kprobes: Make functions static
[firefly-linux-kernel-4.4.55.git] / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *              Probes initial implementation (includes suggestions from
23  *              Rusty Russell).
24  * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *              hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *              interface to access function arguments.
28  * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *              exceptions notifier to be first on the priority list.
30  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *              <prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/module.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50
51 #include <asm-generic/sections.h>
52 #include <asm/cacheflush.h>
53 #include <asm/errno.h>
54 #include <asm/uaccess.h>
55
56 #define KPROBE_HASH_BITS 6
57 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
58
59
60 /*
61  * Some oddball architectures like 64bit powerpc have function descriptors
62  * so this must be overridable.
63  */
64 #ifndef kprobe_lookup_name
65 #define kprobe_lookup_name(name, addr) \
66         addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
67 #endif
68
69 static int kprobes_initialized;
70 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
71 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
72
73 /* NOTE: change this value only with kprobe_mutex held */
74 static bool kprobes_all_disarmed;
75
76 static DEFINE_MUTEX(kprobe_mutex);      /* Protects kprobe_table */
77 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
78 static struct {
79         spinlock_t lock ____cacheline_aligned_in_smp;
80 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
81
82 static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
83 {
84         return &(kretprobe_table_locks[hash].lock);
85 }
86
87 /*
88  * Normally, functions that we'd want to prohibit kprobes in, are marked
89  * __kprobes. But, there are cases where such functions already belong to
90  * a different section (__sched for preempt_schedule)
91  *
92  * For such cases, we now have a blacklist
93  */
94 static struct kprobe_blackpoint kprobe_blacklist[] = {
95         {"preempt_schedule",},
96         {"native_get_debugreg",},
97         {"irq_entries_start",},
98         {"common_interrupt",},
99         {"mcount",},    /* mcount can be called from everywhere */
100         {NULL}    /* Terminator */
101 };
102
103 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
104 /*
105  * kprobe->ainsn.insn points to the copy of the instruction to be
106  * single-stepped. x86_64, POWER4 and above have no-exec support and
107  * stepping on the instruction on a vmalloced/kmalloced/data page
108  * is a recipe for disaster
109  */
110 struct kprobe_insn_page {
111         struct list_head list;
112         kprobe_opcode_t *insns;         /* Page of instruction slots */
113         int nused;
114         int ngarbage;
115         char slot_used[];
116 };
117
118 #define KPROBE_INSN_PAGE_SIZE(slots)                    \
119         (offsetof(struct kprobe_insn_page, slot_used) + \
120          (sizeof(char) * (slots)))
121
122 struct kprobe_insn_cache {
123         struct list_head pages; /* list of kprobe_insn_page */
124         size_t insn_size;       /* size of instruction slot */
125         int nr_garbage;
126 };
127
128 static int slots_per_page(struct kprobe_insn_cache *c)
129 {
130         return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
131 }
132
133 enum kprobe_slot_state {
134         SLOT_CLEAN = 0,
135         SLOT_DIRTY = 1,
136         SLOT_USED = 2,
137 };
138
139 static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_slots */
140 static struct kprobe_insn_cache kprobe_insn_slots = {
141         .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
142         .insn_size = MAX_INSN_SIZE,
143         .nr_garbage = 0,
144 };
145 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
146
147 /**
148  * __get_insn_slot() - Find a slot on an executable page for an instruction.
149  * We allocate an executable page if there's no room on existing ones.
150  */
151 static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
152 {
153         struct kprobe_insn_page *kip;
154
155  retry:
156         list_for_each_entry(kip, &c->pages, list) {
157                 if (kip->nused < slots_per_page(c)) {
158                         int i;
159                         for (i = 0; i < slots_per_page(c); i++) {
160                                 if (kip->slot_used[i] == SLOT_CLEAN) {
161                                         kip->slot_used[i] = SLOT_USED;
162                                         kip->nused++;
163                                         return kip->insns + (i * c->insn_size);
164                                 }
165                         }
166                         /* kip->nused is broken. Fix it. */
167                         kip->nused = slots_per_page(c);
168                         WARN_ON(1);
169                 }
170         }
171
172         /* If there are any garbage slots, collect it and try again. */
173         if (c->nr_garbage && collect_garbage_slots(c) == 0)
174                 goto retry;
175
176         /* All out of space.  Need to allocate a new page. */
177         kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178         if (!kip)
179                 return NULL;
180
181         /*
182          * Use module_alloc so this page is within +/- 2GB of where the
183          * kernel image and loaded module images reside. This is required
184          * so x86_64 can correctly handle the %rip-relative fixups.
185          */
186         kip->insns = module_alloc(PAGE_SIZE);
187         if (!kip->insns) {
188                 kfree(kip);
189                 return NULL;
190         }
191         INIT_LIST_HEAD(&kip->list);
192         memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193         kip->slot_used[0] = SLOT_USED;
194         kip->nused = 1;
195         kip->ngarbage = 0;
196         list_add(&kip->list, &c->pages);
197         return kip->insns;
198 }
199
200
201 kprobe_opcode_t __kprobes *get_insn_slot(void)
202 {
203         kprobe_opcode_t *ret = NULL;
204
205         mutex_lock(&kprobe_insn_mutex);
206         ret = __get_insn_slot(&kprobe_insn_slots);
207         mutex_unlock(&kprobe_insn_mutex);
208
209         return ret;
210 }
211
212 /* Return 1 if all garbages are collected, otherwise 0. */
213 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
214 {
215         kip->slot_used[idx] = SLOT_CLEAN;
216         kip->nused--;
217         if (kip->nused == 0) {
218                 /*
219                  * Page is no longer in use.  Free it unless
220                  * it's the last one.  We keep the last one
221                  * so as not to have to set it up again the
222                  * next time somebody inserts a probe.
223                  */
224                 if (!list_is_singular(&kip->list)) {
225                         list_del(&kip->list);
226                         module_free(NULL, kip->insns);
227                         kfree(kip);
228                 }
229                 return 1;
230         }
231         return 0;
232 }
233
234 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
235 {
236         struct kprobe_insn_page *kip, *next;
237
238         /* Ensure no-one is interrupted on the garbages */
239         synchronize_sched();
240
241         list_for_each_entry_safe(kip, next, &c->pages, list) {
242                 int i;
243                 if (kip->ngarbage == 0)
244                         continue;
245                 kip->ngarbage = 0;      /* we will collect all garbages */
246                 for (i = 0; i < slots_per_page(c); i++) {
247                         if (kip->slot_used[i] == SLOT_DIRTY &&
248                             collect_one_slot(kip, i))
249                                 break;
250                 }
251         }
252         c->nr_garbage = 0;
253         return 0;
254 }
255
256 static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
257                                        kprobe_opcode_t *slot, int dirty)
258 {
259         struct kprobe_insn_page *kip;
260
261         list_for_each_entry(kip, &c->pages, list) {
262                 long idx = ((long)slot - (long)kip->insns) /
263                                 (c->insn_size * sizeof(kprobe_opcode_t));
264                 if (idx >= 0 && idx < slots_per_page(c)) {
265                         WARN_ON(kip->slot_used[idx] != SLOT_USED);
266                         if (dirty) {
267                                 kip->slot_used[idx] = SLOT_DIRTY;
268                                 kip->ngarbage++;
269                                 if (++c->nr_garbage > slots_per_page(c))
270                                         collect_garbage_slots(c);
271                         } else
272                                 collect_one_slot(kip, idx);
273                         return;
274                 }
275         }
276         /* Could not free this slot. */
277         WARN_ON(1);
278 }
279
280 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
281 {
282         mutex_lock(&kprobe_insn_mutex);
283         __free_insn_slot(&kprobe_insn_slots, slot, dirty);
284         mutex_unlock(&kprobe_insn_mutex);
285 }
286 #ifdef CONFIG_OPTPROBES
287 /* For optimized_kprobe buffer */
288 static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */
289 static struct kprobe_insn_cache kprobe_optinsn_slots = {
290         .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
291         /* .insn_size is initialized later */
292         .nr_garbage = 0,
293 };
294 /* Get a slot for optimized_kprobe buffer */
295 kprobe_opcode_t __kprobes *get_optinsn_slot(void)
296 {
297         kprobe_opcode_t *ret = NULL;
298
299         mutex_lock(&kprobe_optinsn_mutex);
300         ret = __get_insn_slot(&kprobe_optinsn_slots);
301         mutex_unlock(&kprobe_optinsn_mutex);
302
303         return ret;
304 }
305
306 void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty)
307 {
308         mutex_lock(&kprobe_optinsn_mutex);
309         __free_insn_slot(&kprobe_optinsn_slots, slot, dirty);
310         mutex_unlock(&kprobe_optinsn_mutex);
311 }
312 #endif
313 #endif
314
315 /* We have preemption disabled.. so it is safe to use __ versions */
316 static inline void set_kprobe_instance(struct kprobe *kp)
317 {
318         __get_cpu_var(kprobe_instance) = kp;
319 }
320
321 static inline void reset_kprobe_instance(void)
322 {
323         __get_cpu_var(kprobe_instance) = NULL;
324 }
325
326 /*
327  * This routine is called either:
328  *      - under the kprobe_mutex - during kprobe_[un]register()
329  *                              OR
330  *      - with preemption disabled - from arch/xxx/kernel/kprobes.c
331  */
332 struct kprobe __kprobes *get_kprobe(void *addr)
333 {
334         struct hlist_head *head;
335         struct hlist_node *node;
336         struct kprobe *p;
337
338         head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
339         hlist_for_each_entry_rcu(p, node, head, hlist) {
340                 if (p->addr == addr)
341                         return p;
342         }
343
344         return NULL;
345 }
346
347 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
348
349 /* Return true if the kprobe is an aggregator */
350 static inline int kprobe_aggrprobe(struct kprobe *p)
351 {
352         return p->pre_handler == aggr_pre_handler;
353 }
354
355 /*
356  * Keep all fields in the kprobe consistent
357  */
358 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
359 {
360         memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
361         memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
362 }
363
364 #ifdef CONFIG_OPTPROBES
365 /* NOTE: change this value only with kprobe_mutex held */
366 static bool kprobes_allow_optimization;
367
368 /*
369  * Call all pre_handler on the list, but ignores its return value.
370  * This must be called from arch-dep optimized caller.
371  */
372 void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
373 {
374         struct kprobe *kp;
375
376         list_for_each_entry_rcu(kp, &p->list, list) {
377                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
378                         set_kprobe_instance(kp);
379                         kp->pre_handler(kp, regs);
380                 }
381                 reset_kprobe_instance();
382         }
383 }
384
385 /* Return true(!0) if the kprobe is ready for optimization. */
386 static inline int kprobe_optready(struct kprobe *p)
387 {
388         struct optimized_kprobe *op;
389
390         if (kprobe_aggrprobe(p)) {
391                 op = container_of(p, struct optimized_kprobe, kp);
392                 return arch_prepared_optinsn(&op->optinsn);
393         }
394
395         return 0;
396 }
397
398 /*
399  * Return an optimized kprobe whose optimizing code replaces
400  * instructions including addr (exclude breakpoint).
401  */
402 static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
403 {
404         int i;
405         struct kprobe *p = NULL;
406         struct optimized_kprobe *op;
407
408         /* Don't check i == 0, since that is a breakpoint case. */
409         for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
410                 p = get_kprobe((void *)(addr - i));
411
412         if (p && kprobe_optready(p)) {
413                 op = container_of(p, struct optimized_kprobe, kp);
414                 if (arch_within_optimized_kprobe(op, addr))
415                         return p;
416         }
417
418         return NULL;
419 }
420
421 /* Optimization staging list, protected by kprobe_mutex */
422 static LIST_HEAD(optimizing_list);
423
424 static void kprobe_optimizer(struct work_struct *work);
425 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
426 #define OPTIMIZE_DELAY 5
427
428 /* Kprobe jump optimizer */
429 static __kprobes void kprobe_optimizer(struct work_struct *work)
430 {
431         struct optimized_kprobe *op, *tmp;
432
433         /* Lock modules while optimizing kprobes */
434         mutex_lock(&module_mutex);
435         mutex_lock(&kprobe_mutex);
436         if (kprobes_all_disarmed || !kprobes_allow_optimization)
437                 goto end;
438
439         /*
440          * Wait for quiesence period to ensure all running interrupts
441          * are done. Because optprobe may modify multiple instructions
442          * there is a chance that Nth instruction is interrupted. In that
443          * case, running interrupt can return to 2nd-Nth byte of jump
444          * instruction. This wait is for avoiding it.
445          */
446         synchronize_sched();
447
448         /*
449          * The optimization/unoptimization refers online_cpus via
450          * stop_machine() and cpu-hotplug modifies online_cpus.
451          * And same time, text_mutex will be held in cpu-hotplug and here.
452          * This combination can cause a deadlock (cpu-hotplug try to lock
453          * text_mutex but stop_machine can not be done because online_cpus
454          * has been changed)
455          * To avoid this deadlock, we need to call get_online_cpus()
456          * for preventing cpu-hotplug outside of text_mutex locking.
457          */
458         get_online_cpus();
459         mutex_lock(&text_mutex);
460         list_for_each_entry_safe(op, tmp, &optimizing_list, list) {
461                 WARN_ON(kprobe_disabled(&op->kp));
462                 if (arch_optimize_kprobe(op) < 0)
463                         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
464                 list_del_init(&op->list);
465         }
466         mutex_unlock(&text_mutex);
467         put_online_cpus();
468 end:
469         mutex_unlock(&kprobe_mutex);
470         mutex_unlock(&module_mutex);
471 }
472
473 /* Optimize kprobe if p is ready to be optimized */
474 static __kprobes void optimize_kprobe(struct kprobe *p)
475 {
476         struct optimized_kprobe *op;
477
478         /* Check if the kprobe is disabled or not ready for optimization. */
479         if (!kprobe_optready(p) || !kprobes_allow_optimization ||
480             (kprobe_disabled(p) || kprobes_all_disarmed))
481                 return;
482
483         /* Both of break_handler and post_handler are not supported. */
484         if (p->break_handler || p->post_handler)
485                 return;
486
487         op = container_of(p, struct optimized_kprobe, kp);
488
489         /* Check there is no other kprobes at the optimized instructions */
490         if (arch_check_optimized_kprobe(op) < 0)
491                 return;
492
493         /* Check if it is already optimized. */
494         if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
495                 return;
496
497         op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
498         list_add(&op->list, &optimizing_list);
499         if (!delayed_work_pending(&optimizing_work))
500                 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
501 }
502
503 /* Unoptimize a kprobe if p is optimized */
504 static __kprobes void unoptimize_kprobe(struct kprobe *p)
505 {
506         struct optimized_kprobe *op;
507
508         if ((p->flags & KPROBE_FLAG_OPTIMIZED) && kprobe_aggrprobe(p)) {
509                 op = container_of(p, struct optimized_kprobe, kp);
510                 if (!list_empty(&op->list))
511                         /* Dequeue from the optimization queue */
512                         list_del_init(&op->list);
513                 else
514                         /* Replace jump with break */
515                         arch_unoptimize_kprobe(op);
516                 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
517         }
518 }
519
520 /* Remove optimized instructions */
521 static void __kprobes kill_optimized_kprobe(struct kprobe *p)
522 {
523         struct optimized_kprobe *op;
524
525         op = container_of(p, struct optimized_kprobe, kp);
526         if (!list_empty(&op->list)) {
527                 /* Dequeue from the optimization queue */
528                 list_del_init(&op->list);
529                 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
530         }
531         /* Don't unoptimize, because the target code will be freed. */
532         arch_remove_optimized_kprobe(op);
533 }
534
535 /* Try to prepare optimized instructions */
536 static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
537 {
538         struct optimized_kprobe *op;
539
540         op = container_of(p, struct optimized_kprobe, kp);
541         arch_prepare_optimized_kprobe(op);
542 }
543
544 /* Free optimized instructions and optimized_kprobe */
545 static __kprobes void free_aggr_kprobe(struct kprobe *p)
546 {
547         struct optimized_kprobe *op;
548
549         op = container_of(p, struct optimized_kprobe, kp);
550         arch_remove_optimized_kprobe(op);
551         kfree(op);
552 }
553
554 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
555 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
556 {
557         struct optimized_kprobe *op;
558
559         op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
560         if (!op)
561                 return NULL;
562
563         INIT_LIST_HEAD(&op->list);
564         op->kp.addr = p->addr;
565         arch_prepare_optimized_kprobe(op);
566
567         return &op->kp;
568 }
569
570 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
571
572 /*
573  * Prepare an optimized_kprobe and optimize it
574  * NOTE: p must be a normal registered kprobe
575  */
576 static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
577 {
578         struct kprobe *ap;
579         struct optimized_kprobe *op;
580
581         ap = alloc_aggr_kprobe(p);
582         if (!ap)
583                 return;
584
585         op = container_of(ap, struct optimized_kprobe, kp);
586         if (!arch_prepared_optinsn(&op->optinsn)) {
587                 /* If failed to setup optimizing, fallback to kprobe */
588                 free_aggr_kprobe(ap);
589                 return;
590         }
591
592         init_aggr_kprobe(ap, p);
593         optimize_kprobe(ap);
594 }
595
596 #ifdef CONFIG_SYSCTL
597 static void __kprobes optimize_all_kprobes(void)
598 {
599         struct hlist_head *head;
600         struct hlist_node *node;
601         struct kprobe *p;
602         unsigned int i;
603
604         /* If optimization is already allowed, just return */
605         if (kprobes_allow_optimization)
606                 return;
607
608         kprobes_allow_optimization = true;
609         mutex_lock(&text_mutex);
610         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
611                 head = &kprobe_table[i];
612                 hlist_for_each_entry_rcu(p, node, head, hlist)
613                         if (!kprobe_disabled(p))
614                                 optimize_kprobe(p);
615         }
616         mutex_unlock(&text_mutex);
617         printk(KERN_INFO "Kprobes globally optimized\n");
618 }
619
620 static void __kprobes unoptimize_all_kprobes(void)
621 {
622         struct hlist_head *head;
623         struct hlist_node *node;
624         struct kprobe *p;
625         unsigned int i;
626
627         /* If optimization is already prohibited, just return */
628         if (!kprobes_allow_optimization)
629                 return;
630
631         kprobes_allow_optimization = false;
632         printk(KERN_INFO "Kprobes globally unoptimized\n");
633         get_online_cpus();      /* For avoiding text_mutex deadlock */
634         mutex_lock(&text_mutex);
635         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
636                 head = &kprobe_table[i];
637                 hlist_for_each_entry_rcu(p, node, head, hlist) {
638                         if (!kprobe_disabled(p))
639                                 unoptimize_kprobe(p);
640                 }
641         }
642
643         mutex_unlock(&text_mutex);
644         put_online_cpus();
645         /* Allow all currently running kprobes to complete */
646         synchronize_sched();
647 }
648
649 int sysctl_kprobes_optimization;
650 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
651                                       void __user *buffer, size_t *length,
652                                       loff_t *ppos)
653 {
654         int ret;
655
656         mutex_lock(&kprobe_mutex);
657         sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
658         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
659
660         if (sysctl_kprobes_optimization)
661                 optimize_all_kprobes();
662         else
663                 unoptimize_all_kprobes();
664         mutex_unlock(&kprobe_mutex);
665
666         return ret;
667 }
668 #endif /* CONFIG_SYSCTL */
669
670 static void __kprobes __arm_kprobe(struct kprobe *p)
671 {
672         struct kprobe *old_p;
673
674         /* Check collision with other optimized kprobes */
675         old_p = get_optimized_kprobe((unsigned long)p->addr);
676         if (unlikely(old_p))
677                 unoptimize_kprobe(old_p); /* Fallback to unoptimized kprobe */
678
679         arch_arm_kprobe(p);
680         optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
681 }
682
683 static void __kprobes __disarm_kprobe(struct kprobe *p)
684 {
685         struct kprobe *old_p;
686
687         unoptimize_kprobe(p);   /* Try to unoptimize */
688         arch_disarm_kprobe(p);
689
690         /* If another kprobe was blocked, optimize it. */
691         old_p = get_optimized_kprobe((unsigned long)p->addr);
692         if (unlikely(old_p))
693                 optimize_kprobe(old_p);
694 }
695
696 #else /* !CONFIG_OPTPROBES */
697
698 #define optimize_kprobe(p)                      do {} while (0)
699 #define unoptimize_kprobe(p)                    do {} while (0)
700 #define kill_optimized_kprobe(p)                do {} while (0)
701 #define prepare_optimized_kprobe(p)             do {} while (0)
702 #define try_to_optimize_kprobe(p)               do {} while (0)
703 #define __arm_kprobe(p)                         arch_arm_kprobe(p)
704 #define __disarm_kprobe(p)                      arch_disarm_kprobe(p)
705
706 static __kprobes void free_aggr_kprobe(struct kprobe *p)
707 {
708         kfree(p);
709 }
710
711 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
712 {
713         return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
714 }
715 #endif /* CONFIG_OPTPROBES */
716
717 /* Arm a kprobe with text_mutex */
718 static void __kprobes arm_kprobe(struct kprobe *kp)
719 {
720         /*
721          * Here, since __arm_kprobe() doesn't use stop_machine(),
722          * this doesn't cause deadlock on text_mutex. So, we don't
723          * need get_online_cpus().
724          */
725         mutex_lock(&text_mutex);
726         __arm_kprobe(kp);
727         mutex_unlock(&text_mutex);
728 }
729
730 /* Disarm a kprobe with text_mutex */
731 static void __kprobes disarm_kprobe(struct kprobe *kp)
732 {
733         get_online_cpus();      /* For avoiding text_mutex deadlock */
734         mutex_lock(&text_mutex);
735         __disarm_kprobe(kp);
736         mutex_unlock(&text_mutex);
737         put_online_cpus();
738 }
739
740 /*
741  * Aggregate handlers for multiple kprobes support - these handlers
742  * take care of invoking the individual kprobe handlers on p->list
743  */
744 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
745 {
746         struct kprobe *kp;
747
748         list_for_each_entry_rcu(kp, &p->list, list) {
749                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
750                         set_kprobe_instance(kp);
751                         if (kp->pre_handler(kp, regs))
752                                 return 1;
753                 }
754                 reset_kprobe_instance();
755         }
756         return 0;
757 }
758
759 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
760                                         unsigned long flags)
761 {
762         struct kprobe *kp;
763
764         list_for_each_entry_rcu(kp, &p->list, list) {
765                 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
766                         set_kprobe_instance(kp);
767                         kp->post_handler(kp, regs, flags);
768                         reset_kprobe_instance();
769                 }
770         }
771 }
772
773 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
774                                         int trapnr)
775 {
776         struct kprobe *cur = __get_cpu_var(kprobe_instance);
777
778         /*
779          * if we faulted "during" the execution of a user specified
780          * probe handler, invoke just that probe's fault handler
781          */
782         if (cur && cur->fault_handler) {
783                 if (cur->fault_handler(cur, regs, trapnr))
784                         return 1;
785         }
786         return 0;
787 }
788
789 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
790 {
791         struct kprobe *cur = __get_cpu_var(kprobe_instance);
792         int ret = 0;
793
794         if (cur && cur->break_handler) {
795                 if (cur->break_handler(cur, regs))
796                         ret = 1;
797         }
798         reset_kprobe_instance();
799         return ret;
800 }
801
802 /* Walks the list and increments nmissed count for multiprobe case */
803 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
804 {
805         struct kprobe *kp;
806         if (!kprobe_aggrprobe(p)) {
807                 p->nmissed++;
808         } else {
809                 list_for_each_entry_rcu(kp, &p->list, list)
810                         kp->nmissed++;
811         }
812         return;
813 }
814
815 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
816                                 struct hlist_head *head)
817 {
818         struct kretprobe *rp = ri->rp;
819
820         /* remove rp inst off the rprobe_inst_table */
821         hlist_del(&ri->hlist);
822         INIT_HLIST_NODE(&ri->hlist);
823         if (likely(rp)) {
824                 spin_lock(&rp->lock);
825                 hlist_add_head(&ri->hlist, &rp->free_instances);
826                 spin_unlock(&rp->lock);
827         } else
828                 /* Unregistering */
829                 hlist_add_head(&ri->hlist, head);
830 }
831
832 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
833                          struct hlist_head **head, unsigned long *flags)
834 {
835         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
836         spinlock_t *hlist_lock;
837
838         *head = &kretprobe_inst_table[hash];
839         hlist_lock = kretprobe_table_lock_ptr(hash);
840         spin_lock_irqsave(hlist_lock, *flags);
841 }
842
843 static void __kprobes kretprobe_table_lock(unsigned long hash,
844         unsigned long *flags)
845 {
846         spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
847         spin_lock_irqsave(hlist_lock, *flags);
848 }
849
850 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
851         unsigned long *flags)
852 {
853         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
854         spinlock_t *hlist_lock;
855
856         hlist_lock = kretprobe_table_lock_ptr(hash);
857         spin_unlock_irqrestore(hlist_lock, *flags);
858 }
859
860 static void __kprobes kretprobe_table_unlock(unsigned long hash,
861        unsigned long *flags)
862 {
863         spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
864         spin_unlock_irqrestore(hlist_lock, *flags);
865 }
866
867 /*
868  * This function is called from finish_task_switch when task tk becomes dead,
869  * so that we can recycle any function-return probe instances associated
870  * with this task. These left over instances represent probed functions
871  * that have been called but will never return.
872  */
873 void __kprobes kprobe_flush_task(struct task_struct *tk)
874 {
875         struct kretprobe_instance *ri;
876         struct hlist_head *head, empty_rp;
877         struct hlist_node *node, *tmp;
878         unsigned long hash, flags = 0;
879
880         if (unlikely(!kprobes_initialized))
881                 /* Early boot.  kretprobe_table_locks not yet initialized. */
882                 return;
883
884         hash = hash_ptr(tk, KPROBE_HASH_BITS);
885         head = &kretprobe_inst_table[hash];
886         kretprobe_table_lock(hash, &flags);
887         hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
888                 if (ri->task == tk)
889                         recycle_rp_inst(ri, &empty_rp);
890         }
891         kretprobe_table_unlock(hash, &flags);
892         INIT_HLIST_HEAD(&empty_rp);
893         hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
894                 hlist_del(&ri->hlist);
895                 kfree(ri);
896         }
897 }
898
899 static inline void free_rp_inst(struct kretprobe *rp)
900 {
901         struct kretprobe_instance *ri;
902         struct hlist_node *pos, *next;
903
904         hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
905                 hlist_del(&ri->hlist);
906                 kfree(ri);
907         }
908 }
909
910 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
911 {
912         unsigned long flags, hash;
913         struct kretprobe_instance *ri;
914         struct hlist_node *pos, *next;
915         struct hlist_head *head;
916
917         /* No race here */
918         for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
919                 kretprobe_table_lock(hash, &flags);
920                 head = &kretprobe_inst_table[hash];
921                 hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
922                         if (ri->rp == rp)
923                                 ri->rp = NULL;
924                 }
925                 kretprobe_table_unlock(hash, &flags);
926         }
927         free_rp_inst(rp);
928 }
929
930 /*
931 * Add the new probe to ap->list. Fail if this is the
932 * second jprobe at the address - two jprobes can't coexist
933 */
934 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
935 {
936         BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
937
938         if (p->break_handler || p->post_handler)
939                 unoptimize_kprobe(ap);  /* Fall back to normal kprobe */
940
941         if (p->break_handler) {
942                 if (ap->break_handler)
943                         return -EEXIST;
944                 list_add_tail_rcu(&p->list, &ap->list);
945                 ap->break_handler = aggr_break_handler;
946         } else
947                 list_add_rcu(&p->list, &ap->list);
948         if (p->post_handler && !ap->post_handler)
949                 ap->post_handler = aggr_post_handler;
950
951         if (kprobe_disabled(ap) && !kprobe_disabled(p)) {
952                 ap->flags &= ~KPROBE_FLAG_DISABLED;
953                 if (!kprobes_all_disarmed)
954                         /* Arm the breakpoint again. */
955                         __arm_kprobe(ap);
956         }
957         return 0;
958 }
959
960 /*
961  * Fill in the required fields of the "manager kprobe". Replace the
962  * earlier kprobe in the hlist with the manager kprobe
963  */
964 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
965 {
966         /* Copy p's insn slot to ap */
967         copy_kprobe(p, ap);
968         flush_insn_slot(ap);
969         ap->addr = p->addr;
970         ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
971         ap->pre_handler = aggr_pre_handler;
972         ap->fault_handler = aggr_fault_handler;
973         /* We don't care the kprobe which has gone. */
974         if (p->post_handler && !kprobe_gone(p))
975                 ap->post_handler = aggr_post_handler;
976         if (p->break_handler && !kprobe_gone(p))
977                 ap->break_handler = aggr_break_handler;
978
979         INIT_LIST_HEAD(&ap->list);
980         INIT_HLIST_NODE(&ap->hlist);
981
982         list_add_rcu(&p->list, &ap->list);
983         hlist_replace_rcu(&p->hlist, &ap->hlist);
984 }
985
986 /*
987  * This is the second or subsequent kprobe at the address - handle
988  * the intricacies
989  */
990 static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
991                                           struct kprobe *p)
992 {
993         int ret = 0;
994         struct kprobe *ap = old_p;
995
996         if (!kprobe_aggrprobe(old_p)) {
997                 /* If old_p is not an aggr_kprobe, create new aggr_kprobe. */
998                 ap = alloc_aggr_kprobe(old_p);
999                 if (!ap)
1000                         return -ENOMEM;
1001                 init_aggr_kprobe(ap, old_p);
1002         }
1003
1004         if (kprobe_gone(ap)) {
1005                 /*
1006                  * Attempting to insert new probe at the same location that
1007                  * had a probe in the module vaddr area which already
1008                  * freed. So, the instruction slot has already been
1009                  * released. We need a new slot for the new probe.
1010                  */
1011                 ret = arch_prepare_kprobe(ap);
1012                 if (ret)
1013                         /*
1014                          * Even if fail to allocate new slot, don't need to
1015                          * free aggr_probe. It will be used next time, or
1016                          * freed by unregister_kprobe.
1017                          */
1018                         return ret;
1019
1020                 /* Prepare optimized instructions if possible. */
1021                 prepare_optimized_kprobe(ap);
1022
1023                 /*
1024                  * Clear gone flag to prevent allocating new slot again, and
1025                  * set disabled flag because it is not armed yet.
1026                  */
1027                 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1028                             | KPROBE_FLAG_DISABLED;
1029         }
1030
1031         /* Copy ap's insn slot to p */
1032         copy_kprobe(ap, p);
1033         return add_new_kprobe(ap, p);
1034 }
1035
1036 /* Try to disable aggr_kprobe, and return 1 if succeeded.*/
1037 static int __kprobes try_to_disable_aggr_kprobe(struct kprobe *p)
1038 {
1039         struct kprobe *kp;
1040
1041         list_for_each_entry_rcu(kp, &p->list, list) {
1042                 if (!kprobe_disabled(kp))
1043                         /*
1044                          * There is an active probe on the list.
1045                          * We can't disable aggr_kprobe.
1046                          */
1047                         return 0;
1048         }
1049         p->flags |= KPROBE_FLAG_DISABLED;
1050         return 1;
1051 }
1052
1053 static int __kprobes in_kprobes_functions(unsigned long addr)
1054 {
1055         struct kprobe_blackpoint *kb;
1056
1057         if (addr >= (unsigned long)__kprobes_text_start &&
1058             addr < (unsigned long)__kprobes_text_end)
1059                 return -EINVAL;
1060         /*
1061          * If there exists a kprobe_blacklist, verify and
1062          * fail any probe registration in the prohibited area
1063          */
1064         for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1065                 if (kb->start_addr) {
1066                         if (addr >= kb->start_addr &&
1067                             addr < (kb->start_addr + kb->range))
1068                                 return -EINVAL;
1069                 }
1070         }
1071         return 0;
1072 }
1073
1074 /*
1075  * If we have a symbol_name argument, look it up and add the offset field
1076  * to it. This way, we can specify a relative address to a symbol.
1077  */
1078 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
1079 {
1080         kprobe_opcode_t *addr = p->addr;
1081         if (p->symbol_name) {
1082                 if (addr)
1083                         return NULL;
1084                 kprobe_lookup_name(p->symbol_name, addr);
1085         }
1086
1087         if (!addr)
1088                 return NULL;
1089         return (kprobe_opcode_t *)(((char *)addr) + p->offset);
1090 }
1091
1092 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1093 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1094 {
1095         struct kprobe *old_p, *list_p;
1096
1097         old_p = get_kprobe(p->addr);
1098         if (unlikely(!old_p))
1099                 return NULL;
1100
1101         if (p != old_p) {
1102                 list_for_each_entry_rcu(list_p, &old_p->list, list)
1103                         if (list_p == p)
1104                         /* kprobe p is a valid probe */
1105                                 goto valid;
1106                 return NULL;
1107         }
1108 valid:
1109         return old_p;
1110 }
1111
1112 /* Return error if the kprobe is being re-registered */
1113 static inline int check_kprobe_rereg(struct kprobe *p)
1114 {
1115         int ret = 0;
1116         struct kprobe *old_p;
1117
1118         mutex_lock(&kprobe_mutex);
1119         old_p = __get_valid_kprobe(p);
1120         if (old_p)
1121                 ret = -EINVAL;
1122         mutex_unlock(&kprobe_mutex);
1123         return ret;
1124 }
1125
1126 int __kprobes register_kprobe(struct kprobe *p)
1127 {
1128         int ret = 0;
1129         struct kprobe *old_p;
1130         struct module *probed_mod;
1131         kprobe_opcode_t *addr;
1132
1133         addr = kprobe_addr(p);
1134         if (!addr)
1135                 return -EINVAL;
1136         p->addr = addr;
1137
1138         ret = check_kprobe_rereg(p);
1139         if (ret)
1140                 return ret;
1141
1142         preempt_disable();
1143         if (!kernel_text_address((unsigned long) p->addr) ||
1144             in_kprobes_functions((unsigned long) p->addr) ||
1145             ftrace_text_reserved(p->addr, p->addr)) {
1146                 preempt_enable();
1147                 return -EINVAL;
1148         }
1149
1150         /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1151         p->flags &= KPROBE_FLAG_DISABLED;
1152
1153         /*
1154          * Check if are we probing a module.
1155          */
1156         probed_mod = __module_text_address((unsigned long) p->addr);
1157         if (probed_mod) {
1158                 /*
1159                  * We must hold a refcount of the probed module while updating
1160                  * its code to prohibit unexpected unloading.
1161                  */
1162                 if (unlikely(!try_module_get(probed_mod))) {
1163                         preempt_enable();
1164                         return -EINVAL;
1165                 }
1166                 /*
1167                  * If the module freed .init.text, we couldn't insert
1168                  * kprobes in there.
1169                  */
1170                 if (within_module_init((unsigned long)p->addr, probed_mod) &&
1171                     probed_mod->state != MODULE_STATE_COMING) {
1172                         module_put(probed_mod);
1173                         preempt_enable();
1174                         return -EINVAL;
1175                 }
1176         }
1177         preempt_enable();
1178
1179         p->nmissed = 0;
1180         INIT_LIST_HEAD(&p->list);
1181         mutex_lock(&kprobe_mutex);
1182
1183         get_online_cpus();      /* For avoiding text_mutex deadlock. */
1184         mutex_lock(&text_mutex);
1185
1186         old_p = get_kprobe(p->addr);
1187         if (old_p) {
1188                 /* Since this may unoptimize old_p, locking text_mutex. */
1189                 ret = register_aggr_kprobe(old_p, p);
1190                 goto out;
1191         }
1192
1193         ret = arch_prepare_kprobe(p);
1194         if (ret)
1195                 goto out;
1196
1197         INIT_HLIST_NODE(&p->hlist);
1198         hlist_add_head_rcu(&p->hlist,
1199                        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1200
1201         if (!kprobes_all_disarmed && !kprobe_disabled(p))
1202                 __arm_kprobe(p);
1203
1204         /* Try to optimize kprobe */
1205         try_to_optimize_kprobe(p);
1206
1207 out:
1208         mutex_unlock(&text_mutex);
1209         put_online_cpus();
1210         mutex_unlock(&kprobe_mutex);
1211
1212         if (probed_mod)
1213                 module_put(probed_mod);
1214
1215         return ret;
1216 }
1217 EXPORT_SYMBOL_GPL(register_kprobe);
1218
1219 /*
1220  * Unregister a kprobe without a scheduler synchronization.
1221  */
1222 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1223 {
1224         struct kprobe *old_p, *list_p;
1225
1226         old_p = __get_valid_kprobe(p);
1227         if (old_p == NULL)
1228                 return -EINVAL;
1229
1230         if (old_p == p ||
1231             (kprobe_aggrprobe(old_p) &&
1232              list_is_singular(&old_p->list))) {
1233                 /*
1234                  * Only probe on the hash list. Disarm only if kprobes are
1235                  * enabled and not gone - otherwise, the breakpoint would
1236                  * already have been removed. We save on flushing icache.
1237                  */
1238                 if (!kprobes_all_disarmed && !kprobe_disabled(old_p))
1239                         disarm_kprobe(old_p);
1240                 hlist_del_rcu(&old_p->hlist);
1241         } else {
1242                 if (p->break_handler && !kprobe_gone(p))
1243                         old_p->break_handler = NULL;
1244                 if (p->post_handler && !kprobe_gone(p)) {
1245                         list_for_each_entry_rcu(list_p, &old_p->list, list) {
1246                                 if ((list_p != p) && (list_p->post_handler))
1247                                         goto noclean;
1248                         }
1249                         old_p->post_handler = NULL;
1250                 }
1251 noclean:
1252                 list_del_rcu(&p->list);
1253                 if (!kprobe_disabled(old_p)) {
1254                         try_to_disable_aggr_kprobe(old_p);
1255                         if (!kprobes_all_disarmed) {
1256                                 if (kprobe_disabled(old_p))
1257                                         disarm_kprobe(old_p);
1258                                 else
1259                                         /* Try to optimize this probe again */
1260                                         optimize_kprobe(old_p);
1261                         }
1262                 }
1263         }
1264         return 0;
1265 }
1266
1267 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1268 {
1269         struct kprobe *old_p;
1270
1271         if (list_empty(&p->list))
1272                 arch_remove_kprobe(p);
1273         else if (list_is_singular(&p->list)) {
1274                 /* "p" is the last child of an aggr_kprobe */
1275                 old_p = list_entry(p->list.next, struct kprobe, list);
1276                 list_del(&p->list);
1277                 arch_remove_kprobe(old_p);
1278                 free_aggr_kprobe(old_p);
1279         }
1280 }
1281
1282 int __kprobes register_kprobes(struct kprobe **kps, int num)
1283 {
1284         int i, ret = 0;
1285
1286         if (num <= 0)
1287                 return -EINVAL;
1288         for (i = 0; i < num; i++) {
1289                 ret = register_kprobe(kps[i]);
1290                 if (ret < 0) {
1291                         if (i > 0)
1292                                 unregister_kprobes(kps, i);
1293                         break;
1294                 }
1295         }
1296         return ret;
1297 }
1298 EXPORT_SYMBOL_GPL(register_kprobes);
1299
1300 void __kprobes unregister_kprobe(struct kprobe *p)
1301 {
1302         unregister_kprobes(&p, 1);
1303 }
1304 EXPORT_SYMBOL_GPL(unregister_kprobe);
1305
1306 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1307 {
1308         int i;
1309
1310         if (num <= 0)
1311                 return;
1312         mutex_lock(&kprobe_mutex);
1313         for (i = 0; i < num; i++)
1314                 if (__unregister_kprobe_top(kps[i]) < 0)
1315                         kps[i]->addr = NULL;
1316         mutex_unlock(&kprobe_mutex);
1317
1318         synchronize_sched();
1319         for (i = 0; i < num; i++)
1320                 if (kps[i]->addr)
1321                         __unregister_kprobe_bottom(kps[i]);
1322 }
1323 EXPORT_SYMBOL_GPL(unregister_kprobes);
1324
1325 static struct notifier_block kprobe_exceptions_nb = {
1326         .notifier_call = kprobe_exceptions_notify,
1327         .priority = 0x7fffffff /* we need to be notified first */
1328 };
1329
1330 unsigned long __weak arch_deref_entry_point(void *entry)
1331 {
1332         return (unsigned long)entry;
1333 }
1334
1335 int __kprobes register_jprobes(struct jprobe **jps, int num)
1336 {
1337         struct jprobe *jp;
1338         int ret = 0, i;
1339
1340         if (num <= 0)
1341                 return -EINVAL;
1342         for (i = 0; i < num; i++) {
1343                 unsigned long addr, offset;
1344                 jp = jps[i];
1345                 addr = arch_deref_entry_point(jp->entry);
1346
1347                 /* Verify probepoint is a function entry point */
1348                 if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1349                     offset == 0) {
1350                         jp->kp.pre_handler = setjmp_pre_handler;
1351                         jp->kp.break_handler = longjmp_break_handler;
1352                         ret = register_kprobe(&jp->kp);
1353                 } else
1354                         ret = -EINVAL;
1355
1356                 if (ret < 0) {
1357                         if (i > 0)
1358                                 unregister_jprobes(jps, i);
1359                         break;
1360                 }
1361         }
1362         return ret;
1363 }
1364 EXPORT_SYMBOL_GPL(register_jprobes);
1365
1366 int __kprobes register_jprobe(struct jprobe *jp)
1367 {
1368         return register_jprobes(&jp, 1);
1369 }
1370 EXPORT_SYMBOL_GPL(register_jprobe);
1371
1372 void __kprobes unregister_jprobe(struct jprobe *jp)
1373 {
1374         unregister_jprobes(&jp, 1);
1375 }
1376 EXPORT_SYMBOL_GPL(unregister_jprobe);
1377
1378 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1379 {
1380         int i;
1381
1382         if (num <= 0)
1383                 return;
1384         mutex_lock(&kprobe_mutex);
1385         for (i = 0; i < num; i++)
1386                 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1387                         jps[i]->kp.addr = NULL;
1388         mutex_unlock(&kprobe_mutex);
1389
1390         synchronize_sched();
1391         for (i = 0; i < num; i++) {
1392                 if (jps[i]->kp.addr)
1393                         __unregister_kprobe_bottom(&jps[i]->kp);
1394         }
1395 }
1396 EXPORT_SYMBOL_GPL(unregister_jprobes);
1397
1398 #ifdef CONFIG_KRETPROBES
1399 /*
1400  * This kprobe pre_handler is registered with every kretprobe. When probe
1401  * hits it will set up the return probe.
1402  */
1403 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1404                                            struct pt_regs *regs)
1405 {
1406         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1407         unsigned long hash, flags = 0;
1408         struct kretprobe_instance *ri;
1409
1410         /*TODO: consider to only swap the RA after the last pre_handler fired */
1411         hash = hash_ptr(current, KPROBE_HASH_BITS);
1412         spin_lock_irqsave(&rp->lock, flags);
1413         if (!hlist_empty(&rp->free_instances)) {
1414                 ri = hlist_entry(rp->free_instances.first,
1415                                 struct kretprobe_instance, hlist);
1416                 hlist_del(&ri->hlist);
1417                 spin_unlock_irqrestore(&rp->lock, flags);
1418
1419                 ri->rp = rp;
1420                 ri->task = current;
1421
1422                 if (rp->entry_handler && rp->entry_handler(ri, regs))
1423                         return 0;
1424
1425                 arch_prepare_kretprobe(ri, regs);
1426
1427                 /* XXX(hch): why is there no hlist_move_head? */
1428                 INIT_HLIST_NODE(&ri->hlist);
1429                 kretprobe_table_lock(hash, &flags);
1430                 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1431                 kretprobe_table_unlock(hash, &flags);
1432         } else {
1433                 rp->nmissed++;
1434                 spin_unlock_irqrestore(&rp->lock, flags);
1435         }
1436         return 0;
1437 }
1438
1439 int __kprobes register_kretprobe(struct kretprobe *rp)
1440 {
1441         int ret = 0;
1442         struct kretprobe_instance *inst;
1443         int i;
1444         void *addr;
1445
1446         if (kretprobe_blacklist_size) {
1447                 addr = kprobe_addr(&rp->kp);
1448                 if (!addr)
1449                         return -EINVAL;
1450
1451                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1452                         if (kretprobe_blacklist[i].addr == addr)
1453                                 return -EINVAL;
1454                 }
1455         }
1456
1457         rp->kp.pre_handler = pre_handler_kretprobe;
1458         rp->kp.post_handler = NULL;
1459         rp->kp.fault_handler = NULL;
1460         rp->kp.break_handler = NULL;
1461
1462         /* Pre-allocate memory for max kretprobe instances */
1463         if (rp->maxactive <= 0) {
1464 #ifdef CONFIG_PREEMPT
1465                 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1466 #else
1467                 rp->maxactive = num_possible_cpus();
1468 #endif
1469         }
1470         spin_lock_init(&rp->lock);
1471         INIT_HLIST_HEAD(&rp->free_instances);
1472         for (i = 0; i < rp->maxactive; i++) {
1473                 inst = kmalloc(sizeof(struct kretprobe_instance) +
1474                                rp->data_size, GFP_KERNEL);
1475                 if (inst == NULL) {
1476                         free_rp_inst(rp);
1477                         return -ENOMEM;
1478                 }
1479                 INIT_HLIST_NODE(&inst->hlist);
1480                 hlist_add_head(&inst->hlist, &rp->free_instances);
1481         }
1482
1483         rp->nmissed = 0;
1484         /* Establish function entry probe point */
1485         ret = register_kprobe(&rp->kp);
1486         if (ret != 0)
1487                 free_rp_inst(rp);
1488         return ret;
1489 }
1490 EXPORT_SYMBOL_GPL(register_kretprobe);
1491
1492 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1493 {
1494         int ret = 0, i;
1495
1496         if (num <= 0)
1497                 return -EINVAL;
1498         for (i = 0; i < num; i++) {
1499                 ret = register_kretprobe(rps[i]);
1500                 if (ret < 0) {
1501                         if (i > 0)
1502                                 unregister_kretprobes(rps, i);
1503                         break;
1504                 }
1505         }
1506         return ret;
1507 }
1508 EXPORT_SYMBOL_GPL(register_kretprobes);
1509
1510 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1511 {
1512         unregister_kretprobes(&rp, 1);
1513 }
1514 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1515
1516 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1517 {
1518         int i;
1519
1520         if (num <= 0)
1521                 return;
1522         mutex_lock(&kprobe_mutex);
1523         for (i = 0; i < num; i++)
1524                 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1525                         rps[i]->kp.addr = NULL;
1526         mutex_unlock(&kprobe_mutex);
1527
1528         synchronize_sched();
1529         for (i = 0; i < num; i++) {
1530                 if (rps[i]->kp.addr) {
1531                         __unregister_kprobe_bottom(&rps[i]->kp);
1532                         cleanup_rp_inst(rps[i]);
1533                 }
1534         }
1535 }
1536 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1537
1538 #else /* CONFIG_KRETPROBES */
1539 int __kprobes register_kretprobe(struct kretprobe *rp)
1540 {
1541         return -ENOSYS;
1542 }
1543 EXPORT_SYMBOL_GPL(register_kretprobe);
1544
1545 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1546 {
1547         return -ENOSYS;
1548 }
1549 EXPORT_SYMBOL_GPL(register_kretprobes);
1550
1551 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1552 {
1553 }
1554 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1555
1556 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1557 {
1558 }
1559 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1560
1561 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1562                                            struct pt_regs *regs)
1563 {
1564         return 0;
1565 }
1566
1567 #endif /* CONFIG_KRETPROBES */
1568
1569 /* Set the kprobe gone and remove its instruction buffer. */
1570 static void __kprobes kill_kprobe(struct kprobe *p)
1571 {
1572         struct kprobe *kp;
1573
1574         p->flags |= KPROBE_FLAG_GONE;
1575         if (kprobe_aggrprobe(p)) {
1576                 /*
1577                  * If this is an aggr_kprobe, we have to list all the
1578                  * chained probes and mark them GONE.
1579                  */
1580                 list_for_each_entry_rcu(kp, &p->list, list)
1581                         kp->flags |= KPROBE_FLAG_GONE;
1582                 p->post_handler = NULL;
1583                 p->break_handler = NULL;
1584                 kill_optimized_kprobe(p);
1585         }
1586         /*
1587          * Here, we can remove insn_slot safely, because no thread calls
1588          * the original probed function (which will be freed soon) any more.
1589          */
1590         arch_remove_kprobe(p);
1591 }
1592
1593 /* Disable one kprobe */
1594 int __kprobes disable_kprobe(struct kprobe *kp)
1595 {
1596         int ret = 0;
1597         struct kprobe *p;
1598
1599         mutex_lock(&kprobe_mutex);
1600
1601         /* Check whether specified probe is valid. */
1602         p = __get_valid_kprobe(kp);
1603         if (unlikely(p == NULL)) {
1604                 ret = -EINVAL;
1605                 goto out;
1606         }
1607
1608         /* If the probe is already disabled (or gone), just return */
1609         if (kprobe_disabled(kp))
1610                 goto out;
1611
1612         kp->flags |= KPROBE_FLAG_DISABLED;
1613         if (p != kp)
1614                 /* When kp != p, p is always enabled. */
1615                 try_to_disable_aggr_kprobe(p);
1616
1617         if (!kprobes_all_disarmed && kprobe_disabled(p))
1618                 disarm_kprobe(p);
1619 out:
1620         mutex_unlock(&kprobe_mutex);
1621         return ret;
1622 }
1623 EXPORT_SYMBOL_GPL(disable_kprobe);
1624
1625 /* Enable one kprobe */
1626 int __kprobes enable_kprobe(struct kprobe *kp)
1627 {
1628         int ret = 0;
1629         struct kprobe *p;
1630
1631         mutex_lock(&kprobe_mutex);
1632
1633         /* Check whether specified probe is valid. */
1634         p = __get_valid_kprobe(kp);
1635         if (unlikely(p == NULL)) {
1636                 ret = -EINVAL;
1637                 goto out;
1638         }
1639
1640         if (kprobe_gone(kp)) {
1641                 /* This kprobe has gone, we couldn't enable it. */
1642                 ret = -EINVAL;
1643                 goto out;
1644         }
1645
1646         if (p != kp)
1647                 kp->flags &= ~KPROBE_FLAG_DISABLED;
1648
1649         if (!kprobes_all_disarmed && kprobe_disabled(p)) {
1650                 p->flags &= ~KPROBE_FLAG_DISABLED;
1651                 arm_kprobe(p);
1652         }
1653 out:
1654         mutex_unlock(&kprobe_mutex);
1655         return ret;
1656 }
1657 EXPORT_SYMBOL_GPL(enable_kprobe);
1658
1659 void __kprobes dump_kprobe(struct kprobe *kp)
1660 {
1661         printk(KERN_WARNING "Dumping kprobe:\n");
1662         printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
1663                kp->symbol_name, kp->addr, kp->offset);
1664 }
1665
1666 /* Module notifier call back, checking kprobes on the module */
1667 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1668                                              unsigned long val, void *data)
1669 {
1670         struct module *mod = data;
1671         struct hlist_head *head;
1672         struct hlist_node *node;
1673         struct kprobe *p;
1674         unsigned int i;
1675         int checkcore = (val == MODULE_STATE_GOING);
1676
1677         if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1678                 return NOTIFY_DONE;
1679
1680         /*
1681          * When MODULE_STATE_GOING was notified, both of module .text and
1682          * .init.text sections would be freed. When MODULE_STATE_LIVE was
1683          * notified, only .init.text section would be freed. We need to
1684          * disable kprobes which have been inserted in the sections.
1685          */
1686         mutex_lock(&kprobe_mutex);
1687         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1688                 head = &kprobe_table[i];
1689                 hlist_for_each_entry_rcu(p, node, head, hlist)
1690                         if (within_module_init((unsigned long)p->addr, mod) ||
1691                             (checkcore &&
1692                              within_module_core((unsigned long)p->addr, mod))) {
1693                                 /*
1694                                  * The vaddr this probe is installed will soon
1695                                  * be vfreed buy not synced to disk. Hence,
1696                                  * disarming the breakpoint isn't needed.
1697                                  */
1698                                 kill_kprobe(p);
1699                         }
1700         }
1701         mutex_unlock(&kprobe_mutex);
1702         return NOTIFY_DONE;
1703 }
1704
1705 static struct notifier_block kprobe_module_nb = {
1706         .notifier_call = kprobes_module_callback,
1707         .priority = 0
1708 };
1709
1710 static int __init init_kprobes(void)
1711 {
1712         int i, err = 0;
1713         unsigned long offset = 0, size = 0;
1714         char *modname, namebuf[128];
1715         const char *symbol_name;
1716         void *addr;
1717         struct kprobe_blackpoint *kb;
1718
1719         /* FIXME allocate the probe table, currently defined statically */
1720         /* initialize all list heads */
1721         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1722                 INIT_HLIST_HEAD(&kprobe_table[i]);
1723                 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1724                 spin_lock_init(&(kretprobe_table_locks[i].lock));
1725         }
1726
1727         /*
1728          * Lookup and populate the kprobe_blacklist.
1729          *
1730          * Unlike the kretprobe blacklist, we'll need to determine
1731          * the range of addresses that belong to the said functions,
1732          * since a kprobe need not necessarily be at the beginning
1733          * of a function.
1734          */
1735         for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1736                 kprobe_lookup_name(kb->name, addr);
1737                 if (!addr)
1738                         continue;
1739
1740                 kb->start_addr = (unsigned long)addr;
1741                 symbol_name = kallsyms_lookup(kb->start_addr,
1742                                 &size, &offset, &modname, namebuf);
1743                 if (!symbol_name)
1744                         kb->range = 0;
1745                 else
1746                         kb->range = size;
1747         }
1748
1749         if (kretprobe_blacklist_size) {
1750                 /* lookup the function address from its name */
1751                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1752                         kprobe_lookup_name(kretprobe_blacklist[i].name,
1753                                            kretprobe_blacklist[i].addr);
1754                         if (!kretprobe_blacklist[i].addr)
1755                                 printk("kretprobe: lookup failed: %s\n",
1756                                        kretprobe_blacklist[i].name);
1757                 }
1758         }
1759
1760 #if defined(CONFIG_OPTPROBES)
1761 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
1762         /* Init kprobe_optinsn_slots */
1763         kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
1764 #endif
1765         /* By default, kprobes can be optimized */
1766         kprobes_allow_optimization = true;
1767 #endif
1768
1769         /* By default, kprobes are armed */
1770         kprobes_all_disarmed = false;
1771
1772         err = arch_init_kprobes();
1773         if (!err)
1774                 err = register_die_notifier(&kprobe_exceptions_nb);
1775         if (!err)
1776                 err = register_module_notifier(&kprobe_module_nb);
1777
1778         kprobes_initialized = (err == 0);
1779
1780         if (!err)
1781                 init_test_probes();
1782         return err;
1783 }
1784
1785 #ifdef CONFIG_DEBUG_FS
1786 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
1787                 const char *sym, int offset, char *modname, struct kprobe *pp)
1788 {
1789         char *kprobe_type;
1790
1791         if (p->pre_handler == pre_handler_kretprobe)
1792                 kprobe_type = "r";
1793         else if (p->pre_handler == setjmp_pre_handler)
1794                 kprobe_type = "j";
1795         else
1796                 kprobe_type = "k";
1797
1798         if (sym)
1799                 seq_printf(pi, "%p  %s  %s+0x%x  %s ",
1800                         p->addr, kprobe_type, sym, offset,
1801                         (modname ? modname : " "));
1802         else
1803                 seq_printf(pi, "%p  %s  %p ",
1804                         p->addr, kprobe_type, p->addr);
1805
1806         if (!pp)
1807                 pp = p;
1808         seq_printf(pi, "%s%s%s\n",
1809                 (kprobe_gone(p) ? "[GONE]" : ""),
1810                 ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
1811                 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""));
1812 }
1813
1814 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
1815 {
1816         return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
1817 }
1818
1819 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
1820 {
1821         (*pos)++;
1822         if (*pos >= KPROBE_TABLE_SIZE)
1823                 return NULL;
1824         return pos;
1825 }
1826
1827 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
1828 {
1829         /* Nothing to do */
1830 }
1831
1832 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
1833 {
1834         struct hlist_head *head;
1835         struct hlist_node *node;
1836         struct kprobe *p, *kp;
1837         const char *sym = NULL;
1838         unsigned int i = *(loff_t *) v;
1839         unsigned long offset = 0;
1840         char *modname, namebuf[128];
1841
1842         head = &kprobe_table[i];
1843         preempt_disable();
1844         hlist_for_each_entry_rcu(p, node, head, hlist) {
1845                 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
1846                                         &offset, &modname, namebuf);
1847                 if (kprobe_aggrprobe(p)) {
1848                         list_for_each_entry_rcu(kp, &p->list, list)
1849                                 report_probe(pi, kp, sym, offset, modname, p);
1850                 } else
1851                         report_probe(pi, p, sym, offset, modname, NULL);
1852         }
1853         preempt_enable();
1854         return 0;
1855 }
1856
1857 static const struct seq_operations kprobes_seq_ops = {
1858         .start = kprobe_seq_start,
1859         .next  = kprobe_seq_next,
1860         .stop  = kprobe_seq_stop,
1861         .show  = show_kprobe_addr
1862 };
1863
1864 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
1865 {
1866         return seq_open(filp, &kprobes_seq_ops);
1867 }
1868
1869 static const struct file_operations debugfs_kprobes_operations = {
1870         .open           = kprobes_open,
1871         .read           = seq_read,
1872         .llseek         = seq_lseek,
1873         .release        = seq_release,
1874 };
1875
1876 static void __kprobes arm_all_kprobes(void)
1877 {
1878         struct hlist_head *head;
1879         struct hlist_node *node;
1880         struct kprobe *p;
1881         unsigned int i;
1882
1883         mutex_lock(&kprobe_mutex);
1884
1885         /* If kprobes are armed, just return */
1886         if (!kprobes_all_disarmed)
1887                 goto already_enabled;
1888
1889         /* Arming kprobes doesn't optimize kprobe itself */
1890         mutex_lock(&text_mutex);
1891         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1892                 head = &kprobe_table[i];
1893                 hlist_for_each_entry_rcu(p, node, head, hlist)
1894                         if (!kprobe_disabled(p))
1895                                 __arm_kprobe(p);
1896         }
1897         mutex_unlock(&text_mutex);
1898
1899         kprobes_all_disarmed = false;
1900         printk(KERN_INFO "Kprobes globally enabled\n");
1901
1902 already_enabled:
1903         mutex_unlock(&kprobe_mutex);
1904         return;
1905 }
1906
1907 static void __kprobes disarm_all_kprobes(void)
1908 {
1909         struct hlist_head *head;
1910         struct hlist_node *node;
1911         struct kprobe *p;
1912         unsigned int i;
1913
1914         mutex_lock(&kprobe_mutex);
1915
1916         /* If kprobes are already disarmed, just return */
1917         if (kprobes_all_disarmed)
1918                 goto already_disabled;
1919
1920         kprobes_all_disarmed = true;
1921         printk(KERN_INFO "Kprobes globally disabled\n");
1922
1923         /*
1924          * Here we call get_online_cpus() for avoiding text_mutex deadlock,
1925          * because disarming may also unoptimize kprobes.
1926          */
1927         get_online_cpus();
1928         mutex_lock(&text_mutex);
1929         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1930                 head = &kprobe_table[i];
1931                 hlist_for_each_entry_rcu(p, node, head, hlist) {
1932                         if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
1933                                 __disarm_kprobe(p);
1934                 }
1935         }
1936
1937         mutex_unlock(&text_mutex);
1938         put_online_cpus();
1939         mutex_unlock(&kprobe_mutex);
1940         /* Allow all currently running kprobes to complete */
1941         synchronize_sched();
1942         return;
1943
1944 already_disabled:
1945         mutex_unlock(&kprobe_mutex);
1946         return;
1947 }
1948
1949 /*
1950  * XXX: The debugfs bool file interface doesn't allow for callbacks
1951  * when the bool state is switched. We can reuse that facility when
1952  * available
1953  */
1954 static ssize_t read_enabled_file_bool(struct file *file,
1955                char __user *user_buf, size_t count, loff_t *ppos)
1956 {
1957         char buf[3];
1958
1959         if (!kprobes_all_disarmed)
1960                 buf[0] = '1';
1961         else
1962                 buf[0] = '0';
1963         buf[1] = '\n';
1964         buf[2] = 0x00;
1965         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
1966 }
1967
1968 static ssize_t write_enabled_file_bool(struct file *file,
1969                const char __user *user_buf, size_t count, loff_t *ppos)
1970 {
1971         char buf[32];
1972         int buf_size;
1973
1974         buf_size = min(count, (sizeof(buf)-1));
1975         if (copy_from_user(buf, user_buf, buf_size))
1976                 return -EFAULT;
1977
1978         switch (buf[0]) {
1979         case 'y':
1980         case 'Y':
1981         case '1':
1982                 arm_all_kprobes();
1983                 break;
1984         case 'n':
1985         case 'N':
1986         case '0':
1987                 disarm_all_kprobes();
1988                 break;
1989         }
1990
1991         return count;
1992 }
1993
1994 static const struct file_operations fops_kp = {
1995         .read =         read_enabled_file_bool,
1996         .write =        write_enabled_file_bool,
1997 };
1998
1999 static int __kprobes debugfs_kprobe_init(void)
2000 {
2001         struct dentry *dir, *file;
2002         unsigned int value = 1;
2003
2004         dir = debugfs_create_dir("kprobes", NULL);
2005         if (!dir)
2006                 return -ENOMEM;
2007
2008         file = debugfs_create_file("list", 0444, dir, NULL,
2009                                 &debugfs_kprobes_operations);
2010         if (!file) {
2011                 debugfs_remove(dir);
2012                 return -ENOMEM;
2013         }
2014
2015         file = debugfs_create_file("enabled", 0600, dir,
2016                                         &value, &fops_kp);
2017         if (!file) {
2018                 debugfs_remove(dir);
2019                 return -ENOMEM;
2020         }
2021
2022         return 0;
2023 }
2024
2025 late_initcall(debugfs_kprobe_init);
2026 #endif /* CONFIG_DEBUG_FS */
2027
2028 module_init(init_kprobes);
2029
2030 /* defined in arch/.../kernel/kprobes.c */
2031 EXPORT_SYMBOL_GPL(jprobe_return);