_key_refs(&q->key);
1506         return ret;
1507 }
1508
1509 /*
1510  * PI futexes can not be requeued and must remove themself from the
1511  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1512  * and dropped here.
1513  */
1514 static void unqueue_me_pi(struct futex_q *q)
1515 {
1516         WARN_ON(plist_node_empty(&q->list));
1517         plist_del(&q->list, &q->list.plist);
1518
1519         BUG_ON(!q->pi_state);
1520         free_pi_state(q->pi_state);
1521         q->pi_state = NULL;
1522
1523         spin_unlock(q->lock_ptr);
1524
1525         drop_futex_key_refs(&q->key);
1526 }
1527
1528 /*
1529  * Fixup the pi_state owner with the new owner.
1530  *
1531  * Must be called with hash bucket lock held and mm->sem held for non
1532  * private futexes.
1533  */
1534 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1535                                 struct task_struct *newowner, int fshared)
1536 {
1537         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1538         struct futex_pi_state *pi_state = q->pi_state;
1539         struct task_struct *oldowner = pi_state->owner;
1540         u32 uval, curval, newval;
1541         int ret;
1542
1543         /* Owner died? */
1544         if (!pi_state->owner)
1545                 newtid |= FUTEX_OWNER_DIED;
1546
1547         /*
1548          * We are here either because we stole the rtmutex from the
1549          * pending owner or we are the pending owner which failed to
1550          * get the rtmutex. We have to replace the pending owner TID
1551          * in the user space variable. This must be atomic as we have
1552          * to preserve the owner died bit here.
1553          *
1554          * Note: We write the user space value _before_ changing the pi_state
1555          * because we can fault here. Imagine swapped out pages or a fork
1556          * that marked all the anonymous memory readonly for cow.
1557          *
1558          * Modifying pi_state _before_ the user space value would
1559          * leave the pi_state in an inconsistent state when we fault
1560          * here, because we need to drop the hash bucket lock to
1561          * handle the fault. This might be observed in the PID check
1562          * in lookup_pi_state.
1563          */
1564 retry:
1565         if (get_futex_value_locked(&uval, uaddr))
1566                 goto handle_fault;
1567
1568         while (1) {
1569                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1570
1571                 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1572
1573                 if (curval == -EFAULT)
1574                         goto handle_fault;
1575                 if (curval == uval)
1576                         break;
1577                 uval = curval;
1578         }
1579
1580         /*
1581          * We fixed up user space. Now we need to fix the pi_state
1582          * itself.
1583          */
1584         if (pi_state->owner != NULL) {
1585                 spin_lock_irq(&pi_state->owner->pi_lock);
1586                 WARN_ON(list_empty(&pi_state->list));
1587                 list_del_init(&pi_state->list);
1588                 spin_unlock_irq(&pi_state->owner->pi_lock);
1589         }
1590
1591         pi_state->owner = newowner;
1592
1593         spin_lock_irq(&newowner->pi_lock);
1594         WARN_ON(!list_empty(&pi_state->list));
1595         list_add(&pi_state->list, &newowner->pi_state_list);
1596         spin_unlock_irq(&newowner->pi_lock);
1597         return 0;
1598
1599         /*
1600          * To handle the page fault we need to drop the hash bucket
1601          * lock here. That gives the other task (either the pending
1602          * owner itself or the task which stole the rtmutex) the
1603          * chance to try the fixup of the pi_state. So once we are
1604          * back from handling the fault we need to check the pi_state
1605          * after reacquiring the hash bucket lock and before trying to
1606          * do another fixup. When the fixup has been done already we
1607          * simply return.
1608          */
1609 handle_fault:
1610         spin_unlock(q->lock_ptr);
1611
1612         ret = fault_in_user_writeable(uaddr);
1613
1614         spin_lock(q->lock_ptr);
1615
1616         /*
1617          * Check if someone else fixed it for us:
1618          */
1619         if (pi_state->owner != oldowner)
1620                 return 0;
1621
1622         if (ret)
1623                 return ret;
1624
1625         goto retry;
1626 }
1627
1628 /*
1629  * In case we must use restart_block to restart a futex_wait,
1630  * we encode in the 'flags' shared capability
1631  */
1632 #define FLAGS_SHARED            0x01
1633 #define FLAGS_CLOCKRT           0x02
1634 #define FLAGS_HAS_TIMEOUT       0x04
1635
1636 static long futex_wait_restart(struct restart_block *restart);
1637
1638 /**
1639  * fixup_owner() - Post lock pi_state and corner case management
1640  * @uaddr:      user address of the futex
1641  * @fshared:    whether the futex is shared (1) or not (0)
1642  * @q:          futex_q (contains pi_state and access to the rt_mutex)
1643  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
1644  *
1645  * After attempting to lock an rt_mutex, this function is called to cleanup
1646  * the pi_state owner as well as handle race conditions that may allow us to
1647  * acquire the lock. Must be called with the hb lock held.
1648  *
1649  * Returns:
1650  *  1 - success, lock taken
1651  *  0 - success, lock not taken
1652  * <0 - on error (-EFAULT)
1653  */
1654 static int fixup_owner(u32 __user *uaddr, int fshared, struct futex_q *q,
1655                        int locked)
1656 {
1657         struct task_struct *owner;
1658         int ret = 0;
1659
1660         if (locked) {
1661                 /*
1662                  * Got the lock. We might not be the anticipated owner if we
1663                  * did a lock-steal - fix up the PI-state in that case:
1664                  */
1665                 if (q->pi_state->owner != current)
1666                         ret = fixup_pi_state_owner(uaddr, q, current, fshared);
1667                 goto out;
1668         }
1669
1670         /*
1671          * Catch the rare case, where the lock was released when we were on the
1672          * way back before we locked the hash bucket.
1673          */
1674         if (q->pi_state->owner == current) {
1675                 /*
1676                  * Try to get the rt_mutex now. This might fail as some other
1677                  * task acquired the rt_mutex after we removed ourself from the
1678                  * rt_mutex waiters list.
1679                  */
1680                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1681                         locked = 1;
1682                         goto out;
1683                 }
1684
1685                 /*
1686                  * pi_state is incorrect, some other task did a lock steal and
1687                  * we returned due to timeout or signal without taking the
1688                  * rt_mutex. Too late. We can access the rt_mutex_owner without
1689                  * locking, as the other task is now blocked on the hash bucket
1690                  * lock. Fix the state up.
1691                  */
1692                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1693                 ret = fixup_pi_state_owner(uaddr, q, owner, fshared);
1694                 goto out;
1695         }
1696
1697         /*
1698          * Paranoia check. If we did not take the lock, then we should not be
1699          * the owner, nor the pending owner, of the rt_mutex.
1700          */
1701         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1702                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1703                                 "pi-state %p\n", ret,
1704                                 q->pi_state->pi_mutex.owner,
1705                                 q->pi_state->owner);
1706
1707 out:
1708         return ret ? ret : locked;
1709 }
1710
1711 /**
1712  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1713  * @hb:         the futex hash bucket, must be locked by the caller
1714  * @q:          the futex_q to queue up on
1715  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
1716  */
1717 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1718                                 struct hrtimer_sleeper *timeout)
1719 {
1720         /*
1721          * The task state is guaranteed to be set before another task can
1722          * wake it. set_current_state() is implemented using set_mb() and
1723          * queue_me() calls spin_unlock() upon completion, both serializing
1724          * access to the hash list and forcing another memory barrier.
1725          */
1726         set_current_state(TASK_INTERRUPTIBLE);
1727         queue_me(q, hb);
1728
1729         /* Arm the timer */
1730         if (timeout) {
1731                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1732                 if (!hrtimer_active(&timeout->timer))
1733                         timeout->task = NULL;
1734         }
1735
1736         /*
1737          * If we have been removed from the hash list, then another task
1738          * has tried to wake us, and we can skip the call to schedule().
1739          */
1740         if (likely(!plist_node_empty(&q->list))) {
1741                 /*
1742                  * If the timer has already expired, current will already be
1743                  * flagged for rescheduling. Only call schedule if there
1744                  * is no timeout, or if it has yet to expire.
1745                  */
1746                 if (!timeout || timeout->task)
1747                         schedule();
1748         }
1749         __set_current_state(TASK_RUNNING);
1750 }
1751
1752 /**
1753  * futex_wait_setup() - Prepare to wait on a futex
1754  * @uaddr:      the futex userspace address
1755  * @val:        the expected value
1756  * @fshared:    whether the futex is shared (1) or not (0)
1757  * @q:          the associated futex_q
1758  * @hb:         storage for hash_bucket pointer to be returned to caller
1759  *
1760  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
1761  * compare it with the expected value.  Handle atomic faults internally.
1762  * Return with the hb lock held and a q.key reference on success, and unlocked
1763  * with no q.key reference on failure.
1764  *
1765  * Returns:
1766  *  0 - uaddr contains val and hb has been locked
1767  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
1768  */
1769 static int futex_wait_setup(u32 __user *uaddr, u32 val, int fshared,
1770                            struct futex_q *q, struct futex_hash_bucket **hb)
1771 {
1772         u32 uval;
1773         int ret;
1774
1775         /*
1776          * Access the page AFTER the hash-bucket is locked.
1777          * Order is important:
1778          *
1779          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1780          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1781          *
1782          * The basic logical guarantee of a futex is that it blocks ONLY
1783          * if cond(var) is known to be true at the time of blocking, for
1784          * any cond.  If we queued after testing *uaddr, that would open
1785          * a race condition where we could block indefinitely with
1786          * cond(var) false, which would violate the guarantee.
1787          *
1788          * A consequence is that futex_wait() can return zero and absorb
1789          * a wakeup when *uaddr != val on entry to the syscall.  This is
1790          * rare, but normal.
1791          */
1792 retry:
1793         q->key = FUTEX_KEY_INIT;
1794         ret = get_futex_key(uaddr, fshared, &q->key);
1795         if (unlikely(ret != 0))
1796                 return ret;
1797
1798 retry_private:
1799         *hb = queue_lock(q);
1800
1801         ret = get_futex_value_locked(&uval, uaddr);
1802
1803         if (ret) {
1804                 queue_unlock(q, *hb);
1805
1806                 ret = get_user(uval, uaddr);
1807                 if (ret)
1808                         goto out;
1809
1810                 if (!fshared)
1811                         goto retry_private;
1812
1813                 put_futex_key(fshared, &q->key);
1814                 goto retry;
1815         }
1816
1817         if (uval != val) {
1818                 queue_unlock(q, *hb);
1819                 ret = -EWOULDBLOCK;
1820         }
1821
1822 out:
1823         if (ret)
1824                 put_futex_key(fshared, &q->key);
1825         return ret;
1826 }
1827
1828 static int futex_wait(u32 __user *uaddr, int fshared,
1829                       u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1830 {
1831         struct hrtimer_sleeper timeout, *to = NULL;
1832         struct restart_block *restart;
1833         struct futex_hash_bucket *hb;
1834         struct futex_q q;
1835         int ret;
1836
1837         if (!bitset)
1838                 return -EINVAL;
1839
1840         q.pi_state = NULL;
1841         q.bitset = bitset;
1842         q.rt_waiter = NULL;
1843         q.requeue_pi_key = NULL;
1844
1845         if (abs_time) {
1846                 to = &timeout;
1847
1848                 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
1849                                       CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1850                 hrtimer_init_sleeper(to, current);
1851                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1852                                              current->timer_slack_ns);
1853         }
1854
1855 retry:
1856         /* Prepare to wait on uaddr. */
1857         ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
1858         if (ret)
1859                 goto out;
1860
1861         /* queue_me and wait for wakeup, timeout, or a signal. */
1862         futex_wait_queue_me(hb, &q, to);
1863
1864         /* If we were woken (and unqueued), we succeeded, whatever. */
1865         ret = 0;
1866         if (!unqueue_me(&q))
1867                 goto out_put_key;
1868         ret = -ETIMEDOUT;
1869         if (to && !to->task)
1870                 goto out_put_key;
1871
1872         /*
1873          * We expect signal_pending(current), but we might be the
1874          * victim of a spurious wakeup as well.
1875          */
1876         if (!signal_pending(current)) {
1877                 put_futex_key(fshared, &q.key);
1878                 goto retry;
1879         }
1880
1881         ret = -ERESTARTSYS;
1882         if (!abs_time)
1883                 goto out_put_key;
1884
1885         restart = &current_thread_info()->restart_block;
1886         restart->fn = futex_wait_restart;
1887         restart->futex.uaddr = (u32 *)uaddr;
1888         restart->futex.val = val;
1889         restart->futex.time = abs_time->tv64;
1890         restart->futex.bitset = bitset;
1891         restart->futex.flags = FLAGS_HAS_TIMEOUT;
1892
1893         if (fshared)
1894                 restart->futex.flags |= FLAGS_SHARED;
1895         if (clockrt)
1896                 restart->futex.flags |= FLAGS_CLOCKRT;
1897
1898         ret = -ERESTART_RESTARTBLOCK;
1899
1900 out_put_key:
1901         put_futex_key(fshared, &q.key);
1902 out:
1903         if (to) {
1904                 hrtimer_cancel(&to->timer);
1905                 destroy_hrtimer_on_stack(&to->timer);
1906         }
1907         return ret;
1908 }
1909
1910
1911 static long futex_wait_restart(struct restart_block *restart)
1912 {
1913         u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1914         int fshared = 0;
1915         ktime_t t, *tp = NULL;
1916
1917         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1918                 t.tv64 = restart->futex.time;
1919                 tp = &t;
1920         }
1921         restart->fn = do_no_restart_syscall;
1922         if (restart->futex.flags & FLAGS_SHARED)
1923                 fshared = 1;
1924         return (long)futex_wait(uaddr, fshared, restart->futex.val, tp,
1925                                 restart->futex.bitset,
1926                                 restart->futex.flags & FLAGS_CLOCKRT);
1927 }
1928
1929
1930 /*
1931  * Userspace tried a 0 -> TID atomic transition of the futex value
1932  * and failed. The kernel side here does the whole locking operation:
1933  * if there are waiters then it will block, it does PI, etc. (Due to
1934  * races the kernel might see a 0 value of the futex too.)
1935  */
1936 static int futex_lock_pi(u32 __user *uaddr, int fshared,
1937                          int detect, ktime_t *time, int trylock)
1938 {
1939         struct hrtimer_sleeper timeout, *to = NULL;
1940         struct futex_hash_bucket *hb;
1941         struct futex_q q;
1942         int res, ret;
1943
1944         if (refill_pi_state_cache())
1945                 return -ENOMEM;
1946
1947         if (time) {
1948                 to = &timeout;
1949                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1950                                       HRTIMER_MODE_ABS);
1951                 hrtimer_init_sleeper(to, current);
1952                 hrtimer_set_expires(&to->timer, *time);
1953         }
1954
1955         q.pi_state = NULL;
1956         q.rt_waiter = NULL;
1957         q.requeue_pi_key = NULL;
1958 retry:
1959         q.key = FUTEX_KEY_INIT;
1960         ret = get_futex_key(uaddr, fshared, &q.key);
1961         if (unlikely(ret != 0))
1962                 goto out;
1963
1964 retry_private:
1965         hb = queue_lock(&q);
1966
1967         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1968         if (unlikely(ret)) {
1969                 switch (ret) {
1970                 case 1:
1971                         /* We got the lock. */
1972                         ret = 0;
1973                         goto out_unlock_put_key;
1974                 case -EFAULT:
1975                         goto uaddr_faulted;
1976                 case -EAGAIN:
1977                         /*
1978                          * Task is exiting and we just wait for the
1979                          * exit to complete.
1980                          */
1981                         queue_unlock(&q, hb);
1982                         put_futex_key(fshared, &q.key);
1983                         cond_resched();
1984                         goto retry;
1985                 default:
1986                         goto out_unlock_put_key;
1987                 }
1988         }
1989
1990         /*
1991          * Only actually queue now that the atomic ops are done:
1992          */
1993         queue_me(&q, hb);
1994
1995         WARN_ON(!q.pi_state);
1996         /*
1997          * Block on the PI mutex:
1998          */
1999         if (!trylock)
2000                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2001         else {
2002                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2003                 /* Fixup the trylock return value: */
2004                 ret = ret ? 0 : -EWOULDBLOCK;
2005         }
2006
2007         spin_lock(q.lock_ptr);
2008         /*
2009          * Fixup the pi_state owner and possibly acquire the lock if we
2010          * haven't already.
2011          */
2012         res = fixup_owner(uaddr, fshared, &q, !ret);
2013         /*
2014          * If fixup_owner() returned an error, proprogate that.  If it acquired
2015          * the lock, clear our -ETIMEDOUT or -EINTR.
2016          */
2017         if (res)
2018                 ret = (res < 0) ? res : 0;
2019
2020         /*
2021          * If fixup_owner() faulted and was unable to handle the fault, unlock
2022          * it and return the fault to userspace.
2023          */
2024         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2025                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2026
2027         /* Unqueue and drop the lock */
2028         unqueue_me_pi(&q);
2029
2030         goto out_put_key;
2031
2032 out_unlock_put_key:
2033         queue_unlock(&q, hb);
2034
2035 out_put_key:
2036         put_futex_key(fshared, &q.key);
2037 out:
2038         if (to)
2039                 destroy_hrtimer_on_stack(&to->timer);
2040         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2041
2042 uaddr_faulted:
2043         queue_unlock(&q, hb);
2044
2045         ret = fault_in_user_writeable(uaddr);
2046         if (ret)
2047                 goto out_put_key;
2048
2049         if (!fshared)
2050                 goto retry_private;
2051
2052         put_futex_key(fshared, &q.key);
2053         goto retry;
2054 }
2055
2056 /*
2057  * Userspace attempted a TID -> 0 atomic transition, and failed.
2058  * This is the in-kernel slowpath: we look up the PI state (if any),
2059  * and do the rt-mutex unlock.
2060  */
2061 static int futex_unlock_pi(u32 __user *uaddr, int fshared)
2062 {
2063         struct futex_hash_bucket *hb;
2064         struct futex_q *this, *next;
2065         u32 uval;
2066         struct plist_head *head;
2067         union futex_key key = FUTEX_KEY_INIT;
2068         int ret;
2069
2070 retry:
2071         if (get_user(uval, uaddr))
2072                 return -EFAULT;
2073         /*
2074          * We release only a lock we actually own:
2075          */
2076         if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
2077                 return -EPERM;
2078
2079         ret = get_futex_key(uaddr, fshared, &key);
2080         if (unlikely(ret != 0))
2081                 goto out;
2082
2083         hb = hash_futex(&key);
2084         spin_lock(&hb->lock);
2085
2086         /*
2087          * To avoid races, try to do the TID -> 0 atomic transition
2088          * again. If it succeeds then we can return without waking
2089          * anyone else up:
2090          */
2091         if (!(uval & FUTEX_OWNER_DIED))
2092                 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
2093
2094
2095         if (unlikely(uval == -EFAULT))
2096                 goto pi_faulted;
2097         /*
2098          * Rare case: we managed to release the lock atomically,
2099          * no need to wake anyone else up:
2100          */
2101         if (unlikely(uval == task_pid_vnr(current)))
2102                 goto out_unlock;
2103
2104         /*
2105          * Ok, other tasks may need to be woken up - check waiters
2106          * and do the wakeup if necessary:
2107          */
2108         head = &hb->chain;
2109
2110         plist_for_each_entry_safe(this, next, head, list) {
2111                 if (!match_futex (&this->key, &key))
2112                         continue;
2113                 ret = wake_futex_pi(uaddr, uval, this);
2114                 /*
2115                  * The atomic access to the futex value
2116                  * generated a pagefault, so retry the
2117                  * user-access and the wakeup:
2118                  */
2119                 if (ret == -EFAULT)
2120                         goto pi_faulted;
2121                 goto out_unlock;
2122         }
2123         /*
2124          * No waiters - kernel unlocks the futex:
2125          */
2126         if (!(uval & FUTEX_OWNER_DIED)) {
2127                 ret = unlock_futex_pi(uaddr, uval);
2128                 if (ret == -EFAULT)
2129                         goto pi_faulted;
2130         }
2131
2132 out_unlock:
2133         spin_unlock(&hb->lock);
2134         put_futex_key(fshared, &key);
2135
2136 out:
2137         return ret;
2138
2139 pi_faulted:
2140         spin_unlock(&hb->lock);
2141         put_futex_key(fshared, &key);
2142
2143         ret = fault_in_user_writeable(uaddr);
2144         if (!ret)
2145                 goto retry;
2146
2147         return ret;
2148 }
2149
2150 /**
2151  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2152  * @hb:         the hash_bucket futex_q was original enqueued on
2153  * @q:          the futex_q woken while waiting to be requeued
2154  * @key2:       the futex_key of the requeue target futex
2155  * @timeout:    the timeout associated with the wait (NULL if none)
2156  *
2157  * Detect if the task was woken on the initial futex as opposed to the requeue
2158  * target futex.  If so, determine if it was a timeout or a signal that caused
2159  * the wakeup and return the appropriate error code to the caller.  Must be
2160  * called with the hb lock held.
2161  *
2162  * Returns
2163  *  0 - no early wakeup detected
2164  * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2165  */
2166 static inline
2167 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2168                                    struct futex_q *q, union futex_key *key2,
2169                                    struct hrtimer_sleeper *timeout)
2170 {
2171         int ret = 0;
2172
2173         /*
2174          * With the hb lock held, we avoid races while we process the wakeup.
2175          * We only need to hold hb (and not hb2) to ensure atomicity as the
2176          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2177          * It can't be requeued from uaddr2 to something else since we don't
2178          * support a PI aware source futex for requeue.
2179          */
2180         if (!match_futex(&q->key, key2)) {
2181                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2182                 /*
2183                  * We were woken prior to requeue by a timeout or a signal.
2184                  * Unqueue the futex_q and determine which it was.
2185                  */
2186                 plist_del(&q->list, &q->list.plist);
2187
2188                 /* Handle spurious wakeups gracefully */
2189                 ret = -EWOULDBLOCK;
2190                 if (timeout && !timeout->task)
2191                         ret = -ETIMEDOUT;
2192                 else if (signal_pending(current))
2193                         ret = -ERESTARTNOINTR;
2194         }
2195         return ret;
2196 }
2197
2198 /**
2199  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2200  * @uaddr:      the futex we initially wait on (non-pi)
2201  * @fshared:    whether the futexes are shared (1) or not (0).  They must be
2202  *              the same type, no requeueing from private to shared, etc.
2203  * @val:        the expected value of uaddr
2204  * @abs_time:   absolute timeout
2205  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2206  * @clockrt:    whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2207  * @uaddr2:     the pi futex we will take prior to returning to user-space
2208  *
2209  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2210  * uaddr2 which must be PI aware.  Normal wakeup will wake on uaddr2 and
2211  * complete the acquisition of the rt_mutex prior to returning to userspace.
2212  * This ensures the rt_mutex maintains an owner when it has waiters; without
2213  * one, the pi logic wouldn't know which task to boost/deboost, if there was a
2214  * need to.
2215  *
2216  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2217  * via the following:
2218  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2219  * 2) wakeup on uaddr2 after a requeue
2220  * 3) signal
2221  * 4) timeout
2222  *
2223  * If 3, cleanup and return -ERESTARTNOINTR.
2224  *
2225  * If 2, we may then block on trying to take the rt_mutex and return via:
2226  * 5) successful lock
2227  * 6) signal
2228  * 7) timeout
2229  * 8) other lock acquisition failure
2230  *
2231  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2232  *
2233  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2234  *
2235  * Returns:
2236  *  0 - On success
2237  * <0 - On error
2238  */
2239 static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
2240                                  u32 val, ktime_t *abs_time, u32 bitset,
2241                                  int clockrt, u32 __user *uaddr2)
2242 {
2243         struct hrtimer_sleeper timeout, *to = NULL;
2244         struct rt_mutex_waiter rt_waiter;
2245         struct rt_mutex *pi_mutex = NULL;
2246         struct futex_hash_bucket *hb;
2247         union futex_key key2;
2248         struct futex_q q;
2249         int res, ret;
2250
2251         if (!bitset)
2252                 return -EINVAL;
2253
2254         if (abs_time) {
2255                 to = &timeout;
2256                 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
2257                                       CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2258                 hrtimer_init_sleeper(to, current);
2259                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2260                                              current->timer_slack_ns);
2261         }
2262
2263         /*
2264          * The waiter is allocated on our stack, manipulated by the requeue
2265          * code while we sleep on uaddr.
2266          */
2267         debug_rt_mutex_init_waiter(&rt_waiter);
2268         rt_waiter.task = NULL;
2269
2270         key2 = FUTEX_KEY_INIT;
2271         ret = get_futex_key(uaddr2, fshared, &key2);
2272         if (unlikely(ret != 0))
2273                 goto out;
2274
2275         q.pi_state = NULL;
2276         q.bitset = bitset;
2277         q.rt_waiter = &rt_waiter;
2278         q.requeue_pi_key = &key2;
2279
2280         /* Prepare to wait on uaddr. */
2281         ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
2282         if (ret)
2283                 goto out_key2;
2284
2285         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2286         futex_wait_queue_me(hb, &q, to);
2287
2288         spin_lock(&hb->lock);
2289         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2290         spin_unlock(&hb->lock);
2291         if (ret)
2292                 goto out_put_keys;
2293
2294         /*
2295          * In order for us to be here, we know our q.key == key2, and since
2296          * we took the hb->lock above, we also know that futex_requeue() has
2297          * completed and we no longer have to concern ourselves with a wakeup
2298          * race with the atomic proxy lock acquition by the requeue code.
2299          */
2300
2301         /* Check if the requeue code acquired the second futex for us. */
2302         if (!q.rt_waiter) {
2303                 /*
2304                  * Got the lock. We might not be the anticipated owner if we
2305                  * did a lock-steal - fix up the PI-state in that case.
2306                  */
2307                 if (q.pi_state && (q.pi_state->owner != current)) {
2308                         spin_lock(q.lock_ptr);
2309                         ret = fixup_pi_state_owner(uaddr2, &q, current,
2310                                                    fshared);
2311                         spin_unlock(q.lock_ptr);
2312                 }
2313         } else {
2314                 /*
2315                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2316                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2317                  * the pi_state.
2318                  */
2319                 WARN_ON(!&q.pi_state);
2320                 pi_mutex = &q.pi_state->pi_mutex;
2321                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2322                 debug_rt_mutex_free_waiter(&rt_waiter);
2323
2324                 spin_lock(q.lock_ptr);
2325                 /*
2326                  * Fixup the pi_state owner and possibly acquire the lock if we
2327                  * haven't already.
2328                  */
2329                 res = fixup_owner(uaddr2, fshared, &q, !ret);
2330                 /*
2331                  * If fixup_owner() returned an error, proprogate that.  If it
2332                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
2333                  */
2334                 if (res)
2335                         ret = (res < 0) ? res : 0;
2336
2337                 /* Unqueue and drop the lock. */
2338                 unqueue_me_pi(&q);
2339         }
2340
2341         /*
2342          * If fixup_pi_state_owner() faulted and was unable to handle the
2343          * fault, unlock the rt_mutex and return the fault to userspace.
2344          */
2345         if (ret == -EFAULT) {
2346                 if (rt_mutex_owner(pi_mutex) == current)
2347                         rt_mutex_unlock(pi_mutex);
2348         } else if (ret == -EINTR) {
2349                 /*
2350                  * We've already been requeued, but cannot restart by calling
2351                  * futex_lock_pi() directly. We could restart this syscall, but
2352                  * it would detect that the user space "val" changed and return
2353                  * -EWOULDBLOCK.  Save the overhead of the restart and return
2354                  * -EWOULDBLOCK directly.
2355                  */
2356                 ret = -EWOULDBLOCK;
2357         }
2358
2359 out_put_keys:
2360         put_futex_key(fshared, &q.key);
2361 out_key2:
2362         put_futex_key(fshared, &key2);
2363
2364 out:
2365         if (to) {
2366                 hrtimer_cancel(&to->timer);
2367                 destroy_hrtimer_on_stack(&to->timer);
2368         }
2369         return ret;
2370 }
2371
2372 /*
2373  * Support for robust futexes: the kernel cleans up held futexes at
2374  * thread exit time.
2375  *
2376  * Implementation: user-space maintains a per-thread list of locks it
2377  * is holding. Upon do_exit(), the kernel carefully walks this list,
2378  * and marks all locks that are owned by this thread with the
2379  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2380  * always manipulated with the lock held, so the list is private and
2381  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2382  * field, to allow the kernel to clean up if the thread dies after
2383  * acquiring the lock, but just before it could have added itself to
2384  * the list. There can only be one such pending lock.
2385  */
2386
2387 /**
2388  * sys_set_robust_list() - Set the robust-futex list head of a task
2389  * @head:       pointer to the list-head
2390  * @len:        length of the list-head, as userspace expects
2391  */
2392 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2393                 size_t, len)
2394 {
2395         if (!futex_cmpxchg_enabled)
2396                 return -ENOSYS;
2397         /*
2398          * The kernel knows only one size for now:
2399          */
2400         if (unlikely(len != sizeof(*head)))
2401                 return -EINVAL;
2402
2403         current->robust_list = head;
2404
2405         return 0;
2406 }
2407
2408 /**
2409  * sys_get_robust_list() - Get the robust-futex list head of a task
2410  * @pid:        pid of the process [zero for current task]
2411  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2412  * @len_ptr:    pointer to a length field, the kernel fills in the header size
2413  */
2414 SYSCALL_DEFINE3(get_robust_list, int, pid,
2415                 struct robust_list_head __user * __user *, head_ptr,
2416                 size_t __user *, len_ptr)
2417 {
2418         struct robust_list_head __user *head;
2419         unsigned long ret;
2420         const struct cred *cred = current_cred(), *pcred;
2421
2422         if (!futex_cmpxchg_enabled)
2423                 return -ENOSYS;
2424
2425         if (!pid)
2426                 head = current->robust_list;
2427         else {
2428                 struct task_struct *p;
2429
2430                 ret = -ESRCH;
2431                 rcu_read_lock();
2432                 p = find_task_by_vpid(pid);
2433                 if (!p)
2434                         goto err_unlock;
2435                 ret = -EPERM;
2436                 pcred = __task_cred(p);
2437                 if (cred->euid != pcred->euid &&
2438                     cred->euid != pcred->uid &&
2439                     !capable(CAP_SYS_PTRACE))
2440                         goto err_unlock;
2441                 head = p->robust_list;
2442                 rcu_read_unlock();
2443         }
2444
2445         if (put_user(sizeof(*head), len_ptr))
2446                 return -EFAULT;
2447         return put_user(head, head_ptr);
2448
2449 err_unlock:
2450         rcu_read_unlock();
2451
2452         return ret;
2453 }
2454
2455 /*
2456  * Process a futex-list entry, check whether it's owned by the
2457  * dying task, and do notification if so:
2458  */
2459 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2460 {
2461         u32 uval, nval, mval;
2462
2463 retry:
2464         if (get_user(uval, uaddr))
2465                 return -1;
2466
2467         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2468                 /*
2469                  * Ok, this dying thread is truly holding a futex
2470                  * of interest. Set the OWNER_DIED bit atomically
2471                  * via cmpxchg, and if the value had FUTEX_WAITERS
2472                  * set, wake up a waiter (if any). (We have to do a
2473                  * futex_wake() even if OWNER_DIED is already set -
2474                  * to handle the rare but possible case of recursive
2475                  * thread-death.) The rest of the cleanup is done in
2476                  * userspace.
2477                  */
2478                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2479                 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
2480
2481                 if (nval == -EFAULT)
2482                         return -1;
2483
2484                 if (nval != uval)
2485                         goto retry;
2486
2487                 /*
2488                  * Wake robust non-PI futexes here. The wakeup of
2489                  * PI futexes happens in exit_pi_state():
2490                  */
2491                 if (!pi && (uval & FUTEX_WAITERS))
2492                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2493         }
2494         return 0;
2495 }
2496
2497 /*
2498  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2499  */
2500 static inline int fetch_robust_entry(struct robust_list __user **entry,
2501                                      struct robust_list __user * __user *head,
2502                                      int *pi)
2503 {
2504         unsigned long uentry;
2505
2506         if (get_user(uentry, (unsigned long __user *)head))
2507                 return -EFAULT;
2508
2509         *entry = (void __user *)(uentry & ~1UL);
2510         *pi = uentry & 1;
2511
2512         return 0;
2513 }
2514
2515 /*
2516  * Walk curr->robust_list (very carefully, it's a userspace list!)
2517  * and mark any locks found there dead, and notify any waiters.
2518  *
2519  * We silently return on any sign of list-walking problem.
2520  */
2521 void exit_robust_list(struct task_struct *curr)
2522 {
2523         struct robust_list_head __user *head = curr->robust_list;
2524         struct robust_list __user *entry, *next_entry, *pending;
2525         unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
2526         unsigned long futex_offset;
2527         int rc;
2528
2529         if (!futex_cmpxchg_enabled)
2530                 return;
2531
2532         /*
2533          * Fetch the list head (which was registered earlier, via
2534          * sys_set_robust_list()):
2535          */
2536         if (fetch_robust_entry(&entry, &head->list.next, &pi))
2537                 return;
2538         /*
2539          * Fetch the relative futex offset:
2540          */
2541         if (get_user(futex_offset, &head->futex_offset))
2542                 return;
2543         /*
2544          * Fetch any possibly pending lock-add first, and handle it
2545          * if it exists:
2546          */
2547         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2548                 return;
2549
2550         next_entry = NULL;      /* avoid warning with gcc */
2551         while (entry != &head->list) {
2552                 /*
2553                  * Fetch the next entry in the list before calling
2554                  * handle_futex_death:
2555                  */
2556                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2557                 /*
2558                  * A pending lock might already be on the list, so
2559                  * don't process it twice:
2560                  */
2561                 if (entry != pending)
2562                         if (handle_futex_death((void __user *)entry + futex_offset,
2563                                                 curr, pi))
2564                                 return;
2565                 if (rc)
2566                         return;
2567                 entry = next_entry;
2568                 pi = next_pi;
2569                 /*
2570                  * Avoid excessively long or circular lists:
2571                  */
2572                 if (!--limit)
2573                         break;
2574
2575                 cond_resched();
2576         }
2577
2578         if (pending)
2579                 handle_futex_death((void __user *)pending + futex_offset,
2580                                    curr, pip);
2581 }
2582
2583 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2584                 u32 __user *uaddr2, u32 val2, u32 val3)
2585 {
2586         int clockrt, ret = -ENOSYS;
2587         int cmd = op & FUTEX_CMD_MASK;
2588         int fshared = 0;
2589
2590         if (!(op & FUTEX_PRIVATE_FLAG))
2591                 fshared = 1;
2592
2593         clockrt = op & FUTEX_CLOCK_REALTIME;
2594         if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2595                 return -ENOSYS;
2596
2597         switch (cmd) {
2598         case FUTEX_WAIT:
2599                 val3 = FUTEX_BITSET_MATCH_ANY;
2600         case FUTEX_WAIT_BITSET:
2601                 ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
2602                 break;
2603         case FUTEX_WAKE:
2604                 val3 = FUTEX_BITSET_MATCH_ANY;
2605         case FUTEX_WAKE_BITSET:
2606                 ret = futex_wake(uaddr, fshared, val, val3);
2607                 break;
2608         case FUTEX_REQUEUE:
2609                 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL, 0);
2610                 break;
2611         case FUTEX_CMP_REQUEUE:
2612                 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2613                                     0);
2614                 break;
2615         case FUTEX_WAKE_OP:
2616                 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
2617                 break;
2618         case FUTEX_LOCK_PI:
2619                 if (futex_cmpxchg_enabled)
2620                         ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
2621                 break;
2622         case FUTEX_UNLOCK_PI:
2623                 if (futex_cmpxchg_enabled)
2624                         ret = futex_unlock_pi(uaddr, fshared);
2625                 break;
2626         case FUTEX_TRYLOCK_PI:
2627                 if (futex_cmpxchg_enabled)
2628                         ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
2629                 break;
2630         case FUTEX_WAIT_REQUEUE_PI:
2631                 val3 = FUTEX_BITSET_MATCH_ANY;
2632                 ret = futex_wait_requeue_pi(uaddr, fshared, val, timeout, val3,
2633                                             clockrt, uaddr2);
2634                 break;
2635         case FUTEX_CMP_REQUEUE_PI:
2636                 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2637                                     1);
2638                 break;
2639         default:
2640                 ret = -ENOSYS;
2641         }
2642         return ret;
2643 }
2644
2645
2646 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2647                 struct timespec __user *, utime, u32 __user *, uaddr2,
2648                 u32, val3)
2649 {
2650         struct timespec ts;
2651         ktime_t t, *tp = NULL;
2652         u32 val2 = 0;
2653         int cmd = op & FUTEX_CMD_MASK;
2654
2655         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2656                       cmd == FUTEX_WAIT_BITSET ||
2657                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
2658                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2659                         return -EFAULT;
2660                 if (!timespec_valid(&ts))
2661                         return -EINVAL;
2662
2663                 t = timespec_to_ktime(ts);
2664                 if (cmd == FUTEX_WAIT)
2665                         t = ktime_add_safe(ktime_get(), t);
2666                 tp = &t;
2667         }
2668         /*
2669          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2670          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2671          */
2672         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2673             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2674                 val2 = (u32) (unsigned long) utime;
2675
2676         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2677 }
2678
2679 static int __init futex_init(void)
2680 {
2681         u32 curval;
2682         int i;
2683
2684         /*
2685          * This will fail and we want it. Some arch implementations do
2686          * runtime detection of the futex_atomic_cmpxchg_inatomic()
2687          * functionality. We want to know that before we call in any
2688          * of the complex code paths. Also we want to prevent
2689          * registration of robust lists in that case. NULL is
2690          * guaranteed to fault and we get -EFAULT on functional
2691          * implementation, the non functional ones will return
2692          * -ENOSYS.
2693          */
2694         curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2695         if (curval == -EFAULT)
2696                 futex_cmpxchg_enabled = 1;
2697
2698         for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2699                 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2700                 spin_lock_init(&futex_queues[i].lock);
2701         }
2702
2703         return 0;
2704 }
2705 __initcall(futex_init);