futex: Validate atomic acquisition in futex_lock_pi_atomic()
[firefly-linux-kernel-4.4.55.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/freezer.h>
65
66 #include <asm/futex.h>
67
68 #include "rtmutex_common.h"
69
70 int __read_mostly futex_cmpxchg_enabled;
71
72 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
73
74 /*
75  * Futex flags used to encode options to functions and preserve them across
76  * restarts.
77  */
78 #define FLAGS_SHARED            0x01
79 #define FLAGS_CLOCKRT           0x02
80 #define FLAGS_HAS_TIMEOUT       0x04
81
82 /*
83  * Priority Inheritance state:
84  */
85 struct futex_pi_state {
86         /*
87          * list of 'owned' pi_state instances - these have to be
88          * cleaned up in do_exit() if the task exits prematurely:
89          */
90         struct list_head list;
91
92         /*
93          * The PI object:
94          */
95         struct rt_mutex pi_mutex;
96
97         struct task_struct *owner;
98         atomic_t refcount;
99
100         union futex_key key;
101 };
102
103 /**
104  * struct futex_q - The hashed futex queue entry, one per waiting task
105  * @list:               priority-sorted list of tasks waiting on this futex
106  * @task:               the task waiting on the futex
107  * @lock_ptr:           the hash bucket lock
108  * @key:                the key the futex is hashed on
109  * @pi_state:           optional priority inheritance state
110  * @rt_waiter:          rt_waiter storage for use with requeue_pi
111  * @requeue_pi_key:     the requeue_pi target futex key
112  * @bitset:             bitset for the optional bitmasked wakeup
113  *
114  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
115  * we can wake only the relevant ones (hashed queues may be shared).
116  *
117  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
118  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
119  * The order of wakeup is always to make the first condition true, then
120  * the second.
121  *
122  * PI futexes are typically woken before they are removed from the hash list via
123  * the rt_mutex code. See unqueue_me_pi().
124  */
125 struct futex_q {
126         struct plist_node list;
127
128         struct task_struct *task;
129         spinlock_t *lock_ptr;
130         union futex_key key;
131         struct futex_pi_state *pi_state;
132         struct rt_mutex_waiter *rt_waiter;
133         union futex_key *requeue_pi_key;
134         u32 bitset;
135 };
136
137 static const struct futex_q futex_q_init = {
138         /* list gets initialized in queue_me()*/
139         .key = FUTEX_KEY_INIT,
140         .bitset = FUTEX_BITSET_MATCH_ANY
141 };
142
143 /*
144  * Hash buckets are shared by all the futex_keys that hash to the same
145  * location.  Each key may have multiple futex_q structures, one for each task
146  * waiting on a futex.
147  */
148 struct futex_hash_bucket {
149         spinlock_t lock;
150         struct plist_head chain;
151 };
152
153 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
154
155 /*
156  * We hash on the keys returned from get_futex_key (see below).
157  */
158 static struct futex_hash_bucket *hash_futex(union futex_key *key)
159 {
160         u32 hash = jhash2((u32*)&key->both.word,
161                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
162                           key->both.offset);
163         return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
164 }
165
166 /*
167  * Return 1 if two futex_keys are equal, 0 otherwise.
168  */
169 static inline int match_futex(union futex_key *key1, union futex_key *key2)
170 {
171         return (key1 && key2
172                 && key1->both.word == key2->both.word
173                 && key1->both.ptr == key2->both.ptr
174                 && key1->both.offset == key2->both.offset);
175 }
176
177 /*
178  * Take a reference to the resource addressed by a key.
179  * Can be called while holding spinlocks.
180  *
181  */
182 static void get_futex_key_refs(union futex_key *key)
183 {
184         if (!key->both.ptr)
185                 return;
186
187         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
188         case FUT_OFF_INODE:
189                 ihold(key->shared.inode);
190                 break;
191         case FUT_OFF_MMSHARED:
192                 atomic_inc(&key->private.mm->mm_count);
193                 break;
194         }
195 }
196
197 /*
198  * Drop a reference to the resource addressed by a key.
199  * The hash bucket spinlock must not be held.
200  */
201 static void drop_futex_key_refs(union futex_key *key)
202 {
203         if (!key->both.ptr) {
204                 /* If we're here then we tried to put a key we failed to get */
205                 WARN_ON_ONCE(1);
206                 return;
207         }
208
209         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
210         case FUT_OFF_INODE:
211                 iput(key->shared.inode);
212                 break;
213         case FUT_OFF_MMSHARED:
214                 mmdrop(key->private.mm);
215                 break;
216         }
217 }
218
219 /**
220  * get_futex_key() - Get parameters which are the keys for a futex
221  * @uaddr:      virtual address of the futex
222  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
223  * @key:        address where result is stored.
224  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
225  *              VERIFY_WRITE)
226  *
227  * Return: a negative error code or 0
228  *
229  * The key words are stored in *key on success.
230  *
231  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
232  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
233  * We can usually work out the index without swapping in the page.
234  *
235  * lock_page() might sleep, the caller should not hold a spinlock.
236  */
237 static int
238 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
239 {
240         unsigned long address = (unsigned long)uaddr;
241         struct mm_struct *mm = current->mm;
242         struct page *page, *page_head;
243         int err, ro = 0;
244
245         /*
246          * The futex address must be "naturally" aligned.
247          */
248         key->both.offset = address % PAGE_SIZE;
249         if (unlikely((address % sizeof(u32)) != 0))
250                 return -EINVAL;
251         address -= key->both.offset;
252
253         /*
254          * PROCESS_PRIVATE futexes are fast.
255          * As the mm cannot disappear under us and the 'key' only needs
256          * virtual address, we dont even have to find the underlying vma.
257          * Note : We do have to check 'uaddr' is a valid user address,
258          *        but access_ok() should be faster than find_vma()
259          */
260         if (!fshared) {
261                 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
262                         return -EFAULT;
263                 key->private.mm = mm;
264                 key->private.address = address;
265                 get_futex_key_refs(key);
266                 return 0;
267         }
268
269 again:
270         err = get_user_pages_fast(address, 1, 1, &page);
271         /*
272          * If write access is not required (eg. FUTEX_WAIT), try
273          * and get read-only access.
274          */
275         if (err == -EFAULT && rw == VERIFY_READ) {
276                 err = get_user_pages_fast(address, 1, 0, &page);
277                 ro = 1;
278         }
279         if (err < 0)
280                 return err;
281         else
282                 err = 0;
283
284 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
285         page_head = page;
286         if (unlikely(PageTail(page))) {
287                 put_page(page);
288                 /* serialize against __split_huge_page_splitting() */
289                 local_irq_disable();
290                 if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) {
291                         page_head = compound_head(page);
292                         /*
293                          * page_head is valid pointer but we must pin
294                          * it before taking the PG_lock and/or
295                          * PG_compound_lock. The moment we re-enable
296                          * irqs __split_huge_page_splitting() can
297                          * return and the head page can be freed from
298                          * under us. We can't take the PG_lock and/or
299                          * PG_compound_lock on a page that could be
300                          * freed from under us.
301                          */
302                         if (page != page_head) {
303                                 get_page(page_head);
304                                 put_page(page);
305                         }
306                         local_irq_enable();
307                 } else {
308                         local_irq_enable();
309                         goto again;
310                 }
311         }
312 #else
313         page_head = compound_head(page);
314         if (page != page_head) {
315                 get_page(page_head);
316                 put_page(page);
317         }
318 #endif
319
320         lock_page(page_head);
321
322         /*
323          * If page_head->mapping is NULL, then it cannot be a PageAnon
324          * page; but it might be the ZERO_PAGE or in the gate area or
325          * in a special mapping (all cases which we are happy to fail);
326          * or it may have been a good file page when get_user_pages_fast
327          * found it, but truncated or holepunched or subjected to
328          * invalidate_complete_page2 before we got the page lock (also
329          * cases which we are happy to fail).  And we hold a reference,
330          * so refcount care in invalidate_complete_page's remove_mapping
331          * prevents drop_caches from setting mapping to NULL beneath us.
332          *
333          * The case we do have to guard against is when memory pressure made
334          * shmem_writepage move it from filecache to swapcache beneath us:
335          * an unlikely race, but we do need to retry for page_head->mapping.
336          */
337         if (!page_head->mapping) {
338                 int shmem_swizzled = PageSwapCache(page_head);
339                 unlock_page(page_head);
340                 put_page(page_head);
341                 if (shmem_swizzled)
342                         goto again;
343                 return -EFAULT;
344         }
345
346         /*
347          * Private mappings are handled in a simple way.
348          *
349          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
350          * it's a read-only handle, it's expected that futexes attach to
351          * the object not the particular process.
352          */
353         if (PageAnon(page_head)) {
354                 /*
355                  * A RO anonymous page will never change and thus doesn't make
356                  * sense for futex operations.
357                  */
358                 if (ro) {
359                         err = -EFAULT;
360                         goto out;
361                 }
362
363                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
364                 key->private.mm = mm;
365                 key->private.address = address;
366         } else {
367                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
368                 key->shared.inode = page_head->mapping->host;
369                 key->shared.pgoff = page_head->index;
370         }
371
372         get_futex_key_refs(key);
373
374 out:
375         unlock_page(page_head);
376         put_page(page_head);
377         return err;
378 }
379
380 static inline void put_futex_key(union futex_key *key)
381 {
382         drop_futex_key_refs(key);
383 }
384
385 /**
386  * fault_in_user_writeable() - Fault in user address and verify RW access
387  * @uaddr:      pointer to faulting user space address
388  *
389  * Slow path to fixup the fault we just took in the atomic write
390  * access to @uaddr.
391  *
392  * We have no generic implementation of a non-destructive write to the
393  * user address. We know that we faulted in the atomic pagefault
394  * disabled section so we can as well avoid the #PF overhead by
395  * calling get_user_pages() right away.
396  */
397 static int fault_in_user_writeable(u32 __user *uaddr)
398 {
399         struct mm_struct *mm = current->mm;
400         int ret;
401
402         down_read(&mm->mmap_sem);
403         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
404                                FAULT_FLAG_WRITE);
405         up_read(&mm->mmap_sem);
406
407         return ret < 0 ? ret : 0;
408 }
409
410 /**
411  * futex_top_waiter() - Return the highest priority waiter on a futex
412  * @hb:         the hash bucket the futex_q's reside in
413  * @key:        the futex key (to distinguish it from other futex futex_q's)
414  *
415  * Must be called with the hb lock held.
416  */
417 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
418                                         union futex_key *key)
419 {
420         struct futex_q *this;
421
422         plist_for_each_entry(this, &hb->chain, list) {
423                 if (match_futex(&this->key, key))
424                         return this;
425         }
426         return NULL;
427 }
428
429 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
430                                       u32 uval, u32 newval)
431 {
432         int ret;
433
434         pagefault_disable();
435         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
436         pagefault_enable();
437
438         return ret;
439 }
440
441 static int get_futex_value_locked(u32 *dest, u32 __user *from)
442 {
443         int ret;
444
445         pagefault_disable();
446         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
447         pagefault_enable();
448
449         return ret ? -EFAULT : 0;
450 }
451
452
453 /*
454  * PI code:
455  */
456 static int refill_pi_state_cache(void)
457 {
458         struct futex_pi_state *pi_state;
459
460         if (likely(current->pi_state_cache))
461                 return 0;
462
463         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
464
465         if (!pi_state)
466                 return -ENOMEM;
467
468         INIT_LIST_HEAD(&pi_state->list);
469         /* pi_mutex gets initialized later */
470         pi_state->owner = NULL;
471         atomic_set(&pi_state->refcount, 1);
472         pi_state->key = FUTEX_KEY_INIT;
473
474         current->pi_state_cache = pi_state;
475
476         return 0;
477 }
478
479 static struct futex_pi_state * alloc_pi_state(void)
480 {
481         struct futex_pi_state *pi_state = current->pi_state_cache;
482
483         WARN_ON(!pi_state);
484         current->pi_state_cache = NULL;
485
486         return pi_state;
487 }
488
489 static void free_pi_state(struct futex_pi_state *pi_state)
490 {
491         if (!atomic_dec_and_test(&pi_state->refcount))
492                 return;
493
494         /*
495          * If pi_state->owner is NULL, the owner is most probably dying
496          * and has cleaned up the pi_state already
497          */
498         if (pi_state->owner) {
499                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
500                 list_del_init(&pi_state->list);
501                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
502
503                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
504         }
505
506         if (current->pi_state_cache)
507                 kfree(pi_state);
508         else {
509                 /*
510                  * pi_state->list is already empty.
511                  * clear pi_state->owner.
512                  * refcount is at 0 - put it back to 1.
513                  */
514                 pi_state->owner = NULL;
515                 atomic_set(&pi_state->refcount, 1);
516                 current->pi_state_cache = pi_state;
517         }
518 }
519
520 /*
521  * Look up the task based on what TID userspace gave us.
522  * We dont trust it.
523  */
524 static struct task_struct * futex_find_get_task(pid_t pid)
525 {
526         struct task_struct *p;
527
528         rcu_read_lock();
529         p = find_task_by_vpid(pid);
530         if (p)
531                 get_task_struct(p);
532
533         rcu_read_unlock();
534
535         return p;
536 }
537
538 /*
539  * This task is holding PI mutexes at exit time => bad.
540  * Kernel cleans up PI-state, but userspace is likely hosed.
541  * (Robust-futex cleanup is separate and might save the day for userspace.)
542  */
543 void exit_pi_state_list(struct task_struct *curr)
544 {
545         struct list_head *next, *head = &curr->pi_state_list;
546         struct futex_pi_state *pi_state;
547         struct futex_hash_bucket *hb;
548         union futex_key key = FUTEX_KEY_INIT;
549
550         if (!futex_cmpxchg_enabled)
551                 return;
552         /*
553          * We are a ZOMBIE and nobody can enqueue itself on
554          * pi_state_list anymore, but we have to be careful
555          * versus waiters unqueueing themselves:
556          */
557         raw_spin_lock_irq(&curr->pi_lock);
558         while (!list_empty(head)) {
559
560                 next = head->next;
561                 pi_state = list_entry(next, struct futex_pi_state, list);
562                 key = pi_state->key;
563                 hb = hash_futex(&key);
564                 raw_spin_unlock_irq(&curr->pi_lock);
565
566                 spin_lock(&hb->lock);
567
568                 raw_spin_lock_irq(&curr->pi_lock);
569                 /*
570                  * We dropped the pi-lock, so re-check whether this
571                  * task still owns the PI-state:
572                  */
573                 if (head->next != next) {
574                         spin_unlock(&hb->lock);
575                         continue;
576                 }
577
578                 WARN_ON(pi_state->owner != curr);
579                 WARN_ON(list_empty(&pi_state->list));
580                 list_del_init(&pi_state->list);
581                 pi_state->owner = NULL;
582                 raw_spin_unlock_irq(&curr->pi_lock);
583
584                 rt_mutex_unlock(&pi_state->pi_mutex);
585
586                 spin_unlock(&hb->lock);
587
588                 raw_spin_lock_irq(&curr->pi_lock);
589         }
590         raw_spin_unlock_irq(&curr->pi_lock);
591 }
592
593 static int
594 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
595                 union futex_key *key, struct futex_pi_state **ps)
596 {
597         struct futex_pi_state *pi_state = NULL;
598         struct futex_q *this, *next;
599         struct plist_head *head;
600         struct task_struct *p;
601         pid_t pid = uval & FUTEX_TID_MASK;
602
603         head = &hb->chain;
604
605         plist_for_each_entry_safe(this, next, head, list) {
606                 if (match_futex(&this->key, key)) {
607                         /*
608                          * Another waiter already exists - bump up
609                          * the refcount and return its pi_state:
610                          */
611                         pi_state = this->pi_state;
612                         /*
613                          * Userspace might have messed up non-PI and PI futexes
614                          */
615                         if (unlikely(!pi_state))
616                                 return -EINVAL;
617
618                         WARN_ON(!atomic_read(&pi_state->refcount));
619
620                         /*
621                          * When pi_state->owner is NULL then the owner died
622                          * and another waiter is on the fly. pi_state->owner
623                          * is fixed up by the task which acquires
624                          * pi_state->rt_mutex.
625                          *
626                          * We do not check for pid == 0 which can happen when
627                          * the owner died and robust_list_exit() cleared the
628                          * TID.
629                          */
630                         if (pid && pi_state->owner) {
631                                 /*
632                                  * Bail out if user space manipulated the
633                                  * futex value.
634                                  */
635                                 if (pid != task_pid_vnr(pi_state->owner))
636                                         return -EINVAL;
637                         }
638
639                         atomic_inc(&pi_state->refcount);
640                         *ps = pi_state;
641
642                         return 0;
643                 }
644         }
645
646         /*
647          * We are the first waiter - try to look up the real owner and attach
648          * the new pi_state to it, but bail out when TID = 0
649          */
650         if (!pid)
651                 return -ESRCH;
652         p = futex_find_get_task(pid);
653         if (!p)
654                 return -ESRCH;
655
656         /*
657          * We need to look at the task state flags to figure out,
658          * whether the task is exiting. To protect against the do_exit
659          * change of the task flags, we do this protected by
660          * p->pi_lock:
661          */
662         raw_spin_lock_irq(&p->pi_lock);
663         if (unlikely(p->flags & PF_EXITING)) {
664                 /*
665                  * The task is on the way out. When PF_EXITPIDONE is
666                  * set, we know that the task has finished the
667                  * cleanup:
668                  */
669                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
670
671                 raw_spin_unlock_irq(&p->pi_lock);
672                 put_task_struct(p);
673                 return ret;
674         }
675
676         pi_state = alloc_pi_state();
677
678         /*
679          * Initialize the pi_mutex in locked state and make 'p'
680          * the owner of it:
681          */
682         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
683
684         /* Store the key for possible exit cleanups: */
685         pi_state->key = *key;
686
687         WARN_ON(!list_empty(&pi_state->list));
688         list_add(&pi_state->list, &p->pi_state_list);
689         pi_state->owner = p;
690         raw_spin_unlock_irq(&p->pi_lock);
691
692         put_task_struct(p);
693
694         *ps = pi_state;
695
696         return 0;
697 }
698
699 /**
700  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
701  * @uaddr:              the pi futex user address
702  * @hb:                 the pi futex hash bucket
703  * @key:                the futex key associated with uaddr and hb
704  * @ps:                 the pi_state pointer where we store the result of the
705  *                      lookup
706  * @task:               the task to perform the atomic lock work for.  This will
707  *                      be "current" except in the case of requeue pi.
708  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
709  *
710  * Return:
711  *  0 - ready to wait;
712  *  1 - acquired the lock;
713  * <0 - error
714  *
715  * The hb->lock and futex_key refs shall be held by the caller.
716  */
717 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
718                                 union futex_key *key,
719                                 struct futex_pi_state **ps,
720                                 struct task_struct *task, int set_waiters)
721 {
722         int lock_taken, ret, force_take = 0;
723         u32 uval, newval, curval, vpid = task_pid_vnr(task);
724
725 retry:
726         ret = lock_taken = 0;
727
728         /*
729          * To avoid races, we attempt to take the lock here again
730          * (by doing a 0 -> TID atomic cmpxchg), while holding all
731          * the locks. It will most likely not succeed.
732          */
733         newval = vpid;
734         if (set_waiters)
735                 newval |= FUTEX_WAITERS;
736
737         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
738                 return -EFAULT;
739
740         /*
741          * Detect deadlocks.
742          */
743         if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
744                 return -EDEADLK;
745
746         /*
747          * Surprise - we got the lock, but we do not trust user space at all.
748          */
749         if (unlikely(!curval)) {
750                 /*
751                  * We verify whether there is kernel state for this
752                  * futex. If not, we can safely assume, that the 0 ->
753                  * TID transition is correct. If state exists, we do
754                  * not bother to fixup the user space state as it was
755                  * corrupted already.
756                  */
757                 return futex_top_waiter(hb, key) ? -EINVAL : 1;
758         }
759
760         uval = curval;
761
762         /*
763          * Set the FUTEX_WAITERS flag, so the owner will know it has someone
764          * to wake at the next unlock.
765          */
766         newval = curval | FUTEX_WAITERS;
767
768         /*
769          * Should we force take the futex? See below.
770          */
771         if (unlikely(force_take)) {
772                 /*
773                  * Keep the OWNER_DIED and the WAITERS bit and set the
774                  * new TID value.
775                  */
776                 newval = (curval & ~FUTEX_TID_MASK) | vpid;
777                 force_take = 0;
778                 lock_taken = 1;
779         }
780
781         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
782                 return -EFAULT;
783         if (unlikely(curval != uval))
784                 goto retry;
785
786         /*
787          * We took the lock due to forced take over.
788          */
789         if (unlikely(lock_taken))
790                 return 1;
791
792         /*
793          * We dont have the lock. Look up the PI state (or create it if
794          * we are the first waiter):
795          */
796         ret = lookup_pi_state(uval, hb, key, ps);
797
798         if (unlikely(ret)) {
799                 switch (ret) {
800                 case -ESRCH:
801                         /*
802                          * We failed to find an owner for this
803                          * futex. So we have no pi_state to block
804                          * on. This can happen in two cases:
805                          *
806                          * 1) The owner died
807                          * 2) A stale FUTEX_WAITERS bit
808                          *
809                          * Re-read the futex value.
810                          */
811                         if (get_futex_value_locked(&curval, uaddr))
812                                 return -EFAULT;
813
814                         /*
815                          * If the owner died or we have a stale
816                          * WAITERS bit the owner TID in the user space
817                          * futex is 0.
818                          */
819                         if (!(curval & FUTEX_TID_MASK)) {
820                                 force_take = 1;
821                                 goto retry;
822                         }
823                 default:
824                         break;
825                 }
826         }
827
828         return ret;
829 }
830
831 /**
832  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
833  * @q:  The futex_q to unqueue
834  *
835  * The q->lock_ptr must not be NULL and must be held by the caller.
836  */
837 static void __unqueue_futex(struct futex_q *q)
838 {
839         struct futex_hash_bucket *hb;
840
841         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
842             || WARN_ON(plist_node_empty(&q->list)))
843                 return;
844
845         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
846         plist_del(&q->list, &hb->chain);
847 }
848
849 /*
850  * The hash bucket lock must be held when this is called.
851  * Afterwards, the futex_q must not be accessed.
852  */
853 static void wake_futex(struct futex_q *q)
854 {
855         struct task_struct *p = q->task;
856
857         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
858                 return;
859
860         /*
861          * We set q->lock_ptr = NULL _before_ we wake up the task. If
862          * a non-futex wake up happens on another CPU then the task
863          * might exit and p would dereference a non-existing task
864          * struct. Prevent this by holding a reference on p across the
865          * wake up.
866          */
867         get_task_struct(p);
868
869         __unqueue_futex(q);
870         /*
871          * The waiting task can free the futex_q as soon as
872          * q->lock_ptr = NULL is written, without taking any locks. A
873          * memory barrier is required here to prevent the following
874          * store to lock_ptr from getting ahead of the plist_del.
875          */
876         smp_wmb();
877         q->lock_ptr = NULL;
878
879         wake_up_state(p, TASK_NORMAL);
880         put_task_struct(p);
881 }
882
883 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
884 {
885         struct task_struct *new_owner;
886         struct futex_pi_state *pi_state = this->pi_state;
887         u32 uninitialized_var(curval), newval;
888
889         if (!pi_state)
890                 return -EINVAL;
891
892         /*
893          * If current does not own the pi_state then the futex is
894          * inconsistent and user space fiddled with the futex value.
895          */
896         if (pi_state->owner != current)
897                 return -EINVAL;
898
899         raw_spin_lock(&pi_state->pi_mutex.wait_lock);
900         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
901
902         /*
903          * It is possible that the next waiter (the one that brought
904          * this owner to the kernel) timed out and is no longer
905          * waiting on the lock.
906          */
907         if (!new_owner)
908                 new_owner = this->task;
909
910         /*
911          * We pass it to the next owner. (The WAITERS bit is always
912          * kept enabled while there is PI state around. We must also
913          * preserve the owner died bit.)
914          */
915         if (!(uval & FUTEX_OWNER_DIED)) {
916                 int ret = 0;
917
918                 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
919
920                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
921                         ret = -EFAULT;
922                 else if (curval != uval)
923                         ret = -EINVAL;
924                 if (ret) {
925                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
926                         return ret;
927                 }
928         }
929
930         raw_spin_lock_irq(&pi_state->owner->pi_lock);
931         WARN_ON(list_empty(&pi_state->list));
932         list_del_init(&pi_state->list);
933         raw_spin_unlock_irq(&pi_state->owner->pi_lock);
934
935         raw_spin_lock_irq(&new_owner->pi_lock);
936         WARN_ON(!list_empty(&pi_state->list));
937         list_add(&pi_state->list, &new_owner->pi_state_list);
938         pi_state->owner = new_owner;
939         raw_spin_unlock_irq(&new_owner->pi_lock);
940
941         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
942         rt_mutex_unlock(&pi_state->pi_mutex);
943
944         return 0;
945 }
946
947 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
948 {
949         u32 uninitialized_var(oldval);
950
951         /*
952          * There is no waiter, so we unlock the futex. The owner died
953          * bit has not to be preserved here. We are the owner:
954          */
955         if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
956                 return -EFAULT;
957         if (oldval != uval)
958                 return -EAGAIN;
959
960         return 0;
961 }
962
963 /*
964  * Express the locking dependencies for lockdep:
965  */
966 static inline void
967 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
968 {
969         if (hb1 <= hb2) {
970                 spin_lock(&hb1->lock);
971                 if (hb1 < hb2)
972                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
973         } else { /* hb1 > hb2 */
974                 spin_lock(&hb2->lock);
975                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
976         }
977 }
978
979 static inline void
980 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
981 {
982         spin_unlock(&hb1->lock);
983         if (hb1 != hb2)
984                 spin_unlock(&hb2->lock);
985 }
986
987 /*
988  * Wake up waiters matching bitset queued on this futex (uaddr).
989  */
990 static int
991 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
992 {
993         struct futex_hash_bucket *hb;
994         struct futex_q *this, *next;
995         struct plist_head *head;
996         union futex_key key = FUTEX_KEY_INIT;
997         int ret;
998
999         if (!bitset)
1000                 return -EINVAL;
1001
1002         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1003         if (unlikely(ret != 0))
1004                 goto out;
1005
1006         hb = hash_futex(&key);
1007         spin_lock(&hb->lock);
1008         head = &hb->chain;
1009
1010         plist_for_each_entry_safe(this, next, head, list) {
1011                 if (match_futex (&this->key, &key)) {
1012                         if (this->pi_state || this->rt_waiter) {
1013                                 ret = -EINVAL;
1014                                 break;
1015                         }
1016
1017                         /* Check if one of the bits is set in both bitsets */
1018                         if (!(this->bitset & bitset))
1019                                 continue;
1020
1021                         wake_futex(this);
1022                         if (++ret >= nr_wake)
1023                                 break;
1024                 }
1025         }
1026
1027         spin_unlock(&hb->lock);
1028         put_futex_key(&key);
1029 out:
1030         return ret;
1031 }
1032
1033 /*
1034  * Wake up all waiters hashed on the physical page that is mapped
1035  * to this virtual address:
1036  */
1037 static int
1038 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1039               int nr_wake, int nr_wake2, int op)
1040 {
1041         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1042         struct futex_hash_bucket *hb1, *hb2;
1043         struct plist_head *head;
1044         struct futex_q *this, *next;
1045         int ret, op_ret;
1046
1047 retry:
1048         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1049         if (unlikely(ret != 0))
1050                 goto out;
1051         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1052         if (unlikely(ret != 0))
1053                 goto out_put_key1;
1054
1055         hb1 = hash_futex(&key1);
1056         hb2 = hash_futex(&key2);
1057
1058 retry_private:
1059         double_lock_hb(hb1, hb2);
1060         op_ret = futex_atomic_op_inuser(op, uaddr2);
1061         if (unlikely(op_ret < 0)) {
1062
1063                 double_unlock_hb(hb1, hb2);
1064
1065 #ifndef CONFIG_MMU
1066                 /*
1067                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1068                  * but we might get them from range checking
1069                  */
1070                 ret = op_ret;
1071                 goto out_put_keys;
1072 #endif
1073
1074                 if (unlikely(op_ret != -EFAULT)) {
1075                         ret = op_ret;
1076                         goto out_put_keys;
1077                 }
1078
1079                 ret = fault_in_user_writeable(uaddr2);
1080                 if (ret)
1081                         goto out_put_keys;
1082
1083                 if (!(flags & FLAGS_SHARED))
1084                         goto retry_private;
1085
1086                 put_futex_key(&key2);
1087                 put_futex_key(&key1);
1088                 goto retry;
1089         }
1090
1091         head = &hb1->chain;
1092
1093         plist_for_each_entry_safe(this, next, head, list) {
1094                 if (match_futex (&this->key, &key1)) {
1095                         if (this->pi_state || this->rt_waiter) {
1096                                 ret = -EINVAL;
1097                                 goto out_unlock;
1098                         }
1099                         wake_futex(this);
1100                         if (++ret >= nr_wake)
1101                                 break;
1102                 }
1103         }
1104
1105         if (op_ret > 0) {
1106                 head = &hb2->chain;
1107
1108                 op_ret = 0;
1109                 plist_for_each_entry_safe(this, next, head, list) {
1110                         if (match_futex (&this->key, &key2)) {
1111                                 if (this->pi_state || this->rt_waiter) {
1112                                         ret = -EINVAL;
1113                                         goto out_unlock;
1114                                 }
1115                                 wake_futex(this);
1116                                 if (++op_ret >= nr_wake2)
1117                                         break;
1118                         }
1119                 }
1120                 ret += op_ret;
1121         }
1122
1123 out_unlock:
1124         double_unlock_hb(hb1, hb2);
1125 out_put_keys:
1126         put_futex_key(&key2);
1127 out_put_key1:
1128         put_futex_key(&key1);
1129 out:
1130         return ret;
1131 }
1132
1133 /**
1134  * requeue_futex() - Requeue a futex_q from one hb to another
1135  * @q:          the futex_q to requeue
1136  * @hb1:        the source hash_bucket
1137  * @hb2:        the target hash_bucket
1138  * @key2:       the new key for the requeued futex_q
1139  */
1140 static inline
1141 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1142                    struct futex_hash_bucket *hb2, union futex_key *key2)
1143 {
1144
1145         /*
1146          * If key1 and key2 hash to the same bucket, no need to
1147          * requeue.
1148          */
1149         if (likely(&hb1->chain != &hb2->chain)) {
1150                 plist_del(&q->list, &hb1->chain);
1151                 plist_add(&q->list, &hb2->chain);
1152                 q->lock_ptr = &hb2->lock;
1153         }
1154         get_futex_key_refs(key2);
1155         q->key = *key2;
1156 }
1157
1158 /**
1159  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1160  * @q:          the futex_q
1161  * @key:        the key of the requeue target futex
1162  * @hb:         the hash_bucket of the requeue target futex
1163  *
1164  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1165  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1166  * to the requeue target futex so the waiter can detect the wakeup on the right
1167  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1168  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1169  * to protect access to the pi_state to fixup the owner later.  Must be called
1170  * with both q->lock_ptr and hb->lock held.
1171  */
1172 static inline
1173 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1174                            struct futex_hash_bucket *hb)
1175 {
1176         get_futex_key_refs(key);
1177         q->key = *key;
1178
1179         __unqueue_futex(q);
1180
1181         WARN_ON(!q->rt_waiter);
1182         q->rt_waiter = NULL;
1183
1184         q->lock_ptr = &hb->lock;
1185
1186         wake_up_state(q->task, TASK_NORMAL);
1187 }
1188
1189 /**
1190  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1191  * @pifutex:            the user address of the to futex
1192  * @hb1:                the from futex hash bucket, must be locked by the caller
1193  * @hb2:                the to futex hash bucket, must be locked by the caller
1194  * @key1:               the from futex key
1195  * @key2:               the to futex key
1196  * @ps:                 address to store the pi_state pointer
1197  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1198  *
1199  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1200  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1201  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1202  * hb1 and hb2 must be held by the caller.
1203  *
1204  * Return:
1205  *  0 - failed to acquire the lock atomically;
1206  *  1 - acquired the lock;
1207  * <0 - error
1208  */
1209 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1210                                  struct futex_hash_bucket *hb1,
1211                                  struct futex_hash_bucket *hb2,
1212                                  union futex_key *key1, union futex_key *key2,
1213                                  struct futex_pi_state **ps, int set_waiters)
1214 {
1215         struct futex_q *top_waiter = NULL;
1216         u32 curval;
1217         int ret;
1218
1219         if (get_futex_value_locked(&curval, pifutex))
1220                 return -EFAULT;
1221
1222         /*
1223          * Find the top_waiter and determine if there are additional waiters.
1224          * If the caller intends to requeue more than 1 waiter to pifutex,
1225          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1226          * as we have means to handle the possible fault.  If not, don't set
1227          * the bit unecessarily as it will force the subsequent unlock to enter
1228          * the kernel.
1229          */
1230         top_waiter = futex_top_waiter(hb1, key1);
1231
1232         /* There are no waiters, nothing for us to do. */
1233         if (!top_waiter)
1234                 return 0;
1235
1236         /* Ensure we requeue to the expected futex. */
1237         if (!match_futex(top_waiter->requeue_pi_key, key2))
1238                 return -EINVAL;
1239
1240         /*
1241          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1242          * the contended case or if set_waiters is 1.  The pi_state is returned
1243          * in ps in contended cases.
1244          */
1245         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1246                                    set_waiters);
1247         if (ret == 1)
1248                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1249
1250         return ret;
1251 }
1252
1253 /**
1254  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1255  * @uaddr1:     source futex user address
1256  * @flags:      futex flags (FLAGS_SHARED, etc.)
1257  * @uaddr2:     target futex user address
1258  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1259  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1260  * @cmpval:     @uaddr1 expected value (or %NULL)
1261  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1262  *              pi futex (pi to pi requeue is not supported)
1263  *
1264  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1265  * uaddr2 atomically on behalf of the top waiter.
1266  *
1267  * Return:
1268  * >=0 - on success, the number of tasks requeued or woken;
1269  *  <0 - on error
1270  */
1271 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1272                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1273                          u32 *cmpval, int requeue_pi)
1274 {
1275         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1276         int drop_count = 0, task_count = 0, ret;
1277         struct futex_pi_state *pi_state = NULL;
1278         struct futex_hash_bucket *hb1, *hb2;
1279         struct plist_head *head1;
1280         struct futex_q *this, *next;
1281         u32 curval2;
1282
1283         if (requeue_pi) {
1284                 /*
1285                  * Requeue PI only works on two distinct uaddrs. This
1286                  * check is only valid for private futexes. See below.
1287                  */
1288                 if (uaddr1 == uaddr2)
1289                         return -EINVAL;
1290
1291                 /*
1292                  * requeue_pi requires a pi_state, try to allocate it now
1293                  * without any locks in case it fails.
1294                  */
1295                 if (refill_pi_state_cache())
1296                         return -ENOMEM;
1297                 /*
1298                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1299                  * + nr_requeue, since it acquires the rt_mutex prior to
1300                  * returning to userspace, so as to not leave the rt_mutex with
1301                  * waiters and no owner.  However, second and third wake-ups
1302                  * cannot be predicted as they involve race conditions with the
1303                  * first wake and a fault while looking up the pi_state.  Both
1304                  * pthread_cond_signal() and pthread_cond_broadcast() should
1305                  * use nr_wake=1.
1306                  */
1307                 if (nr_wake != 1)
1308                         return -EINVAL;
1309         }
1310
1311 retry:
1312         if (pi_state != NULL) {
1313                 /*
1314                  * We will have to lookup the pi_state again, so free this one
1315                  * to keep the accounting correct.
1316                  */
1317                 free_pi_state(pi_state);
1318                 pi_state = NULL;
1319         }
1320
1321         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1322         if (unlikely(ret != 0))
1323                 goto out;
1324         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1325                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1326         if (unlikely(ret != 0))
1327                 goto out_put_key1;
1328
1329         /*
1330          * The check above which compares uaddrs is not sufficient for
1331          * shared futexes. We need to compare the keys:
1332          */
1333         if (requeue_pi && match_futex(&key1, &key2)) {
1334                 ret = -EINVAL;
1335                 goto out_put_keys;
1336         }
1337
1338         hb1 = hash_futex(&key1);
1339         hb2 = hash_futex(&key2);
1340
1341 retry_private:
1342         double_lock_hb(hb1, hb2);
1343
1344         if (likely(cmpval != NULL)) {
1345                 u32 curval;
1346
1347                 ret = get_futex_value_locked(&curval, uaddr1);
1348
1349                 if (unlikely(ret)) {
1350                         double_unlock_hb(hb1, hb2);
1351
1352                         ret = get_user(curval, uaddr1);
1353                         if (ret)
1354                                 goto out_put_keys;
1355
1356                         if (!(flags & FLAGS_SHARED))
1357                                 goto retry_private;
1358
1359                         put_futex_key(&key2);
1360                         put_futex_key(&key1);
1361                         goto retry;
1362                 }
1363                 if (curval != *cmpval) {
1364                         ret = -EAGAIN;
1365                         goto out_unlock;
1366                 }
1367         }
1368
1369         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1370                 /*
1371                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1372                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1373                  * bit.  We force this here where we are able to easily handle
1374                  * faults rather in the requeue loop below.
1375                  */
1376                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1377                                                  &key2, &pi_state, nr_requeue);
1378
1379                 /*
1380                  * At this point the top_waiter has either taken uaddr2 or is
1381                  * waiting on it.  If the former, then the pi_state will not
1382                  * exist yet, look it up one more time to ensure we have a
1383                  * reference to it.
1384                  */
1385                 if (ret == 1) {
1386                         WARN_ON(pi_state);
1387                         drop_count++;
1388                         task_count++;
1389                         ret = get_futex_value_locked(&curval2, uaddr2);
1390                         if (!ret)
1391                                 ret = lookup_pi_state(curval2, hb2, &key2,
1392                                                       &pi_state);
1393                 }
1394
1395                 switch (ret) {
1396                 case 0:
1397                         break;
1398                 case -EFAULT:
1399                         double_unlock_hb(hb1, hb2);
1400                         put_futex_key(&key2);
1401                         put_futex_key(&key1);
1402                         ret = fault_in_user_writeable(uaddr2);
1403                         if (!ret)
1404                                 goto retry;
1405                         goto out;
1406                 case -EAGAIN:
1407                         /* The owner was exiting, try again. */
1408                         double_unlock_hb(hb1, hb2);
1409                         put_futex_key(&key2);
1410                         put_futex_key(&key1);
1411                         cond_resched();
1412                         goto retry;
1413                 default:
1414                         goto out_unlock;
1415                 }
1416         }
1417
1418         head1 = &hb1->chain;
1419         plist_for_each_entry_safe(this, next, head1, list) {
1420                 if (task_count - nr_wake >= nr_requeue)
1421                         break;
1422
1423                 if (!match_futex(&this->key, &key1))
1424                         continue;
1425
1426                 /*
1427                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1428                  * be paired with each other and no other futex ops.
1429                  *
1430                  * We should never be requeueing a futex_q with a pi_state,
1431                  * which is awaiting a futex_unlock_pi().
1432                  */
1433                 if ((requeue_pi && !this->rt_waiter) ||
1434                     (!requeue_pi && this->rt_waiter) ||
1435                     this->pi_state) {
1436                         ret = -EINVAL;
1437                         break;
1438                 }
1439
1440                 /*
1441                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1442                  * lock, we already woke the top_waiter.  If not, it will be
1443                  * woken by futex_unlock_pi().
1444                  */
1445                 if (++task_count <= nr_wake && !requeue_pi) {
1446                         wake_futex(this);
1447                         continue;
1448                 }
1449
1450                 /* Ensure we requeue to the expected futex for requeue_pi. */
1451                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1452                         ret = -EINVAL;
1453                         break;
1454                 }
1455
1456                 /*
1457                  * Requeue nr_requeue waiters and possibly one more in the case
1458                  * of requeue_pi if we couldn't acquire the lock atomically.
1459                  */
1460                 if (requeue_pi) {
1461                         /* Prepare the waiter to take the rt_mutex. */
1462                         atomic_inc(&pi_state->refcount);
1463                         this->pi_state = pi_state;
1464                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1465                                                         this->rt_waiter,
1466                                                         this->task, 1);
1467                         if (ret == 1) {
1468                                 /* We got the lock. */
1469                                 requeue_pi_wake_futex(this, &key2, hb2);
1470                                 drop_count++;
1471                                 continue;
1472                         } else if (ret) {
1473                                 /* -EDEADLK */
1474                                 this->pi_state = NULL;
1475                                 free_pi_state(pi_state);
1476                                 goto out_unlock;
1477                         }
1478                 }
1479                 requeue_futex(this, hb1, hb2, &key2);
1480                 drop_count++;
1481         }
1482
1483 out_unlock:
1484         double_unlock_hb(hb1, hb2);
1485
1486         /*
1487          * drop_futex_key_refs() must be called outside the spinlocks. During
1488          * the requeue we moved futex_q's from the hash bucket at key1 to the
1489          * one at key2 and updated their key pointer.  We no longer need to
1490          * hold the references to key1.
1491          */
1492         while (--drop_count >= 0)
1493                 drop_futex_key_refs(&key1);
1494
1495 out_put_keys:
1496         put_futex_key(&key2);
1497 out_put_key1:
1498         put_futex_key(&key1);
1499 out:
1500         if (pi_state != NULL)
1501                 free_pi_state(pi_state);
1502         return ret ? ret : task_count;
1503 }
1504
1505 /* The key must be already stored in q->key. */
1506 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1507         __acquires(&hb->lock)
1508 {
1509         struct futex_hash_bucket *hb;
1510
1511         hb = hash_futex(&q->key);
1512         q->lock_ptr = &hb->lock;
1513
1514         spin_lock(&hb->lock);
1515         return hb;
1516 }
1517
1518 static inline void
1519 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1520         __releases(&hb->lock)
1521 {
1522         spin_unlock(&hb->lock);
1523 }
1524
1525 /**
1526  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1527  * @q:  The futex_q to enqueue
1528  * @hb: The destination hash bucket
1529  *
1530  * The hb->lock must be held by the caller, and is released here. A call to
1531  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1532  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1533  * or nothing if the unqueue is done as part of the wake process and the unqueue
1534  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1535  * an example).
1536  */
1537 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1538         __releases(&hb->lock)
1539 {
1540         int prio;
1541
1542         /*
1543          * The priority used to register this element is
1544          * - either the real thread-priority for the real-time threads
1545          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1546          * - or MAX_RT_PRIO for non-RT threads.
1547          * Thus, all RT-threads are woken first in priority order, and
1548          * the others are woken last, in FIFO order.
1549          */
1550         prio = min(current->normal_prio, MAX_RT_PRIO);
1551
1552         plist_node_init(&q->list, prio);
1553         plist_add(&q->list, &hb->chain);
1554         q->task = current;
1555         spin_unlock(&hb->lock);
1556 }
1557
1558 /**
1559  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1560  * @q:  The futex_q to unqueue
1561  *
1562  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1563  * be paired with exactly one earlier call to queue_me().
1564  *
1565  * Return:
1566  *   1 - if the futex_q was still queued (and we removed unqueued it);
1567  *   0 - if the futex_q was already removed by the waking thread
1568  */
1569 static int unqueue_me(struct futex_q *q)
1570 {
1571         spinlock_t *lock_ptr;
1572         int ret = 0;
1573
1574         /* In the common case we don't take the spinlock, which is nice. */
1575 retry:
1576         lock_ptr = q->lock_ptr;
1577         barrier();
1578         if (lock_ptr != NULL) {
1579                 spin_lock(lock_ptr);
1580                 /*
1581                  * q->lock_ptr can change between reading it and
1582                  * spin_lock(), causing us to take the wrong lock.  This
1583                  * corrects the race condition.
1584                  *
1585                  * Reasoning goes like this: if we have the wrong lock,
1586                  * q->lock_ptr must have changed (maybe several times)
1587                  * between reading it and the spin_lock().  It can
1588                  * change again after the spin_lock() but only if it was
1589                  * already changed before the spin_lock().  It cannot,
1590                  * however, change back to the original value.  Therefore
1591                  * we can detect whether we acquired the correct lock.
1592                  */
1593                 if (unlikely(lock_ptr != q->lock_ptr)) {
1594                         spin_unlock(lock_ptr);
1595                         goto retry;
1596                 }
1597                 __unqueue_futex(q);
1598
1599                 BUG_ON(q->pi_state);
1600
1601                 spin_unlock(lock_ptr);
1602                 ret = 1;
1603         }
1604
1605         drop_futex_key_refs(&q->key);
1606         return ret;
1607 }
1608
1609 /*
1610  * PI futexes can not be requeued and must remove themself from the
1611  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1612  * and dropped here.
1613  */
1614 static void unqueue_me_pi(struct futex_q *q)
1615         __releases(q->lock_ptr)
1616 {
1617         __unqueue_futex(q);
1618
1619         BUG_ON(!q->pi_state);
1620         free_pi_state(q->pi_state);
1621         q->pi_state = NULL;
1622
1623         spin_unlock(q->lock_ptr);
1624 }
1625
1626 /*
1627  * Fixup the pi_state owner with the new owner.
1628  *
1629  * Must be called with hash bucket lock held and mm->sem held for non
1630  * private futexes.
1631  */
1632 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1633                                 struct task_struct *newowner)
1634 {
1635         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1636         struct futex_pi_state *pi_state = q->pi_state;
1637         struct task_struct *oldowner = pi_state->owner;
1638         u32 uval, uninitialized_var(curval), newval;
1639         int ret;
1640
1641         /* Owner died? */
1642         if (!pi_state->owner)
1643                 newtid |= FUTEX_OWNER_DIED;
1644
1645         /*
1646          * We are here either because we stole the rtmutex from the
1647          * previous highest priority waiter or we are the highest priority
1648          * waiter but failed to get the rtmutex the first time.
1649          * We have to replace the newowner TID in the user space variable.
1650          * This must be atomic as we have to preserve the owner died bit here.
1651          *
1652          * Note: We write the user space value _before_ changing the pi_state
1653          * because we can fault here. Imagine swapped out pages or a fork
1654          * that marked all the anonymous memory readonly for cow.
1655          *
1656          * Modifying pi_state _before_ the user space value would
1657          * leave the pi_state in an inconsistent state when we fault
1658          * here, because we need to drop the hash bucket lock to
1659          * handle the fault. This might be observed in the PID check
1660          * in lookup_pi_state.
1661          */
1662 retry:
1663         if (get_futex_value_locked(&uval, uaddr))
1664                 goto handle_fault;
1665
1666         while (1) {
1667                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1668
1669                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1670                         goto handle_fault;
1671                 if (curval == uval)
1672                         break;
1673                 uval = curval;
1674         }
1675
1676         /*
1677          * We fixed up user space. Now we need to fix the pi_state
1678          * itself.
1679          */
1680         if (pi_state->owner != NULL) {
1681                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1682                 WARN_ON(list_empty(&pi_state->list));
1683                 list_del_init(&pi_state->list);
1684                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1685         }
1686
1687         pi_state->owner = newowner;
1688
1689         raw_spin_lock_irq(&newowner->pi_lock);
1690         WARN_ON(!list_empty(&pi_state->list));
1691         list_add(&pi_state->list, &newowner->pi_state_list);
1692         raw_spin_unlock_irq(&newowner->pi_lock);
1693         return 0;
1694
1695         /*
1696          * To handle the page fault we need to drop the hash bucket
1697          * lock here. That gives the other task (either the highest priority
1698          * waiter itself or the task which stole the rtmutex) the
1699          * chance to try the fixup of the pi_state. So once we are
1700          * back from handling the fault we need to check the pi_state
1701          * after reacquiring the hash bucket lock and before trying to
1702          * do another fixup. When the fixup has been done already we
1703          * simply return.
1704          */
1705 handle_fault:
1706         spin_unlock(q->lock_ptr);
1707
1708         ret = fault_in_user_writeable(uaddr);
1709
1710         spin_lock(q->lock_ptr);
1711
1712         /*
1713          * Check if someone else fixed it for us:
1714          */
1715         if (pi_state->owner != oldowner)
1716                 return 0;
1717
1718         if (ret)
1719                 return ret;
1720
1721         goto retry;
1722 }
1723
1724 static long futex_wait_restart(struct restart_block *restart);
1725
1726 /**
1727  * fixup_owner() - Post lock pi_state and corner case management
1728  * @uaddr:      user address of the futex
1729  * @q:          futex_q (contains pi_state and access to the rt_mutex)
1730  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
1731  *
1732  * After attempting to lock an rt_mutex, this function is called to cleanup
1733  * the pi_state owner as well as handle race conditions that may allow us to
1734  * acquire the lock. Must be called with the hb lock held.
1735  *
1736  * Return:
1737  *  1 - success, lock taken;
1738  *  0 - success, lock not taken;
1739  * <0 - on error (-EFAULT)
1740  */
1741 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1742 {
1743         struct task_struct *owner;
1744         int ret = 0;
1745
1746         if (locked) {
1747                 /*
1748                  * Got the lock. We might not be the anticipated owner if we
1749                  * did a lock-steal - fix up the PI-state in that case:
1750                  */
1751                 if (q->pi_state->owner != current)
1752                         ret = fixup_pi_state_owner(uaddr, q, current);
1753                 goto out;
1754         }
1755
1756         /*
1757          * Catch the rare case, where the lock was released when we were on the
1758          * way back before we locked the hash bucket.
1759          */
1760         if (q->pi_state->owner == current) {
1761                 /*
1762                  * Try to get the rt_mutex now. This might fail as some other
1763                  * task acquired the rt_mutex after we removed ourself from the
1764                  * rt_mutex waiters list.
1765                  */
1766                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1767                         locked = 1;
1768                         goto out;
1769                 }
1770
1771                 /*
1772                  * pi_state is incorrect, some other task did a lock steal and
1773                  * we returned due to timeout or signal without taking the
1774                  * rt_mutex. Too late.
1775                  */
1776                 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1777                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1778                 if (!owner)
1779                         owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1780                 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1781                 ret = fixup_pi_state_owner(uaddr, q, owner);
1782                 goto out;
1783         }
1784
1785         /*
1786          * Paranoia check. If we did not take the lock, then we should not be
1787          * the owner of the rt_mutex.
1788          */
1789         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1790                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1791                                 "pi-state %p\n", ret,
1792                                 q->pi_state->pi_mutex.owner,
1793                                 q->pi_state->owner);
1794
1795 out:
1796         return ret ? ret : locked;
1797 }
1798
1799 /**
1800  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1801  * @hb:         the futex hash bucket, must be locked by the caller
1802  * @q:          the futex_q to queue up on
1803  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
1804  */
1805 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1806                                 struct hrtimer_sleeper *timeout)
1807 {
1808         /*
1809          * The task state is guaranteed to be set before another task can
1810          * wake it. set_current_state() is implemented using set_mb() and
1811          * queue_me() calls spin_unlock() upon completion, both serializing
1812          * access to the hash list and forcing another memory barrier.
1813          */
1814         set_current_state(TASK_INTERRUPTIBLE);
1815         queue_me(q, hb);
1816
1817         /* Arm the timer */
1818         if (timeout) {
1819                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1820                 if (!hrtimer_active(&timeout->timer))
1821                         timeout->task = NULL;
1822         }
1823
1824         /*
1825          * If we have been removed from the hash list, then another task
1826          * has tried to wake us, and we can skip the call to schedule().
1827          */
1828         if (likely(!plist_node_empty(&q->list))) {
1829                 /*
1830                  * If the timer has already expired, current will already be
1831                  * flagged for rescheduling. Only call schedule if there
1832                  * is no timeout, or if it has yet to expire.
1833                  */
1834                 if (!timeout || timeout->task)
1835                         freezable_schedule();
1836         }
1837         __set_current_state(TASK_RUNNING);
1838 }
1839
1840 /**
1841  * futex_wait_setup() - Prepare to wait on a futex
1842  * @uaddr:      the futex userspace address
1843  * @val:        the expected value
1844  * @flags:      futex flags (FLAGS_SHARED, etc.)
1845  * @q:          the associated futex_q
1846  * @hb:         storage for hash_bucket pointer to be returned to caller
1847  *
1848  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
1849  * compare it with the expected value.  Handle atomic faults internally.
1850  * Return with the hb lock held and a q.key reference on success, and unlocked
1851  * with no q.key reference on failure.
1852  *
1853  * Return:
1854  *  0 - uaddr contains val and hb has been locked;
1855  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
1856  */
1857 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1858                            struct futex_q *q, struct futex_hash_bucket **hb)
1859 {
1860         u32 uval;
1861         int ret;
1862
1863         /*
1864          * Access the page AFTER the hash-bucket is locked.
1865          * Order is important:
1866          *
1867          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1868          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1869          *
1870          * The basic logical guarantee of a futex is that it blocks ONLY
1871          * if cond(var) is known to be true at the time of blocking, for
1872          * any cond.  If we locked the hash-bucket after testing *uaddr, that
1873          * would open a race condition where we could block indefinitely with
1874          * cond(var) false, which would violate the guarantee.
1875          *
1876          * On the other hand, we insert q and release the hash-bucket only
1877          * after testing *uaddr.  This guarantees that futex_wait() will NOT
1878          * absorb a wakeup if *uaddr does not match the desired values
1879          * while the syscall executes.
1880          */
1881 retry:
1882         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
1883         if (unlikely(ret != 0))
1884                 return ret;
1885
1886 retry_private:
1887         *hb = queue_lock(q);
1888
1889         ret = get_futex_value_locked(&uval, uaddr);
1890
1891         if (ret) {
1892                 queue_unlock(q, *hb);
1893
1894                 ret = get_user(uval, uaddr);
1895                 if (ret)
1896                         goto out;
1897
1898                 if (!(flags & FLAGS_SHARED))
1899                         goto retry_private;
1900
1901                 put_futex_key(&q->key);
1902                 goto retry;
1903         }
1904
1905         if (uval != val) {
1906                 queue_unlock(q, *hb);
1907                 ret = -EWOULDBLOCK;
1908         }
1909
1910 out:
1911         if (ret)
1912                 put_futex_key(&q->key);
1913         return ret;
1914 }
1915
1916 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1917                       ktime_t *abs_time, u32 bitset)
1918 {
1919         struct hrtimer_sleeper timeout, *to = NULL;
1920         struct restart_block *restart;
1921         struct futex_hash_bucket *hb;
1922         struct futex_q q = futex_q_init;
1923         int ret;
1924
1925         if (!bitset)
1926                 return -EINVAL;
1927         q.bitset = bitset;
1928
1929         if (abs_time) {
1930                 to = &timeout;
1931
1932                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1933                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
1934                                       HRTIMER_MODE_ABS);
1935                 hrtimer_init_sleeper(to, current);
1936                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1937                                              current->timer_slack_ns);
1938         }
1939
1940 retry:
1941         /*
1942          * Prepare to wait on uaddr. On success, holds hb lock and increments
1943          * q.key refs.
1944          */
1945         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
1946         if (ret)
1947                 goto out;
1948
1949         /* queue_me and wait for wakeup, timeout, or a signal. */
1950         futex_wait_queue_me(hb, &q, to);
1951
1952         /* If we were woken (and unqueued), we succeeded, whatever. */
1953         ret = 0;
1954         /* unqueue_me() drops q.key ref */
1955         if (!unqueue_me(&q))
1956                 goto out;
1957         ret = -ETIMEDOUT;
1958         if (to && !to->task)
1959                 goto out;
1960
1961         /*
1962          * We expect signal_pending(current), but we might be the
1963          * victim of a spurious wakeup as well.
1964          */
1965         if (!signal_pending(current))
1966                 goto retry;
1967
1968         ret = -ERESTARTSYS;
1969         if (!abs_time)
1970                 goto out;
1971
1972         restart = &current_thread_info()->restart_block;
1973         restart->fn = futex_wait_restart;
1974         restart->futex.uaddr = uaddr;
1975         restart->futex.val = val;
1976         restart->futex.time = abs_time->tv64;
1977         restart->futex.bitset = bitset;
1978         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
1979
1980         ret = -ERESTART_RESTARTBLOCK;
1981
1982 out:
1983         if (to) {
1984                 hrtimer_cancel(&to->timer);
1985                 destroy_hrtimer_on_stack(&to->timer);
1986         }
1987         return ret;
1988 }
1989
1990
1991 static long futex_wait_restart(struct restart_block *restart)
1992 {
1993         u32 __user *uaddr = restart->futex.uaddr;
1994         ktime_t t, *tp = NULL;
1995
1996         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1997                 t.tv64 = restart->futex.time;
1998                 tp = &t;
1999         }
2000         restart->fn = do_no_restart_syscall;
2001
2002         return (long)futex_wait(uaddr, restart->futex.flags,
2003                                 restart->futex.val, tp, restart->futex.bitset);
2004 }
2005
2006
2007 /*
2008  * Userspace tried a 0 -> TID atomic transition of the futex value
2009  * and failed. The kernel side here does the whole locking operation:
2010  * if there are waiters then it will block, it does PI, etc. (Due to
2011  * races the kernel might see a 0 value of the futex too.)
2012  */
2013 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2014                          ktime_t *time, int trylock)
2015 {
2016         struct hrtimer_sleeper timeout, *to = NULL;
2017         struct futex_hash_bucket *hb;
2018         struct futex_q q = futex_q_init;
2019         int res, ret;
2020
2021         if (refill_pi_state_cache())
2022                 return -ENOMEM;
2023
2024         if (time) {
2025                 to = &timeout;
2026                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2027                                       HRTIMER_MODE_ABS);
2028                 hrtimer_init_sleeper(to, current);
2029                 hrtimer_set_expires(&to->timer, *time);
2030         }
2031
2032 retry:
2033         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2034         if (unlikely(ret != 0))
2035                 goto out;
2036
2037 retry_private:
2038         hb = queue_lock(&q);
2039
2040         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2041         if (unlikely(ret)) {
2042                 switch (ret) {
2043                 case 1:
2044                         /* We got the lock. */
2045                         ret = 0;
2046                         goto out_unlock_put_key;
2047                 case -EFAULT:
2048                         goto uaddr_faulted;
2049                 case -EAGAIN:
2050                         /*
2051                          * Task is exiting and we just wait for the
2052                          * exit to complete.
2053                          */
2054                         queue_unlock(&q, hb);
2055                         put_futex_key(&q.key);
2056                         cond_resched();
2057                         goto retry;
2058                 default:
2059                         goto out_unlock_put_key;
2060                 }
2061         }
2062
2063         /*
2064          * Only actually queue now that the atomic ops are done:
2065          */
2066         queue_me(&q, hb);
2067
2068         WARN_ON(!q.pi_state);
2069         /*
2070          * Block on the PI mutex:
2071          */
2072         if (!trylock)
2073                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2074         else {
2075                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2076                 /* Fixup the trylock return value: */
2077                 ret = ret ? 0 : -EWOULDBLOCK;
2078         }
2079
2080         spin_lock(q.lock_ptr);
2081         /*
2082          * Fixup the pi_state owner and possibly acquire the lock if we
2083          * haven't already.
2084          */
2085         res = fixup_owner(uaddr, &q, !ret);
2086         /*
2087          * If fixup_owner() returned an error, proprogate that.  If it acquired
2088          * the lock, clear our -ETIMEDOUT or -EINTR.
2089          */
2090         if (res)
2091                 ret = (res < 0) ? res : 0;
2092
2093         /*
2094          * If fixup_owner() faulted and was unable to handle the fault, unlock
2095          * it and return the fault to userspace.
2096          */
2097         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2098                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2099
2100         /* Unqueue and drop the lock */
2101         unqueue_me_pi(&q);
2102
2103         goto out_put_key;
2104
2105 out_unlock_put_key:
2106         queue_unlock(&q, hb);
2107
2108 out_put_key:
2109         put_futex_key(&q.key);
2110 out:
2111         if (to)
2112                 destroy_hrtimer_on_stack(&to->timer);
2113         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2114
2115 uaddr_faulted:
2116         queue_unlock(&q, hb);
2117
2118         ret = fault_in_user_writeable(uaddr);
2119         if (ret)
2120                 goto out_put_key;
2121
2122         if (!(flags & FLAGS_SHARED))
2123                 goto retry_private;
2124
2125         put_futex_key(&q.key);
2126         goto retry;
2127 }
2128
2129 /*
2130  * Userspace attempted a TID -> 0 atomic transition, and failed.
2131  * This is the in-kernel slowpath: we look up the PI state (if any),
2132  * and do the rt-mutex unlock.
2133  */
2134 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2135 {
2136         struct futex_hash_bucket *hb;
2137         struct futex_q *this, *next;
2138         struct plist_head *head;
2139         union futex_key key = FUTEX_KEY_INIT;
2140         u32 uval, vpid = task_pid_vnr(current);
2141         int ret;
2142
2143 retry:
2144         if (get_user(uval, uaddr))
2145                 return -EFAULT;
2146         /*
2147          * We release only a lock we actually own:
2148          */
2149         if ((uval & FUTEX_TID_MASK) != vpid)
2150                 return -EPERM;
2151
2152         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2153         if (unlikely(ret != 0))
2154                 goto out;
2155
2156         hb = hash_futex(&key);
2157         spin_lock(&hb->lock);
2158
2159         /*
2160          * To avoid races, try to do the TID -> 0 atomic transition
2161          * again. If it succeeds then we can return without waking
2162          * anyone else up:
2163          */
2164         if (!(uval & FUTEX_OWNER_DIED) &&
2165             cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2166                 goto pi_faulted;
2167         /*
2168          * Rare case: we managed to release the lock atomically,
2169          * no need to wake anyone else up:
2170          */
2171         if (unlikely(uval == vpid))
2172                 goto out_unlock;
2173
2174         /*
2175          * Ok, other tasks may need to be woken up - check waiters
2176          * and do the wakeup if necessary:
2177          */
2178         head = &hb->chain;
2179
2180         plist_for_each_entry_safe(this, next, head, list) {
2181                 if (!match_futex (&this->key, &key))
2182                         continue;
2183                 ret = wake_futex_pi(uaddr, uval, this);
2184                 /*
2185                  * The atomic access to the futex value
2186                  * generated a pagefault, so retry the
2187                  * user-access and the wakeup:
2188                  */
2189                 if (ret == -EFAULT)
2190                         goto pi_faulted;
2191                 goto out_unlock;
2192         }
2193         /*
2194          * No waiters - kernel unlocks the futex:
2195          */
2196         if (!(uval & FUTEX_OWNER_DIED)) {
2197                 ret = unlock_futex_pi(uaddr, uval);
2198                 if (ret == -EFAULT)
2199                         goto pi_faulted;
2200         }
2201
2202 out_unlock:
2203         spin_unlock(&hb->lock);
2204         put_futex_key(&key);
2205
2206 out:
2207         return ret;
2208
2209 pi_faulted:
2210         spin_unlock(&hb->lock);
2211         put_futex_key(&key);
2212
2213         ret = fault_in_user_writeable(uaddr);
2214         if (!ret)
2215                 goto retry;
2216
2217         return ret;
2218 }
2219
2220 /**
2221  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2222  * @hb:         the hash_bucket futex_q was original enqueued on
2223  * @q:          the futex_q woken while waiting to be requeued
2224  * @key2:       the futex_key of the requeue target futex
2225  * @timeout:    the timeout associated with the wait (NULL if none)
2226  *
2227  * Detect if the task was woken on the initial futex as opposed to the requeue
2228  * target futex.  If so, determine if it was a timeout or a signal that caused
2229  * the wakeup and return the appropriate error code to the caller.  Must be
2230  * called with the hb lock held.
2231  *
2232  * Return:
2233  *  0 = no early wakeup detected;
2234  * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2235  */
2236 static inline
2237 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2238                                    struct futex_q *q, union futex_key *key2,
2239                                    struct hrtimer_sleeper *timeout)
2240 {
2241         int ret = 0;
2242
2243         /*
2244          * With the hb lock held, we avoid races while we process the wakeup.
2245          * We only need to hold hb (and not hb2) to ensure atomicity as the
2246          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2247          * It can't be requeued from uaddr2 to something else since we don't
2248          * support a PI aware source futex for requeue.
2249          */
2250         if (!match_futex(&q->key, key2)) {
2251                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2252                 /*
2253                  * We were woken prior to requeue by a timeout or a signal.
2254                  * Unqueue the futex_q and determine which it was.
2255                  */
2256                 plist_del(&q->list, &hb->chain);
2257
2258                 /* Handle spurious wakeups gracefully */
2259                 ret = -EWOULDBLOCK;
2260                 if (timeout && !timeout->task)
2261                         ret = -ETIMEDOUT;
2262                 else if (signal_pending(current))
2263                         ret = -ERESTARTNOINTR;
2264         }
2265         return ret;
2266 }
2267
2268 /**
2269  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2270  * @uaddr:      the futex we initially wait on (non-pi)
2271  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2272  *              the same type, no requeueing from private to shared, etc.
2273  * @val:        the expected value of uaddr
2274  * @abs_time:   absolute timeout
2275  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2276  * @uaddr2:     the pi futex we will take prior to returning to user-space
2277  *
2278  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2279  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2280  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2281  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2282  * without one, the pi logic would not know which task to boost/deboost, if
2283  * there was a need to.
2284  *
2285  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2286  * via the following--
2287  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2288  * 2) wakeup on uaddr2 after a requeue
2289  * 3) signal
2290  * 4) timeout
2291  *
2292  * If 3, cleanup and return -ERESTARTNOINTR.
2293  *
2294  * If 2, we may then block on trying to take the rt_mutex and return via:
2295  * 5) successful lock
2296  * 6) signal
2297  * 7) timeout
2298  * 8) other lock acquisition failure
2299  *
2300  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2301  *
2302  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2303  *
2304  * Return:
2305  *  0 - On success;
2306  * <0 - On error
2307  */
2308 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2309                                  u32 val, ktime_t *abs_time, u32 bitset,
2310                                  u32 __user *uaddr2)
2311 {
2312         struct hrtimer_sleeper timeout, *to = NULL;
2313         struct rt_mutex_waiter rt_waiter;
2314         struct rt_mutex *pi_mutex = NULL;
2315         struct futex_hash_bucket *hb;
2316         union futex_key key2 = FUTEX_KEY_INIT;
2317         struct futex_q q = futex_q_init;
2318         int res, ret;
2319
2320         if (uaddr == uaddr2)
2321                 return -EINVAL;
2322
2323         if (!bitset)
2324                 return -EINVAL;
2325
2326         if (abs_time) {
2327                 to = &timeout;
2328                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2329                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2330                                       HRTIMER_MODE_ABS);
2331                 hrtimer_init_sleeper(to, current);
2332                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2333                                              current->timer_slack_ns);
2334         }
2335
2336         /*
2337          * The waiter is allocated on our stack, manipulated by the requeue
2338          * code while we sleep on uaddr.
2339          */
2340         debug_rt_mutex_init_waiter(&rt_waiter);
2341         rt_waiter.task = NULL;
2342
2343         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2344         if (unlikely(ret != 0))
2345                 goto out;
2346
2347         q.bitset = bitset;
2348         q.rt_waiter = &rt_waiter;
2349         q.requeue_pi_key = &key2;
2350
2351         /*
2352          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2353          * count.
2354          */
2355         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2356         if (ret)
2357                 goto out_key2;
2358
2359         /*
2360          * The check above which compares uaddrs is not sufficient for
2361          * shared futexes. We need to compare the keys:
2362          */
2363         if (match_futex(&q.key, &key2)) {
2364                 ret = -EINVAL;
2365                 goto out_put_keys;
2366         }
2367
2368         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2369         futex_wait_queue_me(hb, &q, to);
2370
2371         spin_lock(&hb->lock);
2372         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2373         spin_unlock(&hb->lock);
2374         if (ret)
2375                 goto out_put_keys;
2376
2377         /*
2378          * In order for us to be here, we know our q.key == key2, and since
2379          * we took the hb->lock above, we also know that futex_requeue() has
2380          * completed and we no longer have to concern ourselves with a wakeup
2381          * race with the atomic proxy lock acquisition by the requeue code. The
2382          * futex_requeue dropped our key1 reference and incremented our key2
2383          * reference count.
2384          */
2385
2386         /* Check if the requeue code acquired the second futex for us. */
2387         if (!q.rt_waiter) {
2388                 /*
2389                  * Got the lock. We might not be the anticipated owner if we
2390                  * did a lock-steal - fix up the PI-state in that case.
2391                  */
2392                 if (q.pi_state && (q.pi_state->owner != current)) {
2393                         spin_lock(q.lock_ptr);
2394                         ret = fixup_pi_state_owner(uaddr2, &q, current);
2395                         spin_unlock(q.lock_ptr);
2396                 }
2397         } else {
2398                 /*
2399                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2400                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2401                  * the pi_state.
2402                  */
2403                 WARN_ON(!q.pi_state);
2404                 pi_mutex = &q.pi_state->pi_mutex;
2405                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2406                 debug_rt_mutex_free_waiter(&rt_waiter);
2407
2408                 spin_lock(q.lock_ptr);
2409                 /*
2410                  * Fixup the pi_state owner and possibly acquire the lock if we
2411                  * haven't already.
2412                  */
2413                 res = fixup_owner(uaddr2, &q, !ret);
2414                 /*
2415                  * If fixup_owner() returned an error, proprogate that.  If it
2416                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
2417                  */
2418                 if (res)
2419                         ret = (res < 0) ? res : 0;
2420
2421                 /* Unqueue and drop the lock. */
2422                 unqueue_me_pi(&q);
2423         }
2424
2425         /*
2426          * If fixup_pi_state_owner() faulted and was unable to handle the
2427          * fault, unlock the rt_mutex and return the fault to userspace.
2428          */
2429         if (ret == -EFAULT) {
2430                 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2431                         rt_mutex_unlock(pi_mutex);
2432         } else if (ret == -EINTR) {
2433                 /*
2434                  * We've already been requeued, but cannot restart by calling
2435                  * futex_lock_pi() directly. We could restart this syscall, but
2436                  * it would detect that the user space "val" changed and return
2437                  * -EWOULDBLOCK.  Save the overhead of the restart and return
2438                  * -EWOULDBLOCK directly.
2439                  */
2440                 ret = -EWOULDBLOCK;
2441         }
2442
2443 out_put_keys:
2444         put_futex_key(&q.key);
2445 out_key2:
2446         put_futex_key(&key2);
2447
2448 out:
2449         if (to) {
2450                 hrtimer_cancel(&to->timer);
2451                 destroy_hrtimer_on_stack(&to->timer);
2452         }
2453         return ret;
2454 }
2455
2456 /*
2457  * Support for robust futexes: the kernel cleans up held futexes at
2458  * thread exit time.
2459  *
2460  * Implementation: user-space maintains a per-thread list of locks it
2461  * is holding. Upon do_exit(), the kernel carefully walks this list,
2462  * and marks all locks that are owned by this thread with the
2463  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2464  * always manipulated with the lock held, so the list is private and
2465  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2466  * field, to allow the kernel to clean up if the thread dies after
2467  * acquiring the lock, but just before it could have added itself to
2468  * the list. There can only be one such pending lock.
2469  */
2470
2471 /**
2472  * sys_set_robust_list() - Set the robust-futex list head of a task
2473  * @head:       pointer to the list-head
2474  * @len:        length of the list-head, as userspace expects
2475  */
2476 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2477                 size_t, len)
2478 {
2479         if (!futex_cmpxchg_enabled)
2480                 return -ENOSYS;
2481         /*
2482          * The kernel knows only one size for now:
2483          */
2484         if (unlikely(len != sizeof(*head)))
2485                 return -EINVAL;
2486
2487         current->robust_list = head;
2488
2489         return 0;
2490 }
2491
2492 /**
2493  * sys_get_robust_list() - Get the robust-futex list head of a task
2494  * @pid:        pid of the process [zero for current task]
2495  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2496  * @len_ptr:    pointer to a length field, the kernel fills in the header size
2497  */
2498 SYSCALL_DEFINE3(get_robust_list, int, pid,
2499                 struct robust_list_head __user * __user *, head_ptr,
2500                 size_t __user *, len_ptr)
2501 {
2502         struct robust_list_head __user *head;
2503         unsigned long ret;
2504         struct task_struct *p;
2505
2506         if (!futex_cmpxchg_enabled)
2507                 return -ENOSYS;
2508
2509         rcu_read_lock();
2510
2511         ret = -ESRCH;
2512         if (!pid)
2513                 p = current;
2514         else {
2515                 p = find_task_by_vpid(pid);
2516                 if (!p)
2517                         goto err_unlock;
2518         }
2519
2520         ret = -EPERM;
2521         if (!ptrace_may_access(p, PTRACE_MODE_READ))
2522                 goto err_unlock;
2523
2524         head = p->robust_list;
2525         rcu_read_unlock();
2526
2527         if (put_user(sizeof(*head), len_ptr))
2528                 return -EFAULT;
2529         return put_user(head, head_ptr);
2530
2531 err_unlock:
2532         rcu_read_unlock();
2533
2534         return ret;
2535 }
2536
2537 /*
2538  * Process a futex-list entry, check whether it's owned by the
2539  * dying task, and do notification if so:
2540  */
2541 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2542 {
2543         u32 uval, uninitialized_var(nval), mval;
2544
2545 retry:
2546         if (get_user(uval, uaddr))
2547                 return -1;
2548
2549         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2550                 /*
2551                  * Ok, this dying thread is truly holding a futex
2552                  * of interest. Set the OWNER_DIED bit atomically
2553                  * via cmpxchg, and if the value had FUTEX_WAITERS
2554                  * set, wake up a waiter (if any). (We have to do a
2555                  * futex_wake() even if OWNER_DIED is already set -
2556                  * to handle the rare but possible case of recursive
2557                  * thread-death.) The rest of the cleanup is done in
2558                  * userspace.
2559                  */
2560                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2561                 /*
2562                  * We are not holding a lock here, but we want to have
2563                  * the pagefault_disable/enable() protection because
2564                  * we want to handle the fault gracefully. If the
2565                  * access fails we try to fault in the futex with R/W
2566                  * verification via get_user_pages. get_user() above
2567                  * does not guarantee R/W access. If that fails we
2568                  * give up and leave the futex locked.
2569                  */
2570                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2571                         if (fault_in_user_writeable(uaddr))
2572                                 return -1;
2573                         goto retry;
2574                 }
2575                 if (nval != uval)
2576                         goto retry;
2577
2578                 /*
2579                  * Wake robust non-PI futexes here. The wakeup of
2580                  * PI futexes happens in exit_pi_state():
2581                  */
2582                 if (!pi && (uval & FUTEX_WAITERS))
2583                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2584         }
2585         return 0;
2586 }
2587
2588 /*
2589  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2590  */
2591 static inline int fetch_robust_entry(struct robust_list __user **entry,
2592                                      struct robust_list __user * __user *head,
2593                                      unsigned int *pi)
2594 {
2595         unsigned long uentry;
2596
2597         if (get_user(uentry, (unsigned long __user *)head))
2598                 return -EFAULT;
2599
2600         *entry = (void __user *)(uentry & ~1UL);
2601         *pi = uentry & 1;
2602
2603         return 0;
2604 }
2605
2606 /*
2607  * Walk curr->robust_list (very carefully, it's a userspace list!)
2608  * and mark any locks found there dead, and notify any waiters.
2609  *
2610  * We silently return on any sign of list-walking problem.
2611  */
2612 void exit_robust_list(struct task_struct *curr)
2613 {
2614         struct robust_list_head __user *head = curr->robust_list;
2615         struct robust_list __user *entry, *next_entry, *pending;
2616         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2617         unsigned int uninitialized_var(next_pi);
2618         unsigned long futex_offset;
2619         int rc;
2620
2621         if (!futex_cmpxchg_enabled)
2622                 return;
2623
2624         /*
2625          * Fetch the list head (which was registered earlier, via
2626          * sys_set_robust_list()):
2627          */
2628         if (fetch_robust_entry(&entry, &head->list.next, &pi))
2629                 return;
2630         /*
2631          * Fetch the relative futex offset:
2632          */
2633         if (get_user(futex_offset, &head->futex_offset))
2634                 return;
2635         /*
2636          * Fetch any possibly pending lock-add first, and handle it
2637          * if it exists:
2638          */
2639         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2640                 return;
2641
2642         next_entry = NULL;      /* avoid warning with gcc */
2643         while (entry != &head->list) {
2644                 /*
2645                  * Fetch the next entry in the list before calling
2646                  * handle_futex_death:
2647                  */
2648                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2649                 /*
2650                  * A pending lock might already be on the list, so
2651                  * don't process it twice:
2652                  */
2653                 if (entry != pending)
2654                         if (handle_futex_death((void __user *)entry + futex_offset,
2655                                                 curr, pi))
2656                                 return;
2657                 if (rc)
2658                         return;
2659                 entry = next_entry;
2660                 pi = next_pi;
2661                 /*
2662                  * Avoid excessively long or circular lists:
2663                  */
2664                 if (!--limit)
2665                         break;
2666
2667                 cond_resched();
2668         }
2669
2670         if (pending)
2671                 handle_futex_death((void __user *)pending + futex_offset,
2672                                    curr, pip);
2673 }
2674
2675 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2676                 u32 __user *uaddr2, u32 val2, u32 val3)
2677 {
2678         int cmd = op & FUTEX_CMD_MASK;
2679         unsigned int flags = 0;
2680
2681         if (!(op & FUTEX_PRIVATE_FLAG))
2682                 flags |= FLAGS_SHARED;
2683
2684         if (op & FUTEX_CLOCK_REALTIME) {
2685                 flags |= FLAGS_CLOCKRT;
2686                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2687                         return -ENOSYS;
2688         }
2689
2690         switch (cmd) {
2691         case FUTEX_LOCK_PI:
2692         case FUTEX_UNLOCK_PI:
2693         case FUTEX_TRYLOCK_PI:
2694         case FUTEX_WAIT_REQUEUE_PI:
2695         case FUTEX_CMP_REQUEUE_PI:
2696                 if (!futex_cmpxchg_enabled)
2697                         return -ENOSYS;
2698         }
2699
2700         switch (cmd) {
2701         case FUTEX_WAIT:
2702                 val3 = FUTEX_BITSET_MATCH_ANY;
2703         case FUTEX_WAIT_BITSET:
2704                 return futex_wait(uaddr, flags, val, timeout, val3);
2705         case FUTEX_WAKE:
2706                 val3 = FUTEX_BITSET_MATCH_ANY;
2707         case FUTEX_WAKE_BITSET:
2708                 return futex_wake(uaddr, flags, val, val3);
2709         case FUTEX_REQUEUE:
2710                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2711         case FUTEX_CMP_REQUEUE:
2712                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2713         case FUTEX_WAKE_OP:
2714                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2715         case FUTEX_LOCK_PI:
2716                 return futex_lock_pi(uaddr, flags, val, timeout, 0);
2717         case FUTEX_UNLOCK_PI:
2718                 return futex_unlock_pi(uaddr, flags);
2719         case FUTEX_TRYLOCK_PI:
2720                 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2721         case FUTEX_WAIT_REQUEUE_PI:
2722                 val3 = FUTEX_BITSET_MATCH_ANY;
2723                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2724                                              uaddr2);
2725         case FUTEX_CMP_REQUEUE_PI:
2726                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2727         }
2728         return -ENOSYS;
2729 }
2730
2731
2732 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2733                 struct timespec __user *, utime, u32 __user *, uaddr2,
2734                 u32, val3)
2735 {
2736         struct timespec ts;
2737         ktime_t t, *tp = NULL;
2738         u32 val2 = 0;
2739         int cmd = op & FUTEX_CMD_MASK;
2740
2741         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2742                       cmd == FUTEX_WAIT_BITSET ||
2743                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
2744                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2745                         return -EFAULT;
2746                 if (!timespec_valid(&ts))
2747                         return -EINVAL;
2748
2749                 t = timespec_to_ktime(ts);
2750                 if (cmd == FUTEX_WAIT)
2751                         t = ktime_add_safe(ktime_get(), t);
2752                 tp = &t;
2753         }
2754         /*
2755          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2756          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2757          */
2758         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2759             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2760                 val2 = (u32) (unsigned long) utime;
2761
2762         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2763 }
2764
2765 static int __init futex_init(void)
2766 {
2767         u32 curval;
2768         int i;
2769
2770         /*
2771          * This will fail and we want it. Some arch implementations do
2772          * runtime detection of the futex_atomic_cmpxchg_inatomic()
2773          * functionality. We want to know that before we call in any
2774          * of the complex code paths. Also we want to prevent
2775          * registration of robust lists in that case. NULL is
2776          * guaranteed to fault and we get -EFAULT on functional
2777          * implementation, the non-functional ones will return
2778          * -ENOSYS.
2779          */
2780         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2781                 futex_cmpxchg_enabled = 1;
2782
2783         for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2784                 plist_head_init(&futex_queues[i].chain);
2785                 spin_lock_init(&futex_queues[i].lock);
2786         }
2787
2788         return 0;
2789 }
2790 __initcall(futex_init);