Merge branch 'x86/boot' into x86/urgent
[firefly-linux-kernel-4.4.55.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66 #include <linux/bootmem.h>
67
68 #include <asm/futex.h>
69
70 #include "locking/rtmutex_common.h"
71
72 /*
73  * READ this before attempting to hack on futexes!
74  *
75  * Basic futex operation and ordering guarantees
76  * =============================================
77  *
78  * The waiter reads the futex value in user space and calls
79  * futex_wait(). This function computes the hash bucket and acquires
80  * the hash bucket lock. After that it reads the futex user space value
81  * again and verifies that the data has not changed. If it has not changed
82  * it enqueues itself into the hash bucket, releases the hash bucket lock
83  * and schedules.
84  *
85  * The waker side modifies the user space value of the futex and calls
86  * futex_wake(). This function computes the hash bucket and acquires the
87  * hash bucket lock. Then it looks for waiters on that futex in the hash
88  * bucket and wakes them.
89  *
90  * In futex wake up scenarios where no tasks are blocked on a futex, taking
91  * the hb spinlock can be avoided and simply return. In order for this
92  * optimization to work, ordering guarantees must exist so that the waiter
93  * being added to the list is acknowledged when the list is concurrently being
94  * checked by the waker, avoiding scenarios like the following:
95  *
96  * CPU 0                               CPU 1
97  * val = *futex;
98  * sys_futex(WAIT, futex, val);
99  *   futex_wait(futex, val);
100  *   uval = *futex;
101  *                                     *futex = newval;
102  *                                     sys_futex(WAKE, futex);
103  *                                       futex_wake(futex);
104  *                                       if (queue_empty())
105  *                                         return;
106  *   if (uval == val)
107  *      lock(hash_bucket(futex));
108  *      queue();
109  *     unlock(hash_bucket(futex));
110  *     schedule();
111  *
112  * This would cause the waiter on CPU 0 to wait forever because it
113  * missed the transition of the user space value from val to newval
114  * and the waker did not find the waiter in the hash bucket queue.
115  *
116  * The correct serialization ensures that a waiter either observes
117  * the changed user space value before blocking or is woken by a
118  * concurrent waker:
119  *
120  * CPU 0                                 CPU 1
121  * val = *futex;
122  * sys_futex(WAIT, futex, val);
123  *   futex_wait(futex, val);
124  *
125  *   waiters++; (a)
126  *   mb(); (A) <-- paired with -.
127  *                              |
128  *   lock(hash_bucket(futex));  |
129  *                              |
130  *   uval = *futex;             |
131  *                              |        *futex = newval;
132  *                              |        sys_futex(WAKE, futex);
133  *                              |          futex_wake(futex);
134  *                              |
135  *                              `------->  mb(); (B)
136  *   if (uval == val)
137  *     queue();
138  *     unlock(hash_bucket(futex));
139  *     schedule();                         if (waiters)
140  *                                           lock(hash_bucket(futex));
141  *   else                                    wake_waiters(futex);
142  *     waiters--; (b)                        unlock(hash_bucket(futex));
143  *
144  * Where (A) orders the waiters increment and the futex value read through
145  * atomic operations (see hb_waiters_inc) and where (B) orders the write
146  * to futex and the waiters read -- this is done by the barriers for both
147  * shared and private futexes in get_futex_key_refs().
148  *
149  * This yields the following case (where X:=waiters, Y:=futex):
150  *
151  *      X = Y = 0
152  *
153  *      w[X]=1          w[Y]=1
154  *      MB              MB
155  *      r[Y]=y          r[X]=x
156  *
157  * Which guarantees that x==0 && y==0 is impossible; which translates back into
158  * the guarantee that we cannot both miss the futex variable change and the
159  * enqueue.
160  *
161  * Note that a new waiter is accounted for in (a) even when it is possible that
162  * the wait call can return error, in which case we backtrack from it in (b).
163  * Refer to the comment in queue_lock().
164  *
165  * Similarly, in order to account for waiters being requeued on another
166  * address we always increment the waiters for the destination bucket before
167  * acquiring the lock. It then decrements them again  after releasing it -
168  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
169  * will do the additional required waiter count housekeeping. This is done for
170  * double_lock_hb() and double_unlock_hb(), respectively.
171  */
172
173 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
174 int __read_mostly futex_cmpxchg_enabled;
175 #endif
176
177 /*
178  * Futex flags used to encode options to functions and preserve them across
179  * restarts.
180  */
181 #define FLAGS_SHARED            0x01
182 #define FLAGS_CLOCKRT           0x02
183 #define FLAGS_HAS_TIMEOUT       0x04
184
185 /*
186  * Priority Inheritance state:
187  */
188 struct futex_pi_state {
189         /*
190          * list of 'owned' pi_state instances - these have to be
191          * cleaned up in do_exit() if the task exits prematurely:
192          */
193         struct list_head list;
194
195         /*
196          * The PI object:
197          */
198         struct rt_mutex pi_mutex;
199
200         struct task_struct *owner;
201         atomic_t refcount;
202
203         union futex_key key;
204 };
205
206 /**
207  * struct futex_q - The hashed futex queue entry, one per waiting task
208  * @list:               priority-sorted list of tasks waiting on this futex
209  * @task:               the task waiting on the futex
210  * @lock_ptr:           the hash bucket lock
211  * @key:                the key the futex is hashed on
212  * @pi_state:           optional priority inheritance state
213  * @rt_waiter:          rt_waiter storage for use with requeue_pi
214  * @requeue_pi_key:     the requeue_pi target futex key
215  * @bitset:             bitset for the optional bitmasked wakeup
216  *
217  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
218  * we can wake only the relevant ones (hashed queues may be shared).
219  *
220  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
221  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
222  * The order of wakeup is always to make the first condition true, then
223  * the second.
224  *
225  * PI futexes are typically woken before they are removed from the hash list via
226  * the rt_mutex code. See unqueue_me_pi().
227  */
228 struct futex_q {
229         struct plist_node list;
230
231         struct task_struct *task;
232         spinlock_t *lock_ptr;
233         union futex_key key;
234         struct futex_pi_state *pi_state;
235         struct rt_mutex_waiter *rt_waiter;
236         union futex_key *requeue_pi_key;
237         u32 bitset;
238 };
239
240 static const struct futex_q futex_q_init = {
241         /* list gets initialized in queue_me()*/
242         .key = FUTEX_KEY_INIT,
243         .bitset = FUTEX_BITSET_MATCH_ANY
244 };
245
246 /*
247  * Hash buckets are shared by all the futex_keys that hash to the same
248  * location.  Each key may have multiple futex_q structures, one for each task
249  * waiting on a futex.
250  */
251 struct futex_hash_bucket {
252         atomic_t waiters;
253         spinlock_t lock;
254         struct plist_head chain;
255 } ____cacheline_aligned_in_smp;
256
257 static unsigned long __read_mostly futex_hashsize;
258
259 static struct futex_hash_bucket *futex_queues;
260
261 static inline void futex_get_mm(union futex_key *key)
262 {
263         atomic_inc(&key->private.mm->mm_count);
264         /*
265          * Ensure futex_get_mm() implies a full barrier such that
266          * get_futex_key() implies a full barrier. This is relied upon
267          * as full barrier (B), see the ordering comment above.
268          */
269         smp_mb__after_atomic();
270 }
271
272 /*
273  * Reflects a new waiter being added to the waitqueue.
274  */
275 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
276 {
277 #ifdef CONFIG_SMP
278         atomic_inc(&hb->waiters);
279         /*
280          * Full barrier (A), see the ordering comment above.
281          */
282         smp_mb__after_atomic();
283 #endif
284 }
285
286 /*
287  * Reflects a waiter being removed from the waitqueue by wakeup
288  * paths.
289  */
290 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
291 {
292 #ifdef CONFIG_SMP
293         atomic_dec(&hb->waiters);
294 #endif
295 }
296
297 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
298 {
299 #ifdef CONFIG_SMP
300         return atomic_read(&hb->waiters);
301 #else
302         return 1;
303 #endif
304 }
305
306 /*
307  * We hash on the keys returned from get_futex_key (see below).
308  */
309 static struct futex_hash_bucket *hash_futex(union futex_key *key)
310 {
311         u32 hash = jhash2((u32*)&key->both.word,
312                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
313                           key->both.offset);
314         return &futex_queues[hash & (futex_hashsize - 1)];
315 }
316
317 /*
318  * Return 1 if two futex_keys are equal, 0 otherwise.
319  */
320 static inline int match_futex(union futex_key *key1, union futex_key *key2)
321 {
322         return (key1 && key2
323                 && key1->both.word == key2->both.word
324                 && key1->both.ptr == key2->both.ptr
325                 && key1->both.offset == key2->both.offset);
326 }
327
328 /*
329  * Take a reference to the resource addressed by a key.
330  * Can be called while holding spinlocks.
331  *
332  */
333 static void get_futex_key_refs(union futex_key *key)
334 {
335         if (!key->both.ptr)
336                 return;
337
338         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
339         case FUT_OFF_INODE:
340                 ihold(key->shared.inode); /* implies MB (B) */
341                 break;
342         case FUT_OFF_MMSHARED:
343                 futex_get_mm(key); /* implies MB (B) */
344                 break;
345         default:
346                 /*
347                  * Private futexes do not hold reference on an inode or
348                  * mm, therefore the only purpose of calling get_futex_key_refs
349                  * is because we need the barrier for the lockless waiter check.
350                  */
351                 smp_mb(); /* explicit MB (B) */
352         }
353 }
354
355 /*
356  * Drop a reference to the resource addressed by a key.
357  * The hash bucket spinlock must not be held. This is
358  * a no-op for private futexes, see comment in the get
359  * counterpart.
360  */
361 static void drop_futex_key_refs(union futex_key *key)
362 {
363         if (!key->both.ptr) {
364                 /* If we're here then we tried to put a key we failed to get */
365                 WARN_ON_ONCE(1);
366                 return;
367         }
368
369         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
370         case FUT_OFF_INODE:
371                 iput(key->shared.inode);
372                 break;
373         case FUT_OFF_MMSHARED:
374                 mmdrop(key->private.mm);
375                 break;
376         }
377 }
378
379 /**
380  * get_futex_key() - Get parameters which are the keys for a futex
381  * @uaddr:      virtual address of the futex
382  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
383  * @key:        address where result is stored.
384  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
385  *              VERIFY_WRITE)
386  *
387  * Return: a negative error code or 0
388  *
389  * The key words are stored in *key on success.
390  *
391  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
392  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
393  * We can usually work out the index without swapping in the page.
394  *
395  * lock_page() might sleep, the caller should not hold a spinlock.
396  */
397 static int
398 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
399 {
400         unsigned long address = (unsigned long)uaddr;
401         struct mm_struct *mm = current->mm;
402         struct page *page, *page_head;
403         int err, ro = 0;
404
405         /*
406          * The futex address must be "naturally" aligned.
407          */
408         key->both.offset = address % PAGE_SIZE;
409         if (unlikely((address % sizeof(u32)) != 0))
410                 return -EINVAL;
411         address -= key->both.offset;
412
413         if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
414                 return -EFAULT;
415
416         /*
417          * PROCESS_PRIVATE futexes are fast.
418          * As the mm cannot disappear under us and the 'key' only needs
419          * virtual address, we dont even have to find the underlying vma.
420          * Note : We do have to check 'uaddr' is a valid user address,
421          *        but access_ok() should be faster than find_vma()
422          */
423         if (!fshared) {
424                 key->private.mm = mm;
425                 key->private.address = address;
426                 get_futex_key_refs(key);  /* implies MB (B) */
427                 return 0;
428         }
429
430 again:
431         err = get_user_pages_fast(address, 1, 1, &page);
432         /*
433          * If write access is not required (eg. FUTEX_WAIT), try
434          * and get read-only access.
435          */
436         if (err == -EFAULT && rw == VERIFY_READ) {
437                 err = get_user_pages_fast(address, 1, 0, &page);
438                 ro = 1;
439         }
440         if (err < 0)
441                 return err;
442         else
443                 err = 0;
444
445 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
446         page_head = page;
447         if (unlikely(PageTail(page))) {
448                 put_page(page);
449                 /* serialize against __split_huge_page_splitting() */
450                 local_irq_disable();
451                 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
452                         page_head = compound_head(page);
453                         /*
454                          * page_head is valid pointer but we must pin
455                          * it before taking the PG_lock and/or
456                          * PG_compound_lock. The moment we re-enable
457                          * irqs __split_huge_page_splitting() can
458                          * return and the head page can be freed from
459                          * under us. We can't take the PG_lock and/or
460                          * PG_compound_lock on a page that could be
461                          * freed from under us.
462                          */
463                         if (page != page_head) {
464                                 get_page(page_head);
465                                 put_page(page);
466                         }
467                         local_irq_enable();
468                 } else {
469                         local_irq_enable();
470                         goto again;
471                 }
472         }
473 #else
474         page_head = compound_head(page);
475         if (page != page_head) {
476                 get_page(page_head);
477                 put_page(page);
478         }
479 #endif
480
481         lock_page(page_head);
482
483         /*
484          * If page_head->mapping is NULL, then it cannot be a PageAnon
485          * page; but it might be the ZERO_PAGE or in the gate area or
486          * in a special mapping (all cases which we are happy to fail);
487          * or it may have been a good file page when get_user_pages_fast
488          * found it, but truncated or holepunched or subjected to
489          * invalidate_complete_page2 before we got the page lock (also
490          * cases which we are happy to fail).  And we hold a reference,
491          * so refcount care in invalidate_complete_page's remove_mapping
492          * prevents drop_caches from setting mapping to NULL beneath us.
493          *
494          * The case we do have to guard against is when memory pressure made
495          * shmem_writepage move it from filecache to swapcache beneath us:
496          * an unlikely race, but we do need to retry for page_head->mapping.
497          */
498         if (!page_head->mapping) {
499                 int shmem_swizzled = PageSwapCache(page_head);
500                 unlock_page(page_head);
501                 put_page(page_head);
502                 if (shmem_swizzled)
503                         goto again;
504                 return -EFAULT;
505         }
506
507         /*
508          * Private mappings are handled in a simple way.
509          *
510          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
511          * it's a read-only handle, it's expected that futexes attach to
512          * the object not the particular process.
513          */
514         if (PageAnon(page_head)) {
515                 /*
516                  * A RO anonymous page will never change and thus doesn't make
517                  * sense for futex operations.
518                  */
519                 if (ro) {
520                         err = -EFAULT;
521                         goto out;
522                 }
523
524                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
525                 key->private.mm = mm;
526                 key->private.address = address;
527         } else {
528                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
529                 key->shared.inode = page_head->mapping->host;
530                 key->shared.pgoff = basepage_index(page);
531         }
532
533         get_futex_key_refs(key); /* implies MB (B) */
534
535 out:
536         unlock_page(page_head);
537         put_page(page_head);
538         return err;
539 }
540
541 static inline void put_futex_key(union futex_key *key)
542 {
543         drop_futex_key_refs(key);
544 }
545
546 /**
547  * fault_in_user_writeable() - Fault in user address and verify RW access
548  * @uaddr:      pointer to faulting user space address
549  *
550  * Slow path to fixup the fault we just took in the atomic write
551  * access to @uaddr.
552  *
553  * We have no generic implementation of a non-destructive write to the
554  * user address. We know that we faulted in the atomic pagefault
555  * disabled section so we can as well avoid the #PF overhead by
556  * calling get_user_pages() right away.
557  */
558 static int fault_in_user_writeable(u32 __user *uaddr)
559 {
560         struct mm_struct *mm = current->mm;
561         int ret;
562
563         down_read(&mm->mmap_sem);
564         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
565                                FAULT_FLAG_WRITE);
566         up_read(&mm->mmap_sem);
567
568         return ret < 0 ? ret : 0;
569 }
570
571 /**
572  * futex_top_waiter() - Return the highest priority waiter on a futex
573  * @hb:         the hash bucket the futex_q's reside in
574  * @key:        the futex key (to distinguish it from other futex futex_q's)
575  *
576  * Must be called with the hb lock held.
577  */
578 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
579                                         union futex_key *key)
580 {
581         struct futex_q *this;
582
583         plist_for_each_entry(this, &hb->chain, list) {
584                 if (match_futex(&this->key, key))
585                         return this;
586         }
587         return NULL;
588 }
589
590 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
591                                       u32 uval, u32 newval)
592 {
593         int ret;
594
595         pagefault_disable();
596         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
597         pagefault_enable();
598
599         return ret;
600 }
601
602 static int get_futex_value_locked(u32 *dest, u32 __user *from)
603 {
604         int ret;
605
606         pagefault_disable();
607         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
608         pagefault_enable();
609
610         return ret ? -EFAULT : 0;
611 }
612
613
614 /*
615  * PI code:
616  */
617 static int refill_pi_state_cache(void)
618 {
619         struct futex_pi_state *pi_state;
620
621         if (likely(current->pi_state_cache))
622                 return 0;
623
624         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
625
626         if (!pi_state)
627                 return -ENOMEM;
628
629         INIT_LIST_HEAD(&pi_state->list);
630         /* pi_mutex gets initialized later */
631         pi_state->owner = NULL;
632         atomic_set(&pi_state->refcount, 1);
633         pi_state->key = FUTEX_KEY_INIT;
634
635         current->pi_state_cache = pi_state;
636
637         return 0;
638 }
639
640 static struct futex_pi_state * alloc_pi_state(void)
641 {
642         struct futex_pi_state *pi_state = current->pi_state_cache;
643
644         WARN_ON(!pi_state);
645         current->pi_state_cache = NULL;
646
647         return pi_state;
648 }
649
650 /*
651  * Must be called with the hb lock held.
652  */
653 static void free_pi_state(struct futex_pi_state *pi_state)
654 {
655         if (!pi_state)
656                 return;
657
658         if (!atomic_dec_and_test(&pi_state->refcount))
659                 return;
660
661         /*
662          * If pi_state->owner is NULL, the owner is most probably dying
663          * and has cleaned up the pi_state already
664          */
665         if (pi_state->owner) {
666                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
667                 list_del_init(&pi_state->list);
668                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
669
670                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
671         }
672
673         if (current->pi_state_cache)
674                 kfree(pi_state);
675         else {
676                 /*
677                  * pi_state->list is already empty.
678                  * clear pi_state->owner.
679                  * refcount is at 0 - put it back to 1.
680                  */
681                 pi_state->owner = NULL;
682                 atomic_set(&pi_state->refcount, 1);
683                 current->pi_state_cache = pi_state;
684         }
685 }
686
687 /*
688  * Look up the task based on what TID userspace gave us.
689  * We dont trust it.
690  */
691 static struct task_struct * futex_find_get_task(pid_t pid)
692 {
693         struct task_struct *p;
694
695         rcu_read_lock();
696         p = find_task_by_vpid(pid);
697         if (p)
698                 get_task_struct(p);
699
700         rcu_read_unlock();
701
702         return p;
703 }
704
705 /*
706  * This task is holding PI mutexes at exit time => bad.
707  * Kernel cleans up PI-state, but userspace is likely hosed.
708  * (Robust-futex cleanup is separate and might save the day for userspace.)
709  */
710 void exit_pi_state_list(struct task_struct *curr)
711 {
712         struct list_head *next, *head = &curr->pi_state_list;
713         struct futex_pi_state *pi_state;
714         struct futex_hash_bucket *hb;
715         union futex_key key = FUTEX_KEY_INIT;
716
717         if (!futex_cmpxchg_enabled)
718                 return;
719         /*
720          * We are a ZOMBIE and nobody can enqueue itself on
721          * pi_state_list anymore, but we have to be careful
722          * versus waiters unqueueing themselves:
723          */
724         raw_spin_lock_irq(&curr->pi_lock);
725         while (!list_empty(head)) {
726
727                 next = head->next;
728                 pi_state = list_entry(next, struct futex_pi_state, list);
729                 key = pi_state->key;
730                 hb = hash_futex(&key);
731                 raw_spin_unlock_irq(&curr->pi_lock);
732
733                 spin_lock(&hb->lock);
734
735                 raw_spin_lock_irq(&curr->pi_lock);
736                 /*
737                  * We dropped the pi-lock, so re-check whether this
738                  * task still owns the PI-state:
739                  */
740                 if (head->next != next) {
741                         spin_unlock(&hb->lock);
742                         continue;
743                 }
744
745                 WARN_ON(pi_state->owner != curr);
746                 WARN_ON(list_empty(&pi_state->list));
747                 list_del_init(&pi_state->list);
748                 pi_state->owner = NULL;
749                 raw_spin_unlock_irq(&curr->pi_lock);
750
751                 rt_mutex_unlock(&pi_state->pi_mutex);
752
753                 spin_unlock(&hb->lock);
754
755                 raw_spin_lock_irq(&curr->pi_lock);
756         }
757         raw_spin_unlock_irq(&curr->pi_lock);
758 }
759
760 /*
761  * We need to check the following states:
762  *
763  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
764  *
765  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
766  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
767  *
768  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
769  *
770  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
771  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
772  *
773  * [6]  Found  | Found    | task      | 0         | 1      | Valid
774  *
775  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
776  *
777  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
778  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
779  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
780  *
781  * [1]  Indicates that the kernel can acquire the futex atomically. We
782  *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
783  *
784  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
785  *      thread is found then it indicates that the owner TID has died.
786  *
787  * [3]  Invalid. The waiter is queued on a non PI futex
788  *
789  * [4]  Valid state after exit_robust_list(), which sets the user space
790  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
791  *
792  * [5]  The user space value got manipulated between exit_robust_list()
793  *      and exit_pi_state_list()
794  *
795  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
796  *      the pi_state but cannot access the user space value.
797  *
798  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
799  *
800  * [8]  Owner and user space value match
801  *
802  * [9]  There is no transient state which sets the user space TID to 0
803  *      except exit_robust_list(), but this is indicated by the
804  *      FUTEX_OWNER_DIED bit. See [4]
805  *
806  * [10] There is no transient state which leaves owner and user space
807  *      TID out of sync.
808  */
809
810 /*
811  * Validate that the existing waiter has a pi_state and sanity check
812  * the pi_state against the user space value. If correct, attach to
813  * it.
814  */
815 static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
816                               struct futex_pi_state **ps)
817 {
818         pid_t pid = uval & FUTEX_TID_MASK;
819
820         /*
821          * Userspace might have messed up non-PI and PI futexes [3]
822          */
823         if (unlikely(!pi_state))
824                 return -EINVAL;
825
826         WARN_ON(!atomic_read(&pi_state->refcount));
827
828         /*
829          * Handle the owner died case:
830          */
831         if (uval & FUTEX_OWNER_DIED) {
832                 /*
833                  * exit_pi_state_list sets owner to NULL and wakes the
834                  * topmost waiter. The task which acquires the
835                  * pi_state->rt_mutex will fixup owner.
836                  */
837                 if (!pi_state->owner) {
838                         /*
839                          * No pi state owner, but the user space TID
840                          * is not 0. Inconsistent state. [5]
841                          */
842                         if (pid)
843                                 return -EINVAL;
844                         /*
845                          * Take a ref on the state and return success. [4]
846                          */
847                         goto out_state;
848                 }
849
850                 /*
851                  * If TID is 0, then either the dying owner has not
852                  * yet executed exit_pi_state_list() or some waiter
853                  * acquired the rtmutex in the pi state, but did not
854                  * yet fixup the TID in user space.
855                  *
856                  * Take a ref on the state and return success. [6]
857                  */
858                 if (!pid)
859                         goto out_state;
860         } else {
861                 /*
862                  * If the owner died bit is not set, then the pi_state
863                  * must have an owner. [7]
864                  */
865                 if (!pi_state->owner)
866                         return -EINVAL;
867         }
868
869         /*
870          * Bail out if user space manipulated the futex value. If pi
871          * state exists then the owner TID must be the same as the
872          * user space TID. [9/10]
873          */
874         if (pid != task_pid_vnr(pi_state->owner))
875                 return -EINVAL;
876 out_state:
877         atomic_inc(&pi_state->refcount);
878         *ps = pi_state;
879         return 0;
880 }
881
882 /*
883  * Lookup the task for the TID provided from user space and attach to
884  * it after doing proper sanity checks.
885  */
886 static int attach_to_pi_owner(u32 uval, union futex_key *key,
887                               struct futex_pi_state **ps)
888 {
889         pid_t pid = uval & FUTEX_TID_MASK;
890         struct futex_pi_state *pi_state;
891         struct task_struct *p;
892
893         /*
894          * We are the first waiter - try to look up the real owner and attach
895          * the new pi_state to it, but bail out when TID = 0 [1]
896          */
897         if (!pid)
898                 return -ESRCH;
899         p = futex_find_get_task(pid);
900         if (!p)
901                 return -ESRCH;
902
903         if (unlikely(p->flags & PF_KTHREAD)) {
904                 put_task_struct(p);
905                 return -EPERM;
906         }
907
908         /*
909          * We need to look at the task state flags to figure out,
910          * whether the task is exiting. To protect against the do_exit
911          * change of the task flags, we do this protected by
912          * p->pi_lock:
913          */
914         raw_spin_lock_irq(&p->pi_lock);
915         if (unlikely(p->flags & PF_EXITING)) {
916                 /*
917                  * The task is on the way out. When PF_EXITPIDONE is
918                  * set, we know that the task has finished the
919                  * cleanup:
920                  */
921                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
922
923                 raw_spin_unlock_irq(&p->pi_lock);
924                 put_task_struct(p);
925                 return ret;
926         }
927
928         /*
929          * No existing pi state. First waiter. [2]
930          */
931         pi_state = alloc_pi_state();
932
933         /*
934          * Initialize the pi_mutex in locked state and make @p
935          * the owner of it:
936          */
937         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
938
939         /* Store the key for possible exit cleanups: */
940         pi_state->key = *key;
941
942         WARN_ON(!list_empty(&pi_state->list));
943         list_add(&pi_state->list, &p->pi_state_list);
944         pi_state->owner = p;
945         raw_spin_unlock_irq(&p->pi_lock);
946
947         put_task_struct(p);
948
949         *ps = pi_state;
950
951         return 0;
952 }
953
954 static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
955                            union futex_key *key, struct futex_pi_state **ps)
956 {
957         struct futex_q *match = futex_top_waiter(hb, key);
958
959         /*
960          * If there is a waiter on that futex, validate it and
961          * attach to the pi_state when the validation succeeds.
962          */
963         if (match)
964                 return attach_to_pi_state(uval, match->pi_state, ps);
965
966         /*
967          * We are the first waiter - try to look up the owner based on
968          * @uval and attach to it.
969          */
970         return attach_to_pi_owner(uval, key, ps);
971 }
972
973 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
974 {
975         u32 uninitialized_var(curval);
976
977         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
978                 return -EFAULT;
979
980         /*If user space value changed, let the caller retry */
981         return curval != uval ? -EAGAIN : 0;
982 }
983
984 /**
985  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
986  * @uaddr:              the pi futex user address
987  * @hb:                 the pi futex hash bucket
988  * @key:                the futex key associated with uaddr and hb
989  * @ps:                 the pi_state pointer where we store the result of the
990  *                      lookup
991  * @task:               the task to perform the atomic lock work for.  This will
992  *                      be "current" except in the case of requeue pi.
993  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
994  *
995  * Return:
996  *  0 - ready to wait;
997  *  1 - acquired the lock;
998  * <0 - error
999  *
1000  * The hb->lock and futex_key refs shall be held by the caller.
1001  */
1002 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1003                                 union futex_key *key,
1004                                 struct futex_pi_state **ps,
1005                                 struct task_struct *task, int set_waiters)
1006 {
1007         u32 uval, newval, vpid = task_pid_vnr(task);
1008         struct futex_q *match;
1009         int ret;
1010
1011         /*
1012          * Read the user space value first so we can validate a few
1013          * things before proceeding further.
1014          */
1015         if (get_futex_value_locked(&uval, uaddr))
1016                 return -EFAULT;
1017
1018         /*
1019          * Detect deadlocks.
1020          */
1021         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1022                 return -EDEADLK;
1023
1024         /*
1025          * Lookup existing state first. If it exists, try to attach to
1026          * its pi_state.
1027          */
1028         match = futex_top_waiter(hb, key);
1029         if (match)
1030                 return attach_to_pi_state(uval, match->pi_state, ps);
1031
1032         /*
1033          * No waiter and user TID is 0. We are here because the
1034          * waiters or the owner died bit is set or called from
1035          * requeue_cmp_pi or for whatever reason something took the
1036          * syscall.
1037          */
1038         if (!(uval & FUTEX_TID_MASK)) {
1039                 /*
1040                  * We take over the futex. No other waiters and the user space
1041                  * TID is 0. We preserve the owner died bit.
1042                  */
1043                 newval = uval & FUTEX_OWNER_DIED;
1044                 newval |= vpid;
1045
1046                 /* The futex requeue_pi code can enforce the waiters bit */
1047                 if (set_waiters)
1048                         newval |= FUTEX_WAITERS;
1049
1050                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1051                 /* If the take over worked, return 1 */
1052                 return ret < 0 ? ret : 1;
1053         }
1054
1055         /*
1056          * First waiter. Set the waiters bit before attaching ourself to
1057          * the owner. If owner tries to unlock, it will be forced into
1058          * the kernel and blocked on hb->lock.
1059          */
1060         newval = uval | FUTEX_WAITERS;
1061         ret = lock_pi_update_atomic(uaddr, uval, newval);
1062         if (ret)
1063                 return ret;
1064         /*
1065          * If the update of the user space value succeeded, we try to
1066          * attach to the owner. If that fails, no harm done, we only
1067          * set the FUTEX_WAITERS bit in the user space variable.
1068          */
1069         return attach_to_pi_owner(uval, key, ps);
1070 }
1071
1072 /**
1073  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1074  * @q:  The futex_q to unqueue
1075  *
1076  * The q->lock_ptr must not be NULL and must be held by the caller.
1077  */
1078 static void __unqueue_futex(struct futex_q *q)
1079 {
1080         struct futex_hash_bucket *hb;
1081
1082         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1083             || WARN_ON(plist_node_empty(&q->list)))
1084                 return;
1085
1086         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1087         plist_del(&q->list, &hb->chain);
1088         hb_waiters_dec(hb);
1089 }
1090
1091 /*
1092  * The hash bucket lock must be held when this is called.
1093  * Afterwards, the futex_q must not be accessed. Callers
1094  * must ensure to later call wake_up_q() for the actual
1095  * wakeups to occur.
1096  */
1097 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1098 {
1099         struct task_struct *p = q->task;
1100
1101         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1102                 return;
1103
1104         /*
1105          * Queue the task for later wakeup for after we've released
1106          * the hb->lock. wake_q_add() grabs reference to p.
1107          */
1108         wake_q_add(wake_q, p);
1109         __unqueue_futex(q);
1110         /*
1111          * The waiting task can free the futex_q as soon as
1112          * q->lock_ptr = NULL is written, without taking any locks. A
1113          * memory barrier is required here to prevent the following
1114          * store to lock_ptr from getting ahead of the plist_del.
1115          */
1116         smp_wmb();
1117         q->lock_ptr = NULL;
1118 }
1119
1120 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
1121 {
1122         struct task_struct *new_owner;
1123         struct futex_pi_state *pi_state = this->pi_state;
1124         u32 uninitialized_var(curval), newval;
1125         int ret = 0;
1126
1127         if (!pi_state)
1128                 return -EINVAL;
1129
1130         /*
1131          * If current does not own the pi_state then the futex is
1132          * inconsistent and user space fiddled with the futex value.
1133          */
1134         if (pi_state->owner != current)
1135                 return -EINVAL;
1136
1137         raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1138         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1139
1140         /*
1141          * It is possible that the next waiter (the one that brought
1142          * this owner to the kernel) timed out and is no longer
1143          * waiting on the lock.
1144          */
1145         if (!new_owner)
1146                 new_owner = this->task;
1147
1148         /*
1149          * We pass it to the next owner. The WAITERS bit is always
1150          * kept enabled while there is PI state around. We cleanup the
1151          * owner died bit, because we are the owner.
1152          */
1153         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1154
1155         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1156                 ret = -EFAULT;
1157         else if (curval != uval)
1158                 ret = -EINVAL;
1159         if (ret) {
1160                 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1161                 return ret;
1162         }
1163
1164         raw_spin_lock_irq(&pi_state->owner->pi_lock);
1165         WARN_ON(list_empty(&pi_state->list));
1166         list_del_init(&pi_state->list);
1167         raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1168
1169         raw_spin_lock_irq(&new_owner->pi_lock);
1170         WARN_ON(!list_empty(&pi_state->list));
1171         list_add(&pi_state->list, &new_owner->pi_state_list);
1172         pi_state->owner = new_owner;
1173         raw_spin_unlock_irq(&new_owner->pi_lock);
1174
1175         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1176         rt_mutex_unlock(&pi_state->pi_mutex);
1177
1178         return 0;
1179 }
1180
1181 /*
1182  * Express the locking dependencies for lockdep:
1183  */
1184 static inline void
1185 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1186 {
1187         if (hb1 <= hb2) {
1188                 spin_lock(&hb1->lock);
1189                 if (hb1 < hb2)
1190                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1191         } else { /* hb1 > hb2 */
1192                 spin_lock(&hb2->lock);
1193                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1194         }
1195 }
1196
1197 static inline void
1198 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1199 {
1200         spin_unlock(&hb1->lock);
1201         if (hb1 != hb2)
1202                 spin_unlock(&hb2->lock);
1203 }
1204
1205 /*
1206  * Wake up waiters matching bitset queued on this futex (uaddr).
1207  */
1208 static int
1209 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1210 {
1211         struct futex_hash_bucket *hb;
1212         struct futex_q *this, *next;
1213         union futex_key key = FUTEX_KEY_INIT;
1214         int ret;
1215         WAKE_Q(wake_q);
1216
1217         if (!bitset)
1218                 return -EINVAL;
1219
1220         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1221         if (unlikely(ret != 0))
1222                 goto out;
1223
1224         hb = hash_futex(&key);
1225
1226         /* Make sure we really have tasks to wakeup */
1227         if (!hb_waiters_pending(hb))
1228                 goto out_put_key;
1229
1230         spin_lock(&hb->lock);
1231
1232         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1233                 if (match_futex (&this->key, &key)) {
1234                         if (this->pi_state || this->rt_waiter) {
1235                                 ret = -EINVAL;
1236                                 break;
1237                         }
1238
1239                         /* Check if one of the bits is set in both bitsets */
1240                         if (!(this->bitset & bitset))
1241                                 continue;
1242
1243                         mark_wake_futex(&wake_q, this);
1244                         if (++ret >= nr_wake)
1245                                 break;
1246                 }
1247         }
1248
1249         spin_unlock(&hb->lock);
1250         wake_up_q(&wake_q);
1251 out_put_key:
1252         put_futex_key(&key);
1253 out:
1254         return ret;
1255 }
1256
1257 /*
1258  * Wake up all waiters hashed on the physical page that is mapped
1259  * to this virtual address:
1260  */
1261 static int
1262 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1263               int nr_wake, int nr_wake2, int op)
1264 {
1265         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1266         struct futex_hash_bucket *hb1, *hb2;
1267         struct futex_q *this, *next;
1268         int ret, op_ret;
1269         WAKE_Q(wake_q);
1270
1271 retry:
1272         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1273         if (unlikely(ret != 0))
1274                 goto out;
1275         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1276         if (unlikely(ret != 0))
1277                 goto out_put_key1;
1278
1279         hb1 = hash_futex(&key1);
1280         hb2 = hash_futex(&key2);
1281
1282 retry_private:
1283         double_lock_hb(hb1, hb2);
1284         op_ret = futex_atomic_op_inuser(op, uaddr2);
1285         if (unlikely(op_ret < 0)) {
1286
1287                 double_unlock_hb(hb1, hb2);
1288
1289 #ifndef CONFIG_MMU
1290                 /*
1291                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1292                  * but we might get them from range checking
1293                  */
1294                 ret = op_ret;
1295                 goto out_put_keys;
1296 #endif
1297
1298                 if (unlikely(op_ret != -EFAULT)) {
1299                         ret = op_ret;
1300                         goto out_put_keys;
1301                 }
1302
1303                 ret = fault_in_user_writeable(uaddr2);
1304                 if (ret)
1305                         goto out_put_keys;
1306
1307                 if (!(flags & FLAGS_SHARED))
1308                         goto retry_private;
1309
1310                 put_futex_key(&key2);
1311                 put_futex_key(&key1);
1312                 goto retry;
1313         }
1314
1315         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1316                 if (match_futex (&this->key, &key1)) {
1317                         if (this->pi_state || this->rt_waiter) {
1318                                 ret = -EINVAL;
1319                                 goto out_unlock;
1320                         }
1321                         mark_wake_futex(&wake_q, this);
1322                         if (++ret >= nr_wake)
1323                                 break;
1324                 }
1325         }
1326
1327         if (op_ret > 0) {
1328                 op_ret = 0;
1329                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1330                         if (match_futex (&this->key, &key2)) {
1331                                 if (this->pi_state || this->rt_waiter) {
1332                                         ret = -EINVAL;
1333                                         goto out_unlock;
1334                                 }
1335                                 mark_wake_futex(&wake_q, this);
1336                                 if (++op_ret >= nr_wake2)
1337                                         break;
1338                         }
1339                 }
1340                 ret += op_ret;
1341         }
1342
1343 out_unlock:
1344         double_unlock_hb(hb1, hb2);
1345         wake_up_q(&wake_q);
1346 out_put_keys:
1347         put_futex_key(&key2);
1348 out_put_key1:
1349         put_futex_key(&key1);
1350 out:
1351         return ret;
1352 }
1353
1354 /**
1355  * requeue_futex() - Requeue a futex_q from one hb to another
1356  * @q:          the futex_q to requeue
1357  * @hb1:        the source hash_bucket
1358  * @hb2:        the target hash_bucket
1359  * @key2:       the new key for the requeued futex_q
1360  */
1361 static inline
1362 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1363                    struct futex_hash_bucket *hb2, union futex_key *key2)
1364 {
1365
1366         /*
1367          * If key1 and key2 hash to the same bucket, no need to
1368          * requeue.
1369          */
1370         if (likely(&hb1->chain != &hb2->chain)) {
1371                 plist_del(&q->list, &hb1->chain);
1372                 hb_waiters_dec(hb1);
1373                 plist_add(&q->list, &hb2->chain);
1374                 hb_waiters_inc(hb2);
1375                 q->lock_ptr = &hb2->lock;
1376         }
1377         get_futex_key_refs(key2);
1378         q->key = *key2;
1379 }
1380
1381 /**
1382  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1383  * @q:          the futex_q
1384  * @key:        the key of the requeue target futex
1385  * @hb:         the hash_bucket of the requeue target futex
1386  *
1387  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1388  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1389  * to the requeue target futex so the waiter can detect the wakeup on the right
1390  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1391  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1392  * to protect access to the pi_state to fixup the owner later.  Must be called
1393  * with both q->lock_ptr and hb->lock held.
1394  */
1395 static inline
1396 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1397                            struct futex_hash_bucket *hb)
1398 {
1399         get_futex_key_refs(key);
1400         q->key = *key;
1401
1402         __unqueue_futex(q);
1403
1404         WARN_ON(!q->rt_waiter);
1405         q->rt_waiter = NULL;
1406
1407         q->lock_ptr = &hb->lock;
1408
1409         wake_up_state(q->task, TASK_NORMAL);
1410 }
1411
1412 /**
1413  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1414  * @pifutex:            the user address of the to futex
1415  * @hb1:                the from futex hash bucket, must be locked by the caller
1416  * @hb2:                the to futex hash bucket, must be locked by the caller
1417  * @key1:               the from futex key
1418  * @key2:               the to futex key
1419  * @ps:                 address to store the pi_state pointer
1420  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1421  *
1422  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1423  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1424  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1425  * hb1 and hb2 must be held by the caller.
1426  *
1427  * Return:
1428  *  0 - failed to acquire the lock atomically;
1429  * >0 - acquired the lock, return value is vpid of the top_waiter
1430  * <0 - error
1431  */
1432 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1433                                  struct futex_hash_bucket *hb1,
1434                                  struct futex_hash_bucket *hb2,
1435                                  union futex_key *key1, union futex_key *key2,
1436                                  struct futex_pi_state **ps, int set_waiters)
1437 {
1438         struct futex_q *top_waiter = NULL;
1439         u32 curval;
1440         int ret, vpid;
1441
1442         if (get_futex_value_locked(&curval, pifutex))
1443                 return -EFAULT;
1444
1445         /*
1446          * Find the top_waiter and determine if there are additional waiters.
1447          * If the caller intends to requeue more than 1 waiter to pifutex,
1448          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1449          * as we have means to handle the possible fault.  If not, don't set
1450          * the bit unecessarily as it will force the subsequent unlock to enter
1451          * the kernel.
1452          */
1453         top_waiter = futex_top_waiter(hb1, key1);
1454
1455         /* There are no waiters, nothing for us to do. */
1456         if (!top_waiter)
1457                 return 0;
1458
1459         /* Ensure we requeue to the expected futex. */
1460         if (!match_futex(top_waiter->requeue_pi_key, key2))
1461                 return -EINVAL;
1462
1463         /*
1464          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1465          * the contended case or if set_waiters is 1.  The pi_state is returned
1466          * in ps in contended cases.
1467          */
1468         vpid = task_pid_vnr(top_waiter->task);
1469         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1470                                    set_waiters);
1471         if (ret == 1) {
1472                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1473                 return vpid;
1474         }
1475         return ret;
1476 }
1477
1478 /**
1479  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1480  * @uaddr1:     source futex user address
1481  * @flags:      futex flags (FLAGS_SHARED, etc.)
1482  * @uaddr2:     target futex user address
1483  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1484  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1485  * @cmpval:     @uaddr1 expected value (or %NULL)
1486  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1487  *              pi futex (pi to pi requeue is not supported)
1488  *
1489  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1490  * uaddr2 atomically on behalf of the top waiter.
1491  *
1492  * Return:
1493  * >=0 - on success, the number of tasks requeued or woken;
1494  *  <0 - on error
1495  */
1496 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1497                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1498                          u32 *cmpval, int requeue_pi)
1499 {
1500         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1501         int drop_count = 0, task_count = 0, ret;
1502         struct futex_pi_state *pi_state = NULL;
1503         struct futex_hash_bucket *hb1, *hb2;
1504         struct futex_q *this, *next;
1505         WAKE_Q(wake_q);
1506
1507         if (requeue_pi) {
1508                 /*
1509                  * Requeue PI only works on two distinct uaddrs. This
1510                  * check is only valid for private futexes. See below.
1511                  */
1512                 if (uaddr1 == uaddr2)
1513                         return -EINVAL;
1514
1515                 /*
1516                  * requeue_pi requires a pi_state, try to allocate it now
1517                  * without any locks in case it fails.
1518                  */
1519                 if (refill_pi_state_cache())
1520                         return -ENOMEM;
1521                 /*
1522                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1523                  * + nr_requeue, since it acquires the rt_mutex prior to
1524                  * returning to userspace, so as to not leave the rt_mutex with
1525                  * waiters and no owner.  However, second and third wake-ups
1526                  * cannot be predicted as they involve race conditions with the
1527                  * first wake and a fault while looking up the pi_state.  Both
1528                  * pthread_cond_signal() and pthread_cond_broadcast() should
1529                  * use nr_wake=1.
1530                  */
1531                 if (nr_wake != 1)
1532                         return -EINVAL;
1533         }
1534
1535 retry:
1536         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1537         if (unlikely(ret != 0))
1538                 goto out;
1539         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1540                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1541         if (unlikely(ret != 0))
1542                 goto out_put_key1;
1543
1544         /*
1545          * The check above which compares uaddrs is not sufficient for
1546          * shared futexes. We need to compare the keys:
1547          */
1548         if (requeue_pi && match_futex(&key1, &key2)) {
1549                 ret = -EINVAL;
1550                 goto out_put_keys;
1551         }
1552
1553         hb1 = hash_futex(&key1);
1554         hb2 = hash_futex(&key2);
1555
1556 retry_private:
1557         hb_waiters_inc(hb2);
1558         double_lock_hb(hb1, hb2);
1559
1560         if (likely(cmpval != NULL)) {
1561                 u32 curval;
1562
1563                 ret = get_futex_value_locked(&curval, uaddr1);
1564
1565                 if (unlikely(ret)) {
1566                         double_unlock_hb(hb1, hb2);
1567                         hb_waiters_dec(hb2);
1568
1569                         ret = get_user(curval, uaddr1);
1570                         if (ret)
1571                                 goto out_put_keys;
1572
1573                         if (!(flags & FLAGS_SHARED))
1574                                 goto retry_private;
1575
1576                         put_futex_key(&key2);
1577                         put_futex_key(&key1);
1578                         goto retry;
1579                 }
1580                 if (curval != *cmpval) {
1581                         ret = -EAGAIN;
1582                         goto out_unlock;
1583                 }
1584         }
1585
1586         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1587                 /*
1588                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1589                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1590                  * bit.  We force this here where we are able to easily handle
1591                  * faults rather in the requeue loop below.
1592                  */
1593                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1594                                                  &key2, &pi_state, nr_requeue);
1595
1596                 /*
1597                  * At this point the top_waiter has either taken uaddr2 or is
1598                  * waiting on it.  If the former, then the pi_state will not
1599                  * exist yet, look it up one more time to ensure we have a
1600                  * reference to it. If the lock was taken, ret contains the
1601                  * vpid of the top waiter task.
1602                  */
1603                 if (ret > 0) {
1604                         WARN_ON(pi_state);
1605                         drop_count++;
1606                         task_count++;
1607                         /*
1608                          * If we acquired the lock, then the user
1609                          * space value of uaddr2 should be vpid. It
1610                          * cannot be changed by the top waiter as it
1611                          * is blocked on hb2 lock if it tries to do
1612                          * so. If something fiddled with it behind our
1613                          * back the pi state lookup might unearth
1614                          * it. So we rather use the known value than
1615                          * rereading and handing potential crap to
1616                          * lookup_pi_state.
1617                          */
1618                         ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1619                 }
1620
1621                 switch (ret) {
1622                 case 0:
1623                         break;
1624                 case -EFAULT:
1625                         free_pi_state(pi_state);
1626                         pi_state = NULL;
1627                         double_unlock_hb(hb1, hb2);
1628                         hb_waiters_dec(hb2);
1629                         put_futex_key(&key2);
1630                         put_futex_key(&key1);
1631                         ret = fault_in_user_writeable(uaddr2);
1632                         if (!ret)
1633                                 goto retry;
1634                         goto out;
1635                 case -EAGAIN:
1636                         /*
1637                          * Two reasons for this:
1638                          * - Owner is exiting and we just wait for the
1639                          *   exit to complete.
1640                          * - The user space value changed.
1641                          */
1642                         free_pi_state(pi_state);
1643                         pi_state = NULL;
1644                         double_unlock_hb(hb1, hb2);
1645                         hb_waiters_dec(hb2);
1646                         put_futex_key(&key2);
1647                         put_futex_key(&key1);
1648                         cond_resched();
1649                         goto retry;
1650                 default:
1651                         goto out_unlock;
1652                 }
1653         }
1654
1655         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1656                 if (task_count - nr_wake >= nr_requeue)
1657                         break;
1658
1659                 if (!match_futex(&this->key, &key1))
1660                         continue;
1661
1662                 /*
1663                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1664                  * be paired with each other and no other futex ops.
1665                  *
1666                  * We should never be requeueing a futex_q with a pi_state,
1667                  * which is awaiting a futex_unlock_pi().
1668                  */
1669                 if ((requeue_pi && !this->rt_waiter) ||
1670                     (!requeue_pi && this->rt_waiter) ||
1671                     this->pi_state) {
1672                         ret = -EINVAL;
1673                         break;
1674                 }
1675
1676                 /*
1677                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1678                  * lock, we already woke the top_waiter.  If not, it will be
1679                  * woken by futex_unlock_pi().
1680                  */
1681                 if (++task_count <= nr_wake && !requeue_pi) {
1682                         mark_wake_futex(&wake_q, this);
1683                         continue;
1684                 }
1685
1686                 /* Ensure we requeue to the expected futex for requeue_pi. */
1687                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1688                         ret = -EINVAL;
1689                         break;
1690                 }
1691
1692                 /*
1693                  * Requeue nr_requeue waiters and possibly one more in the case
1694                  * of requeue_pi if we couldn't acquire the lock atomically.
1695                  */
1696                 if (requeue_pi) {
1697                         /* Prepare the waiter to take the rt_mutex. */
1698                         atomic_inc(&pi_state->refcount);
1699                         this->pi_state = pi_state;
1700                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1701                                                         this->rt_waiter,
1702                                                         this->task);
1703                         if (ret == 1) {
1704                                 /* We got the lock. */
1705                                 requeue_pi_wake_futex(this, &key2, hb2);
1706                                 drop_count++;
1707                                 continue;
1708                         } else if (ret) {
1709                                 /* -EDEADLK */
1710                                 this->pi_state = NULL;
1711                                 free_pi_state(pi_state);
1712                                 goto out_unlock;
1713                         }
1714                 }
1715                 requeue_futex(this, hb1, hb2, &key2);
1716                 drop_count++;
1717         }
1718
1719 out_unlock:
1720         free_pi_state(pi_state);
1721         double_unlock_hb(hb1, hb2);
1722         wake_up_q(&wake_q);
1723         hb_waiters_dec(hb2);
1724
1725         /*
1726          * drop_futex_key_refs() must be called outside the spinlocks. During
1727          * the requeue we moved futex_q's from the hash bucket at key1 to the
1728          * one at key2 and updated their key pointer.  We no longer need to
1729          * hold the references to key1.
1730          */
1731         while (--drop_count >= 0)
1732                 drop_futex_key_refs(&key1);
1733
1734 out_put_keys:
1735         put_futex_key(&key2);
1736 out_put_key1:
1737         put_futex_key(&key1);
1738 out:
1739         return ret ? ret : task_count;
1740 }
1741
1742 /* The key must be already stored in q->key. */
1743 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1744         __acquires(&hb->lock)
1745 {
1746         struct futex_hash_bucket *hb;
1747
1748         hb = hash_futex(&q->key);
1749
1750         /*
1751          * Increment the counter before taking the lock so that
1752          * a potential waker won't miss a to-be-slept task that is
1753          * waiting for the spinlock. This is safe as all queue_lock()
1754          * users end up calling queue_me(). Similarly, for housekeeping,
1755          * decrement the counter at queue_unlock() when some error has
1756          * occurred and we don't end up adding the task to the list.
1757          */
1758         hb_waiters_inc(hb);
1759
1760         q->lock_ptr = &hb->lock;
1761
1762         spin_lock(&hb->lock); /* implies MB (A) */
1763         return hb;
1764 }
1765
1766 static inline void
1767 queue_unlock(struct futex_hash_bucket *hb)
1768         __releases(&hb->lock)
1769 {
1770         spin_unlock(&hb->lock);
1771         hb_waiters_dec(hb);
1772 }
1773
1774 /**
1775  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1776  * @q:  The futex_q to enqueue
1777  * @hb: The destination hash bucket
1778  *
1779  * The hb->lock must be held by the caller, and is released here. A call to
1780  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1781  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1782  * or nothing if the unqueue is done as part of the wake process and the unqueue
1783  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1784  * an example).
1785  */
1786 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1787         __releases(&hb->lock)
1788 {
1789         int prio;
1790
1791         /*
1792          * The priority used to register this element is
1793          * - either the real thread-priority for the real-time threads
1794          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1795          * - or MAX_RT_PRIO for non-RT threads.
1796          * Thus, all RT-threads are woken first in priority order, and
1797          * the others are woken last, in FIFO order.
1798          */
1799         prio = min(current->normal_prio, MAX_RT_PRIO);
1800
1801         plist_node_init(&q->list, prio);
1802         plist_add(&q->list, &hb->chain);
1803         q->task = current;
1804         spin_unlock(&hb->lock);
1805 }
1806
1807 /**
1808  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1809  * @q:  The futex_q to unqueue
1810  *
1811  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1812  * be paired with exactly one earlier call to queue_me().
1813  *
1814  * Return:
1815  *   1 - if the futex_q was still queued (and we removed unqueued it);
1816  *   0 - if the futex_q was already removed by the waking thread
1817  */
1818 static int unqueue_me(struct futex_q *q)
1819 {
1820         spinlock_t *lock_ptr;
1821         int ret = 0;
1822
1823         /* In the common case we don't take the spinlock, which is nice. */
1824 retry:
1825         lock_ptr = q->lock_ptr;
1826         barrier();
1827         if (lock_ptr != NULL) {
1828                 spin_lock(lock_ptr);
1829                 /*
1830                  * q->lock_ptr can change between reading it and
1831                  * spin_lock(), causing us to take the wrong lock.  This
1832                  * corrects the race condition.
1833                  *
1834                  * Reasoning goes like this: if we have the wrong lock,
1835                  * q->lock_ptr must have changed (maybe several times)
1836                  * between reading it and the spin_lock().  It can
1837                  * change again after the spin_lock() but only if it was
1838                  * already changed before the spin_lock().  It cannot,
1839                  * however, change back to the original value.  Therefore
1840                  * we can detect whether we acquired the correct lock.
1841                  */
1842                 if (unlikely(lock_ptr != q->lock_ptr)) {
1843                         spin_unlock(lock_ptr);
1844                         goto retry;
1845                 }
1846                 __unqueue_futex(q);
1847
1848                 BUG_ON(q->pi_state);
1849
1850                 spin_unlock(lock_ptr);
1851                 ret = 1;
1852         }
1853
1854         drop_futex_key_refs(&q->key);
1855         return ret;
1856 }
1857
1858 /*
1859  * PI futexes can not be requeued and must remove themself from the
1860  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1861  * and dropped here.
1862  */
1863 static void unqueue_me_pi(struct futex_q *q)
1864         __releases(q->lock_ptr)
1865 {
1866         __unqueue_futex(q);
1867
1868         BUG_ON(!q->pi_state);
1869         free_pi_state(q->pi_state);
1870         q->pi_state = NULL;
1871
1872         spin_unlock(q->lock_ptr);
1873 }
1874
1875 /*
1876  * Fixup the pi_state owner with the new owner.
1877  *
1878  * Must be called with hash bucket lock held and mm->sem held for non
1879  * private futexes.
1880  */
1881 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1882                                 struct task_struct *newowner)
1883 {
1884         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1885         struct futex_pi_state *pi_state = q->pi_state;
1886         struct task_struct *oldowner = pi_state->owner;
1887         u32 uval, uninitialized_var(curval), newval;
1888         int ret;
1889
1890         /* Owner died? */
1891         if (!pi_state->owner)
1892                 newtid |= FUTEX_OWNER_DIED;
1893
1894         /*
1895          * We are here either because we stole the rtmutex from the
1896          * previous highest priority waiter or we are the highest priority
1897          * waiter but failed to get the rtmutex the first time.
1898          * We have to replace the newowner TID in the user space variable.
1899          * This must be atomic as we have to preserve the owner died bit here.
1900          *
1901          * Note: We write the user space value _before_ changing the pi_state
1902          * because we can fault here. Imagine swapped out pages or a fork
1903          * that marked all the anonymous memory readonly for cow.
1904          *
1905          * Modifying pi_state _before_ the user space value would
1906          * leave the pi_state in an inconsistent state when we fault
1907          * here, because we need to drop the hash bucket lock to
1908          * handle the fault. This might be observed in the PID check
1909          * in lookup_pi_state.
1910          */
1911 retry:
1912         if (get_futex_value_locked(&uval, uaddr))
1913                 goto handle_fault;
1914
1915         while (1) {
1916                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1917
1918                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1919                         goto handle_fault;
1920                 if (curval == uval)
1921                         break;
1922                 uval = curval;
1923         }
1924
1925         /*
1926          * We fixed up user space. Now we need to fix the pi_state
1927          * itself.
1928          */
1929         if (pi_state->owner != NULL) {
1930                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1931                 WARN_ON(list_empty(&pi_state->list));
1932                 list_del_init(&pi_state->list);
1933                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1934         }
1935
1936         pi_state->owner = newowner;
1937
1938         raw_spin_lock_irq(&newowner->pi_lock);
1939         WARN_ON(!list_empty(&pi_state->list));
1940         list_add(&pi_state->list, &newowner->pi_state_list);
1941         raw_spin_unlock_irq(&newowner->pi_lock);
1942         return 0;
1943
1944         /*
1945          * To handle the page fault we need to drop the hash bucket
1946          * lock here. That gives the other task (either the highest priority
1947          * waiter itself or the task which stole the rtmutex) the
1948          * chance to try the fixup of the pi_state. So once we are
1949          * back from handling the fault we need to check the pi_state
1950          * after reacquiring the hash bucket lock and before trying to
1951          * do another fixup. When the fixup has been done already we
1952          * simply return.
1953          */
1954 handle_fault:
1955         spin_unlock(q->lock_ptr);
1956
1957         ret = fault_in_user_writeable(uaddr);
1958
1959         spin_lock(q->lock_ptr);
1960
1961         /*
1962          * Check if someone else fixed it for us:
1963          */
1964         if (pi_state->owner != oldowner)
1965                 return 0;
1966
1967         if (ret)
1968                 return ret;
1969
1970         goto retry;
1971 }
1972
1973 static long futex_wait_restart(struct restart_block *restart);
1974
1975 /**
1976  * fixup_owner() - Post lock pi_state and corner case management
1977  * @uaddr:      user address of the futex
1978  * @q:          futex_q (contains pi_state and access to the rt_mutex)
1979  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
1980  *
1981  * After attempting to lock an rt_mutex, this function is called to cleanup
1982  * the pi_state owner as well as handle race conditions that may allow us to
1983  * acquire the lock. Must be called with the hb lock held.
1984  *
1985  * Return:
1986  *  1 - success, lock taken;
1987  *  0 - success, lock not taken;
1988  * <0 - on error (-EFAULT)
1989  */
1990 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1991 {
1992         struct task_struct *owner;
1993         int ret = 0;
1994
1995         if (locked) {
1996                 /*
1997                  * Got the lock. We might not be the anticipated owner if we
1998                  * did a lock-steal - fix up the PI-state in that case:
1999                  */
2000                 if (q->pi_state->owner != current)
2001                         ret = fixup_pi_state_owner(uaddr, q, current);
2002                 goto out;
2003         }
2004
2005         /*
2006          * Catch the rare case, where the lock was released when we were on the
2007          * way back before we locked the hash bucket.
2008          */
2009         if (q->pi_state->owner == current) {
2010                 /*
2011                  * Try to get the rt_mutex now. This might fail as some other
2012                  * task acquired the rt_mutex after we removed ourself from the
2013                  * rt_mutex waiters list.
2014                  */
2015                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2016                         locked = 1;
2017                         goto out;
2018                 }
2019
2020                 /*
2021                  * pi_state is incorrect, some other task did a lock steal and
2022                  * we returned due to timeout or signal without taking the
2023                  * rt_mutex. Too late.
2024                  */
2025                 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
2026                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2027                 if (!owner)
2028                         owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2029                 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
2030                 ret = fixup_pi_state_owner(uaddr, q, owner);
2031                 goto out;
2032         }
2033
2034         /*
2035          * Paranoia check. If we did not take the lock, then we should not be
2036          * the owner of the rt_mutex.
2037          */
2038         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2039                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2040                                 "pi-state %p\n", ret,
2041                                 q->pi_state->pi_mutex.owner,
2042                                 q->pi_state->owner);
2043
2044 out:
2045         return ret ? ret : locked;
2046 }
2047
2048 /**
2049  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2050  * @hb:         the futex hash bucket, must be locked by the caller
2051  * @q:          the futex_q to queue up on
2052  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2053  */
2054 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2055                                 struct hrtimer_sleeper *timeout)
2056 {
2057         /*
2058          * The task state is guaranteed to be set before another task can
2059          * wake it. set_current_state() is implemented using smp_store_mb() and
2060          * queue_me() calls spin_unlock() upon completion, both serializing
2061          * access to the hash list and forcing another memory barrier.
2062          */
2063         set_current_state(TASK_INTERRUPTIBLE);
2064         queue_me(q, hb);
2065
2066         /* Arm the timer */
2067         if (timeout)
2068                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2069
2070         /*
2071          * If we have been removed from the hash list, then another task
2072          * has tried to wake us, and we can skip the call to schedule().
2073          */
2074         if (likely(!plist_node_empty(&q->list))) {
2075                 /*
2076                  * If the timer has already expired, current will already be
2077                  * flagged for rescheduling. Only call schedule if there
2078                  * is no timeout, or if it has yet to expire.
2079                  */
2080                 if (!timeout || timeout->task)
2081                         freezable_schedule();
2082         }
2083         __set_current_state(TASK_RUNNING);
2084 }
2085
2086 /**
2087  * futex_wait_setup() - Prepare to wait on a futex
2088  * @uaddr:      the futex userspace address
2089  * @val:        the expected value
2090  * @flags:      futex flags (FLAGS_SHARED, etc.)
2091  * @q:          the associated futex_q
2092  * @hb:         storage for hash_bucket pointer to be returned to caller
2093  *
2094  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2095  * compare it with the expected value.  Handle atomic faults internally.
2096  * Return with the hb lock held and a q.key reference on success, and unlocked
2097  * with no q.key reference on failure.
2098  *
2099  * Return:
2100  *  0 - uaddr contains val and hb has been locked;
2101  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2102  */
2103 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2104                            struct futex_q *q, struct futex_hash_bucket **hb)
2105 {
2106         u32 uval;
2107         int ret;
2108
2109         /*
2110          * Access the page AFTER the hash-bucket is locked.
2111          * Order is important:
2112          *
2113          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2114          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2115          *
2116          * The basic logical guarantee of a futex is that it blocks ONLY
2117          * if cond(var) is known to be true at the time of blocking, for
2118          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2119          * would open a race condition where we could block indefinitely with
2120          * cond(var) false, which would violate the guarantee.
2121          *
2122          * On the other hand, we insert q and release the hash-bucket only
2123          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2124          * absorb a wakeup if *uaddr does not match the desired values
2125          * while the syscall executes.
2126          */
2127 retry:
2128         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2129         if (unlikely(ret != 0))
2130                 return ret;
2131
2132 retry_private:
2133         *hb = queue_lock(q);
2134
2135         ret = get_futex_value_locked(&uval, uaddr);
2136
2137         if (ret) {
2138                 queue_unlock(*hb);
2139
2140                 ret = get_user(uval, uaddr);
2141                 if (ret)
2142                         goto out;
2143
2144                 if (!(flags & FLAGS_SHARED))
2145                         goto retry_private;
2146
2147                 put_futex_key(&q->key);
2148                 goto retry;
2149         }
2150
2151         if (uval != val) {
2152                 queue_unlock(*hb);
2153                 ret = -EWOULDBLOCK;
2154         }
2155
2156 out:
2157         if (ret)
2158                 put_futex_key(&q->key);
2159         return ret;
2160 }
2161
2162 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2163                       ktime_t *abs_time, u32 bitset)
2164 {
2165         struct hrtimer_sleeper timeout, *to = NULL;
2166         struct restart_block *restart;
2167         struct futex_hash_bucket *hb;
2168         struct futex_q q = futex_q_init;
2169         int ret;
2170
2171         if (!bitset)
2172                 return -EINVAL;
2173         q.bitset = bitset;
2174
2175         if (abs_time) {
2176                 to = &timeout;
2177
2178                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2179                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2180                                       HRTIMER_MODE_ABS);
2181                 hrtimer_init_sleeper(to, current);
2182                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2183                                              current->timer_slack_ns);
2184         }
2185
2186 retry:
2187         /*
2188          * Prepare to wait on uaddr. On success, holds hb lock and increments
2189          * q.key refs.
2190          */
2191         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2192         if (ret)
2193                 goto out;
2194
2195         /* queue_me and wait for wakeup, timeout, or a signal. */
2196         futex_wait_queue_me(hb, &q, to);
2197
2198         /* If we were woken (and unqueued), we succeeded, whatever. */
2199         ret = 0;
2200         /* unqueue_me() drops q.key ref */
2201         if (!unqueue_me(&q))
2202                 goto out;
2203         ret = -ETIMEDOUT;
2204         if (to && !to->task)
2205                 goto out;
2206
2207         /*
2208          * We expect signal_pending(current), but we might be the
2209          * victim of a spurious wakeup as well.
2210          */
2211         if (!signal_pending(current))
2212                 goto retry;
2213
2214         ret = -ERESTARTSYS;
2215         if (!abs_time)
2216                 goto out;
2217
2218         restart = &current->restart_block;
2219         restart->fn = futex_wait_restart;
2220         restart->futex.uaddr = uaddr;
2221         restart->futex.val = val;
2222         restart->futex.time = abs_time->tv64;
2223         restart->futex.bitset = bitset;
2224         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2225
2226         ret = -ERESTART_RESTARTBLOCK;
2227
2228 out:
2229         if (to) {
2230                 hrtimer_cancel(&to->timer);
2231                 destroy_hrtimer_on_stack(&to->timer);
2232         }
2233         return ret;
2234 }
2235
2236
2237 static long futex_wait_restart(struct restart_block *restart)
2238 {
2239         u32 __user *uaddr = restart->futex.uaddr;
2240         ktime_t t, *tp = NULL;
2241
2242         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2243                 t.tv64 = restart->futex.time;
2244                 tp = &t;
2245         }
2246         restart->fn = do_no_restart_syscall;
2247
2248         return (long)futex_wait(uaddr, restart->futex.flags,
2249                                 restart->futex.val, tp, restart->futex.bitset);
2250 }
2251
2252
2253 /*
2254  * Userspace tried a 0 -> TID atomic transition of the futex value
2255  * and failed. The kernel side here does the whole locking operation:
2256  * if there are waiters then it will block, it does PI, etc. (Due to
2257  * races the kernel might see a 0 value of the futex too.)
2258  */
2259 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2260                          ktime_t *time, int trylock)
2261 {
2262         struct hrtimer_sleeper timeout, *to = NULL;
2263         struct futex_hash_bucket *hb;
2264         struct futex_q q = futex_q_init;
2265         int res, ret;
2266
2267         if (refill_pi_state_cache())
2268                 return -ENOMEM;
2269
2270         if (time) {
2271                 to = &timeout;
2272                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2273                                       HRTIMER_MODE_ABS);
2274                 hrtimer_init_sleeper(to, current);
2275                 hrtimer_set_expires(&to->timer, *time);
2276         }
2277
2278 retry:
2279         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2280         if (unlikely(ret != 0))
2281                 goto out;
2282
2283 retry_private:
2284         hb = queue_lock(&q);
2285
2286         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2287         if (unlikely(ret)) {
2288                 switch (ret) {
2289                 case 1:
2290                         /* We got the lock. */
2291                         ret = 0;
2292                         goto out_unlock_put_key;
2293                 case -EFAULT:
2294                         goto uaddr_faulted;
2295                 case -EAGAIN:
2296                         /*
2297                          * Two reasons for this:
2298                          * - Task is exiting and we just wait for the
2299                          *   exit to complete.
2300                          * - The user space value changed.
2301                          */
2302                         queue_unlock(hb);
2303                         put_futex_key(&q.key);
2304                         cond_resched();
2305                         goto retry;
2306                 default:
2307                         goto out_unlock_put_key;
2308                 }
2309         }
2310
2311         /*
2312          * Only actually queue now that the atomic ops are done:
2313          */
2314         queue_me(&q, hb);
2315
2316         WARN_ON(!q.pi_state);
2317         /*
2318          * Block on the PI mutex:
2319          */
2320         if (!trylock) {
2321                 ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2322         } else {
2323                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2324                 /* Fixup the trylock return value: */
2325                 ret = ret ? 0 : -EWOULDBLOCK;
2326         }
2327
2328         spin_lock(q.lock_ptr);
2329         /*
2330          * Fixup the pi_state owner and possibly acquire the lock if we
2331          * haven't already.
2332          */
2333         res = fixup_owner(uaddr, &q, !ret);
2334         /*
2335          * If fixup_owner() returned an error, proprogate that.  If it acquired
2336          * the lock, clear our -ETIMEDOUT or -EINTR.
2337          */
2338         if (res)
2339                 ret = (res < 0) ? res : 0;
2340
2341         /*
2342          * If fixup_owner() faulted and was unable to handle the fault, unlock
2343          * it and return the fault to userspace.
2344          */
2345         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2346                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2347
2348         /* Unqueue and drop the lock */
2349         unqueue_me_pi(&q);
2350
2351         goto out_put_key;
2352
2353 out_unlock_put_key:
2354         queue_unlock(hb);
2355
2356 out_put_key:
2357         put_futex_key(&q.key);
2358 out:
2359         if (to)
2360                 destroy_hrtimer_on_stack(&to->timer);
2361         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2362
2363 uaddr_faulted:
2364         queue_unlock(hb);
2365
2366         ret = fault_in_user_writeable(uaddr);
2367         if (ret)
2368                 goto out_put_key;
2369
2370         if (!(flags & FLAGS_SHARED))
2371                 goto retry_private;
2372
2373         put_futex_key(&q.key);
2374         goto retry;
2375 }
2376
2377 /*
2378  * Userspace attempted a TID -> 0 atomic transition, and failed.
2379  * This is the in-kernel slowpath: we look up the PI state (if any),
2380  * and do the rt-mutex unlock.
2381  */
2382 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2383 {
2384         u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2385         union futex_key key = FUTEX_KEY_INIT;
2386         struct futex_hash_bucket *hb;
2387         struct futex_q *match;
2388         int ret;
2389
2390 retry:
2391         if (get_user(uval, uaddr))
2392                 return -EFAULT;
2393         /*
2394          * We release only a lock we actually own:
2395          */
2396         if ((uval & FUTEX_TID_MASK) != vpid)
2397                 return -EPERM;
2398
2399         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2400         if (ret)
2401                 return ret;
2402
2403         hb = hash_futex(&key);
2404         spin_lock(&hb->lock);
2405
2406         /*
2407          * Check waiters first. We do not trust user space values at
2408          * all and we at least want to know if user space fiddled
2409          * with the futex value instead of blindly unlocking.
2410          */
2411         match = futex_top_waiter(hb, &key);
2412         if (match) {
2413                 ret = wake_futex_pi(uaddr, uval, match);
2414                 /*
2415                  * The atomic access to the futex value generated a
2416                  * pagefault, so retry the user-access and the wakeup:
2417                  */
2418                 if (ret == -EFAULT)
2419                         goto pi_faulted;
2420                 goto out_unlock;
2421         }
2422
2423         /*
2424          * We have no kernel internal state, i.e. no waiters in the
2425          * kernel. Waiters which are about to queue themselves are stuck
2426          * on hb->lock. So we can safely ignore them. We do neither
2427          * preserve the WAITERS bit not the OWNER_DIED one. We are the
2428          * owner.
2429          */
2430         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
2431                 goto pi_faulted;
2432
2433         /*
2434          * If uval has changed, let user space handle it.
2435          */
2436         ret = (curval == uval) ? 0 : -EAGAIN;
2437
2438 out_unlock:
2439         spin_unlock(&hb->lock);
2440         put_futex_key(&key);
2441         return ret;
2442
2443 pi_faulted:
2444         spin_unlock(&hb->lock);
2445         put_futex_key(&key);
2446
2447         ret = fault_in_user_writeable(uaddr);
2448         if (!ret)
2449                 goto retry;
2450
2451         return ret;
2452 }
2453
2454 /**
2455  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2456  * @hb:         the hash_bucket futex_q was original enqueued on
2457  * @q:          the futex_q woken while waiting to be requeued
2458  * @key2:       the futex_key of the requeue target futex
2459  * @timeout:    the timeout associated with the wait (NULL if none)
2460  *
2461  * Detect if the task was woken on the initial futex as opposed to the requeue
2462  * target futex.  If so, determine if it was a timeout or a signal that caused
2463  * the wakeup and return the appropriate error code to the caller.  Must be
2464  * called with the hb lock held.
2465  *
2466  * Return:
2467  *  0 = no early wakeup detected;
2468  * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2469  */
2470 static inline
2471 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2472                                    struct futex_q *q, union futex_key *key2,
2473                                    struct hrtimer_sleeper *timeout)
2474 {
2475         int ret = 0;
2476
2477         /*
2478          * With the hb lock held, we avoid races while we process the wakeup.
2479          * We only need to hold hb (and not hb2) to ensure atomicity as the
2480          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2481          * It can't be requeued from uaddr2 to something else since we don't
2482          * support a PI aware source futex for requeue.
2483          */
2484         if (!match_futex(&q->key, key2)) {
2485                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2486                 /*
2487                  * We were woken prior to requeue by a timeout or a signal.
2488                  * Unqueue the futex_q and determine which it was.
2489                  */
2490                 plist_del(&q->list, &hb->chain);
2491                 hb_waiters_dec(hb);
2492
2493                 /* Handle spurious wakeups gracefully */
2494                 ret = -EWOULDBLOCK;
2495                 if (timeout && !timeout->task)
2496                         ret = -ETIMEDOUT;
2497                 else if (signal_pending(current))
2498                         ret = -ERESTARTNOINTR;
2499         }
2500         return ret;
2501 }
2502
2503 /**
2504  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2505  * @uaddr:      the futex we initially wait on (non-pi)
2506  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2507  *              the same type, no requeueing from private to shared, etc.
2508  * @val:        the expected value of uaddr
2509  * @abs_time:   absolute timeout
2510  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2511  * @uaddr2:     the pi futex we will take prior to returning to user-space
2512  *
2513  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2514  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2515  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2516  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2517  * without one, the pi logic would not know which task to boost/deboost, if
2518  * there was a need to.
2519  *
2520  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2521  * via the following--
2522  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2523  * 2) wakeup on uaddr2 after a requeue
2524  * 3) signal
2525  * 4) timeout
2526  *
2527  * If 3, cleanup and return -ERESTARTNOINTR.
2528  *
2529  * If 2, we may then block on trying to take the rt_mutex and return via:
2530  * 5) successful lock
2531  * 6) signal
2532  * 7) timeout
2533  * 8) other lock acquisition failure
2534  *
2535  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2536  *
2537  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2538  *
2539  * Return:
2540  *  0 - On success;
2541  * <0 - On error
2542  */
2543 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2544                                  u32 val, ktime_t *abs_time, u32 bitset,
2545                                  u32 __user *uaddr2)
2546 {
2547         struct hrtimer_sleeper timeout, *to = NULL;
2548         struct rt_mutex_waiter rt_waiter;
2549         struct rt_mutex *pi_mutex = NULL;
2550         struct futex_hash_bucket *hb;
2551         union futex_key key2 = FUTEX_KEY_INIT;
2552         struct futex_q q = futex_q_init;
2553         int res, ret;
2554
2555         if (uaddr == uaddr2)
2556                 return -EINVAL;
2557
2558         if (!bitset)
2559                 return -EINVAL;
2560
2561         if (abs_time) {
2562                 to = &timeout;
2563                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2564                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2565                                       HRTIMER_MODE_ABS);
2566                 hrtimer_init_sleeper(to, current);
2567                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2568                                              current->timer_slack_ns);
2569         }
2570
2571         /*
2572          * The waiter is allocated on our stack, manipulated by the requeue
2573          * code while we sleep on uaddr.
2574          */
2575         debug_rt_mutex_init_waiter(&rt_waiter);
2576         RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2577         RB_CLEAR_NODE(&rt_waiter.tree_entry);
2578         rt_waiter.task = NULL;
2579
2580         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2581         if (unlikely(ret != 0))
2582                 goto out;
2583
2584         q.bitset = bitset;
2585         q.rt_waiter = &rt_waiter;
2586         q.requeue_pi_key = &key2;
2587
2588         /*
2589          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2590          * count.
2591          */
2592         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2593         if (ret)
2594                 goto out_key2;
2595
2596         /*
2597          * The check above which compares uaddrs is not sufficient for
2598          * shared futexes. We need to compare the keys:
2599          */
2600         if (match_futex(&q.key, &key2)) {
2601                 queue_unlock(hb);
2602                 ret = -EINVAL;
2603                 goto out_put_keys;
2604         }
2605
2606         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2607         futex_wait_queue_me(hb, &q, to);
2608
2609         spin_lock(&hb->lock);
2610         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2611         spin_unlock(&hb->lock);
2612         if (ret)
2613                 goto out_put_keys;
2614
2615         /*
2616          * In order for us to be here, we know our q.key == key2, and since
2617          * we took the hb->lock above, we also know that futex_requeue() has
2618          * completed and we no longer have to concern ourselves with a wakeup
2619          * race with the atomic proxy lock acquisition by the requeue code. The
2620          * futex_requeue dropped our key1 reference and incremented our key2
2621          * reference count.
2622          */
2623
2624         /* Check if the requeue code acquired the second futex for us. */
2625         if (!q.rt_waiter) {
2626                 /*
2627                  * Got the lock. We might not be the anticipated owner if we
2628                  * did a lock-steal - fix up the PI-state in that case.
2629                  */
2630                 if (q.pi_state && (q.pi_state->owner != current)) {
2631                         spin_lock(q.lock_ptr);
2632                         ret = fixup_pi_state_owner(uaddr2, &q, current);
2633                         spin_unlock(q.lock_ptr);
2634                 }
2635         } else {
2636                 /*
2637                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2638                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2639                  * the pi_state.
2640                  */
2641                 WARN_ON(!q.pi_state);
2642                 pi_mutex = &q.pi_state->pi_mutex;
2643                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
2644                 debug_rt_mutex_free_waiter(&rt_waiter);
2645
2646                 spin_lock(q.lock_ptr);
2647                 /*
2648                  * Fixup the pi_state owner and possibly acquire the lock if we
2649                  * haven't already.
2650                  */
2651                 res = fixup_owner(uaddr2, &q, !ret);
2652                 /*
2653                  * If fixup_owner() returned an error, proprogate that.  If it
2654                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
2655                  */
2656                 if (res)
2657                         ret = (res < 0) ? res : 0;
2658
2659                 /* Unqueue and drop the lock. */
2660                 unqueue_me_pi(&q);
2661         }
2662
2663         /*
2664          * If fixup_pi_state_owner() faulted and was unable to handle the
2665          * fault, unlock the rt_mutex and return the fault to userspace.
2666          */
2667         if (ret == -EFAULT) {
2668                 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2669                         rt_mutex_unlock(pi_mutex);
2670         } else if (ret == -EINTR) {
2671                 /*
2672                  * We've already been requeued, but cannot restart by calling
2673                  * futex_lock_pi() directly. We could restart this syscall, but
2674                  * it would detect that the user space "val" changed and return
2675                  * -EWOULDBLOCK.  Save the overhead of the restart and return
2676                  * -EWOULDBLOCK directly.
2677                  */
2678                 ret = -EWOULDBLOCK;
2679         }
2680
2681 out_put_keys:
2682         put_futex_key(&q.key);
2683 out_key2:
2684         put_futex_key(&key2);
2685
2686 out:
2687         if (to) {
2688                 hrtimer_cancel(&to->timer);
2689                 destroy_hrtimer_on_stack(&to->timer);
2690         }
2691         return ret;
2692 }
2693
2694 /*
2695  * Support for robust futexes: the kernel cleans up held futexes at
2696  * thread exit time.
2697  *
2698  * Implementation: user-space maintains a per-thread list of locks it
2699  * is holding. Upon do_exit(), the kernel carefully walks this list,
2700  * and marks all locks that are owned by this thread with the
2701  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2702  * always manipulated with the lock held, so the list is private and
2703  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2704  * field, to allow the kernel to clean up if the thread dies after
2705  * acquiring the lock, but just before it could have added itself to
2706  * the list. There can only be one such pending lock.
2707  */
2708
2709 /**
2710  * sys_set_robust_list() - Set the robust-futex list head of a task
2711  * @head:       pointer to the list-head
2712  * @len:        length of the list-head, as userspace expects
2713  */
2714 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2715                 size_t, len)
2716 {
2717         if (!futex_cmpxchg_enabled)
2718                 return -ENOSYS;
2719         /*
2720          * The kernel knows only one size for now:
2721          */
2722         if (unlikely(len != sizeof(*head)))
2723                 return -EINVAL;
2724
2725         current->robust_list = head;
2726
2727         return 0;
2728 }
2729
2730 /**
2731  * sys_get_robust_list() - Get the robust-futex list head of a task
2732  * @pid:        pid of the process [zero for current task]
2733  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2734  * @len_ptr:    pointer to a length field, the kernel fills in the header size
2735  */
2736 SYSCALL_DEFINE3(get_robust_list, int, pid,
2737                 struct robust_list_head __user * __user *, head_ptr,
2738                 size_t __user *, len_ptr)
2739 {
2740         struct robust_list_head __user *head;
2741         unsigned long ret;
2742         struct task_struct *p;
2743
2744         if (!futex_cmpxchg_enabled)
2745                 return -ENOSYS;
2746
2747         rcu_read_lock();
2748
2749         ret = -ESRCH;
2750         if (!pid)
2751                 p = current;
2752         else {
2753                 p = find_task_by_vpid(pid);
2754                 if (!p)
2755                         goto err_unlock;
2756         }
2757
2758         ret = -EPERM;
2759         if (!ptrace_may_access(p, PTRACE_MODE_READ))
2760                 goto err_unlock;
2761
2762         head = p->robust_list;
2763         rcu_read_unlock();
2764
2765         if (put_user(sizeof(*head), len_ptr))
2766                 return -EFAULT;
2767         return put_user(head, head_ptr);
2768
2769 err_unlock:
2770         rcu_read_unlock();
2771
2772         return ret;
2773 }
2774
2775 /*
2776  * Process a futex-list entry, check whether it's owned by the
2777  * dying task, and do notification if so:
2778  */
2779 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2780 {
2781         u32 uval, uninitialized_var(nval), mval;
2782
2783 retry:
2784         if (get_user(uval, uaddr))
2785                 return -1;
2786
2787         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2788                 /*
2789                  * Ok, this dying thread is truly holding a futex
2790                  * of interest. Set the OWNER_DIED bit atomically
2791                  * via cmpxchg, and if the value had FUTEX_WAITERS
2792                  * set, wake up a waiter (if any). (We have to do a
2793                  * futex_wake() even if OWNER_DIED is already set -
2794                  * to handle the rare but possible case of recursive
2795                  * thread-death.) The rest of the cleanup is done in
2796                  * userspace.
2797                  */
2798                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2799                 /*
2800                  * We are not holding a lock here, but we want to have
2801                  * the pagefault_disable/enable() protection because
2802                  * we want to handle the fault gracefully. If the
2803                  * access fails we try to fault in the futex with R/W
2804                  * verification via get_user_pages. get_user() above
2805                  * does not guarantee R/W access. If that fails we
2806                  * give up and leave the futex locked.
2807                  */
2808                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2809                         if (fault_in_user_writeable(uaddr))
2810                                 return -1;
2811                         goto retry;
2812                 }
2813                 if (nval != uval)
2814                         goto retry;
2815
2816                 /*
2817                  * Wake robust non-PI futexes here. The wakeup of
2818                  * PI futexes happens in exit_pi_state():
2819                  */
2820                 if (!pi && (uval & FUTEX_WAITERS))
2821                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2822         }
2823         return 0;
2824 }
2825
2826 /*
2827  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2828  */
2829 static inline int fetch_robust_entry(struct robust_list __user **entry,
2830                                      struct robust_list __user * __user *head,
2831                                      unsigned int *pi)
2832 {
2833         unsigned long uentry;
2834
2835         if (get_user(uentry, (unsigned long __user *)head))
2836                 return -EFAULT;
2837
2838         *entry = (void __user *)(uentry & ~1UL);
2839         *pi = uentry & 1;
2840
2841         return 0;
2842 }
2843
2844 /*
2845  * Walk curr->robust_list (very carefully, it's a userspace list!)
2846  * and mark any locks found there dead, and notify any waiters.
2847  *
2848  * We silently return on any sign of list-walking problem.
2849  */
2850 void exit_robust_list(struct task_struct *curr)
2851 {
2852         struct robust_list_head __user *head = curr->robust_list;
2853         struct robust_list __user *entry, *next_entry, *pending;
2854         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2855         unsigned int uninitialized_var(next_pi);
2856         unsigned long futex_offset;
2857         int rc;
2858
2859         if (!futex_cmpxchg_enabled)
2860                 return;
2861
2862         /*
2863          * Fetch the list head (which was registered earlier, via
2864          * sys_set_robust_list()):
2865          */
2866         if (fetch_robust_entry(&entry, &head->list.next, &pi))
2867                 return;
2868         /*
2869          * Fetch the relative futex offset:
2870          */
2871         if (get_user(futex_offset, &head->futex_offset))
2872                 return;
2873         /*
2874          * Fetch any possibly pending lock-add first, and handle it
2875          * if it exists:
2876          */
2877         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2878                 return;
2879
2880         next_entry = NULL;      /* avoid warning with gcc */
2881         while (entry != &head->list) {
2882                 /*
2883                  * Fetch the next entry in the list before calling
2884                  * handle_futex_death:
2885                  */
2886                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2887                 /*
2888                  * A pending lock might already be on the list, so
2889                  * don't process it twice:
2890                  */
2891                 if (entry != pending)
2892                         if (handle_futex_death((void __user *)entry + futex_offset,
2893                                                 curr, pi))
2894                                 return;
2895                 if (rc)
2896                         return;
2897                 entry = next_entry;
2898                 pi = next_pi;
2899                 /*
2900                  * Avoid excessively long or circular lists:
2901                  */
2902                 if (!--limit)
2903                         break;
2904
2905                 cond_resched();
2906         }
2907
2908         if (pending)
2909                 handle_futex_death((void __user *)pending + futex_offset,
2910                                    curr, pip);
2911 }
2912
2913 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2914                 u32 __user *uaddr2, u32 val2, u32 val3)
2915 {
2916         int cmd = op & FUTEX_CMD_MASK;
2917         unsigned int flags = 0;
2918
2919         if (!(op & FUTEX_PRIVATE_FLAG))
2920                 flags |= FLAGS_SHARED;
2921
2922         if (op & FUTEX_CLOCK_REALTIME) {
2923                 flags |= FLAGS_CLOCKRT;
2924                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2925                         return -ENOSYS;
2926         }
2927
2928         switch (cmd) {
2929         case FUTEX_LOCK_PI:
2930         case FUTEX_UNLOCK_PI:
2931         case FUTEX_TRYLOCK_PI:
2932         case FUTEX_WAIT_REQUEUE_PI:
2933         case FUTEX_CMP_REQUEUE_PI:
2934                 if (!futex_cmpxchg_enabled)
2935                         return -ENOSYS;
2936         }
2937
2938         switch (cmd) {
2939         case FUTEX_WAIT:
2940                 val3 = FUTEX_BITSET_MATCH_ANY;
2941         case FUTEX_WAIT_BITSET:
2942                 return futex_wait(uaddr, flags, val, timeout, val3);
2943         case FUTEX_WAKE:
2944                 val3 = FUTEX_BITSET_MATCH_ANY;
2945         case FUTEX_WAKE_BITSET:
2946                 return futex_wake(uaddr, flags, val, val3);
2947         case FUTEX_REQUEUE:
2948                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2949         case FUTEX_CMP_REQUEUE:
2950                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2951         case FUTEX_WAKE_OP:
2952                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2953         case FUTEX_LOCK_PI:
2954                 return futex_lock_pi(uaddr, flags, timeout, 0);
2955         case FUTEX_UNLOCK_PI:
2956                 return futex_unlock_pi(uaddr, flags);
2957         case FUTEX_TRYLOCK_PI:
2958                 return futex_lock_pi(uaddr, flags, NULL, 1);
2959         case FUTEX_WAIT_REQUEUE_PI:
2960                 val3 = FUTEX_BITSET_MATCH_ANY;
2961                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2962                                              uaddr2);
2963         case FUTEX_CMP_REQUEUE_PI:
2964                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2965         }
2966         return -ENOSYS;
2967 }
2968
2969
2970 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2971                 struct timespec __user *, utime, u32 __user *, uaddr2,
2972                 u32, val3)
2973 {
2974         struct timespec ts;
2975         ktime_t t, *tp = NULL;
2976         u32 val2 = 0;
2977         int cmd = op & FUTEX_CMD_MASK;
2978
2979         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2980                       cmd == FUTEX_WAIT_BITSET ||
2981                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
2982                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2983                         return -EFAULT;
2984                 if (!timespec_valid(&ts))
2985                         return -EINVAL;
2986
2987                 t = timespec_to_ktime(ts);
2988                 if (cmd == FUTEX_WAIT)
2989                         t = ktime_add_safe(ktime_get(), t);
2990                 tp = &t;
2991         }
2992         /*
2993          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2994          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2995          */
2996         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2997             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2998                 val2 = (u32) (unsigned long) utime;
2999
3000         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3001 }
3002
3003 static void __init futex_detect_cmpxchg(void)
3004 {
3005 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3006         u32 curval;
3007
3008         /*
3009          * This will fail and we want it. Some arch implementations do
3010          * runtime detection of the futex_atomic_cmpxchg_inatomic()
3011          * functionality. We want to know that before we call in any
3012          * of the complex code paths. Also we want to prevent
3013          * registration of robust lists in that case. NULL is
3014          * guaranteed to fault and we get -EFAULT on functional
3015          * implementation, the non-functional ones will return
3016          * -ENOSYS.
3017          */
3018         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3019                 futex_cmpxchg_enabled = 1;
3020 #endif
3021 }
3022
3023 static int __init futex_init(void)
3024 {
3025         unsigned int futex_shift;
3026         unsigned long i;
3027
3028 #if CONFIG_BASE_SMALL
3029         futex_hashsize = 16;
3030 #else
3031         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3032 #endif
3033
3034         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3035                                                futex_hashsize, 0,
3036                                                futex_hashsize < 256 ? HASH_SMALL : 0,
3037                                                &futex_shift, NULL,
3038                                                futex_hashsize, futex_hashsize);
3039         futex_hashsize = 1UL << futex_shift;
3040
3041         futex_detect_cmpxchg();
3042
3043         for (i = 0; i < futex_hashsize; i++) {
3044                 atomic_set(&futex_queues[i].waiters, 0);
3045                 plist_head_init(&futex_queues[i].chain);
3046                 spin_lock_init(&futex_queues[i].lock);
3047         }
3048
3049         return 0;
3050 }
3051 __initcall(futex_init);