Merge remote branch 'linux-2.6.32.y/master' into develop
[firefly-linux-kernel-4.4.55.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/module.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62
63 #include <asm/futex.h>
64
65 #include "rtmutex_common.h"
66
67 int __read_mostly futex_cmpxchg_enabled;
68
69 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
70
71 /*
72  * Priority Inheritance state:
73  */
74 struct futex_pi_state {
75         /*
76          * list of 'owned' pi_state instances - these have to be
77          * cleaned up in do_exit() if the task exits prematurely:
78          */
79         struct list_head list;
80
81         /*
82          * The PI object:
83          */
84         struct rt_mutex pi_mutex;
85
86         struct task_struct *owner;
87         atomic_t refcount;
88
89         union futex_key key;
90 };
91
92 /**
93  * struct futex_q - The hashed futex queue entry, one per waiting task
94  * @task:               the task waiting on the futex
95  * @lock_ptr:           the hash bucket lock
96  * @key:                the key the futex is hashed on
97  * @pi_state:           optional priority inheritance state
98  * @rt_waiter:          rt_waiter storage for use with requeue_pi
99  * @requeue_pi_key:     the requeue_pi target futex key
100  * @bitset:             bitset for the optional bitmasked wakeup
101  *
102  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
103  * we can wake only the relevant ones (hashed queues may be shared).
104  *
105  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
106  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
107  * The order of wakup is always to make the first condition true, then
108  * the second.
109  *
110  * PI futexes are typically woken before they are removed from the hash list via
111  * the rt_mutex code. See unqueue_me_pi().
112  */
113 struct futex_q {
114         struct plist_node list;
115
116         struct task_struct *task;
117         spinlock_t *lock_ptr;
118         union futex_key key;
119         struct futex_pi_state *pi_state;
120         struct rt_mutex_waiter *rt_waiter;
121         union futex_key *requeue_pi_key;
122         u32 bitset;
123 };
124
125 /*
126  * Hash buckets are shared by all the futex_keys that hash to the same
127  * location.  Each key may have multiple futex_q structures, one for each task
128  * waiting on a futex.
129  */
130 struct futex_hash_bucket {
131         spinlock_t lock;
132         struct plist_head chain;
133 };
134
135 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
136
137 /*
138  * We hash on the keys returned from get_futex_key (see below).
139  */
140 static struct futex_hash_bucket *hash_futex(union futex_key *key)
141 {
142         u32 hash = jhash2((u32*)&key->both.word,
143                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
144                           key->both.offset);
145         return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
146 }
147
148 /*
149  * Return 1 if two futex_keys are equal, 0 otherwise.
150  */
151 static inline int match_futex(union futex_key *key1, union futex_key *key2)
152 {
153         return (key1 && key2
154                 && key1->both.word == key2->both.word
155                 && key1->both.ptr == key2->both.ptr
156                 && key1->both.offset == key2->both.offset);
157 }
158
159 /*
160  * Take a reference to the resource addressed by a key.
161  * Can be called while holding spinlocks.
162  *
163  */
164 static void get_futex_key_refs(union futex_key *key)
165 {
166         if (!key->both.ptr)
167                 return;
168
169         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
170         case FUT_OFF_INODE:
171                 atomic_inc(&key->shared.inode->i_count);
172                 break;
173         case FUT_OFF_MMSHARED:
174                 atomic_inc(&key->private.mm->mm_count);
175                 break;
176         }
177 }
178
179 /*
180  * Drop a reference to the resource addressed by a key.
181  * The hash bucket spinlock must not be held.
182  */
183 static void drop_futex_key_refs(union futex_key *key)
184 {
185         if (!key->both.ptr) {
186                 /* If we're here then we tried to put a key we failed to get */
187                 WARN_ON_ONCE(1);
188                 return;
189         }
190
191         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
192         case FUT_OFF_INODE:
193                 iput(key->shared.inode);
194                 break;
195         case FUT_OFF_MMSHARED:
196                 mmdrop(key->private.mm);
197                 break;
198         }
199 }
200
201 /**
202  * get_futex_key() - Get parameters which are the keys for a futex
203  * @uaddr:      virtual address of the futex
204  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
205  * @key:        address where result is stored.
206  *
207  * Returns a negative error code or 0
208  * The key words are stored in *key on success.
209  *
210  * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
211  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
212  * We can usually work out the index without swapping in the page.
213  *
214  * lock_page() might sleep, the caller should not hold a spinlock.
215  */
216 static int
217 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
218 {
219         unsigned long address = (unsigned long)uaddr;
220         struct mm_struct *mm = current->mm;
221         struct page *page;
222         int err;
223         struct vm_area_struct *vma;
224
225         /*
226          * The futex address must be "naturally" aligned.
227          */
228         key->both.offset = address % PAGE_SIZE;
229         if (unlikely((address % sizeof(u32)) != 0))
230                 return -EINVAL;
231         address -= key->both.offset;
232
233         /*
234          * PROCESS_PRIVATE futexes are fast.
235          * As the mm cannot disappear under us and the 'key' only needs
236          * virtual address, we dont even have to find the underlying vma.
237          * Note : We do have to check 'uaddr' is a valid user address,
238          *        but access_ok() should be faster than find_vma()
239          */
240         if (!fshared) {
241                 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
242                         return -EFAULT;
243                 key->private.mm = mm;
244                 key->private.address = address;
245                 get_futex_key_refs(key);
246                 return 0;
247         }
248
249         /*
250          * The futex is hashed differently depending on whether
251          * it's in a shared or private mapping.  So check vma first.
252          */
253         vma = find_extend_vma(mm, address);
254         if (unlikely(!vma))
255                 return -EFAULT;
256
257         /*
258          * Permissions.
259          */
260         if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
261                 return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
262
263         /*
264          * Private mappings are handled in a simple way.
265          *
266          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
267          * it's a read-only handle, it's expected that futexes attach to
268          * the object not the particular process.  Therefore we use
269          * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
270          * mappings of _writable_ handles.
271          */
272         if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
273                 key->both.offset |= FUT_OFF_MMSHARED; /* reference taken on mm */
274                 key->private.mm = mm;
275                 key->private.address = address;
276                 get_futex_key_refs(key);
277                 return 0;
278         }
279
280 again:
281         err = get_user_pages_fast(address, 1, 1, &page);
282         if (err < 0)
283                 return err;
284
285         page = compound_head(page);
286         lock_page(page);
287         if (!page->mapping) {
288                 unlock_page(page);
289                 put_page(page);
290                 goto again;
291         }
292
293         /*
294          * Private mappings are handled in a simple way.
295          *
296          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
297          * it's a read-only handle, it's expected that futexes attach to
298          * the object not the particular process.
299          */
300         if (PageAnon(page)) {
301                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
302                 key->private.mm = mm;
303                 key->private.address = address;
304         } else {
305                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
306                 key->shared.inode = page->mapping->host;
307                 key->shared.pgoff = page->index;
308         }
309
310         get_futex_key_refs(key);
311
312         unlock_page(page);
313         put_page(page);
314         return 0;
315 }
316
317 static inline
318 void put_futex_key(int fshared, union futex_key *key)
319 {
320         drop_futex_key_refs(key);
321 }
322
323 /**
324  * fault_in_user_writeable() - Fault in user address and verify RW access
325  * @uaddr:      pointer to faulting user space address
326  *
327  * Slow path to fixup the fault we just took in the atomic write
328  * access to @uaddr.
329  *
330  * We have no generic implementation of a non destructive write to the
331  * user address. We know that we faulted in the atomic pagefault
332  * disabled section so we can as well avoid the #PF overhead by
333  * calling get_user_pages() right away.
334  */
335 static int fault_in_user_writeable(u32 __user *uaddr)
336 {
337         struct mm_struct *mm = current->mm;
338         int ret;
339
340         down_read(&mm->mmap_sem);
341         ret = get_user_pages(current, mm, (unsigned long)uaddr,
342                              1, 1, 0, NULL, NULL);
343         up_read(&mm->mmap_sem);
344
345         return ret < 0 ? ret : 0;
346 }
347
348 /**
349  * futex_top_waiter() - Return the highest priority waiter on a futex
350  * @hb:         the hash bucket the futex_q's reside in
351  * @key:        the futex key (to distinguish it from other futex futex_q's)
352  *
353  * Must be called with the hb lock held.
354  */
355 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
356                                         union futex_key *key)
357 {
358         struct futex_q *this;
359
360         plist_for_each_entry(this, &hb->chain, list) {
361                 if (match_futex(&this->key, key))
362                         return this;
363         }
364         return NULL;
365 }
366
367 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
368 {
369         u32 curval;
370
371         pagefault_disable();
372         curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
373         pagefault_enable();
374
375         return curval;
376 }
377
378 static int get_futex_value_locked(u32 *dest, u32 __user *from)
379 {
380         int ret;
381
382         pagefault_disable();
383         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
384         pagefault_enable();
385
386         return ret ? -EFAULT : 0;
387 }
388
389
390 /*
391  * PI code:
392  */
393 static int refill_pi_state_cache(void)
394 {
395         struct futex_pi_state *pi_state;
396
397         if (likely(current->pi_state_cache))
398                 return 0;
399
400         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
401
402         if (!pi_state)
403                 return -ENOMEM;
404
405         INIT_LIST_HEAD(&pi_state->list);
406         /* pi_mutex gets initialized later */
407         pi_state->owner = NULL;
408         atomic_set(&pi_state->refcount, 1);
409         pi_state->key = FUTEX_KEY_INIT;
410
411         current->pi_state_cache = pi_state;
412
413         return 0;
414 }
415
416 static struct futex_pi_state * alloc_pi_state(void)
417 {
418         struct futex_pi_state *pi_state = current->pi_state_cache;
419
420         WARN_ON(!pi_state);
421         current->pi_state_cache = NULL;
422
423         return pi_state;
424 }
425
426 static void free_pi_state(struct futex_pi_state *pi_state)
427 {
428         if (!atomic_dec_and_test(&pi_state->refcount))
429                 return;
430
431         /*
432          * If pi_state->owner is NULL, the owner is most probably dying
433          * and has cleaned up the pi_state already
434          */
435         if (pi_state->owner) {
436                 spin_lock_irq(&pi_state->owner->pi_lock);
437                 list_del_init(&pi_state->list);
438                 spin_unlock_irq(&pi_state->owner->pi_lock);
439
440                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
441         }
442
443         if (current->pi_state_cache)
444                 kfree(pi_state);
445         else {
446                 /*
447                  * pi_state->list is already empty.
448                  * clear pi_state->owner.
449                  * refcount is at 0 - put it back to 1.
450                  */
451                 pi_state->owner = NULL;
452                 atomic_set(&pi_state->refcount, 1);
453                 current->pi_state_cache = pi_state;
454         }
455 }
456
457 /*
458  * Look up the task based on what TID userspace gave us.
459  * We dont trust it.
460  */
461 static struct task_struct * futex_find_get_task(pid_t pid)
462 {
463         struct task_struct *p;
464
465         rcu_read_lock();
466         p = find_task_by_vpid(pid);
467         if (p)
468                 get_task_struct(p);
469
470         rcu_read_unlock();
471
472         return p;
473 }
474
475 /*
476  * This task is holding PI mutexes at exit time => bad.
477  * Kernel cleans up PI-state, but userspace is likely hosed.
478  * (Robust-futex cleanup is separate and might save the day for userspace.)
479  */
480 void exit_pi_state_list(struct task_struct *curr)
481 {
482         struct list_head *next, *head = &curr->pi_state_list;
483         struct futex_pi_state *pi_state;
484         struct futex_hash_bucket *hb;
485         union futex_key key = FUTEX_KEY_INIT;
486
487         if (!futex_cmpxchg_enabled)
488                 return;
489         /*
490          * We are a ZOMBIE and nobody can enqueue itself on
491          * pi_state_list anymore, but we have to be careful
492          * versus waiters unqueueing themselves:
493          */
494         spin_lock_irq(&curr->pi_lock);
495         while (!list_empty(head)) {
496
497                 next = head->next;
498                 pi_state = list_entry(next, struct futex_pi_state, list);
499                 key = pi_state->key;
500                 hb = hash_futex(&key);
501                 spin_unlock_irq(&curr->pi_lock);
502
503                 spin_lock(&hb->lock);
504
505                 spin_lock_irq(&curr->pi_lock);
506                 /*
507                  * We dropped the pi-lock, so re-check whether this
508                  * task still owns the PI-state:
509                  */
510                 if (head->next != next) {
511                         spin_unlock(&hb->lock);
512                         continue;
513                 }
514
515                 WARN_ON(pi_state->owner != curr);
516                 WARN_ON(list_empty(&pi_state->list));
517                 list_del_init(&pi_state->list);
518                 pi_state->owner = NULL;
519                 spin_unlock_irq(&curr->pi_lock);
520
521                 rt_mutex_unlock(&pi_state->pi_mutex);
522
523                 spin_unlock(&hb->lock);
524
525                 spin_lock_irq(&curr->pi_lock);
526         }
527         spin_unlock_irq(&curr->pi_lock);
528 }
529
530 static int
531 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
532                 union futex_key *key, struct futex_pi_state **ps)
533 {
534         struct futex_pi_state *pi_state = NULL;
535         struct futex_q *this, *next;
536         struct plist_head *head;
537         struct task_struct *p;
538         pid_t pid = uval & FUTEX_TID_MASK;
539
540         head = &hb->chain;
541
542         plist_for_each_entry_safe(this, next, head, list) {
543                 if (match_futex(&this->key, key)) {
544                         /*
545                          * Another waiter already exists - bump up
546                          * the refcount and return its pi_state:
547                          */
548                         pi_state = this->pi_state;
549                         /*
550                          * Userspace might have messed up non PI and PI futexes
551                          */
552                         if (unlikely(!pi_state))
553                                 return -EINVAL;
554
555                         WARN_ON(!atomic_read(&pi_state->refcount));
556
557                         /*
558                          * When pi_state->owner is NULL then the owner died
559                          * and another waiter is on the fly. pi_state->owner
560                          * is fixed up by the task which acquires
561                          * pi_state->rt_mutex.
562                          *
563                          * We do not check for pid == 0 which can happen when
564                          * the owner died and robust_list_exit() cleared the
565                          * TID.
566                          */
567                         if (pid && pi_state->owner) {
568                                 /*
569                                  * Bail out if user space manipulated the
570                                  * futex value.
571                                  */
572                                 if (pid != task_pid_vnr(pi_state->owner))
573                                         return -EINVAL;
574                         }
575
576                         atomic_inc(&pi_state->refcount);
577                         *ps = pi_state;
578
579                         return 0;
580                 }
581         }
582
583         /*
584          * We are the first waiter - try to look up the real owner and attach
585          * the new pi_state to it, but bail out when TID = 0
586          */
587         if (!pid)
588                 return -ESRCH;
589         p = futex_find_get_task(pid);
590         if (!p)
591                 return -ESRCH;
592
593         /*
594          * We need to look at the task state flags to figure out,
595          * whether the task is exiting. To protect against the do_exit
596          * change of the task flags, we do this protected by
597          * p->pi_lock:
598          */
599         spin_lock_irq(&p->pi_lock);
600         if (unlikely(p->flags & PF_EXITING)) {
601                 /*
602                  * The task is on the way out. When PF_EXITPIDONE is
603                  * set, we know that the task has finished the
604                  * cleanup:
605                  */
606                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
607
608                 spin_unlock_irq(&p->pi_lock);
609                 put_task_struct(p);
610                 return ret;
611         }
612
613         pi_state = alloc_pi_state();
614
615         /*
616          * Initialize the pi_mutex in locked state and make 'p'
617          * the owner of it:
618          */
619         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
620
621         /* Store the key for possible exit cleanups: */
622         pi_state->key = *key;
623
624         WARN_ON(!list_empty(&pi_state->list));
625         list_add(&pi_state->list, &p->pi_state_list);
626         pi_state->owner = p;
627         spin_unlock_irq(&p->pi_lock);
628
629         put_task_struct(p);
630
631         *ps = pi_state;
632
633         return 0;
634 }
635
636 /**
637  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
638  * @uaddr:              the pi futex user address
639  * @hb:                 the pi futex hash bucket
640  * @key:                the futex key associated with uaddr and hb
641  * @ps:                 the pi_state pointer where we store the result of the
642  *                      lookup
643  * @task:               the task to perform the atomic lock work for.  This will
644  *                      be "current" except in the case of requeue pi.
645  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
646  *
647  * Returns:
648  *  0 - ready to wait
649  *  1 - acquired the lock
650  * <0 - error
651  *
652  * The hb->lock and futex_key refs shall be held by the caller.
653  */
654 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
655                                 union futex_key *key,
656                                 struct futex_pi_state **ps,
657                                 struct task_struct *task, int set_waiters)
658 {
659         int lock_taken, ret, ownerdied = 0;
660         u32 uval, newval, curval;
661
662 retry:
663         ret = lock_taken = 0;
664
665         /*
666          * To avoid races, we attempt to take the lock here again
667          * (by doing a 0 -> TID atomic cmpxchg), while holding all
668          * the locks. It will most likely not succeed.
669          */
670         newval = task_pid_vnr(task);
671         if (set_waiters)
672                 newval |= FUTEX_WAITERS;
673
674         curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
675
676         if (unlikely(curval == -EFAULT))
677                 return -EFAULT;
678
679         /*
680          * Detect deadlocks.
681          */
682         if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
683                 return -EDEADLK;
684
685         /*
686          * Surprise - we got the lock. Just return to userspace:
687          */
688         if (unlikely(!curval))
689                 return 1;
690
691         uval = curval;
692
693         /*
694          * Set the FUTEX_WAITERS flag, so the owner will know it has someone
695          * to wake at the next unlock.
696          */
697         newval = curval | FUTEX_WAITERS;
698
699         /*
700          * There are two cases, where a futex might have no owner (the
701          * owner TID is 0): OWNER_DIED. We take over the futex in this
702          * case. We also do an unconditional take over, when the owner
703          * of the futex died.
704          *
705          * This is safe as we are protected by the hash bucket lock !
706          */
707         if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
708                 /* Keep the OWNER_DIED bit */
709                 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
710                 ownerdied = 0;
711                 lock_taken = 1;
712         }
713
714         curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
715
716         if (unlikely(curval == -EFAULT))
717                 return -EFAULT;
718         if (unlikely(curval != uval))
719                 goto retry;
720
721         /*
722          * We took the lock due to owner died take over.
723          */
724         if (unlikely(lock_taken))
725                 return 1;
726
727         /*
728          * We dont have the lock. Look up the PI state (or create it if
729          * we are the first waiter):
730          */
731         ret = lookup_pi_state(uval, hb, key, ps);
732
733         if (unlikely(ret)) {
734                 switch (ret) {
735                 case -ESRCH:
736                         /*
737                          * No owner found for this futex. Check if the
738                          * OWNER_DIED bit is set to figure out whether
739                          * this is a robust futex or not.
740                          */
741                         if (get_futex_value_locked(&curval, uaddr))
742                                 return -EFAULT;
743
744                         /*
745                          * We simply start over in case of a robust
746                          * futex. The code above will take the futex
747                          * and return happy.
748                          */
749                         if (curval & FUTEX_OWNER_DIED) {
750                                 ownerdied = 1;
751                                 goto retry;
752                         }
753                 default:
754                         break;
755                 }
756         }
757
758         return ret;
759 }
760
761 /*
762  * The hash bucket lock must be held when this is called.
763  * Afterwards, the futex_q must not be accessed.
764  */
765 static void wake_futex(struct futex_q *q)
766 {
767         struct task_struct *p = q->task;
768
769         /*
770          * We set q->lock_ptr = NULL _before_ we wake up the task. If
771          * a non futex wake up happens on another CPU then the task
772          * might exit and p would dereference a non existing task
773          * struct. Prevent this by holding a reference on p across the
774          * wake up.
775          */
776         get_task_struct(p);
777
778         plist_del(&q->list, &q->list.plist);
779         /*
780          * The waiting task can free the futex_q as soon as
781          * q->lock_ptr = NULL is written, without taking any locks. A
782          * memory barrier is required here to prevent the following
783          * store to lock_ptr from getting ahead of the plist_del.
784          */
785         smp_wmb();
786         q->lock_ptr = NULL;
787
788         wake_up_state(p, TASK_NORMAL);
789         put_task_struct(p);
790 }
791
792 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
793 {
794         struct task_struct *new_owner;
795         struct futex_pi_state *pi_state = this->pi_state;
796         u32 curval, newval;
797
798         if (!pi_state)
799                 return -EINVAL;
800
801         /*
802          * If current does not own the pi_state then the futex is
803          * inconsistent and user space fiddled with the futex value.
804          */
805         if (pi_state->owner != current)
806                 return -EINVAL;
807
808         spin_lock(&pi_state->pi_mutex.wait_lock);
809         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
810
811         /*
812          * This happens when we have stolen the lock and the original
813          * pending owner did not enqueue itself back on the rt_mutex.
814          * Thats not a tragedy. We know that way, that a lock waiter
815          * is on the fly. We make the futex_q waiter the pending owner.
816          */
817         if (!new_owner)
818                 new_owner = this->task;
819
820         /*
821          * We pass it to the next owner. (The WAITERS bit is always
822          * kept enabled while there is PI state around. We must also
823          * preserve the owner died bit.)
824          */
825         if (!(uval & FUTEX_OWNER_DIED)) {
826                 int ret = 0;
827
828                 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
829
830                 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
831
832                 if (curval == -EFAULT)
833                         ret = -EFAULT;
834                 else if (curval != uval)
835                         ret = -EINVAL;
836                 if (ret) {
837                         spin_unlock(&pi_state->pi_mutex.wait_lock);
838                         return ret;
839                 }
840         }
841
842         spin_lock_irq(&pi_state->owner->pi_lock);
843         WARN_ON(list_empty(&pi_state->list));
844         list_del_init(&pi_state->list);
845         spin_unlock_irq(&pi_state->owner->pi_lock);
846
847         spin_lock_irq(&new_owner->pi_lock);
848         WARN_ON(!list_empty(&pi_state->list));
849         list_add(&pi_state->list, &new_owner->pi_state_list);
850         pi_state->owner = new_owner;
851         spin_unlock_irq(&new_owner->pi_lock);
852
853         spin_unlock(&pi_state->pi_mutex.wait_lock);
854         rt_mutex_unlock(&pi_state->pi_mutex);
855
856         return 0;
857 }
858
859 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
860 {
861         u32 oldval;
862
863         /*
864          * There is no waiter, so we unlock the futex. The owner died
865          * bit has not to be preserved here. We are the owner:
866          */
867         oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
868
869         if (oldval == -EFAULT)
870                 return oldval;
871         if (oldval != uval)
872                 return -EAGAIN;
873
874         return 0;
875 }
876
877 /*
878  * Express the locking dependencies for lockdep:
879  */
880 static inline void
881 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
882 {
883         if (hb1 <= hb2) {
884                 spin_lock(&hb1->lock);
885                 if (hb1 < hb2)
886                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
887         } else { /* hb1 > hb2 */
888                 spin_lock(&hb2->lock);
889                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
890         }
891 }
892
893 static inline void
894 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
895 {
896         spin_unlock(&hb1->lock);
897         if (hb1 != hb2)
898                 spin_unlock(&hb2->lock);
899 }
900
901 /*
902  * Wake up waiters matching bitset queued on this futex (uaddr).
903  */
904 static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
905 {
906         struct futex_hash_bucket *hb;
907         struct futex_q *this, *next;
908         struct plist_head *head;
909         union futex_key key = FUTEX_KEY_INIT;
910         int ret;
911
912         if (!bitset)
913                 return -EINVAL;
914
915         ret = get_futex_key(uaddr, fshared, &key);
916         if (unlikely(ret != 0))
917                 goto out;
918
919         hb = hash_futex(&key);
920         spin_lock(&hb->lock);
921         head = &hb->chain;
922
923         plist_for_each_entry_safe(this, next, head, list) {
924                 if (match_futex (&this->key, &key)) {
925                         if (this->pi_state || this->rt_waiter) {
926                                 ret = -EINVAL;
927                                 break;
928                         }
929
930                         /* Check if one of the bits is set in both bitsets */
931                         if (!(this->bitset & bitset))
932                                 continue;
933
934                         wake_futex(this);
935                         if (++ret >= nr_wake)
936                                 break;
937                 }
938         }
939
940         spin_unlock(&hb->lock);
941         put_futex_key(fshared, &key);
942 out:
943         return ret;
944 }
945
946 /*
947  * Wake up all waiters hashed on the physical page that is mapped
948  * to this virtual address:
949  */
950 static int
951 futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
952               int nr_wake, int nr_wake2, int op)
953 {
954         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
955         struct futex_hash_bucket *hb1, *hb2;
956         struct plist_head *head;
957         struct futex_q *this, *next;
958         int ret, op_ret;
959
960 retry:
961         ret = get_futex_key(uaddr1, fshared, &key1);
962         if (unlikely(ret != 0))
963                 goto out;
964         ret = get_futex_key(uaddr2, fshared, &key2);
965         if (unlikely(ret != 0))
966                 goto out_put_key1;
967
968         hb1 = hash_futex(&key1);
969         hb2 = hash_futex(&key2);
970
971 retry_private:
972         double_lock_hb(hb1, hb2);
973         op_ret = futex_atomic_op_inuser(op, uaddr2);
974         if (unlikely(op_ret < 0)) {
975
976                 double_unlock_hb(hb1, hb2);
977
978 #ifndef CONFIG_MMU
979                 /*
980                  * we don't get EFAULT from MMU faults if we don't have an MMU,
981                  * but we might get them from range checking
982                  */
983                 ret = op_ret;
984                 goto out_put_keys;
985 #endif
986
987                 if (unlikely(op_ret != -EFAULT)) {
988                         ret = op_ret;
989                         goto out_put_keys;
990                 }
991
992                 ret = fault_in_user_writeable(uaddr2);
993                 if (ret)
994                         goto out_put_keys;
995
996                 if (!fshared)
997                         goto retry_private;
998
999                 put_futex_key(fshared, &key2);
1000                 put_futex_key(fshared, &key1);
1001                 goto retry;
1002         }
1003
1004         head = &hb1->chain;
1005
1006         plist_for_each_entry_safe(this, next, head, list) {
1007                 if (match_futex (&this->key, &key1)) {
1008                         wake_futex(this);
1009                         if (++ret >= nr_wake)
1010                                 break;
1011                 }
1012         }
1013
1014         if (op_ret > 0) {
1015                 head = &hb2->chain;
1016
1017                 op_ret = 0;
1018                 plist_for_each_entry_safe(this, next, head, list) {
1019                         if (match_futex (&this->key, &key2)) {
1020                                 wake_futex(this);
1021                                 if (++op_ret >= nr_wake2)
1022                                         break;
1023                         }
1024                 }
1025                 ret += op_ret;
1026         }
1027
1028         double_unlock_hb(hb1, hb2);
1029 out_put_keys:
1030         put_futex_key(fshared, &key2);
1031 out_put_key1:
1032         put_futex_key(fshared, &key1);
1033 out:
1034         return ret;
1035 }
1036
1037 /**
1038  * requeue_futex() - Requeue a futex_q from one hb to another
1039  * @q:          the futex_q to requeue
1040  * @hb1:        the source hash_bucket
1041  * @hb2:        the target hash_bucket
1042  * @key2:       the new key for the requeued futex_q
1043  */
1044 static inline
1045 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1046                    struct futex_hash_bucket *hb2, union futex_key *key2)
1047 {
1048
1049         /*
1050          * If key1 and key2 hash to the same bucket, no need to
1051          * requeue.
1052          */
1053         if (likely(&hb1->chain != &hb2->chain)) {
1054                 plist_del(&q->list, &hb1->chain);
1055                 plist_add(&q->list, &hb2->chain);
1056                 q->lock_ptr = &hb2->lock;
1057 #ifdef CONFIG_DEBUG_PI_LIST
1058                 q->list.plist.lock = &hb2->lock;
1059 #endif
1060         }
1061         get_futex_key_refs(key2);
1062         q->key = *key2;
1063 }
1064
1065 /**
1066  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1067  * @q:          the futex_q
1068  * @key:        the key of the requeue target futex
1069  * @hb:         the hash_bucket of the requeue target futex
1070  *
1071  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1072  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1073  * to the requeue target futex so the waiter can detect the wakeup on the right
1074  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1075  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1076  * to protect access to the pi_state to fixup the owner later.  Must be called
1077  * with both q->lock_ptr and hb->lock held.
1078  */
1079 static inline
1080 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1081                            struct futex_hash_bucket *hb)
1082 {
1083         get_futex_key_refs(key);
1084         q->key = *key;
1085
1086         WARN_ON(plist_node_empty(&q->list));
1087         plist_del(&q->list, &q->list.plist);
1088
1089         WARN_ON(!q->rt_waiter);
1090         q->rt_waiter = NULL;
1091
1092         q->lock_ptr = &hb->lock;
1093 #ifdef CONFIG_DEBUG_PI_LIST
1094         q->list.plist.lock = &hb->lock;
1095 #endif
1096
1097         wake_up_state(q->task, TASK_NORMAL);
1098 }
1099
1100 /**
1101  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1102  * @pifutex:            the user address of the to futex
1103  * @hb1:                the from futex hash bucket, must be locked by the caller
1104  * @hb2:                the to futex hash bucket, must be locked by the caller
1105  * @key1:               the from futex key
1106  * @key2:               the to futex key
1107  * @ps:                 address to store the pi_state pointer
1108  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1109  *
1110  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1111  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1112  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1113  * hb1 and hb2 must be held by the caller.
1114  *
1115  * Returns:
1116  *  0 - failed to acquire the lock atomicly
1117  *  1 - acquired the lock
1118  * <0 - error
1119  */
1120 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1121                                  struct futex_hash_bucket *hb1,
1122                                  struct futex_hash_bucket *hb2,
1123                                  union futex_key *key1, union futex_key *key2,
1124                                  struct futex_pi_state **ps, int set_waiters)
1125 {
1126         struct futex_q *top_waiter = NULL;
1127         u32 curval;
1128         int ret;
1129
1130         if (get_futex_value_locked(&curval, pifutex))
1131                 return -EFAULT;
1132
1133         /*
1134          * Find the top_waiter and determine if there are additional waiters.
1135          * If the caller intends to requeue more than 1 waiter to pifutex,
1136          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1137          * as we have means to handle the possible fault.  If not, don't set
1138          * the bit unecessarily as it will force the subsequent unlock to enter
1139          * the kernel.
1140          */
1141         top_waiter = futex_top_waiter(hb1, key1);
1142
1143         /* There are no waiters, nothing for us to do. */
1144         if (!top_waiter)
1145                 return 0;
1146
1147         /* Ensure we requeue to the expected futex. */
1148         if (!match_futex(top_waiter->requeue_pi_key, key2))
1149                 return -EINVAL;
1150
1151         /*
1152          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1153          * the contended case or if set_waiters is 1.  The pi_state is returned
1154          * in ps in contended cases.
1155          */
1156         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1157                                    set_waiters);
1158         if (ret == 1)
1159                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1160
1161         return ret;
1162 }
1163
1164 /**
1165  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1166  * uaddr1:      source futex user address
1167  * uaddr2:      target futex user address
1168  * nr_wake:     number of waiters to wake (must be 1 for requeue_pi)
1169  * nr_requeue:  number of waiters to requeue (0-INT_MAX)
1170  * requeue_pi:  if we are attempting to requeue from a non-pi futex to a
1171  *              pi futex (pi to pi requeue is not supported)
1172  *
1173  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1174  * uaddr2 atomically on behalf of the top waiter.
1175  *
1176  * Returns:
1177  * >=0 - on success, the number of tasks requeued or woken
1178  *  <0 - on error
1179  */
1180 static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
1181                          int nr_wake, int nr_requeue, u32 *cmpval,
1182                          int requeue_pi)
1183 {
1184         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1185         int drop_count = 0, task_count = 0, ret;
1186         struct futex_pi_state *pi_state = NULL;
1187         struct futex_hash_bucket *hb1, *hb2;
1188         struct plist_head *head1;
1189         struct futex_q *this, *next;
1190         u32 curval2;
1191
1192         if (requeue_pi) {
1193                 /*
1194                  * requeue_pi requires a pi_state, try to allocate it now
1195                  * without any locks in case it fails.
1196                  */
1197                 if (refill_pi_state_cache())
1198                         return -ENOMEM;
1199                 /*
1200                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1201                  * + nr_requeue, since it acquires the rt_mutex prior to
1202                  * returning to userspace, so as to not leave the rt_mutex with
1203                  * waiters and no owner.  However, second and third wake-ups
1204                  * cannot be predicted as they involve race conditions with the
1205                  * first wake and a fault while looking up the pi_state.  Both
1206                  * pthread_cond_signal() and pthread_cond_broadcast() should
1207                  * use nr_wake=1.
1208                  */
1209                 if (nr_wake != 1)
1210                         return -EINVAL;
1211         }
1212
1213 retry:
1214         if (pi_state != NULL) {
1215                 /*
1216                  * We will have to lookup the pi_state again, so free this one
1217                  * to keep the accounting correct.
1218                  */
1219                 free_pi_state(pi_state);
1220                 pi_state = NULL;
1221         }
1222
1223         ret = get_futex_key(uaddr1, fshared, &key1);
1224         if (unlikely(ret != 0))
1225                 goto out;
1226         ret = get_futex_key(uaddr2, fshared, &key2);
1227         if (unlikely(ret != 0))
1228                 goto out_put_key1;
1229
1230         hb1 = hash_futex(&key1);
1231         hb2 = hash_futex(&key2);
1232
1233 retry_private:
1234         double_lock_hb(hb1, hb2);
1235
1236         if (likely(cmpval != NULL)) {
1237                 u32 curval;
1238
1239                 ret = get_futex_value_locked(&curval, uaddr1);
1240
1241                 if (unlikely(ret)) {
1242                         double_unlock_hb(hb1, hb2);
1243
1244                         ret = get_user(curval, uaddr1);
1245                         if (ret)
1246                                 goto out_put_keys;
1247
1248                         if (!fshared)
1249                                 goto retry_private;
1250
1251                         put_futex_key(fshared, &key2);
1252                         put_futex_key(fshared, &key1);
1253                         goto retry;
1254                 }
1255                 if (curval != *cmpval) {
1256                         ret = -EAGAIN;
1257                         goto out_unlock;
1258                 }
1259         }
1260
1261         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1262                 /*
1263                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1264                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1265                  * bit.  We force this here where we are able to easily handle
1266                  * faults rather in the requeue loop below.
1267                  */
1268                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1269                                                  &key2, &pi_state, nr_requeue);
1270
1271                 /*
1272                  * At this point the top_waiter has either taken uaddr2 or is
1273                  * waiting on it.  If the former, then the pi_state will not
1274                  * exist yet, look it up one more time to ensure we have a
1275                  * reference to it.
1276                  */
1277                 if (ret == 1) {
1278                         WARN_ON(pi_state);
1279                         drop_count++;
1280                         task_count++;
1281                         ret = get_futex_value_locked(&curval2, uaddr2);
1282                         if (!ret)
1283                                 ret = lookup_pi_state(curval2, hb2, &key2,
1284                                                       &pi_state);
1285                 }
1286
1287                 switch (ret) {
1288                 case 0:
1289                         break;
1290                 case -EFAULT:
1291                         double_unlock_hb(hb1, hb2);
1292                         put_futex_key(fshared, &key2);
1293                         put_futex_key(fshared, &key1);
1294                         ret = fault_in_user_writeable(uaddr2);
1295                         if (!ret)
1296                                 goto retry;
1297                         goto out;
1298                 case -EAGAIN:
1299                         /* The owner was exiting, try again. */
1300                         double_unlock_hb(hb1, hb2);
1301                         put_futex_key(fshared, &key2);
1302                         put_futex_key(fshared, &key1);
1303                         cond_resched();
1304                         goto retry;
1305                 default:
1306                         goto out_unlock;
1307                 }
1308         }
1309
1310         head1 = &hb1->chain;
1311         plist_for_each_entry_safe(this, next, head1, list) {
1312                 if (task_count - nr_wake >= nr_requeue)
1313                         break;
1314
1315                 if (!match_futex(&this->key, &key1))
1316                         continue;
1317
1318                 /*
1319                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1320                  * be paired with each other and no other futex ops.
1321                  */
1322                 if ((requeue_pi && !this->rt_waiter) ||
1323                     (!requeue_pi && this->rt_waiter)) {
1324                         ret = -EINVAL;
1325                         break;
1326                 }
1327
1328                 /*
1329                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1330                  * lock, we already woke the top_waiter.  If not, it will be
1331                  * woken by futex_unlock_pi().
1332                  */
1333                 if (++task_count <= nr_wake && !requeue_pi) {
1334                         wake_futex(this);
1335                         continue;
1336                 }
1337
1338                 /* Ensure we requeue to the expected futex for requeue_pi. */
1339                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1340                         ret = -EINVAL;
1341                         break;
1342                 }
1343
1344                 /*
1345                  * Requeue nr_requeue waiters and possibly one more in the case
1346                  * of requeue_pi if we couldn't acquire the lock atomically.
1347                  */
1348                 if (requeue_pi) {
1349                         /* Prepare the waiter to take the rt_mutex. */
1350                         atomic_inc(&pi_state->refcount);
1351                         this->pi_state = pi_state;
1352                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1353                                                         this->rt_waiter,
1354                                                         this->task, 1);
1355                         if (ret == 1) {
1356                                 /* We got the lock. */
1357                                 requeue_pi_wake_futex(this, &key2, hb2);
1358                                 drop_count++;
1359                                 continue;
1360                         } else if (ret) {
1361                                 /* -EDEADLK */
1362                                 this->pi_state = NULL;
1363                                 free_pi_state(pi_state);
1364                                 goto out_unlock;
1365                         }
1366                 }
1367                 requeue_futex(this, hb1, hb2, &key2);
1368                 drop_count++;
1369         }
1370
1371 out_unlock:
1372         double_unlock_hb(hb1, hb2);
1373
1374         /*
1375          * drop_futex_key_refs() must be called outside the spinlocks. During
1376          * the requeue we moved futex_q's from the hash bucket at key1 to the
1377          * one at key2 and updated their key pointer.  We no longer need to
1378          * hold the references to key1.
1379          */
1380         while (--drop_count >= 0)
1381                 drop_futex_key_refs(&key1);
1382
1383 out_put_keys:
1384         put_futex_key(fshared, &key2);
1385 out_put_key1:
1386         put_futex_key(fshared, &key1);
1387 out:
1388         if (pi_state != NULL)
1389                 free_pi_state(pi_state);
1390         return ret ? ret : task_count;
1391 }
1392
1393 /* The key must be already stored in q->key. */
1394 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1395 {
1396         struct futex_hash_bucket *hb;
1397
1398         hb = hash_futex(&q->key);
1399         q->lock_ptr = &hb->lock;
1400
1401         spin_lock(&hb->lock);
1402         return hb;
1403 }
1404
1405 static inline void
1406 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1407 {
1408         spin_unlock(&hb->lock);
1409 }
1410
1411 /**
1412  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1413  * @q:  The futex_q to enqueue
1414  * @hb: The destination hash bucket
1415  *
1416  * The hb->lock must be held by the caller, and is released here. A call to
1417  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1418  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1419  * or nothing if the unqueue is done as part of the wake process and the unqueue
1420  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1421  * an example).
1422  */
1423 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1424 {
1425         int prio;
1426
1427         /*
1428          * The priority used to register this element is
1429          * - either the real thread-priority for the real-time threads
1430          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1431          * - or MAX_RT_PRIO for non-RT threads.
1432          * Thus, all RT-threads are woken first in priority order, and
1433          * the others are woken last, in FIFO order.
1434          */
1435         prio = min(current->normal_prio, MAX_RT_PRIO);
1436
1437         plist_node_init(&q->list, prio);
1438 #ifdef CONFIG_DEBUG_PI_LIST
1439         q->list.plist.lock = &hb->lock;
1440 #endif
1441         plist_add(&q->list, &hb->chain);
1442         q->task = current;
1443         spin_unlock(&hb->lock);
1444 }
1445
1446 /**
1447  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1448  * @q:  The futex_q to unqueue
1449  *
1450  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1451  * be paired with exactly one earlier call to queue_me().
1452  *
1453  * Returns:
1454  *   1 - if the futex_q was still queued (and we removed unqueued it)
1455  *   0 - if the futex_q was already removed by the waking thread
1456  */
1457 static int unqueue_me(struct futex_q *q)
1458 {
1459         spinlock_t *lock_ptr;
1460         int ret = 0;
1461
1462         /* In the common case we don't take the spinlock, which is nice. */
1463 retry:
1464         lock_ptr = q->lock_ptr;
1465         barrier();
1466         if (lock_ptr != NULL) {
1467                 spin_lock(lock_ptr);
1468                 /*
1469                  * q->lock_ptr can change between reading it and
1470                  * spin_lock(), causing us to take the wrong lock.  This
1471                  * corrects the race condition.
1472                  *
1473                  * Reasoning goes like this: if we have the wrong lock,
1474                  * q->lock_ptr must have changed (maybe several times)
1475                  * between reading it and the spin_lock().  It can
1476                  * change again after the spin_lock() but only if it was
1477                  * already changed before the spin_lock().  It cannot,
1478                  * however, change back to the original value.  Therefore
1479                  * we can detect whether we acquired the correct lock.
1480                  */
1481                 if (unlikely(lock_ptr != q->lock_ptr)) {
1482                         spin_unlock(lock_ptr);
1483                         goto retry;
1484                 }
1485                 WARN_ON(plist_node_empty(&q->list));
1486                 plist_del(&q->list, &q->list.plist);
1487
1488                 BUG_ON(q->pi_state);
1489
1490                 spin_unlock(lock_ptr);
1491                 ret = 1;
1492         }
1493
1494         drop_futex_key_refs(&q->key);
1495         return ret;
1496 }
1497
1498 /*
1499  * PI futexes can not be requeued and must remove themself from the
1500  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1501  * and dropped here.
1502  */
1503 static void unqueue_me_pi(struct futex_q *q)
1504 {
1505         WARN_ON(plist_node_empty(&q->list));
1506         plist_del(&q->list, &q->list.plist);
1507
1508         BUG_ON(!q->pi_state);
1509         free_pi_state(q->pi_state);
1510         q->pi_state = NULL;
1511
1512         spin_unlock(q->lock_ptr);
1513 }
1514
1515 /*
1516  * Fixup the pi_state owner with the new owner.
1517  *
1518  * Must be called with hash bucket lock held and mm->sem held for non
1519  * private futexes.
1520  */
1521 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1522                                 struct task_struct *newowner, int fshared)
1523 {
1524         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1525         struct futex_pi_state *pi_state = q->pi_state;
1526         struct task_struct *oldowner = pi_state->owner;
1527         u32 uval, curval, newval;
1528         int ret;
1529
1530         /* Owner died? */
1531         if (!pi_state->owner)
1532                 newtid |= FUTEX_OWNER_DIED;
1533
1534         /*
1535          * We are here either because we stole the rtmutex from the
1536          * pending owner or we are the pending owner which failed to
1537          * get the rtmutex. We have to replace the pending owner TID
1538          * in the user space variable. This must be atomic as we have
1539          * to preserve the owner died bit here.
1540          *
1541          * Note: We write the user space value _before_ changing the pi_state
1542          * because we can fault here. Imagine swapped out pages or a fork
1543          * that marked all the anonymous memory readonly for cow.
1544          *
1545          * Modifying pi_state _before_ the user space value would
1546          * leave the pi_state in an inconsistent state when we fault
1547          * here, because we need to drop the hash bucket lock to
1548          * handle the fault. This might be observed in the PID check
1549          * in lookup_pi_state.
1550          */
1551 retry:
1552         if (get_futex_value_locked(&uval, uaddr))
1553                 goto handle_fault;
1554
1555         while (1) {
1556                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1557
1558                 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1559
1560                 if (curval == -EFAULT)
1561                         goto handle_fault;
1562                 if (curval == uval)
1563                         break;
1564                 uval = curval;
1565         }
1566
1567         /*
1568          * We fixed up user space. Now we need to fix the pi_state
1569          * itself.
1570          */
1571         if (pi_state->owner != NULL) {
1572                 spin_lock_irq(&pi_state->owner->pi_lock);
1573                 WARN_ON(list_empty(&pi_state->list));
1574                 list_del_init(&pi_state->list);
1575                 spin_unlock_irq(&pi_state->owner->pi_lock);
1576         }
1577
1578         pi_state->owner = newowner;
1579
1580         spin_lock_irq(&newowner->pi_lock);
1581         WARN_ON(!list_empty(&pi_state->list));
1582         list_add(&pi_state->list, &newowner->pi_state_list);
1583         spin_unlock_irq(&newowner->pi_lock);
1584         return 0;
1585
1586         /*
1587          * To handle the page fault we need to drop the hash bucket
1588          * lock here. That gives the other task (either the pending
1589          * owner itself or the task which stole the rtmutex) the
1590          * chance to try the fixup of the pi_state. So once we are
1591          * back from handling the fault we need to check the pi_state
1592          * after reacquiring the hash bucket lock and before trying to
1593          * do another fixup. When the fixup has been done already we
1594          * simply return.
1595          */
1596 handle_fault:
1597         spin_unlock(q->lock_ptr);
1598
1599         ret = fault_in_user_writeable(uaddr);
1600
1601         spin_lock(q->lock_ptr);
1602
1603         /*
1604          * Check if someone else fixed it for us:
1605          */
1606         if (pi_state->owner != oldowner)
1607                 return 0;
1608
1609         if (ret)
1610                 return ret;
1611
1612         goto retry;
1613 }
1614
1615 /*
1616  * In case we must use restart_block to restart a futex_wait,
1617  * we encode in the 'flags' shared capability
1618  */
1619 #define FLAGS_SHARED            0x01
1620 #define FLAGS_CLOCKRT           0x02
1621 #define FLAGS_HAS_TIMEOUT       0x04
1622
1623 static long futex_wait_restart(struct restart_block *restart);
1624
1625 /**
1626  * fixup_owner() - Post lock pi_state and corner case management
1627  * @uaddr:      user address of the futex
1628  * @fshared:    whether the futex is shared (1) or not (0)
1629  * @q:          futex_q (contains pi_state and access to the rt_mutex)
1630  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
1631  *
1632  * After attempting to lock an rt_mutex, this function is called to cleanup
1633  * the pi_state owner as well as handle race conditions that may allow us to
1634  * acquire the lock. Must be called with the hb lock held.
1635  *
1636  * Returns:
1637  *  1 - success, lock taken
1638  *  0 - success, lock not taken
1639  * <0 - on error (-EFAULT)
1640  */
1641 static int fixup_owner(u32 __user *uaddr, int fshared, struct futex_q *q,
1642                        int locked)
1643 {
1644         struct task_struct *owner;
1645         int ret = 0;
1646
1647         if (locked) {
1648                 /*
1649                  * Got the lock. We might not be the anticipated owner if we
1650                  * did a lock-steal - fix up the PI-state in that case:
1651                  */
1652                 if (q->pi_state->owner != current)
1653                         ret = fixup_pi_state_owner(uaddr, q, current, fshared);
1654                 goto out;
1655         }
1656
1657         /*
1658          * Catch the rare case, where the lock was released when we were on the
1659          * way back before we locked the hash bucket.
1660          */
1661         if (q->pi_state->owner == current) {
1662                 /*
1663                  * Try to get the rt_mutex now. This might fail as some other
1664                  * task acquired the rt_mutex after we removed ourself from the
1665                  * rt_mutex waiters list.
1666                  */
1667                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1668                         locked = 1;
1669                         goto out;
1670                 }
1671
1672                 /*
1673                  * pi_state is incorrect, some other task did a lock steal and
1674                  * we returned due to timeout or signal without taking the
1675                  * rt_mutex. Too late. We can access the rt_mutex_owner without
1676                  * locking, as the other task is now blocked on the hash bucket
1677                  * lock. Fix the state up.
1678                  */
1679                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1680                 ret = fixup_pi_state_owner(uaddr, q, owner, fshared);
1681                 goto out;
1682         }
1683
1684         /*
1685          * Paranoia check. If we did not take the lock, then we should not be
1686          * the owner, nor the pending owner, of the rt_mutex.
1687          */
1688         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1689                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1690                                 "pi-state %p\n", ret,
1691                                 q->pi_state->pi_mutex.owner,
1692                                 q->pi_state->owner);
1693
1694 out:
1695         return ret ? ret : locked;
1696 }
1697
1698 /**
1699  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1700  * @hb:         the futex hash bucket, must be locked by the caller
1701  * @q:          the futex_q to queue up on
1702  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
1703  */
1704 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1705                                 struct hrtimer_sleeper *timeout)
1706 {
1707         /*
1708          * The task state is guaranteed to be set before another task can
1709          * wake it. set_current_state() is implemented using set_mb() and
1710          * queue_me() calls spin_unlock() upon completion, both serializing
1711          * access to the hash list and forcing another memory barrier.
1712          */
1713         set_current_state(TASK_INTERRUPTIBLE);
1714         queue_me(q, hb);
1715
1716         /* Arm the timer */
1717         if (timeout) {
1718                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1719                 if (!hrtimer_active(&timeout->timer))
1720                         timeout->task = NULL;
1721         }
1722
1723         /*
1724          * If we have been removed from the hash list, then another task
1725          * has tried to wake us, and we can skip the call to schedule().
1726          */
1727         if (likely(!plist_node_empty(&q->list))) {
1728                 /*
1729                  * If the timer has already expired, current will already be
1730                  * flagged for rescheduling. Only call schedule if there
1731                  * is no timeout, or if it has yet to expire.
1732                  */
1733                 if (!timeout || timeout->task)
1734                         schedule();
1735         }
1736         __set_current_state(TASK_RUNNING);
1737 }
1738
1739 /**
1740  * futex_wait_setup() - Prepare to wait on a futex
1741  * @uaddr:      the futex userspace address
1742  * @val:        the expected value
1743  * @fshared:    whether the futex is shared (1) or not (0)
1744  * @q:          the associated futex_q
1745  * @hb:         storage for hash_bucket pointer to be returned to caller
1746  *
1747  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
1748  * compare it with the expected value.  Handle atomic faults internally.
1749  * Return with the hb lock held and a q.key reference on success, and unlocked
1750  * with no q.key reference on failure.
1751  *
1752  * Returns:
1753  *  0 - uaddr contains val and hb has been locked
1754  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
1755  */
1756 static int futex_wait_setup(u32 __user *uaddr, u32 val, int fshared,
1757                            struct futex_q *q, struct futex_hash_bucket **hb)
1758 {
1759         u32 uval;
1760         int ret;
1761
1762         /*
1763          * Access the page AFTER the hash-bucket is locked.
1764          * Order is important:
1765          *
1766          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1767          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1768          *
1769          * The basic logical guarantee of a futex is that it blocks ONLY
1770          * if cond(var) is known to be true at the time of blocking, for
1771          * any cond.  If we queued after testing *uaddr, that would open
1772          * a race condition where we could block indefinitely with
1773          * cond(var) false, which would violate the guarantee.
1774          *
1775          * A consequence is that futex_wait() can return zero and absorb
1776          * a wakeup when *uaddr != val on entry to the syscall.  This is
1777          * rare, but normal.
1778          */
1779 retry:
1780         q->key = FUTEX_KEY_INIT;
1781         ret = get_futex_key(uaddr, fshared, &q->key);
1782         if (unlikely(ret != 0))
1783                 return ret;
1784
1785 retry_private:
1786         *hb = queue_lock(q);
1787
1788         ret = get_futex_value_locked(&uval, uaddr);
1789
1790         if (ret) {
1791                 queue_unlock(q, *hb);
1792
1793                 ret = get_user(uval, uaddr);
1794                 if (ret)
1795                         goto out;
1796
1797                 if (!fshared)
1798                         goto retry_private;
1799
1800                 put_futex_key(fshared, &q->key);
1801                 goto retry;
1802         }
1803
1804         if (uval != val) {
1805                 queue_unlock(q, *hb);
1806                 ret = -EWOULDBLOCK;
1807         }
1808
1809 out:
1810         if (ret)
1811                 put_futex_key(fshared, &q->key);
1812         return ret;
1813 }
1814
1815 static int futex_wait(u32 __user *uaddr, int fshared,
1816                       u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1817 {
1818         struct hrtimer_sleeper timeout, *to = NULL;
1819         struct restart_block *restart;
1820         struct futex_hash_bucket *hb;
1821         struct futex_q q;
1822         int ret;
1823
1824         if (!bitset)
1825                 return -EINVAL;
1826
1827         q.pi_state = NULL;
1828         q.bitset = bitset;
1829         q.rt_waiter = NULL;
1830         q.requeue_pi_key = NULL;
1831
1832         if (abs_time) {
1833                 to = &timeout;
1834
1835                 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
1836                                       CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1837                 hrtimer_init_sleeper(to, current);
1838                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1839                                              current->timer_slack_ns);
1840         }
1841
1842 retry:
1843         /*
1844          * Prepare to wait on uaddr. On success, holds hb lock and increments
1845          * q.key refs.
1846          */
1847         ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
1848         if (ret)
1849                 goto out;
1850
1851         /* queue_me and wait for wakeup, timeout, or a signal. */
1852         futex_wait_queue_me(hb, &q, to);
1853
1854         /* If we were woken (and unqueued), we succeeded, whatever. */
1855         ret = 0;
1856         /* unqueue_me() drops q.key ref */
1857         if (!unqueue_me(&q))
1858                 goto out;
1859         ret = -ETIMEDOUT;
1860         if (to && !to->task)
1861                 goto out;
1862
1863         /*
1864          * We expect signal_pending(current), but we might be the
1865          * victim of a spurious wakeup as well.
1866          */
1867         if (!signal_pending(current))
1868                 goto retry;
1869
1870         ret = -ERESTARTSYS;
1871         if (!abs_time)
1872                 goto out;
1873
1874         restart = &current_thread_info()->restart_block;
1875         restart->fn = futex_wait_restart;
1876         restart->futex.uaddr = (u32 *)uaddr;
1877         restart->futex.val = val;
1878         restart->futex.time = abs_time->tv64;
1879         restart->futex.bitset = bitset;
1880         restart->futex.flags = FLAGS_HAS_TIMEOUT;
1881
1882         if (fshared)
1883                 restart->futex.flags |= FLAGS_SHARED;
1884         if (clockrt)
1885                 restart->futex.flags |= FLAGS_CLOCKRT;
1886
1887         ret = -ERESTART_RESTARTBLOCK;
1888
1889 out:
1890         if (to) {
1891                 hrtimer_cancel(&to->timer);
1892                 destroy_hrtimer_on_stack(&to->timer);
1893         }
1894         return ret;
1895 }
1896
1897
1898 static long futex_wait_restart(struct restart_block *restart)
1899 {
1900         u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1901         int fshared = 0;
1902         ktime_t t, *tp = NULL;
1903
1904         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1905                 t.tv64 = restart->futex.time;
1906                 tp = &t;
1907         }
1908         restart->fn = do_no_restart_syscall;
1909         if (restart->futex.flags & FLAGS_SHARED)
1910                 fshared = 1;
1911         return (long)futex_wait(uaddr, fshared, restart->futex.val, tp,
1912                                 restart->futex.bitset,
1913                                 restart->futex.flags & FLAGS_CLOCKRT);
1914 }
1915
1916
1917 /*
1918  * Userspace tried a 0 -> TID atomic transition of the futex value
1919  * and failed. The kernel side here does the whole locking operation:
1920  * if there are waiters then it will block, it does PI, etc. (Due to
1921  * races the kernel might see a 0 value of the futex too.)
1922  */
1923 static int futex_lock_pi(u32 __user *uaddr, int fshared,
1924                          int detect, ktime_t *time, int trylock)
1925 {
1926         struct hrtimer_sleeper timeout, *to = NULL;
1927         struct futex_hash_bucket *hb;
1928         struct futex_q q;
1929         int res, ret;
1930
1931         if (refill_pi_state_cache())
1932                 return -ENOMEM;
1933
1934         if (time) {
1935                 to = &timeout;
1936                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1937                                       HRTIMER_MODE_ABS);
1938                 hrtimer_init_sleeper(to, current);
1939                 hrtimer_set_expires(&to->timer, *time);
1940         }
1941
1942         q.pi_state = NULL;
1943         q.rt_waiter = NULL;
1944         q.requeue_pi_key = NULL;
1945 retry:
1946         q.key = FUTEX_KEY_INIT;
1947         ret = get_futex_key(uaddr, fshared, &q.key);
1948         if (unlikely(ret != 0))
1949                 goto out;
1950
1951 retry_private:
1952         hb = queue_lock(&q);
1953
1954         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1955         if (unlikely(ret)) {
1956                 switch (ret) {
1957                 case 1:
1958                         /* We got the lock. */
1959                         ret = 0;
1960                         goto out_unlock_put_key;
1961                 case -EFAULT:
1962                         goto uaddr_faulted;
1963                 case -EAGAIN:
1964                         /*
1965                          * Task is exiting and we just wait for the
1966                          * exit to complete.
1967                          */
1968                         queue_unlock(&q, hb);
1969                         put_futex_key(fshared, &q.key);
1970                         cond_resched();
1971                         goto retry;
1972                 default:
1973                         goto out_unlock_put_key;
1974                 }
1975         }
1976
1977         /*
1978          * Only actually queue now that the atomic ops are done:
1979          */
1980         queue_me(&q, hb);
1981
1982         WARN_ON(!q.pi_state);
1983         /*
1984          * Block on the PI mutex:
1985          */
1986         if (!trylock)
1987                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1988         else {
1989                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1990                 /* Fixup the trylock return value: */
1991                 ret = ret ? 0 : -EWOULDBLOCK;
1992         }
1993
1994         spin_lock(q.lock_ptr);
1995         /*
1996          * Fixup the pi_state owner and possibly acquire the lock if we
1997          * haven't already.
1998          */
1999         res = fixup_owner(uaddr, fshared, &q, !ret);
2000         /*
2001          * If fixup_owner() returned an error, proprogate that.  If it acquired
2002          * the lock, clear our -ETIMEDOUT or -EINTR.
2003          */
2004         if (res)
2005                 ret = (res < 0) ? res : 0;
2006
2007         /*
2008          * If fixup_owner() faulted and was unable to handle the fault, unlock
2009          * it and return the fault to userspace.
2010          */
2011         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2012                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2013
2014         /* Unqueue and drop the lock */
2015         unqueue_me_pi(&q);
2016
2017         goto out_put_key;
2018
2019 out_unlock_put_key:
2020         queue_unlock(&q, hb);
2021
2022 out_put_key:
2023         put_futex_key(fshared, &q.key);
2024 out:
2025         if (to)
2026                 destroy_hrtimer_on_stack(&to->timer);
2027         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2028
2029 uaddr_faulted:
2030         queue_unlock(&q, hb);
2031
2032         ret = fault_in_user_writeable(uaddr);
2033         if (ret)
2034                 goto out_put_key;
2035
2036         if (!fshared)
2037                 goto retry_private;
2038
2039         put_futex_key(fshared, &q.key);
2040         goto retry;
2041 }
2042
2043 /*
2044  * Userspace attempted a TID -> 0 atomic transition, and failed.
2045  * This is the in-kernel slowpath: we look up the PI state (if any),
2046  * and do the rt-mutex unlock.
2047  */
2048 static int futex_unlock_pi(u32 __user *uaddr, int fshared)
2049 {
2050         struct futex_hash_bucket *hb;
2051         struct futex_q *this, *next;
2052         u32 uval;
2053         struct plist_head *head;
2054         union futex_key key = FUTEX_KEY_INIT;
2055         int ret;
2056
2057 retry:
2058         if (get_user(uval, uaddr))
2059                 return -EFAULT;
2060         /*
2061          * We release only a lock we actually own:
2062          */
2063         if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
2064                 return -EPERM;
2065
2066         ret = get_futex_key(uaddr, fshared, &key);
2067         if (unlikely(ret != 0))
2068                 goto out;
2069
2070         hb = hash_futex(&key);
2071         spin_lock(&hb->lock);
2072
2073         /*
2074          * To avoid races, try to do the TID -> 0 atomic transition
2075          * again. If it succeeds then we can return without waking
2076          * anyone else up:
2077          */
2078         if (!(uval & FUTEX_OWNER_DIED))
2079                 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
2080
2081
2082         if (unlikely(uval == -EFAULT))
2083                 goto pi_faulted;
2084         /*
2085          * Rare case: we managed to release the lock atomically,
2086          * no need to wake anyone else up:
2087          */
2088         if (unlikely(uval == task_pid_vnr(current)))
2089                 goto out_unlock;
2090
2091         /*
2092          * Ok, other tasks may need to be woken up - check waiters
2093          * and do the wakeup if necessary:
2094          */
2095         head = &hb->chain;
2096
2097         plist_for_each_entry_safe(this, next, head, list) {
2098                 if (!match_futex (&this->key, &key))
2099                         continue;
2100                 ret = wake_futex_pi(uaddr, uval, this);
2101                 /*
2102                  * The atomic access to the futex value
2103                  * generated a pagefault, so retry the
2104                  * user-access and the wakeup:
2105                  */
2106                 if (ret == -EFAULT)
2107                         goto pi_faulted;
2108                 goto out_unlock;
2109         }
2110         /*
2111          * No waiters - kernel unlocks the futex:
2112          */
2113         if (!(uval & FUTEX_OWNER_DIED)) {
2114                 ret = unlock_futex_pi(uaddr, uval);
2115                 if (ret == -EFAULT)
2116                         goto pi_faulted;
2117         }
2118
2119 out_unlock:
2120         spin_unlock(&hb->lock);
2121         put_futex_key(fshared, &key);
2122
2123 out:
2124         return ret;
2125
2126 pi_faulted:
2127         spin_unlock(&hb->lock);
2128         put_futex_key(fshared, &key);
2129
2130         ret = fault_in_user_writeable(uaddr);
2131         if (!ret)
2132                 goto retry;
2133
2134         return ret;
2135 }
2136
2137 /**
2138  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2139  * @hb:         the hash_bucket futex_q was original enqueued on
2140  * @q:          the futex_q woken while waiting to be requeued
2141  * @key2:       the futex_key of the requeue target futex
2142  * @timeout:    the timeout associated with the wait (NULL if none)
2143  *
2144  * Detect if the task was woken on the initial futex as opposed to the requeue
2145  * target futex.  If so, determine if it was a timeout or a signal that caused
2146  * the wakeup and return the appropriate error code to the caller.  Must be
2147  * called with the hb lock held.
2148  *
2149  * Returns
2150  *  0 - no early wakeup detected
2151  * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2152  */
2153 static inline
2154 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2155                                    struct futex_q *q, union futex_key *key2,
2156                                    struct hrtimer_sleeper *timeout)
2157 {
2158         int ret = 0;
2159
2160         /*
2161          * With the hb lock held, we avoid races while we process the wakeup.
2162          * We only need to hold hb (and not hb2) to ensure atomicity as the
2163          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2164          * It can't be requeued from uaddr2 to something else since we don't
2165          * support a PI aware source futex for requeue.
2166          */
2167         if (!match_futex(&q->key, key2)) {
2168                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2169                 /*
2170                  * We were woken prior to requeue by a timeout or a signal.
2171                  * Unqueue the futex_q and determine which it was.
2172                  */
2173                 plist_del(&q->list, &q->list.plist);
2174
2175                 /* Handle spurious wakeups gracefully */
2176                 ret = -EWOULDBLOCK;
2177                 if (timeout && !timeout->task)
2178                         ret = -ETIMEDOUT;
2179                 else if (signal_pending(current))
2180                         ret = -ERESTARTNOINTR;
2181         }
2182         return ret;
2183 }
2184
2185 /**
2186  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2187  * @uaddr:      the futex we initially wait on (non-pi)
2188  * @fshared:    whether the futexes are shared (1) or not (0).  They must be
2189  *              the same type, no requeueing from private to shared, etc.
2190  * @val:        the expected value of uaddr
2191  * @abs_time:   absolute timeout
2192  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2193  * @clockrt:    whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2194  * @uaddr2:     the pi futex we will take prior to returning to user-space
2195  *
2196  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2197  * uaddr2 which must be PI aware.  Normal wakeup will wake on uaddr2 and
2198  * complete the acquisition of the rt_mutex prior to returning to userspace.
2199  * This ensures the rt_mutex maintains an owner when it has waiters; without
2200  * one, the pi logic wouldn't know which task to boost/deboost, if there was a
2201  * need to.
2202  *
2203  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2204  * via the following:
2205  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2206  * 2) wakeup on uaddr2 after a requeue
2207  * 3) signal
2208  * 4) timeout
2209  *
2210  * If 3, cleanup and return -ERESTARTNOINTR.
2211  *
2212  * If 2, we may then block on trying to take the rt_mutex and return via:
2213  * 5) successful lock
2214  * 6) signal
2215  * 7) timeout
2216  * 8) other lock acquisition failure
2217  *
2218  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2219  *
2220  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2221  *
2222  * Returns:
2223  *  0 - On success
2224  * <0 - On error
2225  */
2226 static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
2227                                  u32 val, ktime_t *abs_time, u32 bitset,
2228                                  int clockrt, u32 __user *uaddr2)
2229 {
2230         struct hrtimer_sleeper timeout, *to = NULL;
2231         struct rt_mutex_waiter rt_waiter;
2232         struct rt_mutex *pi_mutex = NULL;
2233         struct futex_hash_bucket *hb;
2234         union futex_key key2;
2235         struct futex_q q;
2236         int res, ret;
2237
2238         if (!bitset)
2239                 return -EINVAL;
2240
2241         if (abs_time) {
2242                 to = &timeout;
2243                 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
2244                                       CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2245                 hrtimer_init_sleeper(to, current);
2246                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2247                                              current->timer_slack_ns);
2248         }
2249
2250         /*
2251          * The waiter is allocated on our stack, manipulated by the requeue
2252          * code while we sleep on uaddr.
2253          */
2254         debug_rt_mutex_init_waiter(&rt_waiter);
2255         rt_waiter.task = NULL;
2256
2257         key2 = FUTEX_KEY_INIT;
2258         ret = get_futex_key(uaddr2, fshared, &key2);
2259         if (unlikely(ret != 0))
2260                 goto out;
2261
2262         q.pi_state = NULL;
2263         q.bitset = bitset;
2264         q.rt_waiter = &rt_waiter;
2265         q.requeue_pi_key = &key2;
2266
2267         /*
2268          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2269          * count.
2270          */
2271         ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
2272         if (ret)
2273                 goto out_key2;
2274
2275         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2276         futex_wait_queue_me(hb, &q, to);
2277
2278         spin_lock(&hb->lock);
2279         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2280         spin_unlock(&hb->lock);
2281         if (ret)
2282                 goto out_put_keys;
2283
2284         /*
2285          * In order for us to be here, we know our q.key == key2, and since
2286          * we took the hb->lock above, we also know that futex_requeue() has
2287          * completed and we no longer have to concern ourselves with a wakeup
2288          * race with the atomic proxy lock acquisition by the requeue code. The
2289          * futex_requeue dropped our key1 reference and incremented our key2
2290          * reference count.
2291          */
2292
2293         /* Check if the requeue code acquired the second futex for us. */
2294         if (!q.rt_waiter) {
2295                 /*
2296                  * Got the lock. We might not be the anticipated owner if we
2297                  * did a lock-steal - fix up the PI-state in that case.
2298                  */
2299                 if (q.pi_state && (q.pi_state->owner != current)) {
2300                         spin_lock(q.lock_ptr);
2301                         ret = fixup_pi_state_owner(uaddr2, &q, current,
2302                                                    fshared);
2303                         spin_unlock(q.lock_ptr);
2304                 }
2305         } else {
2306                 /*
2307                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2308                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2309                  * the pi_state.
2310                  */
2311                 WARN_ON(!&q.pi_state);
2312                 pi_mutex = &q.pi_state->pi_mutex;
2313                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2314                 debug_rt_mutex_free_waiter(&rt_waiter);
2315
2316                 spin_lock(q.lock_ptr);
2317                 /*
2318                  * Fixup the pi_state owner and possibly acquire the lock if we
2319                  * haven't already.
2320                  */
2321                 res = fixup_owner(uaddr2, fshared, &q, !ret);
2322                 /*
2323                  * If fixup_owner() returned an error, proprogate that.  If it
2324                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
2325                  */
2326                 if (res)
2327                         ret = (res < 0) ? res : 0;
2328
2329                 /* Unqueue and drop the lock. */
2330                 unqueue_me_pi(&q);
2331         }
2332
2333         /*
2334          * If fixup_pi_state_owner() faulted and was unable to handle the
2335          * fault, unlock the rt_mutex and return the fault to userspace.
2336          */
2337         if (ret == -EFAULT) {
2338                 if (rt_mutex_owner(pi_mutex) == current)
2339                         rt_mutex_unlock(pi_mutex);
2340         } else if (ret == -EINTR) {
2341                 /*
2342                  * We've already been requeued, but cannot restart by calling
2343                  * futex_lock_pi() directly. We could restart this syscall, but
2344                  * it would detect that the user space "val" changed and return
2345                  * -EWOULDBLOCK.  Save the overhead of the restart and return
2346                  * -EWOULDBLOCK directly.
2347                  */
2348                 ret = -EWOULDBLOCK;
2349         }
2350
2351 out_put_keys:
2352         put_futex_key(fshared, &q.key);
2353 out_key2:
2354         put_futex_key(fshared, &key2);
2355
2356 out:
2357         if (to) {
2358                 hrtimer_cancel(&to->timer);
2359                 destroy_hrtimer_on_stack(&to->timer);
2360         }
2361         return ret;
2362 }
2363
2364 /*
2365  * Support for robust futexes: the kernel cleans up held futexes at
2366  * thread exit time.
2367  *
2368  * Implementation: user-space maintains a per-thread list of locks it
2369  * is holding. Upon do_exit(), the kernel carefully walks this list,
2370  * and marks all locks that are owned by this thread with the
2371  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2372  * always manipulated with the lock held, so the list is private and
2373  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2374  * field, to allow the kernel to clean up if the thread dies after
2375  * acquiring the lock, but just before it could have added itself to
2376  * the list. There can only be one such pending lock.
2377  */
2378
2379 /**
2380  * sys_set_robust_list() - Set the robust-futex list head of a task
2381  * @head:       pointer to the list-head
2382  * @len:        length of the list-head, as userspace expects
2383  */
2384 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2385                 size_t, len)
2386 {
2387         if (!futex_cmpxchg_enabled)
2388                 return -ENOSYS;
2389         /*
2390          * The kernel knows only one size for now:
2391          */
2392         if (unlikely(len != sizeof(*head)))
2393                 return -EINVAL;
2394
2395         current->robust_list = head;
2396
2397         return 0;
2398 }
2399
2400 /**
2401  * sys_get_robust_list() - Get the robust-futex list head of a task
2402  * @pid:        pid of the process [zero for current task]
2403  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2404  * @len_ptr:    pointer to a length field, the kernel fills in the header size
2405  */
2406 SYSCALL_DEFINE3(get_robust_list, int, pid,
2407                 struct robust_list_head __user * __user *, head_ptr,
2408                 size_t __user *, len_ptr)
2409 {
2410         struct robust_list_head __user *head;
2411         unsigned long ret;
2412         const struct cred *cred = current_cred(), *pcred;
2413
2414         if (!futex_cmpxchg_enabled)
2415                 return -ENOSYS;
2416
2417         if (!pid)
2418                 head = current->robust_list;
2419         else {
2420                 struct task_struct *p;
2421
2422                 ret = -ESRCH;
2423                 rcu_read_lock();
2424                 p = find_task_by_vpid(pid);
2425                 if (!p)
2426                         goto err_unlock;
2427                 ret = -EPERM;
2428                 pcred = __task_cred(p);
2429                 if (cred->euid != pcred->euid &&
2430                     cred->euid != pcred->uid &&
2431                     !capable(CAP_SYS_PTRACE))
2432                         goto err_unlock;
2433                 head = p->robust_list;
2434                 rcu_read_unlock();
2435         }
2436
2437         if (put_user(sizeof(*head), len_ptr))
2438                 return -EFAULT;
2439         return put_user(head, head_ptr);
2440
2441 err_unlock:
2442         rcu_read_unlock();
2443
2444         return ret;
2445 }
2446
2447 /*
2448  * Process a futex-list entry, check whether it's owned by the
2449  * dying task, and do notification if so:
2450  */
2451 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2452 {
2453         u32 uval, nval, mval;
2454
2455 retry:
2456         if (get_user(uval, uaddr))
2457                 return -1;
2458
2459         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2460                 /*
2461                  * Ok, this dying thread is truly holding a futex
2462                  * of interest. Set the OWNER_DIED bit atomically
2463                  * via cmpxchg, and if the value had FUTEX_WAITERS
2464                  * set, wake up a waiter (if any). (We have to do a
2465                  * futex_wake() even if OWNER_DIED is already set -
2466                  * to handle the rare but possible case of recursive
2467                  * thread-death.) The rest of the cleanup is done in
2468                  * userspace.
2469                  */
2470                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2471                 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
2472
2473                 if (nval == -EFAULT)
2474                         return -1;
2475
2476                 if (nval != uval)
2477                         goto retry;
2478
2479                 /*
2480                  * Wake robust non-PI futexes here. The wakeup of
2481                  * PI futexes happens in exit_pi_state():
2482                  */
2483                 if (!pi && (uval & FUTEX_WAITERS))
2484                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2485         }
2486         return 0;
2487 }
2488
2489 /*
2490  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2491  */
2492 static inline int fetch_robust_entry(struct robust_list __user **entry,
2493                                      struct robust_list __user * __user *head,
2494                                      int *pi)
2495 {
2496         unsigned long uentry;
2497
2498         if (get_user(uentry, (unsigned long __user *)head))
2499                 return -EFAULT;
2500
2501         *entry = (void __user *)(uentry & ~1UL);
2502         *pi = uentry & 1;
2503
2504         return 0;
2505 }
2506
2507 /*
2508  * Walk curr->robust_list (very carefully, it's a userspace list!)
2509  * and mark any locks found there dead, and notify any waiters.
2510  *
2511  * We silently return on any sign of list-walking problem.
2512  */
2513 void exit_robust_list(struct task_struct *curr)
2514 {
2515         struct robust_list_head __user *head = curr->robust_list;
2516         struct robust_list __user *entry, *next_entry, *pending;
2517         unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
2518         unsigned long futex_offset;
2519         int rc;
2520
2521         if (!futex_cmpxchg_enabled)
2522                 return;
2523
2524         /*
2525          * Fetch the list head (which was registered earlier, via
2526          * sys_set_robust_list()):
2527          */
2528         if (fetch_robust_entry(&entry, &head->list.next, &pi))
2529                 return;
2530         /*
2531          * Fetch the relative futex offset:
2532          */
2533         if (get_user(futex_offset, &head->futex_offset))
2534                 return;
2535         /*
2536          * Fetch any possibly pending lock-add first, and handle it
2537          * if it exists:
2538          */
2539         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2540                 return;
2541
2542         next_entry = NULL;      /* avoid warning with gcc */
2543         while (entry != &head->list) {
2544                 /*
2545                  * Fetch the next entry in the list before calling
2546                  * handle_futex_death:
2547                  */
2548                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2549                 /*
2550                  * A pending lock might already be on the list, so
2551                  * don't process it twice:
2552                  */
2553                 if (entry != pending)
2554                         if (handle_futex_death((void __user *)entry + futex_offset,
2555                                                 curr, pi))
2556                                 return;
2557                 if (rc)
2558                         return;
2559                 entry = next_entry;
2560                 pi = next_pi;
2561                 /*
2562                  * Avoid excessively long or circular lists:
2563                  */
2564                 if (!--limit)
2565                         break;
2566
2567                 cond_resched();
2568         }
2569
2570         if (pending)
2571                 handle_futex_death((void __user *)pending + futex_offset,
2572                                    curr, pip);
2573 }
2574
2575 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2576                 u32 __user *uaddr2, u32 val2, u32 val3)
2577 {
2578         int clockrt, ret = -ENOSYS;
2579         int cmd = op & FUTEX_CMD_MASK;
2580         int fshared = 0;
2581
2582         if (!(op & FUTEX_PRIVATE_FLAG))
2583                 fshared = 1;
2584
2585         clockrt = op & FUTEX_CLOCK_REALTIME;
2586         if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2587                 return -ENOSYS;
2588
2589         switch (cmd) {
2590         case FUTEX_WAIT:
2591                 val3 = FUTEX_BITSET_MATCH_ANY;
2592         case FUTEX_WAIT_BITSET:
2593                 ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
2594                 break;
2595         case FUTEX_WAKE:
2596                 val3 = FUTEX_BITSET_MATCH_ANY;
2597         case FUTEX_WAKE_BITSET:
2598                 ret = futex_wake(uaddr, fshared, val, val3);
2599                 break;
2600         case FUTEX_REQUEUE:
2601                 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL, 0);
2602                 break;
2603         case FUTEX_CMP_REQUEUE:
2604                 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2605                                     0);
2606                 break;
2607         case FUTEX_WAKE_OP:
2608                 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
2609                 break;
2610         case FUTEX_LOCK_PI:
2611                 if (futex_cmpxchg_enabled)
2612                         ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
2613                 break;
2614         case FUTEX_UNLOCK_PI:
2615                 if (futex_cmpxchg_enabled)
2616                         ret = futex_unlock_pi(uaddr, fshared);
2617                 break;
2618         case FUTEX_TRYLOCK_PI:
2619                 if (futex_cmpxchg_enabled)
2620                         ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
2621                 break;
2622         case FUTEX_WAIT_REQUEUE_PI:
2623                 val3 = FUTEX_BITSET_MATCH_ANY;
2624                 ret = futex_wait_requeue_pi(uaddr, fshared, val, timeout, val3,
2625                                             clockrt, uaddr2);
2626                 break;
2627         case FUTEX_CMP_REQUEUE_PI:
2628                 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2629                                     1);
2630                 break;
2631         default:
2632                 ret = -ENOSYS;
2633         }
2634         return ret;
2635 }
2636
2637
2638 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2639                 struct timespec __user *, utime, u32 __user *, uaddr2,
2640                 u32, val3)
2641 {
2642         struct timespec ts;
2643         ktime_t t, *tp = NULL;
2644         u32 val2 = 0;
2645         int cmd = op & FUTEX_CMD_MASK;
2646
2647         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2648                       cmd == FUTEX_WAIT_BITSET ||
2649                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
2650                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2651                         return -EFAULT;
2652                 if (!timespec_valid(&ts))
2653                         return -EINVAL;
2654
2655                 t = timespec_to_ktime(ts);
2656                 if (cmd == FUTEX_WAIT)
2657                         t = ktime_add_safe(ktime_get(), t);
2658                 tp = &t;
2659         }
2660         /*
2661          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2662          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2663          */
2664         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2665             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2666                 val2 = (u32) (unsigned long) utime;
2667
2668         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2669 }
2670
2671 static int __init futex_init(void)
2672 {
2673         u32 curval;
2674         int i;
2675
2676         /*
2677          * This will fail and we want it. Some arch implementations do
2678          * runtime detection of the futex_atomic_cmpxchg_inatomic()
2679          * functionality. We want to know that before we call in any
2680          * of the complex code paths. Also we want to prevent
2681          * registration of robust lists in that case. NULL is
2682          * guaranteed to fault and we get -EFAULT on functional
2683          * implementation, the non functional ones will return
2684          * -ENOSYS.
2685          */
2686         curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2687         if (curval == -EFAULT)
2688                 futex_cmpxchg_enabled = 1;
2689
2690         for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2691                 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2692                 spin_lock_init(&futex_queues[i].lock);
2693         }
2694
2695         return 0;
2696 }
2697 __initcall(futex_init);