kexec: remove never used member destination in kimage
[firefly-linux-kernel-4.4.55.git] / kernel / kexec.c
1 /*
2  * kexec.c - kexec system call
3  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8
9 #define pr_fmt(fmt)     "kexec: " fmt
10
11 #include <linux/capability.h>
12 #include <linux/mm.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
15 #include <linux/fs.h>
16 #include <linux/kexec.h>
17 #include <linux/mutex.h>
18 #include <linux/list.h>
19 #include <linux/highmem.h>
20 #include <linux/syscalls.h>
21 #include <linux/reboot.h>
22 #include <linux/ioport.h>
23 #include <linux/hardirq.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/utsname.h>
27 #include <linux/numa.h>
28 #include <linux/suspend.h>
29 #include <linux/device.h>
30 #include <linux/freezer.h>
31 #include <linux/pm.h>
32 #include <linux/cpu.h>
33 #include <linux/console.h>
34 #include <linux/vmalloc.h>
35 #include <linux/swap.h>
36 #include <linux/syscore_ops.h>
37 #include <linux/compiler.h>
38 #include <linux/hugetlb.h>
39
40 #include <asm/page.h>
41 #include <asm/uaccess.h>
42 #include <asm/io.h>
43 #include <asm/sections.h>
44
45 #include <crypto/hash.h>
46 #include <crypto/sha.h>
47
48 /* Per cpu memory for storing cpu states in case of system crash. */
49 note_buf_t __percpu *crash_notes;
50
51 /* vmcoreinfo stuff */
52 static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
53 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
54 size_t vmcoreinfo_size;
55 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
56
57 /* Flag to indicate we are going to kexec a new kernel */
58 bool kexec_in_progress = false;
59
60 /*
61  * Declare these symbols weak so that if architecture provides a purgatory,
62  * these will be overridden.
63  */
64 char __weak kexec_purgatory[0];
65 size_t __weak kexec_purgatory_size = 0;
66
67 #ifdef CONFIG_KEXEC_FILE
68 static int kexec_calculate_store_digests(struct kimage *image);
69 #endif
70
71 /* Location of the reserved area for the crash kernel */
72 struct resource crashk_res = {
73         .name  = "Crash kernel",
74         .start = 0,
75         .end   = 0,
76         .flags = IORESOURCE_BUSY | IORESOURCE_MEM
77 };
78 struct resource crashk_low_res = {
79         .name  = "Crash kernel",
80         .start = 0,
81         .end   = 0,
82         .flags = IORESOURCE_BUSY | IORESOURCE_MEM
83 };
84
85 int kexec_should_crash(struct task_struct *p)
86 {
87         if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
88                 return 1;
89         return 0;
90 }
91
92 /*
93  * When kexec transitions to the new kernel there is a one-to-one
94  * mapping between physical and virtual addresses.  On processors
95  * where you can disable the MMU this is trivial, and easy.  For
96  * others it is still a simple predictable page table to setup.
97  *
98  * In that environment kexec copies the new kernel to its final
99  * resting place.  This means I can only support memory whose
100  * physical address can fit in an unsigned long.  In particular
101  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
102  * If the assembly stub has more restrictive requirements
103  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
104  * defined more restrictively in <asm/kexec.h>.
105  *
106  * The code for the transition from the current kernel to the
107  * the new kernel is placed in the control_code_buffer, whose size
108  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
109  * page of memory is necessary, but some architectures require more.
110  * Because this memory must be identity mapped in the transition from
111  * virtual to physical addresses it must live in the range
112  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
113  * modifiable.
114  *
115  * The assembly stub in the control code buffer is passed a linked list
116  * of descriptor pages detailing the source pages of the new kernel,
117  * and the destination addresses of those source pages.  As this data
118  * structure is not used in the context of the current OS, it must
119  * be self-contained.
120  *
121  * The code has been made to work with highmem pages and will use a
122  * destination page in its final resting place (if it happens
123  * to allocate it).  The end product of this is that most of the
124  * physical address space, and most of RAM can be used.
125  *
126  * Future directions include:
127  *  - allocating a page table with the control code buffer identity
128  *    mapped, to simplify machine_kexec and make kexec_on_panic more
129  *    reliable.
130  */
131
132 /*
133  * KIMAGE_NO_DEST is an impossible destination address..., for
134  * allocating pages whose destination address we do not care about.
135  */
136 #define KIMAGE_NO_DEST (-1UL)
137
138 static int kimage_is_destination_range(struct kimage *image,
139                                        unsigned long start, unsigned long end);
140 static struct page *kimage_alloc_page(struct kimage *image,
141                                        gfp_t gfp_mask,
142                                        unsigned long dest);
143
144 static int copy_user_segment_list(struct kimage *image,
145                                   unsigned long nr_segments,
146                                   struct kexec_segment __user *segments)
147 {
148         int ret;
149         size_t segment_bytes;
150
151         /* Read in the segments */
152         image->nr_segments = nr_segments;
153         segment_bytes = nr_segments * sizeof(*segments);
154         ret = copy_from_user(image->segment, segments, segment_bytes);
155         if (ret)
156                 ret = -EFAULT;
157
158         return ret;
159 }
160
161 static int sanity_check_segment_list(struct kimage *image)
162 {
163         int result, i;
164         unsigned long nr_segments = image->nr_segments;
165
166         /*
167          * Verify we have good destination addresses.  The caller is
168          * responsible for making certain we don't attempt to load
169          * the new image into invalid or reserved areas of RAM.  This
170          * just verifies it is an address we can use.
171          *
172          * Since the kernel does everything in page size chunks ensure
173          * the destination addresses are page aligned.  Too many
174          * special cases crop of when we don't do this.  The most
175          * insidious is getting overlapping destination addresses
176          * simply because addresses are changed to page size
177          * granularity.
178          */
179         result = -EADDRNOTAVAIL;
180         for (i = 0; i < nr_segments; i++) {
181                 unsigned long mstart, mend;
182
183                 mstart = image->segment[i].mem;
184                 mend   = mstart + image->segment[i].memsz;
185                 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
186                         return result;
187                 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
188                         return result;
189         }
190
191         /* Verify our destination addresses do not overlap.
192          * If we alloed overlapping destination addresses
193          * through very weird things can happen with no
194          * easy explanation as one segment stops on another.
195          */
196         result = -EINVAL;
197         for (i = 0; i < nr_segments; i++) {
198                 unsigned long mstart, mend;
199                 unsigned long j;
200
201                 mstart = image->segment[i].mem;
202                 mend   = mstart + image->segment[i].memsz;
203                 for (j = 0; j < i; j++) {
204                         unsigned long pstart, pend;
205                         pstart = image->segment[j].mem;
206                         pend   = pstart + image->segment[j].memsz;
207                         /* Do the segments overlap ? */
208                         if ((mend > pstart) && (mstart < pend))
209                                 return result;
210                 }
211         }
212
213         /* Ensure our buffer sizes are strictly less than
214          * our memory sizes.  This should always be the case,
215          * and it is easier to check up front than to be surprised
216          * later on.
217          */
218         result = -EINVAL;
219         for (i = 0; i < nr_segments; i++) {
220                 if (image->segment[i].bufsz > image->segment[i].memsz)
221                         return result;
222         }
223
224         /*
225          * Verify we have good destination addresses.  Normally
226          * the caller is responsible for making certain we don't
227          * attempt to load the new image into invalid or reserved
228          * areas of RAM.  But crash kernels are preloaded into a
229          * reserved area of ram.  We must ensure the addresses
230          * are in the reserved area otherwise preloading the
231          * kernel could corrupt things.
232          */
233
234         if (image->type == KEXEC_TYPE_CRASH) {
235                 result = -EADDRNOTAVAIL;
236                 for (i = 0; i < nr_segments; i++) {
237                         unsigned long mstart, mend;
238
239                         mstart = image->segment[i].mem;
240                         mend = mstart + image->segment[i].memsz - 1;
241                         /* Ensure we are within the crash kernel limits */
242                         if ((mstart < crashk_res.start) ||
243                             (mend > crashk_res.end))
244                                 return result;
245                 }
246         }
247
248         return 0;
249 }
250
251 static struct kimage *do_kimage_alloc_init(void)
252 {
253         struct kimage *image;
254
255         /* Allocate a controlling structure */
256         image = kzalloc(sizeof(*image), GFP_KERNEL);
257         if (!image)
258                 return NULL;
259
260         image->head = 0;
261         image->entry = &image->head;
262         image->last_entry = &image->head;
263         image->control_page = ~0; /* By default this does not apply */
264         image->type = KEXEC_TYPE_DEFAULT;
265
266         /* Initialize the list of control pages */
267         INIT_LIST_HEAD(&image->control_pages);
268
269         /* Initialize the list of destination pages */
270         INIT_LIST_HEAD(&image->dest_pages);
271
272         /* Initialize the list of unusable pages */
273         INIT_LIST_HEAD(&image->unusable_pages);
274
275         return image;
276 }
277
278 static void kimage_free_page_list(struct list_head *list);
279
280 static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
281                              unsigned long nr_segments,
282                              struct kexec_segment __user *segments,
283                              unsigned long flags)
284 {
285         int ret;
286         struct kimage *image;
287         bool kexec_on_panic = flags & KEXEC_ON_CRASH;
288
289         if (kexec_on_panic) {
290                 /* Verify we have a valid entry point */
291                 if ((entry < crashk_res.start) || (entry > crashk_res.end))
292                         return -EADDRNOTAVAIL;
293         }
294
295         /* Allocate and initialize a controlling structure */
296         image = do_kimage_alloc_init();
297         if (!image)
298                 return -ENOMEM;
299
300         image->start = entry;
301
302         ret = copy_user_segment_list(image, nr_segments, segments);
303         if (ret)
304                 goto out_free_image;
305
306         ret = sanity_check_segment_list(image);
307         if (ret)
308                 goto out_free_image;
309
310          /* Enable the special crash kernel control page allocation policy. */
311         if (kexec_on_panic) {
312                 image->control_page = crashk_res.start;
313                 image->type = KEXEC_TYPE_CRASH;
314         }
315
316         /*
317          * Find a location for the control code buffer, and add it
318          * the vector of segments so that it's pages will also be
319          * counted as destination pages.
320          */
321         ret = -ENOMEM;
322         image->control_code_page = kimage_alloc_control_pages(image,
323                                            get_order(KEXEC_CONTROL_PAGE_SIZE));
324         if (!image->control_code_page) {
325                 pr_err("Could not allocate control_code_buffer\n");
326                 goto out_free_image;
327         }
328
329         if (!kexec_on_panic) {
330                 image->swap_page = kimage_alloc_control_pages(image, 0);
331                 if (!image->swap_page) {
332                         pr_err("Could not allocate swap buffer\n");
333                         goto out_free_control_pages;
334                 }
335         }
336
337         *rimage = image;
338         return 0;
339 out_free_control_pages:
340         kimage_free_page_list(&image->control_pages);
341 out_free_image:
342         kfree(image);
343         return ret;
344 }
345
346 #ifdef CONFIG_KEXEC_FILE
347 static int copy_file_from_fd(int fd, void **buf, unsigned long *buf_len)
348 {
349         struct fd f = fdget(fd);
350         int ret;
351         struct kstat stat;
352         loff_t pos;
353         ssize_t bytes = 0;
354
355         if (!f.file)
356                 return -EBADF;
357
358         ret = vfs_getattr(&f.file->f_path, &stat);
359         if (ret)
360                 goto out;
361
362         if (stat.size > INT_MAX) {
363                 ret = -EFBIG;
364                 goto out;
365         }
366
367         /* Don't hand 0 to vmalloc, it whines. */
368         if (stat.size == 0) {
369                 ret = -EINVAL;
370                 goto out;
371         }
372
373         *buf = vmalloc(stat.size);
374         if (!*buf) {
375                 ret = -ENOMEM;
376                 goto out;
377         }
378
379         pos = 0;
380         while (pos < stat.size) {
381                 bytes = kernel_read(f.file, pos, (char *)(*buf) + pos,
382                                     stat.size - pos);
383                 if (bytes < 0) {
384                         vfree(*buf);
385                         ret = bytes;
386                         goto out;
387                 }
388
389                 if (bytes == 0)
390                         break;
391                 pos += bytes;
392         }
393
394         if (pos != stat.size) {
395                 ret = -EBADF;
396                 vfree(*buf);
397                 goto out;
398         }
399
400         *buf_len = pos;
401 out:
402         fdput(f);
403         return ret;
404 }
405
406 /* Architectures can provide this probe function */
407 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
408                                          unsigned long buf_len)
409 {
410         return -ENOEXEC;
411 }
412
413 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
414 {
415         return ERR_PTR(-ENOEXEC);
416 }
417
418 void __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
419 {
420 }
421
422 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
423                                         unsigned long buf_len)
424 {
425         return -EKEYREJECTED;
426 }
427
428 /* Apply relocations of type RELA */
429 int __weak
430 arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
431                                  unsigned int relsec)
432 {
433         pr_err("RELA relocation unsupported.\n");
434         return -ENOEXEC;
435 }
436
437 /* Apply relocations of type REL */
438 int __weak
439 arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
440                              unsigned int relsec)
441 {
442         pr_err("REL relocation unsupported.\n");
443         return -ENOEXEC;
444 }
445
446 /*
447  * Free up memory used by kernel, initrd, and comand line. This is temporary
448  * memory allocation which is not needed any more after these buffers have
449  * been loaded into separate segments and have been copied elsewhere.
450  */
451 static void kimage_file_post_load_cleanup(struct kimage *image)
452 {
453         struct purgatory_info *pi = &image->purgatory_info;
454
455         vfree(image->kernel_buf);
456         image->kernel_buf = NULL;
457
458         vfree(image->initrd_buf);
459         image->initrd_buf = NULL;
460
461         kfree(image->cmdline_buf);
462         image->cmdline_buf = NULL;
463
464         vfree(pi->purgatory_buf);
465         pi->purgatory_buf = NULL;
466
467         vfree(pi->sechdrs);
468         pi->sechdrs = NULL;
469
470         /* See if architecture has anything to cleanup post load */
471         arch_kimage_file_post_load_cleanup(image);
472
473         /*
474          * Above call should have called into bootloader to free up
475          * any data stored in kimage->image_loader_data. It should
476          * be ok now to free it up.
477          */
478         kfree(image->image_loader_data);
479         image->image_loader_data = NULL;
480 }
481
482 /*
483  * In file mode list of segments is prepared by kernel. Copy relevant
484  * data from user space, do error checking, prepare segment list
485  */
486 static int
487 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
488                              const char __user *cmdline_ptr,
489                              unsigned long cmdline_len, unsigned flags)
490 {
491         int ret = 0;
492         void *ldata;
493
494         ret = copy_file_from_fd(kernel_fd, &image->kernel_buf,
495                                 &image->kernel_buf_len);
496         if (ret)
497                 return ret;
498
499         /* Call arch image probe handlers */
500         ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
501                                             image->kernel_buf_len);
502
503         if (ret)
504                 goto out;
505
506 #ifdef CONFIG_KEXEC_VERIFY_SIG
507         ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
508                                            image->kernel_buf_len);
509         if (ret) {
510                 pr_debug("kernel signature verification failed.\n");
511                 goto out;
512         }
513         pr_debug("kernel signature verification successful.\n");
514 #endif
515         /* It is possible that there no initramfs is being loaded */
516         if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
517                 ret = copy_file_from_fd(initrd_fd, &image->initrd_buf,
518                                         &image->initrd_buf_len);
519                 if (ret)
520                         goto out;
521         }
522
523         if (cmdline_len) {
524                 image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
525                 if (!image->cmdline_buf) {
526                         ret = -ENOMEM;
527                         goto out;
528                 }
529
530                 ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
531                                      cmdline_len);
532                 if (ret) {
533                         ret = -EFAULT;
534                         goto out;
535                 }
536
537                 image->cmdline_buf_len = cmdline_len;
538
539                 /* command line should be a string with last byte null */
540                 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
541                         ret = -EINVAL;
542                         goto out;
543                 }
544         }
545
546         /* Call arch image load handlers */
547         ldata = arch_kexec_kernel_image_load(image);
548
549         if (IS_ERR(ldata)) {
550                 ret = PTR_ERR(ldata);
551                 goto out;
552         }
553
554         image->image_loader_data = ldata;
555 out:
556         /* In case of error, free up all allocated memory in this function */
557         if (ret)
558                 kimage_file_post_load_cleanup(image);
559         return ret;
560 }
561
562 static int
563 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
564                        int initrd_fd, const char __user *cmdline_ptr,
565                        unsigned long cmdline_len, unsigned long flags)
566 {
567         int ret;
568         struct kimage *image;
569         bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
570
571         image = do_kimage_alloc_init();
572         if (!image)
573                 return -ENOMEM;
574
575         image->file_mode = 1;
576
577         if (kexec_on_panic) {
578                 /* Enable special crash kernel control page alloc policy. */
579                 image->control_page = crashk_res.start;
580                 image->type = KEXEC_TYPE_CRASH;
581         }
582
583         ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
584                                            cmdline_ptr, cmdline_len, flags);
585         if (ret)
586                 goto out_free_image;
587
588         ret = sanity_check_segment_list(image);
589         if (ret)
590                 goto out_free_post_load_bufs;
591
592         ret = -ENOMEM;
593         image->control_code_page = kimage_alloc_control_pages(image,
594                                            get_order(KEXEC_CONTROL_PAGE_SIZE));
595         if (!image->control_code_page) {
596                 pr_err("Could not allocate control_code_buffer\n");
597                 goto out_free_post_load_bufs;
598         }
599
600         if (!kexec_on_panic) {
601                 image->swap_page = kimage_alloc_control_pages(image, 0);
602                 if (!image->swap_page) {
603                         pr_err("Could not allocate swap buffer\n");
604                         goto out_free_control_pages;
605                 }
606         }
607
608         *rimage = image;
609         return 0;
610 out_free_control_pages:
611         kimage_free_page_list(&image->control_pages);
612 out_free_post_load_bufs:
613         kimage_file_post_load_cleanup(image);
614 out_free_image:
615         kfree(image);
616         return ret;
617 }
618 #else /* CONFIG_KEXEC_FILE */
619 static inline void kimage_file_post_load_cleanup(struct kimage *image) { }
620 #endif /* CONFIG_KEXEC_FILE */
621
622 static int kimage_is_destination_range(struct kimage *image,
623                                         unsigned long start,
624                                         unsigned long end)
625 {
626         unsigned long i;
627
628         for (i = 0; i < image->nr_segments; i++) {
629                 unsigned long mstart, mend;
630
631                 mstart = image->segment[i].mem;
632                 mend = mstart + image->segment[i].memsz;
633                 if ((end > mstart) && (start < mend))
634                         return 1;
635         }
636
637         return 0;
638 }
639
640 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
641 {
642         struct page *pages;
643
644         pages = alloc_pages(gfp_mask, order);
645         if (pages) {
646                 unsigned int count, i;
647                 pages->mapping = NULL;
648                 set_page_private(pages, order);
649                 count = 1 << order;
650                 for (i = 0; i < count; i++)
651                         SetPageReserved(pages + i);
652         }
653
654         return pages;
655 }
656
657 static void kimage_free_pages(struct page *page)
658 {
659         unsigned int order, count, i;
660
661         order = page_private(page);
662         count = 1 << order;
663         for (i = 0; i < count; i++)
664                 ClearPageReserved(page + i);
665         __free_pages(page, order);
666 }
667
668 static void kimage_free_page_list(struct list_head *list)
669 {
670         struct list_head *pos, *next;
671
672         list_for_each_safe(pos, next, list) {
673                 struct page *page;
674
675                 page = list_entry(pos, struct page, lru);
676                 list_del(&page->lru);
677                 kimage_free_pages(page);
678         }
679 }
680
681 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
682                                                         unsigned int order)
683 {
684         /* Control pages are special, they are the intermediaries
685          * that are needed while we copy the rest of the pages
686          * to their final resting place.  As such they must
687          * not conflict with either the destination addresses
688          * or memory the kernel is already using.
689          *
690          * The only case where we really need more than one of
691          * these are for architectures where we cannot disable
692          * the MMU and must instead generate an identity mapped
693          * page table for all of the memory.
694          *
695          * At worst this runs in O(N) of the image size.
696          */
697         struct list_head extra_pages;
698         struct page *pages;
699         unsigned int count;
700
701         count = 1 << order;
702         INIT_LIST_HEAD(&extra_pages);
703
704         /* Loop while I can allocate a page and the page allocated
705          * is a destination page.
706          */
707         do {
708                 unsigned long pfn, epfn, addr, eaddr;
709
710                 pages = kimage_alloc_pages(GFP_KERNEL, order);
711                 if (!pages)
712                         break;
713                 pfn   = page_to_pfn(pages);
714                 epfn  = pfn + count;
715                 addr  = pfn << PAGE_SHIFT;
716                 eaddr = epfn << PAGE_SHIFT;
717                 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
718                               kimage_is_destination_range(image, addr, eaddr)) {
719                         list_add(&pages->lru, &extra_pages);
720                         pages = NULL;
721                 }
722         } while (!pages);
723
724         if (pages) {
725                 /* Remember the allocated page... */
726                 list_add(&pages->lru, &image->control_pages);
727
728                 /* Because the page is already in it's destination
729                  * location we will never allocate another page at
730                  * that address.  Therefore kimage_alloc_pages
731                  * will not return it (again) and we don't need
732                  * to give it an entry in image->segment[].
733                  */
734         }
735         /* Deal with the destination pages I have inadvertently allocated.
736          *
737          * Ideally I would convert multi-page allocations into single
738          * page allocations, and add everything to image->dest_pages.
739          *
740          * For now it is simpler to just free the pages.
741          */
742         kimage_free_page_list(&extra_pages);
743
744         return pages;
745 }
746
747 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
748                                                       unsigned int order)
749 {
750         /* Control pages are special, they are the intermediaries
751          * that are needed while we copy the rest of the pages
752          * to their final resting place.  As such they must
753          * not conflict with either the destination addresses
754          * or memory the kernel is already using.
755          *
756          * Control pages are also the only pags we must allocate
757          * when loading a crash kernel.  All of the other pages
758          * are specified by the segments and we just memcpy
759          * into them directly.
760          *
761          * The only case where we really need more than one of
762          * these are for architectures where we cannot disable
763          * the MMU and must instead generate an identity mapped
764          * page table for all of the memory.
765          *
766          * Given the low demand this implements a very simple
767          * allocator that finds the first hole of the appropriate
768          * size in the reserved memory region, and allocates all
769          * of the memory up to and including the hole.
770          */
771         unsigned long hole_start, hole_end, size;
772         struct page *pages;
773
774         pages = NULL;
775         size = (1 << order) << PAGE_SHIFT;
776         hole_start = (image->control_page + (size - 1)) & ~(size - 1);
777         hole_end   = hole_start + size - 1;
778         while (hole_end <= crashk_res.end) {
779                 unsigned long i;
780
781                 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
782                         break;
783                 /* See if I overlap any of the segments */
784                 for (i = 0; i < image->nr_segments; i++) {
785                         unsigned long mstart, mend;
786
787                         mstart = image->segment[i].mem;
788                         mend   = mstart + image->segment[i].memsz - 1;
789                         if ((hole_end >= mstart) && (hole_start <= mend)) {
790                                 /* Advance the hole to the end of the segment */
791                                 hole_start = (mend + (size - 1)) & ~(size - 1);
792                                 hole_end   = hole_start + size - 1;
793                                 break;
794                         }
795                 }
796                 /* If I don't overlap any segments I have found my hole! */
797                 if (i == image->nr_segments) {
798                         pages = pfn_to_page(hole_start >> PAGE_SHIFT);
799                         break;
800                 }
801         }
802         if (pages)
803                 image->control_page = hole_end;
804
805         return pages;
806 }
807
808
809 struct page *kimage_alloc_control_pages(struct kimage *image,
810                                          unsigned int order)
811 {
812         struct page *pages = NULL;
813
814         switch (image->type) {
815         case KEXEC_TYPE_DEFAULT:
816                 pages = kimage_alloc_normal_control_pages(image, order);
817                 break;
818         case KEXEC_TYPE_CRASH:
819                 pages = kimage_alloc_crash_control_pages(image, order);
820                 break;
821         }
822
823         return pages;
824 }
825
826 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
827 {
828         if (*image->entry != 0)
829                 image->entry++;
830
831         if (image->entry == image->last_entry) {
832                 kimage_entry_t *ind_page;
833                 struct page *page;
834
835                 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
836                 if (!page)
837                         return -ENOMEM;
838
839                 ind_page = page_address(page);
840                 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
841                 image->entry = ind_page;
842                 image->last_entry = ind_page +
843                                       ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
844         }
845         *image->entry = entry;
846         image->entry++;
847         *image->entry = 0;
848
849         return 0;
850 }
851
852 static int kimage_set_destination(struct kimage *image,
853                                    unsigned long destination)
854 {
855         int result;
856
857         destination &= PAGE_MASK;
858         result = kimage_add_entry(image, destination | IND_DESTINATION);
859
860         return result;
861 }
862
863
864 static int kimage_add_page(struct kimage *image, unsigned long page)
865 {
866         int result;
867
868         page &= PAGE_MASK;
869         result = kimage_add_entry(image, page | IND_SOURCE);
870
871         return result;
872 }
873
874
875 static void kimage_free_extra_pages(struct kimage *image)
876 {
877         /* Walk through and free any extra destination pages I may have */
878         kimage_free_page_list(&image->dest_pages);
879
880         /* Walk through and free any unusable pages I have cached */
881         kimage_free_page_list(&image->unusable_pages);
882
883 }
884 static void kimage_terminate(struct kimage *image)
885 {
886         if (*image->entry != 0)
887                 image->entry++;
888
889         *image->entry = IND_DONE;
890 }
891
892 #define for_each_kimage_entry(image, ptr, entry) \
893         for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
894                 ptr = (entry & IND_INDIRECTION) ? \
895                         phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
896
897 static void kimage_free_entry(kimage_entry_t entry)
898 {
899         struct page *page;
900
901         page = pfn_to_page(entry >> PAGE_SHIFT);
902         kimage_free_pages(page);
903 }
904
905 static void kimage_free(struct kimage *image)
906 {
907         kimage_entry_t *ptr, entry;
908         kimage_entry_t ind = 0;
909
910         if (!image)
911                 return;
912
913         kimage_free_extra_pages(image);
914         for_each_kimage_entry(image, ptr, entry) {
915                 if (entry & IND_INDIRECTION) {
916                         /* Free the previous indirection page */
917                         if (ind & IND_INDIRECTION)
918                                 kimage_free_entry(ind);
919                         /* Save this indirection page until we are
920                          * done with it.
921                          */
922                         ind = entry;
923                 } else if (entry & IND_SOURCE)
924                         kimage_free_entry(entry);
925         }
926         /* Free the final indirection page */
927         if (ind & IND_INDIRECTION)
928                 kimage_free_entry(ind);
929
930         /* Handle any machine specific cleanup */
931         machine_kexec_cleanup(image);
932
933         /* Free the kexec control pages... */
934         kimage_free_page_list(&image->control_pages);
935
936         /*
937          * Free up any temporary buffers allocated. This might hit if
938          * error occurred much later after buffer allocation.
939          */
940         if (image->file_mode)
941                 kimage_file_post_load_cleanup(image);
942
943         kfree(image);
944 }
945
946 static kimage_entry_t *kimage_dst_used(struct kimage *image,
947                                         unsigned long page)
948 {
949         kimage_entry_t *ptr, entry;
950         unsigned long destination = 0;
951
952         for_each_kimage_entry(image, ptr, entry) {
953                 if (entry & IND_DESTINATION)
954                         destination = entry & PAGE_MASK;
955                 else if (entry & IND_SOURCE) {
956                         if (page == destination)
957                                 return ptr;
958                         destination += PAGE_SIZE;
959                 }
960         }
961
962         return NULL;
963 }
964
965 static struct page *kimage_alloc_page(struct kimage *image,
966                                         gfp_t gfp_mask,
967                                         unsigned long destination)
968 {
969         /*
970          * Here we implement safeguards to ensure that a source page
971          * is not copied to its destination page before the data on
972          * the destination page is no longer useful.
973          *
974          * To do this we maintain the invariant that a source page is
975          * either its own destination page, or it is not a
976          * destination page at all.
977          *
978          * That is slightly stronger than required, but the proof
979          * that no problems will not occur is trivial, and the
980          * implementation is simply to verify.
981          *
982          * When allocating all pages normally this algorithm will run
983          * in O(N) time, but in the worst case it will run in O(N^2)
984          * time.   If the runtime is a problem the data structures can
985          * be fixed.
986          */
987         struct page *page;
988         unsigned long addr;
989
990         /*
991          * Walk through the list of destination pages, and see if I
992          * have a match.
993          */
994         list_for_each_entry(page, &image->dest_pages, lru) {
995                 addr = page_to_pfn(page) << PAGE_SHIFT;
996                 if (addr == destination) {
997                         list_del(&page->lru);
998                         return page;
999                 }
1000         }
1001         page = NULL;
1002         while (1) {
1003                 kimage_entry_t *old;
1004
1005                 /* Allocate a page, if we run out of memory give up */
1006                 page = kimage_alloc_pages(gfp_mask, 0);
1007                 if (!page)
1008                         return NULL;
1009                 /* If the page cannot be used file it away */
1010                 if (page_to_pfn(page) >
1011                                 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
1012                         list_add(&page->lru, &image->unusable_pages);
1013                         continue;
1014                 }
1015                 addr = page_to_pfn(page) << PAGE_SHIFT;
1016
1017                 /* If it is the destination page we want use it */
1018                 if (addr == destination)
1019                         break;
1020
1021                 /* If the page is not a destination page use it */
1022                 if (!kimage_is_destination_range(image, addr,
1023                                                   addr + PAGE_SIZE))
1024                         break;
1025
1026                 /*
1027                  * I know that the page is someones destination page.
1028                  * See if there is already a source page for this
1029                  * destination page.  And if so swap the source pages.
1030                  */
1031                 old = kimage_dst_used(image, addr);
1032                 if (old) {
1033                         /* If so move it */
1034                         unsigned long old_addr;
1035                         struct page *old_page;
1036
1037                         old_addr = *old & PAGE_MASK;
1038                         old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
1039                         copy_highpage(page, old_page);
1040                         *old = addr | (*old & ~PAGE_MASK);
1041
1042                         /* The old page I have found cannot be a
1043                          * destination page, so return it if it's
1044                          * gfp_flags honor the ones passed in.
1045                          */
1046                         if (!(gfp_mask & __GFP_HIGHMEM) &&
1047                             PageHighMem(old_page)) {
1048                                 kimage_free_pages(old_page);
1049                                 continue;
1050                         }
1051                         addr = old_addr;
1052                         page = old_page;
1053                         break;
1054                 } else {
1055                         /* Place the page on the destination list I
1056                          * will use it later.
1057                          */
1058                         list_add(&page->lru, &image->dest_pages);
1059                 }
1060         }
1061
1062         return page;
1063 }
1064
1065 static int kimage_load_normal_segment(struct kimage *image,
1066                                          struct kexec_segment *segment)
1067 {
1068         unsigned long maddr;
1069         size_t ubytes, mbytes;
1070         int result;
1071         unsigned char __user *buf = NULL;
1072         unsigned char *kbuf = NULL;
1073
1074         result = 0;
1075         if (image->file_mode)
1076                 kbuf = segment->kbuf;
1077         else
1078                 buf = segment->buf;
1079         ubytes = segment->bufsz;
1080         mbytes = segment->memsz;
1081         maddr = segment->mem;
1082
1083         result = kimage_set_destination(image, maddr);
1084         if (result < 0)
1085                 goto out;
1086
1087         while (mbytes) {
1088                 struct page *page;
1089                 char *ptr;
1090                 size_t uchunk, mchunk;
1091
1092                 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
1093                 if (!page) {
1094                         result  = -ENOMEM;
1095                         goto out;
1096                 }
1097                 result = kimage_add_page(image, page_to_pfn(page)
1098                                                                 << PAGE_SHIFT);
1099                 if (result < 0)
1100                         goto out;
1101
1102                 ptr = kmap(page);
1103                 /* Start with a clear page */
1104                 clear_page(ptr);
1105                 ptr += maddr & ~PAGE_MASK;
1106                 mchunk = min_t(size_t, mbytes,
1107                                 PAGE_SIZE - (maddr & ~PAGE_MASK));
1108                 uchunk = min(ubytes, mchunk);
1109
1110                 /* For file based kexec, source pages are in kernel memory */
1111                 if (image->file_mode)
1112                         memcpy(ptr, kbuf, uchunk);
1113                 else
1114                         result = copy_from_user(ptr, buf, uchunk);
1115                 kunmap(page);
1116                 if (result) {
1117                         result = -EFAULT;
1118                         goto out;
1119                 }
1120                 ubytes -= uchunk;
1121                 maddr  += mchunk;
1122                 if (image->file_mode)
1123                         kbuf += mchunk;
1124                 else
1125                         buf += mchunk;
1126                 mbytes -= mchunk;
1127         }
1128 out:
1129         return result;
1130 }
1131
1132 static int kimage_load_crash_segment(struct kimage *image,
1133                                         struct kexec_segment *segment)
1134 {
1135         /* For crash dumps kernels we simply copy the data from
1136          * user space to it's destination.
1137          * We do things a page at a time for the sake of kmap.
1138          */
1139         unsigned long maddr;
1140         size_t ubytes, mbytes;
1141         int result;
1142         unsigned char __user *buf = NULL;
1143         unsigned char *kbuf = NULL;
1144
1145         result = 0;
1146         if (image->file_mode)
1147                 kbuf = segment->kbuf;
1148         else
1149                 buf = segment->buf;
1150         ubytes = segment->bufsz;
1151         mbytes = segment->memsz;
1152         maddr = segment->mem;
1153         while (mbytes) {
1154                 struct page *page;
1155                 char *ptr;
1156                 size_t uchunk, mchunk;
1157
1158                 page = pfn_to_page(maddr >> PAGE_SHIFT);
1159                 if (!page) {
1160                         result  = -ENOMEM;
1161                         goto out;
1162                 }
1163                 ptr = kmap(page);
1164                 ptr += maddr & ~PAGE_MASK;
1165                 mchunk = min_t(size_t, mbytes,
1166                                 PAGE_SIZE - (maddr & ~PAGE_MASK));
1167                 uchunk = min(ubytes, mchunk);
1168                 if (mchunk > uchunk) {
1169                         /* Zero the trailing part of the page */
1170                         memset(ptr + uchunk, 0, mchunk - uchunk);
1171                 }
1172
1173                 /* For file based kexec, source pages are in kernel memory */
1174                 if (image->file_mode)
1175                         memcpy(ptr, kbuf, uchunk);
1176                 else
1177                         result = copy_from_user(ptr, buf, uchunk);
1178                 kexec_flush_icache_page(page);
1179                 kunmap(page);
1180                 if (result) {
1181                         result = -EFAULT;
1182                         goto out;
1183                 }
1184                 ubytes -= uchunk;
1185                 maddr  += mchunk;
1186                 if (image->file_mode)
1187                         kbuf += mchunk;
1188                 else
1189                         buf += mchunk;
1190                 mbytes -= mchunk;
1191         }
1192 out:
1193         return result;
1194 }
1195
1196 static int kimage_load_segment(struct kimage *image,
1197                                 struct kexec_segment *segment)
1198 {
1199         int result = -ENOMEM;
1200
1201         switch (image->type) {
1202         case KEXEC_TYPE_DEFAULT:
1203                 result = kimage_load_normal_segment(image, segment);
1204                 break;
1205         case KEXEC_TYPE_CRASH:
1206                 result = kimage_load_crash_segment(image, segment);
1207                 break;
1208         }
1209
1210         return result;
1211 }
1212
1213 /*
1214  * Exec Kernel system call: for obvious reasons only root may call it.
1215  *
1216  * This call breaks up into three pieces.
1217  * - A generic part which loads the new kernel from the current
1218  *   address space, and very carefully places the data in the
1219  *   allocated pages.
1220  *
1221  * - A generic part that interacts with the kernel and tells all of
1222  *   the devices to shut down.  Preventing on-going dmas, and placing
1223  *   the devices in a consistent state so a later kernel can
1224  *   reinitialize them.
1225  *
1226  * - A machine specific part that includes the syscall number
1227  *   and then copies the image to it's final destination.  And
1228  *   jumps into the image at entry.
1229  *
1230  * kexec does not sync, or unmount filesystems so if you need
1231  * that to happen you need to do that yourself.
1232  */
1233 struct kimage *kexec_image;
1234 struct kimage *kexec_crash_image;
1235 int kexec_load_disabled;
1236
1237 static DEFINE_MUTEX(kexec_mutex);
1238
1239 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
1240                 struct kexec_segment __user *, segments, unsigned long, flags)
1241 {
1242         struct kimage **dest_image, *image;
1243         int result;
1244
1245         /* We only trust the superuser with rebooting the system. */
1246         if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
1247                 return -EPERM;
1248
1249         /*
1250          * Verify we have a legal set of flags
1251          * This leaves us room for future extensions.
1252          */
1253         if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
1254                 return -EINVAL;
1255
1256         /* Verify we are on the appropriate architecture */
1257         if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
1258                 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
1259                 return -EINVAL;
1260
1261         /* Put an artificial cap on the number
1262          * of segments passed to kexec_load.
1263          */
1264         if (nr_segments > KEXEC_SEGMENT_MAX)
1265                 return -EINVAL;
1266
1267         image = NULL;
1268         result = 0;
1269
1270         /* Because we write directly to the reserved memory
1271          * region when loading crash kernels we need a mutex here to
1272          * prevent multiple crash  kernels from attempting to load
1273          * simultaneously, and to prevent a crash kernel from loading
1274          * over the top of a in use crash kernel.
1275          *
1276          * KISS: always take the mutex.
1277          */
1278         if (!mutex_trylock(&kexec_mutex))
1279                 return -EBUSY;
1280
1281         dest_image = &kexec_image;
1282         if (flags & KEXEC_ON_CRASH)
1283                 dest_image = &kexec_crash_image;
1284         if (nr_segments > 0) {
1285                 unsigned long i;
1286
1287                 /* Loading another kernel to reboot into */
1288                 if ((flags & KEXEC_ON_CRASH) == 0)
1289                         result = kimage_alloc_init(&image, entry, nr_segments,
1290                                                    segments, flags);
1291                 /* Loading another kernel to switch to if this one crashes */
1292                 else if (flags & KEXEC_ON_CRASH) {
1293                         /* Free any current crash dump kernel before
1294                          * we corrupt it.
1295                          */
1296                         kimage_free(xchg(&kexec_crash_image, NULL));
1297                         result = kimage_alloc_init(&image, entry, nr_segments,
1298                                                    segments, flags);
1299                         crash_map_reserved_pages();
1300                 }
1301                 if (result)
1302                         goto out;
1303
1304                 if (flags & KEXEC_PRESERVE_CONTEXT)
1305                         image->preserve_context = 1;
1306                 result = machine_kexec_prepare(image);
1307                 if (result)
1308                         goto out;
1309
1310                 for (i = 0; i < nr_segments; i++) {
1311                         result = kimage_load_segment(image, &image->segment[i]);
1312                         if (result)
1313                                 goto out;
1314                 }
1315                 kimage_terminate(image);
1316                 if (flags & KEXEC_ON_CRASH)
1317                         crash_unmap_reserved_pages();
1318         }
1319         /* Install the new kernel, and  Uninstall the old */
1320         image = xchg(dest_image, image);
1321
1322 out:
1323         mutex_unlock(&kexec_mutex);
1324         kimage_free(image);
1325
1326         return result;
1327 }
1328
1329 /*
1330  * Add and remove page tables for crashkernel memory
1331  *
1332  * Provide an empty default implementation here -- architecture
1333  * code may override this
1334  */
1335 void __weak crash_map_reserved_pages(void)
1336 {}
1337
1338 void __weak crash_unmap_reserved_pages(void)
1339 {}
1340
1341 #ifdef CONFIG_COMPAT
1342 COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
1343                        compat_ulong_t, nr_segments,
1344                        struct compat_kexec_segment __user *, segments,
1345                        compat_ulong_t, flags)
1346 {
1347         struct compat_kexec_segment in;
1348         struct kexec_segment out, __user *ksegments;
1349         unsigned long i, result;
1350
1351         /* Don't allow clients that don't understand the native
1352          * architecture to do anything.
1353          */
1354         if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
1355                 return -EINVAL;
1356
1357         if (nr_segments > KEXEC_SEGMENT_MAX)
1358                 return -EINVAL;
1359
1360         ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1361         for (i = 0; i < nr_segments; i++) {
1362                 result = copy_from_user(&in, &segments[i], sizeof(in));
1363                 if (result)
1364                         return -EFAULT;
1365
1366                 out.buf   = compat_ptr(in.buf);
1367                 out.bufsz = in.bufsz;
1368                 out.mem   = in.mem;
1369                 out.memsz = in.memsz;
1370
1371                 result = copy_to_user(&ksegments[i], &out, sizeof(out));
1372                 if (result)
1373                         return -EFAULT;
1374         }
1375
1376         return sys_kexec_load(entry, nr_segments, ksegments, flags);
1377 }
1378 #endif
1379
1380 #ifdef CONFIG_KEXEC_FILE
1381 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
1382                 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
1383                 unsigned long, flags)
1384 {
1385         int ret = 0, i;
1386         struct kimage **dest_image, *image;
1387
1388         /* We only trust the superuser with rebooting the system. */
1389         if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
1390                 return -EPERM;
1391
1392         /* Make sure we have a legal set of flags */
1393         if (flags != (flags & KEXEC_FILE_FLAGS))
1394                 return -EINVAL;
1395
1396         image = NULL;
1397
1398         if (!mutex_trylock(&kexec_mutex))
1399                 return -EBUSY;
1400
1401         dest_image = &kexec_image;
1402         if (flags & KEXEC_FILE_ON_CRASH)
1403                 dest_image = &kexec_crash_image;
1404
1405         if (flags & KEXEC_FILE_UNLOAD)
1406                 goto exchange;
1407
1408         /*
1409          * In case of crash, new kernel gets loaded in reserved region. It is
1410          * same memory where old crash kernel might be loaded. Free any
1411          * current crash dump kernel before we corrupt it.
1412          */
1413         if (flags & KEXEC_FILE_ON_CRASH)
1414                 kimage_free(xchg(&kexec_crash_image, NULL));
1415
1416         ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
1417                                      cmdline_len, flags);
1418         if (ret)
1419                 goto out;
1420
1421         ret = machine_kexec_prepare(image);
1422         if (ret)
1423                 goto out;
1424
1425         ret = kexec_calculate_store_digests(image);
1426         if (ret)
1427                 goto out;
1428
1429         for (i = 0; i < image->nr_segments; i++) {
1430                 struct kexec_segment *ksegment;
1431
1432                 ksegment = &image->segment[i];
1433                 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
1434                          i, ksegment->buf, ksegment->bufsz, ksegment->mem,
1435                          ksegment->memsz);
1436
1437                 ret = kimage_load_segment(image, &image->segment[i]);
1438                 if (ret)
1439                         goto out;
1440         }
1441
1442         kimage_terminate(image);
1443
1444         /*
1445          * Free up any temporary buffers allocated which are not needed
1446          * after image has been loaded
1447          */
1448         kimage_file_post_load_cleanup(image);
1449 exchange:
1450         image = xchg(dest_image, image);
1451 out:
1452         mutex_unlock(&kexec_mutex);
1453         kimage_free(image);
1454         return ret;
1455 }
1456
1457 #endif /* CONFIG_KEXEC_FILE */
1458
1459 void crash_kexec(struct pt_regs *regs)
1460 {
1461         /* Take the kexec_mutex here to prevent sys_kexec_load
1462          * running on one cpu from replacing the crash kernel
1463          * we are using after a panic on a different cpu.
1464          *
1465          * If the crash kernel was not located in a fixed area
1466          * of memory the xchg(&kexec_crash_image) would be
1467          * sufficient.  But since I reuse the memory...
1468          */
1469         if (mutex_trylock(&kexec_mutex)) {
1470                 if (kexec_crash_image) {
1471                         struct pt_regs fixed_regs;
1472
1473                         crash_setup_regs(&fixed_regs, regs);
1474                         crash_save_vmcoreinfo();
1475                         machine_crash_shutdown(&fixed_regs);
1476                         machine_kexec(kexec_crash_image);
1477                 }
1478                 mutex_unlock(&kexec_mutex);
1479         }
1480 }
1481
1482 size_t crash_get_memory_size(void)
1483 {
1484         size_t size = 0;
1485         mutex_lock(&kexec_mutex);
1486         if (crashk_res.end != crashk_res.start)
1487                 size = resource_size(&crashk_res);
1488         mutex_unlock(&kexec_mutex);
1489         return size;
1490 }
1491
1492 void __weak crash_free_reserved_phys_range(unsigned long begin,
1493                                            unsigned long end)
1494 {
1495         unsigned long addr;
1496
1497         for (addr = begin; addr < end; addr += PAGE_SIZE)
1498                 free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
1499 }
1500
1501 int crash_shrink_memory(unsigned long new_size)
1502 {
1503         int ret = 0;
1504         unsigned long start, end;
1505         unsigned long old_size;
1506         struct resource *ram_res;
1507
1508         mutex_lock(&kexec_mutex);
1509
1510         if (kexec_crash_image) {
1511                 ret = -ENOENT;
1512                 goto unlock;
1513         }
1514         start = crashk_res.start;
1515         end = crashk_res.end;
1516         old_size = (end == 0) ? 0 : end - start + 1;
1517         if (new_size >= old_size) {
1518                 ret = (new_size == old_size) ? 0 : -EINVAL;
1519                 goto unlock;
1520         }
1521
1522         ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1523         if (!ram_res) {
1524                 ret = -ENOMEM;
1525                 goto unlock;
1526         }
1527
1528         start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1529         end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1530
1531         crash_map_reserved_pages();
1532         crash_free_reserved_phys_range(end, crashk_res.end);
1533
1534         if ((start == end) && (crashk_res.parent != NULL))
1535                 release_resource(&crashk_res);
1536
1537         ram_res->start = end;
1538         ram_res->end = crashk_res.end;
1539         ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1540         ram_res->name = "System RAM";
1541
1542         crashk_res.end = end - 1;
1543
1544         insert_resource(&iomem_resource, ram_res);
1545         crash_unmap_reserved_pages();
1546
1547 unlock:
1548         mutex_unlock(&kexec_mutex);
1549         return ret;
1550 }
1551
1552 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1553                             size_t data_len)
1554 {
1555         struct elf_note note;
1556
1557         note.n_namesz = strlen(name) + 1;
1558         note.n_descsz = data_len;
1559         note.n_type   = type;
1560         memcpy(buf, &note, sizeof(note));
1561         buf += (sizeof(note) + 3)/4;
1562         memcpy(buf, name, note.n_namesz);
1563         buf += (note.n_namesz + 3)/4;
1564         memcpy(buf, data, note.n_descsz);
1565         buf += (note.n_descsz + 3)/4;
1566
1567         return buf;
1568 }
1569
1570 static void final_note(u32 *buf)
1571 {
1572         struct elf_note note;
1573
1574         note.n_namesz = 0;
1575         note.n_descsz = 0;
1576         note.n_type   = 0;
1577         memcpy(buf, &note, sizeof(note));
1578 }
1579
1580 void crash_save_cpu(struct pt_regs *regs, int cpu)
1581 {
1582         struct elf_prstatus prstatus;
1583         u32 *buf;
1584
1585         if ((cpu < 0) || (cpu >= nr_cpu_ids))
1586                 return;
1587
1588         /* Using ELF notes here is opportunistic.
1589          * I need a well defined structure format
1590          * for the data I pass, and I need tags
1591          * on the data to indicate what information I have
1592          * squirrelled away.  ELF notes happen to provide
1593          * all of that, so there is no need to invent something new.
1594          */
1595         buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1596         if (!buf)
1597                 return;
1598         memset(&prstatus, 0, sizeof(prstatus));
1599         prstatus.pr_pid = current->pid;
1600         elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1601         buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1602                               &prstatus, sizeof(prstatus));
1603         final_note(buf);
1604 }
1605
1606 static int __init crash_notes_memory_init(void)
1607 {
1608         /* Allocate memory for saving cpu registers. */
1609         crash_notes = alloc_percpu(note_buf_t);
1610         if (!crash_notes) {
1611                 pr_warn("Kexec: Memory allocation for saving cpu register states failed\n");
1612                 return -ENOMEM;
1613         }
1614         return 0;
1615 }
1616 subsys_initcall(crash_notes_memory_init);
1617
1618
1619 /*
1620  * parsing the "crashkernel" commandline
1621  *
1622  * this code is intended to be called from architecture specific code
1623  */
1624
1625
1626 /*
1627  * This function parses command lines in the format
1628  *
1629  *   crashkernel=ramsize-range:size[,...][@offset]
1630  *
1631  * The function returns 0 on success and -EINVAL on failure.
1632  */
1633 static int __init parse_crashkernel_mem(char *cmdline,
1634                                         unsigned long long system_ram,
1635                                         unsigned long long *crash_size,
1636                                         unsigned long long *crash_base)
1637 {
1638         char *cur = cmdline, *tmp;
1639
1640         /* for each entry of the comma-separated list */
1641         do {
1642                 unsigned long long start, end = ULLONG_MAX, size;
1643
1644                 /* get the start of the range */
1645                 start = memparse(cur, &tmp);
1646                 if (cur == tmp) {
1647                         pr_warn("crashkernel: Memory value expected\n");
1648                         return -EINVAL;
1649                 }
1650                 cur = tmp;
1651                 if (*cur != '-') {
1652                         pr_warn("crashkernel: '-' expected\n");
1653                         return -EINVAL;
1654                 }
1655                 cur++;
1656
1657                 /* if no ':' is here, than we read the end */
1658                 if (*cur != ':') {
1659                         end = memparse(cur, &tmp);
1660                         if (cur == tmp) {
1661                                 pr_warn("crashkernel: Memory value expected\n");
1662                                 return -EINVAL;
1663                         }
1664                         cur = tmp;
1665                         if (end <= start) {
1666                                 pr_warn("crashkernel: end <= start\n");
1667                                 return -EINVAL;
1668                         }
1669                 }
1670
1671                 if (*cur != ':') {
1672                         pr_warn("crashkernel: ':' expected\n");
1673                         return -EINVAL;
1674                 }
1675                 cur++;
1676
1677                 size = memparse(cur, &tmp);
1678                 if (cur == tmp) {
1679                         pr_warn("Memory value expected\n");
1680                         return -EINVAL;
1681                 }
1682                 cur = tmp;
1683                 if (size >= system_ram) {
1684                         pr_warn("crashkernel: invalid size\n");
1685                         return -EINVAL;
1686                 }
1687
1688                 /* match ? */
1689                 if (system_ram >= start && system_ram < end) {
1690                         *crash_size = size;
1691                         break;
1692                 }
1693         } while (*cur++ == ',');
1694
1695         if (*crash_size > 0) {
1696                 while (*cur && *cur != ' ' && *cur != '@')
1697                         cur++;
1698                 if (*cur == '@') {
1699                         cur++;
1700                         *crash_base = memparse(cur, &tmp);
1701                         if (cur == tmp) {
1702                                 pr_warn("Memory value expected after '@'\n");
1703                                 return -EINVAL;
1704                         }
1705                 }
1706         }
1707
1708         return 0;
1709 }
1710
1711 /*
1712  * That function parses "simple" (old) crashkernel command lines like
1713  *
1714  *      crashkernel=size[@offset]
1715  *
1716  * It returns 0 on success and -EINVAL on failure.
1717  */
1718 static int __init parse_crashkernel_simple(char *cmdline,
1719                                            unsigned long long *crash_size,
1720                                            unsigned long long *crash_base)
1721 {
1722         char *cur = cmdline;
1723
1724         *crash_size = memparse(cmdline, &cur);
1725         if (cmdline == cur) {
1726                 pr_warn("crashkernel: memory value expected\n");
1727                 return -EINVAL;
1728         }
1729
1730         if (*cur == '@')
1731                 *crash_base = memparse(cur+1, &cur);
1732         else if (*cur != ' ' && *cur != '\0') {
1733                 pr_warn("crashkernel: unrecognized char\n");
1734                 return -EINVAL;
1735         }
1736
1737         return 0;
1738 }
1739
1740 #define SUFFIX_HIGH 0
1741 #define SUFFIX_LOW  1
1742 #define SUFFIX_NULL 2
1743 static __initdata char *suffix_tbl[] = {
1744         [SUFFIX_HIGH] = ",high",
1745         [SUFFIX_LOW]  = ",low",
1746         [SUFFIX_NULL] = NULL,
1747 };
1748
1749 /*
1750  * That function parses "suffix"  crashkernel command lines like
1751  *
1752  *      crashkernel=size,[high|low]
1753  *
1754  * It returns 0 on success and -EINVAL on failure.
1755  */
1756 static int __init parse_crashkernel_suffix(char *cmdline,
1757                                            unsigned long long   *crash_size,
1758                                            const char *suffix)
1759 {
1760         char *cur = cmdline;
1761
1762         *crash_size = memparse(cmdline, &cur);
1763         if (cmdline == cur) {
1764                 pr_warn("crashkernel: memory value expected\n");
1765                 return -EINVAL;
1766         }
1767
1768         /* check with suffix */
1769         if (strncmp(cur, suffix, strlen(suffix))) {
1770                 pr_warn("crashkernel: unrecognized char\n");
1771                 return -EINVAL;
1772         }
1773         cur += strlen(suffix);
1774         if (*cur != ' ' && *cur != '\0') {
1775                 pr_warn("crashkernel: unrecognized char\n");
1776                 return -EINVAL;
1777         }
1778
1779         return 0;
1780 }
1781
1782 static __init char *get_last_crashkernel(char *cmdline,
1783                              const char *name,
1784                              const char *suffix)
1785 {
1786         char *p = cmdline, *ck_cmdline = NULL;
1787
1788         /* find crashkernel and use the last one if there are more */
1789         p = strstr(p, name);
1790         while (p) {
1791                 char *end_p = strchr(p, ' ');
1792                 char *q;
1793
1794                 if (!end_p)
1795                         end_p = p + strlen(p);
1796
1797                 if (!suffix) {
1798                         int i;
1799
1800                         /* skip the one with any known suffix */
1801                         for (i = 0; suffix_tbl[i]; i++) {
1802                                 q = end_p - strlen(suffix_tbl[i]);
1803                                 if (!strncmp(q, suffix_tbl[i],
1804                                              strlen(suffix_tbl[i])))
1805                                         goto next;
1806                         }
1807                         ck_cmdline = p;
1808                 } else {
1809                         q = end_p - strlen(suffix);
1810                         if (!strncmp(q, suffix, strlen(suffix)))
1811                                 ck_cmdline = p;
1812                 }
1813 next:
1814                 p = strstr(p+1, name);
1815         }
1816
1817         if (!ck_cmdline)
1818                 return NULL;
1819
1820         return ck_cmdline;
1821 }
1822
1823 static int __init __parse_crashkernel(char *cmdline,
1824                              unsigned long long system_ram,
1825                              unsigned long long *crash_size,
1826                              unsigned long long *crash_base,
1827                              const char *name,
1828                              const char *suffix)
1829 {
1830         char    *first_colon, *first_space;
1831         char    *ck_cmdline;
1832
1833         BUG_ON(!crash_size || !crash_base);
1834         *crash_size = 0;
1835         *crash_base = 0;
1836
1837         ck_cmdline = get_last_crashkernel(cmdline, name, suffix);
1838
1839         if (!ck_cmdline)
1840                 return -EINVAL;
1841
1842         ck_cmdline += strlen(name);
1843
1844         if (suffix)
1845                 return parse_crashkernel_suffix(ck_cmdline, crash_size,
1846                                 suffix);
1847         /*
1848          * if the commandline contains a ':', then that's the extended
1849          * syntax -- if not, it must be the classic syntax
1850          */
1851         first_colon = strchr(ck_cmdline, ':');
1852         first_space = strchr(ck_cmdline, ' ');
1853         if (first_colon && (!first_space || first_colon < first_space))
1854                 return parse_crashkernel_mem(ck_cmdline, system_ram,
1855                                 crash_size, crash_base);
1856
1857         return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base);
1858 }
1859
1860 /*
1861  * That function is the entry point for command line parsing and should be
1862  * called from the arch-specific code.
1863  */
1864 int __init parse_crashkernel(char *cmdline,
1865                              unsigned long long system_ram,
1866                              unsigned long long *crash_size,
1867                              unsigned long long *crash_base)
1868 {
1869         return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1870                                         "crashkernel=", NULL);
1871 }
1872
1873 int __init parse_crashkernel_high(char *cmdline,
1874                              unsigned long long system_ram,
1875                              unsigned long long *crash_size,
1876                              unsigned long long *crash_base)
1877 {
1878         return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1879                                 "crashkernel=", suffix_tbl[SUFFIX_HIGH]);
1880 }
1881
1882 int __init parse_crashkernel_low(char *cmdline,
1883                              unsigned long long system_ram,
1884                              unsigned long long *crash_size,
1885                              unsigned long long *crash_base)
1886 {
1887         return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1888                                 "crashkernel=", suffix_tbl[SUFFIX_LOW]);
1889 }
1890
1891 static void update_vmcoreinfo_note(void)
1892 {
1893         u32 *buf = vmcoreinfo_note;
1894
1895         if (!vmcoreinfo_size)
1896                 return;
1897         buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1898                               vmcoreinfo_size);
1899         final_note(buf);
1900 }
1901
1902 void crash_save_vmcoreinfo(void)
1903 {
1904         vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
1905         update_vmcoreinfo_note();
1906 }
1907
1908 void vmcoreinfo_append_str(const char *fmt, ...)
1909 {
1910         va_list args;
1911         char buf[0x50];
1912         size_t r;
1913
1914         va_start(args, fmt);
1915         r = vscnprintf(buf, sizeof(buf), fmt, args);
1916         va_end(args);
1917
1918         r = min(r, vmcoreinfo_max_size - vmcoreinfo_size);
1919
1920         memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1921
1922         vmcoreinfo_size += r;
1923 }
1924
1925 /*
1926  * provide an empty default implementation here -- architecture
1927  * code may override this
1928  */
1929 void __weak arch_crash_save_vmcoreinfo(void)
1930 {}
1931
1932 unsigned long __weak paddr_vmcoreinfo_note(void)
1933 {
1934         return __pa((unsigned long)(char *)&vmcoreinfo_note);
1935 }
1936
1937 static int __init crash_save_vmcoreinfo_init(void)
1938 {
1939         VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1940         VMCOREINFO_PAGESIZE(PAGE_SIZE);
1941
1942         VMCOREINFO_SYMBOL(init_uts_ns);
1943         VMCOREINFO_SYMBOL(node_online_map);
1944 #ifdef CONFIG_MMU
1945         VMCOREINFO_SYMBOL(swapper_pg_dir);
1946 #endif
1947         VMCOREINFO_SYMBOL(_stext);
1948         VMCOREINFO_SYMBOL(vmap_area_list);
1949
1950 #ifndef CONFIG_NEED_MULTIPLE_NODES
1951         VMCOREINFO_SYMBOL(mem_map);
1952         VMCOREINFO_SYMBOL(contig_page_data);
1953 #endif
1954 #ifdef CONFIG_SPARSEMEM
1955         VMCOREINFO_SYMBOL(mem_section);
1956         VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1957         VMCOREINFO_STRUCT_SIZE(mem_section);
1958         VMCOREINFO_OFFSET(mem_section, section_mem_map);
1959 #endif
1960         VMCOREINFO_STRUCT_SIZE(page);
1961         VMCOREINFO_STRUCT_SIZE(pglist_data);
1962         VMCOREINFO_STRUCT_SIZE(zone);
1963         VMCOREINFO_STRUCT_SIZE(free_area);
1964         VMCOREINFO_STRUCT_SIZE(list_head);
1965         VMCOREINFO_SIZE(nodemask_t);
1966         VMCOREINFO_OFFSET(page, flags);
1967         VMCOREINFO_OFFSET(page, _count);
1968         VMCOREINFO_OFFSET(page, mapping);
1969         VMCOREINFO_OFFSET(page, lru);
1970         VMCOREINFO_OFFSET(page, _mapcount);
1971         VMCOREINFO_OFFSET(page, private);
1972         VMCOREINFO_OFFSET(pglist_data, node_zones);
1973         VMCOREINFO_OFFSET(pglist_data, nr_zones);
1974 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1975         VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1976 #endif
1977         VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1978         VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1979         VMCOREINFO_OFFSET(pglist_data, node_id);
1980         VMCOREINFO_OFFSET(zone, free_area);
1981         VMCOREINFO_OFFSET(zone, vm_stat);
1982         VMCOREINFO_OFFSET(zone, spanned_pages);
1983         VMCOREINFO_OFFSET(free_area, free_list);
1984         VMCOREINFO_OFFSET(list_head, next);
1985         VMCOREINFO_OFFSET(list_head, prev);
1986         VMCOREINFO_OFFSET(vmap_area, va_start);
1987         VMCOREINFO_OFFSET(vmap_area, list);
1988         VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1989         log_buf_kexec_setup();
1990         VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1991         VMCOREINFO_NUMBER(NR_FREE_PAGES);
1992         VMCOREINFO_NUMBER(PG_lru);
1993         VMCOREINFO_NUMBER(PG_private);
1994         VMCOREINFO_NUMBER(PG_swapcache);
1995         VMCOREINFO_NUMBER(PG_slab);
1996 #ifdef CONFIG_MEMORY_FAILURE
1997         VMCOREINFO_NUMBER(PG_hwpoison);
1998 #endif
1999         VMCOREINFO_NUMBER(PG_head_mask);
2000         VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
2001 #ifdef CONFIG_HUGETLBFS
2002         VMCOREINFO_SYMBOL(free_huge_page);
2003 #endif
2004
2005         arch_crash_save_vmcoreinfo();
2006         update_vmcoreinfo_note();
2007
2008         return 0;
2009 }
2010
2011 subsys_initcall(crash_save_vmcoreinfo_init);
2012
2013 #ifdef CONFIG_KEXEC_FILE
2014 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
2015                                     struct kexec_buf *kbuf)
2016 {
2017         struct kimage *image = kbuf->image;
2018         unsigned long temp_start, temp_end;
2019
2020         temp_end = min(end, kbuf->buf_max);
2021         temp_start = temp_end - kbuf->memsz;
2022
2023         do {
2024                 /* align down start */
2025                 temp_start = temp_start & (~(kbuf->buf_align - 1));
2026
2027                 if (temp_start < start || temp_start < kbuf->buf_min)
2028                         return 0;
2029
2030                 temp_end = temp_start + kbuf->memsz - 1;
2031
2032                 /*
2033                  * Make sure this does not conflict with any of existing
2034                  * segments
2035                  */
2036                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
2037                         temp_start = temp_start - PAGE_SIZE;
2038                         continue;
2039                 }
2040
2041                 /* We found a suitable memory range */
2042                 break;
2043         } while (1);
2044
2045         /* If we are here, we found a suitable memory range */
2046         kbuf->mem = temp_start;
2047
2048         /* Success, stop navigating through remaining System RAM ranges */
2049         return 1;
2050 }
2051
2052 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
2053                                      struct kexec_buf *kbuf)
2054 {
2055         struct kimage *image = kbuf->image;
2056         unsigned long temp_start, temp_end;
2057
2058         temp_start = max(start, kbuf->buf_min);
2059
2060         do {
2061                 temp_start = ALIGN(temp_start, kbuf->buf_align);
2062                 temp_end = temp_start + kbuf->memsz - 1;
2063
2064                 if (temp_end > end || temp_end > kbuf->buf_max)
2065                         return 0;
2066                 /*
2067                  * Make sure this does not conflict with any of existing
2068                  * segments
2069                  */
2070                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
2071                         temp_start = temp_start + PAGE_SIZE;
2072                         continue;
2073                 }
2074
2075                 /* We found a suitable memory range */
2076                 break;
2077         } while (1);
2078
2079         /* If we are here, we found a suitable memory range */
2080         kbuf->mem = temp_start;
2081
2082         /* Success, stop navigating through remaining System RAM ranges */
2083         return 1;
2084 }
2085
2086 static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
2087 {
2088         struct kexec_buf *kbuf = (struct kexec_buf *)arg;
2089         unsigned long sz = end - start + 1;
2090
2091         /* Returning 0 will take to next memory range */
2092         if (sz < kbuf->memsz)
2093                 return 0;
2094
2095         if (end < kbuf->buf_min || start > kbuf->buf_max)
2096                 return 0;
2097
2098         /*
2099          * Allocate memory top down with-in ram range. Otherwise bottom up
2100          * allocation.
2101          */
2102         if (kbuf->top_down)
2103                 return locate_mem_hole_top_down(start, end, kbuf);
2104         return locate_mem_hole_bottom_up(start, end, kbuf);
2105 }
2106
2107 /*
2108  * Helper function for placing a buffer in a kexec segment. This assumes
2109  * that kexec_mutex is held.
2110  */
2111 int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz,
2112                      unsigned long memsz, unsigned long buf_align,
2113                      unsigned long buf_min, unsigned long buf_max,
2114                      bool top_down, unsigned long *load_addr)
2115 {
2116
2117         struct kexec_segment *ksegment;
2118         struct kexec_buf buf, *kbuf;
2119         int ret;
2120
2121         /* Currently adding segment this way is allowed only in file mode */
2122         if (!image->file_mode)
2123                 return -EINVAL;
2124
2125         if (image->nr_segments >= KEXEC_SEGMENT_MAX)
2126                 return -EINVAL;
2127
2128         /*
2129          * Make sure we are not trying to add buffer after allocating
2130          * control pages. All segments need to be placed first before
2131          * any control pages are allocated. As control page allocation
2132          * logic goes through list of segments to make sure there are
2133          * no destination overlaps.
2134          */
2135         if (!list_empty(&image->control_pages)) {
2136                 WARN_ON(1);
2137                 return -EINVAL;
2138         }
2139
2140         memset(&buf, 0, sizeof(struct kexec_buf));
2141         kbuf = &buf;
2142         kbuf->image = image;
2143         kbuf->buffer = buffer;
2144         kbuf->bufsz = bufsz;
2145
2146         kbuf->memsz = ALIGN(memsz, PAGE_SIZE);
2147         kbuf->buf_align = max(buf_align, PAGE_SIZE);
2148         kbuf->buf_min = buf_min;
2149         kbuf->buf_max = buf_max;
2150         kbuf->top_down = top_down;
2151
2152         /* Walk the RAM ranges and allocate a suitable range for the buffer */
2153         if (image->type == KEXEC_TYPE_CRASH)
2154                 ret = walk_iomem_res("Crash kernel",
2155                                      IORESOURCE_MEM | IORESOURCE_BUSY,
2156                                      crashk_res.start, crashk_res.end, kbuf,
2157                                      locate_mem_hole_callback);
2158         else
2159                 ret = walk_system_ram_res(0, -1, kbuf,
2160                                           locate_mem_hole_callback);
2161         if (ret != 1) {
2162                 /* A suitable memory range could not be found for buffer */
2163                 return -EADDRNOTAVAIL;
2164         }
2165
2166         /* Found a suitable memory range */
2167         ksegment = &image->segment[image->nr_segments];
2168         ksegment->kbuf = kbuf->buffer;
2169         ksegment->bufsz = kbuf->bufsz;
2170         ksegment->mem = kbuf->mem;
2171         ksegment->memsz = kbuf->memsz;
2172         image->nr_segments++;
2173         *load_addr = ksegment->mem;
2174         return 0;
2175 }
2176
2177 /* Calculate and store the digest of segments */
2178 static int kexec_calculate_store_digests(struct kimage *image)
2179 {
2180         struct crypto_shash *tfm;
2181         struct shash_desc *desc;
2182         int ret = 0, i, j, zero_buf_sz, sha_region_sz;
2183         size_t desc_size, nullsz;
2184         char *digest;
2185         void *zero_buf;
2186         struct kexec_sha_region *sha_regions;
2187         struct purgatory_info *pi = &image->purgatory_info;
2188
2189         zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
2190         zero_buf_sz = PAGE_SIZE;
2191
2192         tfm = crypto_alloc_shash("sha256", 0, 0);
2193         if (IS_ERR(tfm)) {
2194                 ret = PTR_ERR(tfm);
2195                 goto out;
2196         }
2197
2198         desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
2199         desc = kzalloc(desc_size, GFP_KERNEL);
2200         if (!desc) {
2201                 ret = -ENOMEM;
2202                 goto out_free_tfm;
2203         }
2204
2205         sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
2206         sha_regions = vzalloc(sha_region_sz);
2207         if (!sha_regions)
2208                 goto out_free_desc;
2209
2210         desc->tfm   = tfm;
2211         desc->flags = 0;
2212
2213         ret = crypto_shash_init(desc);
2214         if (ret < 0)
2215                 goto out_free_sha_regions;
2216
2217         digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
2218         if (!digest) {
2219                 ret = -ENOMEM;
2220                 goto out_free_sha_regions;
2221         }
2222
2223         for (j = i = 0; i < image->nr_segments; i++) {
2224                 struct kexec_segment *ksegment;
2225
2226                 ksegment = &image->segment[i];
2227                 /*
2228                  * Skip purgatory as it will be modified once we put digest
2229                  * info in purgatory.
2230                  */
2231                 if (ksegment->kbuf == pi->purgatory_buf)
2232                         continue;
2233
2234                 ret = crypto_shash_update(desc, ksegment->kbuf,
2235                                           ksegment->bufsz);
2236                 if (ret)
2237                         break;
2238
2239                 /*
2240                  * Assume rest of the buffer is filled with zero and
2241                  * update digest accordingly.
2242                  */
2243                 nullsz = ksegment->memsz - ksegment->bufsz;
2244                 while (nullsz) {
2245                         unsigned long bytes = nullsz;
2246
2247                         if (bytes > zero_buf_sz)
2248                                 bytes = zero_buf_sz;
2249                         ret = crypto_shash_update(desc, zero_buf, bytes);
2250                         if (ret)
2251                                 break;
2252                         nullsz -= bytes;
2253                 }
2254
2255                 if (ret)
2256                         break;
2257
2258                 sha_regions[j].start = ksegment->mem;
2259                 sha_regions[j].len = ksegment->memsz;
2260                 j++;
2261         }
2262
2263         if (!ret) {
2264                 ret = crypto_shash_final(desc, digest);
2265                 if (ret)
2266                         goto out_free_digest;
2267                 ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
2268                                                 sha_regions, sha_region_sz, 0);
2269                 if (ret)
2270                         goto out_free_digest;
2271
2272                 ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
2273                                                 digest, SHA256_DIGEST_SIZE, 0);
2274                 if (ret)
2275                         goto out_free_digest;
2276         }
2277
2278 out_free_digest:
2279         kfree(digest);
2280 out_free_sha_regions:
2281         vfree(sha_regions);
2282 out_free_desc:
2283         kfree(desc);
2284 out_free_tfm:
2285         kfree(tfm);
2286 out:
2287         return ret;
2288 }
2289
2290 /* Actually load purgatory. Lot of code taken from kexec-tools */
2291 static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
2292                                   unsigned long max, int top_down)
2293 {
2294         struct purgatory_info *pi = &image->purgatory_info;
2295         unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad;
2296         unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset;
2297         unsigned char *buf_addr, *src;
2298         int i, ret = 0, entry_sidx = -1;
2299         const Elf_Shdr *sechdrs_c;
2300         Elf_Shdr *sechdrs = NULL;
2301         void *purgatory_buf = NULL;
2302
2303         /*
2304          * sechdrs_c points to section headers in purgatory and are read
2305          * only. No modifications allowed.
2306          */
2307         sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
2308
2309         /*
2310          * We can not modify sechdrs_c[] and its fields. It is read only.
2311          * Copy it over to a local copy where one can store some temporary
2312          * data and free it at the end. We need to modify ->sh_addr and
2313          * ->sh_offset fields to keep track of permanent and temporary
2314          * locations of sections.
2315          */
2316         sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
2317         if (!sechdrs)
2318                 return -ENOMEM;
2319
2320         memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
2321
2322         /*
2323          * We seem to have multiple copies of sections. First copy is which
2324          * is embedded in kernel in read only section. Some of these sections
2325          * will be copied to a temporary buffer and relocated. And these
2326          * sections will finally be copied to their final destination at
2327          * segment load time.
2328          *
2329          * Use ->sh_offset to reflect section address in memory. It will
2330          * point to original read only copy if section is not allocatable.
2331          * Otherwise it will point to temporary copy which will be relocated.
2332          *
2333          * Use ->sh_addr to contain final address of the section where it
2334          * will go during execution time.
2335          */
2336         for (i = 0; i < pi->ehdr->e_shnum; i++) {
2337                 if (sechdrs[i].sh_type == SHT_NOBITS)
2338                         continue;
2339
2340                 sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
2341                                                 sechdrs[i].sh_offset;
2342         }
2343
2344         /*
2345          * Identify entry point section and make entry relative to section
2346          * start.
2347          */
2348         entry = pi->ehdr->e_entry;
2349         for (i = 0; i < pi->ehdr->e_shnum; i++) {
2350                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
2351                         continue;
2352
2353                 if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
2354                         continue;
2355
2356                 /* Make entry section relative */
2357                 if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
2358                     ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
2359                      pi->ehdr->e_entry)) {
2360                         entry_sidx = i;
2361                         entry -= sechdrs[i].sh_addr;
2362                         break;
2363                 }
2364         }
2365
2366         /* Determine how much memory is needed to load relocatable object. */
2367         buf_align = 1;
2368         bss_align = 1;
2369         buf_sz = 0;
2370         bss_sz = 0;
2371
2372         for (i = 0; i < pi->ehdr->e_shnum; i++) {
2373                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
2374                         continue;
2375
2376                 align = sechdrs[i].sh_addralign;
2377                 if (sechdrs[i].sh_type != SHT_NOBITS) {
2378                         if (buf_align < align)
2379                                 buf_align = align;
2380                         buf_sz = ALIGN(buf_sz, align);
2381                         buf_sz += sechdrs[i].sh_size;
2382                 } else {
2383                         /* bss section */
2384                         if (bss_align < align)
2385                                 bss_align = align;
2386                         bss_sz = ALIGN(bss_sz, align);
2387                         bss_sz += sechdrs[i].sh_size;
2388                 }
2389         }
2390
2391         /* Determine the bss padding required to align bss properly */
2392         bss_pad = 0;
2393         if (buf_sz & (bss_align - 1))
2394                 bss_pad = bss_align - (buf_sz & (bss_align - 1));
2395
2396         memsz = buf_sz + bss_pad + bss_sz;
2397
2398         /* Allocate buffer for purgatory */
2399         purgatory_buf = vzalloc(buf_sz);
2400         if (!purgatory_buf) {
2401                 ret = -ENOMEM;
2402                 goto out;
2403         }
2404
2405         if (buf_align < bss_align)
2406                 buf_align = bss_align;
2407
2408         /* Add buffer to segment list */
2409         ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz,
2410                                 buf_align, min, max, top_down,
2411                                 &pi->purgatory_load_addr);
2412         if (ret)
2413                 goto out;
2414
2415         /* Load SHF_ALLOC sections */
2416         buf_addr = purgatory_buf;
2417         load_addr = curr_load_addr = pi->purgatory_load_addr;
2418         bss_addr = load_addr + buf_sz + bss_pad;
2419
2420         for (i = 0; i < pi->ehdr->e_shnum; i++) {
2421                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
2422                         continue;
2423
2424                 align = sechdrs[i].sh_addralign;
2425                 if (sechdrs[i].sh_type != SHT_NOBITS) {
2426                         curr_load_addr = ALIGN(curr_load_addr, align);
2427                         offset = curr_load_addr - load_addr;
2428                         /* We already modifed ->sh_offset to keep src addr */
2429                         src = (char *) sechdrs[i].sh_offset;
2430                         memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
2431
2432                         /* Store load address and source address of section */
2433                         sechdrs[i].sh_addr = curr_load_addr;
2434
2435                         /*
2436                          * This section got copied to temporary buffer. Update
2437                          * ->sh_offset accordingly.
2438                          */
2439                         sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
2440
2441                         /* Advance to the next address */
2442                         curr_load_addr += sechdrs[i].sh_size;
2443                 } else {
2444                         bss_addr = ALIGN(bss_addr, align);
2445                         sechdrs[i].sh_addr = bss_addr;
2446                         bss_addr += sechdrs[i].sh_size;
2447                 }
2448         }
2449
2450         /* Update entry point based on load address of text section */
2451         if (entry_sidx >= 0)
2452                 entry += sechdrs[entry_sidx].sh_addr;
2453
2454         /* Make kernel jump to purgatory after shutdown */
2455         image->start = entry;
2456
2457         /* Used later to get/set symbol values */
2458         pi->sechdrs = sechdrs;
2459
2460         /*
2461          * Used later to identify which section is purgatory and skip it
2462          * from checksumming.
2463          */
2464         pi->purgatory_buf = purgatory_buf;
2465         return ret;
2466 out:
2467         vfree(sechdrs);
2468         vfree(purgatory_buf);
2469         return ret;
2470 }
2471
2472 static int kexec_apply_relocations(struct kimage *image)
2473 {
2474         int i, ret;
2475         struct purgatory_info *pi = &image->purgatory_info;
2476         Elf_Shdr *sechdrs = pi->sechdrs;
2477
2478         /* Apply relocations */
2479         for (i = 0; i < pi->ehdr->e_shnum; i++) {
2480                 Elf_Shdr *section, *symtab;
2481
2482                 if (sechdrs[i].sh_type != SHT_RELA &&
2483                     sechdrs[i].sh_type != SHT_REL)
2484                         continue;
2485
2486                 /*
2487                  * For section of type SHT_RELA/SHT_REL,
2488                  * ->sh_link contains section header index of associated
2489                  * symbol table. And ->sh_info contains section header
2490                  * index of section to which relocations apply.
2491                  */
2492                 if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
2493                     sechdrs[i].sh_link >= pi->ehdr->e_shnum)
2494                         return -ENOEXEC;
2495
2496                 section = &sechdrs[sechdrs[i].sh_info];
2497                 symtab = &sechdrs[sechdrs[i].sh_link];
2498
2499                 if (!(section->sh_flags & SHF_ALLOC))
2500                         continue;
2501
2502                 /*
2503                  * symtab->sh_link contain section header index of associated
2504                  * string table.
2505                  */
2506                 if (symtab->sh_link >= pi->ehdr->e_shnum)
2507                         /* Invalid section number? */
2508                         continue;
2509
2510                 /*
2511                  * Respective architecture needs to provide support for applying
2512                  * relocations of type SHT_RELA/SHT_REL.
2513                  */
2514                 if (sechdrs[i].sh_type == SHT_RELA)
2515                         ret = arch_kexec_apply_relocations_add(pi->ehdr,
2516                                                                sechdrs, i);
2517                 else if (sechdrs[i].sh_type == SHT_REL)
2518                         ret = arch_kexec_apply_relocations(pi->ehdr,
2519                                                            sechdrs, i);
2520                 if (ret)
2521                         return ret;
2522         }
2523
2524         return 0;
2525 }
2526
2527 /* Load relocatable purgatory object and relocate it appropriately */
2528 int kexec_load_purgatory(struct kimage *image, unsigned long min,
2529                          unsigned long max, int top_down,
2530                          unsigned long *load_addr)
2531 {
2532         struct purgatory_info *pi = &image->purgatory_info;
2533         int ret;
2534
2535         if (kexec_purgatory_size <= 0)
2536                 return -EINVAL;
2537
2538         if (kexec_purgatory_size < sizeof(Elf_Ehdr))
2539                 return -ENOEXEC;
2540
2541         pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
2542
2543         if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
2544             || pi->ehdr->e_type != ET_REL
2545             || !elf_check_arch(pi->ehdr)
2546             || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
2547                 return -ENOEXEC;
2548
2549         if (pi->ehdr->e_shoff >= kexec_purgatory_size
2550             || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
2551             kexec_purgatory_size - pi->ehdr->e_shoff))
2552                 return -ENOEXEC;
2553
2554         ret = __kexec_load_purgatory(image, min, max, top_down);
2555         if (ret)
2556                 return ret;
2557
2558         ret = kexec_apply_relocations(image);
2559         if (ret)
2560                 goto out;
2561
2562         *load_addr = pi->purgatory_load_addr;
2563         return 0;
2564 out:
2565         vfree(pi->sechdrs);
2566         vfree(pi->purgatory_buf);
2567         return ret;
2568 }
2569
2570 static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
2571                                             const char *name)
2572 {
2573         Elf_Sym *syms;
2574         Elf_Shdr *sechdrs;
2575         Elf_Ehdr *ehdr;
2576         int i, k;
2577         const char *strtab;
2578
2579         if (!pi->sechdrs || !pi->ehdr)
2580                 return NULL;
2581
2582         sechdrs = pi->sechdrs;
2583         ehdr = pi->ehdr;
2584
2585         for (i = 0; i < ehdr->e_shnum; i++) {
2586                 if (sechdrs[i].sh_type != SHT_SYMTAB)
2587                         continue;
2588
2589                 if (sechdrs[i].sh_link >= ehdr->e_shnum)
2590                         /* Invalid strtab section number */
2591                         continue;
2592                 strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
2593                 syms = (Elf_Sym *)sechdrs[i].sh_offset;
2594
2595                 /* Go through symbols for a match */
2596                 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
2597                         if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
2598                                 continue;
2599
2600                         if (strcmp(strtab + syms[k].st_name, name) != 0)
2601                                 continue;
2602
2603                         if (syms[k].st_shndx == SHN_UNDEF ||
2604                             syms[k].st_shndx >= ehdr->e_shnum) {
2605                                 pr_debug("Symbol: %s has bad section index %d.\n",
2606                                                 name, syms[k].st_shndx);
2607                                 return NULL;
2608                         }
2609
2610                         /* Found the symbol we are looking for */
2611                         return &syms[k];
2612                 }
2613         }
2614
2615         return NULL;
2616 }
2617
2618 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
2619 {
2620         struct purgatory_info *pi = &image->purgatory_info;
2621         Elf_Sym *sym;
2622         Elf_Shdr *sechdr;
2623
2624         sym = kexec_purgatory_find_symbol(pi, name);
2625         if (!sym)
2626                 return ERR_PTR(-EINVAL);
2627
2628         sechdr = &pi->sechdrs[sym->st_shndx];
2629
2630         /*
2631          * Returns the address where symbol will finally be loaded after
2632          * kexec_load_segment()
2633          */
2634         return (void *)(sechdr->sh_addr + sym->st_value);
2635 }
2636
2637 /*
2638  * Get or set value of a symbol. If "get_value" is true, symbol value is
2639  * returned in buf otherwise symbol value is set based on value in buf.
2640  */
2641 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
2642                                    void *buf, unsigned int size, bool get_value)
2643 {
2644         Elf_Sym *sym;
2645         Elf_Shdr *sechdrs;
2646         struct purgatory_info *pi = &image->purgatory_info;
2647         char *sym_buf;
2648
2649         sym = kexec_purgatory_find_symbol(pi, name);
2650         if (!sym)
2651                 return -EINVAL;
2652
2653         if (sym->st_size != size) {
2654                 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
2655                        name, (unsigned long)sym->st_size, size);
2656                 return -EINVAL;
2657         }
2658
2659         sechdrs = pi->sechdrs;
2660
2661         if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2662                 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
2663                        get_value ? "get" : "set");
2664                 return -EINVAL;
2665         }
2666
2667         sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
2668                                         sym->st_value;
2669
2670         if (get_value)
2671                 memcpy((void *)buf, sym_buf, size);
2672         else
2673                 memcpy((void *)sym_buf, buf, size);
2674
2675         return 0;
2676 }
2677 #endif /* CONFIG_KEXEC_FILE */
2678
2679 /*
2680  * Move into place and start executing a preloaded standalone
2681  * executable.  If nothing was preloaded return an error.
2682  */
2683 int kernel_kexec(void)
2684 {
2685         int error = 0;
2686
2687         if (!mutex_trylock(&kexec_mutex))
2688                 return -EBUSY;
2689         if (!kexec_image) {
2690                 error = -EINVAL;
2691                 goto Unlock;
2692         }
2693
2694 #ifdef CONFIG_KEXEC_JUMP
2695         if (kexec_image->preserve_context) {
2696                 lock_system_sleep();
2697                 pm_prepare_console();
2698                 error = freeze_processes();
2699                 if (error) {
2700                         error = -EBUSY;
2701                         goto Restore_console;
2702                 }
2703                 suspend_console();
2704                 error = dpm_suspend_start(PMSG_FREEZE);
2705                 if (error)
2706                         goto Resume_console;
2707                 /* At this point, dpm_suspend_start() has been called,
2708                  * but *not* dpm_suspend_end(). We *must* call
2709                  * dpm_suspend_end() now.  Otherwise, drivers for
2710                  * some devices (e.g. interrupt controllers) become
2711                  * desynchronized with the actual state of the
2712                  * hardware at resume time, and evil weirdness ensues.
2713                  */
2714                 error = dpm_suspend_end(PMSG_FREEZE);
2715                 if (error)
2716                         goto Resume_devices;
2717                 error = disable_nonboot_cpus();
2718                 if (error)
2719                         goto Enable_cpus;
2720                 local_irq_disable();
2721                 error = syscore_suspend();
2722                 if (error)
2723                         goto Enable_irqs;
2724         } else
2725 #endif
2726         {
2727                 kexec_in_progress = true;
2728                 kernel_restart_prepare(NULL);
2729                 migrate_to_reboot_cpu();
2730
2731                 /*
2732                  * migrate_to_reboot_cpu() disables CPU hotplug assuming that
2733                  * no further code needs to use CPU hotplug (which is true in
2734                  * the reboot case). However, the kexec path depends on using
2735                  * CPU hotplug again; so re-enable it here.
2736                  */
2737                 cpu_hotplug_enable();
2738                 pr_emerg("Starting new kernel\n");
2739                 machine_shutdown();
2740         }
2741
2742         machine_kexec(kexec_image);
2743
2744 #ifdef CONFIG_KEXEC_JUMP
2745         if (kexec_image->preserve_context) {
2746                 syscore_resume();
2747  Enable_irqs:
2748                 local_irq_enable();
2749  Enable_cpus:
2750                 enable_nonboot_cpus();
2751                 dpm_resume_start(PMSG_RESTORE);
2752  Resume_devices:
2753                 dpm_resume_end(PMSG_RESTORE);
2754  Resume_console:
2755                 resume_console();
2756                 thaw_processes();
2757  Restore_console:
2758                 pm_restore_console();
2759                 unlock_system_sleep();
2760         }
2761 #endif
2762
2763  Unlock:
2764         mutex_unlock(&kexec_mutex);
2765         return error;
2766 }