Merge branch 'linus' into perf/core
[firefly-linux-kernel-4.4.55.git] / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *              Probes initial implementation (includes suggestions from
23  *              Rusty Russell).
24  * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *              hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *              interface to access function arguments.
28  * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *              exceptions notifier to be first on the priority list.
30  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *              <prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/module.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50
51 #include <asm-generic/sections.h>
52 #include <asm/cacheflush.h>
53 #include <asm/errno.h>
54 #include <asm/uaccess.h>
55
56 #define KPROBE_HASH_BITS 6
57 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
58
59
60 /*
61  * Some oddball architectures like 64bit powerpc have function descriptors
62  * so this must be overridable.
63  */
64 #ifndef kprobe_lookup_name
65 #define kprobe_lookup_name(name, addr) \
66         addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
67 #endif
68
69 static int kprobes_initialized;
70 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
71 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
72
73 /* NOTE: change this value only with kprobe_mutex held */
74 static bool kprobes_all_disarmed;
75
76 static DEFINE_MUTEX(kprobe_mutex);      /* Protects kprobe_table */
77 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
78 static struct {
79         spinlock_t lock ____cacheline_aligned_in_smp;
80 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
81
82 static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
83 {
84         return &(kretprobe_table_locks[hash].lock);
85 }
86
87 /*
88  * Normally, functions that we'd want to prohibit kprobes in, are marked
89  * __kprobes. But, there are cases where such functions already belong to
90  * a different section (__sched for preempt_schedule)
91  *
92  * For such cases, we now have a blacklist
93  */
94 static struct kprobe_blackpoint kprobe_blacklist[] = {
95         {"preempt_schedule",},
96         {"native_get_debugreg",},
97         {"irq_entries_start",},
98         {"common_interrupt",},
99         {"mcount",},    /* mcount can be called from everywhere */
100         {NULL}    /* Terminator */
101 };
102
103 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
104 /*
105  * kprobe->ainsn.insn points to the copy of the instruction to be
106  * single-stepped. x86_64, POWER4 and above have no-exec support and
107  * stepping on the instruction on a vmalloced/kmalloced/data page
108  * is a recipe for disaster
109  */
110 struct kprobe_insn_page {
111         struct list_head list;
112         kprobe_opcode_t *insns;         /* Page of instruction slots */
113         int nused;
114         int ngarbage;
115         char slot_used[];
116 };
117
118 #define KPROBE_INSN_PAGE_SIZE(slots)                    \
119         (offsetof(struct kprobe_insn_page, slot_used) + \
120          (sizeof(char) * (slots)))
121
122 struct kprobe_insn_cache {
123         struct list_head pages; /* list of kprobe_insn_page */
124         size_t insn_size;       /* size of instruction slot */
125         int nr_garbage;
126 };
127
128 static int slots_per_page(struct kprobe_insn_cache *c)
129 {
130         return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
131 }
132
133 enum kprobe_slot_state {
134         SLOT_CLEAN = 0,
135         SLOT_DIRTY = 1,
136         SLOT_USED = 2,
137 };
138
139 static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_slots */
140 static struct kprobe_insn_cache kprobe_insn_slots = {
141         .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
142         .insn_size = MAX_INSN_SIZE,
143         .nr_garbage = 0,
144 };
145 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
146
147 /**
148  * __get_insn_slot() - Find a slot on an executable page for an instruction.
149  * We allocate an executable page if there's no room on existing ones.
150  */
151 static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
152 {
153         struct kprobe_insn_page *kip;
154
155  retry:
156         list_for_each_entry(kip, &c->pages, list) {
157                 if (kip->nused < slots_per_page(c)) {
158                         int i;
159                         for (i = 0; i < slots_per_page(c); i++) {
160                                 if (kip->slot_used[i] == SLOT_CLEAN) {
161                                         kip->slot_used[i] = SLOT_USED;
162                                         kip->nused++;
163                                         return kip->insns + (i * c->insn_size);
164                                 }
165                         }
166                         /* kip->nused is broken. Fix it. */
167                         kip->nused = slots_per_page(c);
168                         WARN_ON(1);
169                 }
170         }
171
172         /* If there are any garbage slots, collect it and try again. */
173         if (c->nr_garbage && collect_garbage_slots(c) == 0)
174                 goto retry;
175
176         /* All out of space.  Need to allocate a new page. */
177         kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178         if (!kip)
179                 return NULL;
180
181         /*
182          * Use module_alloc so this page is within +/- 2GB of where the
183          * kernel image and loaded module images reside. This is required
184          * so x86_64 can correctly handle the %rip-relative fixups.
185          */
186         kip->insns = module_alloc(PAGE_SIZE);
187         if (!kip->insns) {
188                 kfree(kip);
189                 return NULL;
190         }
191         INIT_LIST_HEAD(&kip->list);
192         memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193         kip->slot_used[0] = SLOT_USED;
194         kip->nused = 1;
195         kip->ngarbage = 0;
196         list_add(&kip->list, &c->pages);
197         return kip->insns;
198 }
199
200
201 kprobe_opcode_t __kprobes *get_insn_slot(void)
202 {
203         kprobe_opcode_t *ret = NULL;
204
205         mutex_lock(&kprobe_insn_mutex);
206         ret = __get_insn_slot(&kprobe_insn_slots);
207         mutex_unlock(&kprobe_insn_mutex);
208
209         return ret;
210 }
211
212 /* Return 1 if all garbages are collected, otherwise 0. */
213 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
214 {
215         kip->slot_used[idx] = SLOT_CLEAN;
216         kip->nused--;
217         if (kip->nused == 0) {
218                 /*
219                  * Page is no longer in use.  Free it unless
220                  * it's the last one.  We keep the last one
221                  * so as not to have to set it up again the
222                  * next time somebody inserts a probe.
223                  */
224                 if (!list_is_singular(&kip->list)) {
225                         list_del(&kip->list);
226                         module_free(NULL, kip->insns);
227                         kfree(kip);
228                 }
229                 return 1;
230         }
231         return 0;
232 }
233
234 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
235 {
236         struct kprobe_insn_page *kip, *next;
237
238         /* Ensure no-one is interrupted on the garbages */
239         synchronize_sched();
240
241         list_for_each_entry_safe(kip, next, &c->pages, list) {
242                 int i;
243                 if (kip->ngarbage == 0)
244                         continue;
245                 kip->ngarbage = 0;      /* we will collect all garbages */
246                 for (i = 0; i < slots_per_page(c); i++) {
247                         if (kip->slot_used[i] == SLOT_DIRTY &&
248                             collect_one_slot(kip, i))
249                                 break;
250                 }
251         }
252         c->nr_garbage = 0;
253         return 0;
254 }
255
256 static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
257                                        kprobe_opcode_t *slot, int dirty)
258 {
259         struct kprobe_insn_page *kip;
260
261         list_for_each_entry(kip, &c->pages, list) {
262                 long idx = ((long)slot - (long)kip->insns) /
263                                 (c->insn_size * sizeof(kprobe_opcode_t));
264                 if (idx >= 0 && idx < slots_per_page(c)) {
265                         WARN_ON(kip->slot_used[idx] != SLOT_USED);
266                         if (dirty) {
267                                 kip->slot_used[idx] = SLOT_DIRTY;
268                                 kip->ngarbage++;
269                                 if (++c->nr_garbage > slots_per_page(c))
270                                         collect_garbage_slots(c);
271                         } else
272                                 collect_one_slot(kip, idx);
273                         return;
274                 }
275         }
276         /* Could not free this slot. */
277         WARN_ON(1);
278 }
279
280 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
281 {
282         mutex_lock(&kprobe_insn_mutex);
283         __free_insn_slot(&kprobe_insn_slots, slot, dirty);
284         mutex_unlock(&kprobe_insn_mutex);
285 }
286 #ifdef CONFIG_OPTPROBES
287 /* For optimized_kprobe buffer */
288 static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */
289 static struct kprobe_insn_cache kprobe_optinsn_slots = {
290         .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
291         /* .insn_size is initialized later */
292         .nr_garbage = 0,
293 };
294 /* Get a slot for optimized_kprobe buffer */
295 kprobe_opcode_t __kprobes *get_optinsn_slot(void)
296 {
297         kprobe_opcode_t *ret = NULL;
298
299         mutex_lock(&kprobe_optinsn_mutex);
300         ret = __get_insn_slot(&kprobe_optinsn_slots);
301         mutex_unlock(&kprobe_optinsn_mutex);
302
303         return ret;
304 }
305
306 void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty)
307 {
308         mutex_lock(&kprobe_optinsn_mutex);
309         __free_insn_slot(&kprobe_optinsn_slots, slot, dirty);
310         mutex_unlock(&kprobe_optinsn_mutex);
311 }
312 #endif
313 #endif
314
315 /* We have preemption disabled.. so it is safe to use __ versions */
316 static inline void set_kprobe_instance(struct kprobe *kp)
317 {
318         __get_cpu_var(kprobe_instance) = kp;
319 }
320
321 static inline void reset_kprobe_instance(void)
322 {
323         __get_cpu_var(kprobe_instance) = NULL;
324 }
325
326 /*
327  * This routine is called either:
328  *      - under the kprobe_mutex - during kprobe_[un]register()
329  *                              OR
330  *      - with preemption disabled - from arch/xxx/kernel/kprobes.c
331  */
332 struct kprobe __kprobes *get_kprobe(void *addr)
333 {
334         struct hlist_head *head;
335         struct hlist_node *node;
336         struct kprobe *p;
337
338         head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
339         hlist_for_each_entry_rcu(p, node, head, hlist) {
340                 if (p->addr == addr)
341                         return p;
342         }
343
344         return NULL;
345 }
346
347 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
348
349 /* Return true if the kprobe is an aggregator */
350 static inline int kprobe_aggrprobe(struct kprobe *p)
351 {
352         return p->pre_handler == aggr_pre_handler;
353 }
354
355 /*
356  * Keep all fields in the kprobe consistent
357  */
358 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
359 {
360         memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
361         memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
362 }
363
364 #ifdef CONFIG_OPTPROBES
365 /* NOTE: change this value only with kprobe_mutex held */
366 static bool kprobes_allow_optimization;
367
368 /*
369  * Call all pre_handler on the list, but ignores its return value.
370  * This must be called from arch-dep optimized caller.
371  */
372 void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
373 {
374         struct kprobe *kp;
375
376         list_for_each_entry_rcu(kp, &p->list, list) {
377                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
378                         set_kprobe_instance(kp);
379                         kp->pre_handler(kp, regs);
380                 }
381                 reset_kprobe_instance();
382         }
383 }
384
385 /* Return true(!0) if the kprobe is ready for optimization. */
386 static inline int kprobe_optready(struct kprobe *p)
387 {
388         struct optimized_kprobe *op;
389
390         if (kprobe_aggrprobe(p)) {
391                 op = container_of(p, struct optimized_kprobe, kp);
392                 return arch_prepared_optinsn(&op->optinsn);
393         }
394
395         return 0;
396 }
397
398 /*
399  * Return an optimized kprobe whose optimizing code replaces
400  * instructions including addr (exclude breakpoint).
401  */
402 static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
403 {
404         int i;
405         struct kprobe *p = NULL;
406         struct optimized_kprobe *op;
407
408         /* Don't check i == 0, since that is a breakpoint case. */
409         for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
410                 p = get_kprobe((void *)(addr - i));
411
412         if (p && kprobe_optready(p)) {
413                 op = container_of(p, struct optimized_kprobe, kp);
414                 if (arch_within_optimized_kprobe(op, addr))
415                         return p;
416         }
417
418         return NULL;
419 }
420
421 /* Optimization staging list, protected by kprobe_mutex */
422 static LIST_HEAD(optimizing_list);
423
424 static void kprobe_optimizer(struct work_struct *work);
425 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
426 #define OPTIMIZE_DELAY 5
427
428 /* Kprobe jump optimizer */
429 static __kprobes void kprobe_optimizer(struct work_struct *work)
430 {
431         struct optimized_kprobe *op, *tmp;
432
433         /* Lock modules while optimizing kprobes */
434         mutex_lock(&module_mutex);
435         mutex_lock(&kprobe_mutex);
436         if (kprobes_all_disarmed || !kprobes_allow_optimization)
437                 goto end;
438
439         /*
440          * Wait for quiesence period to ensure all running interrupts
441          * are done. Because optprobe may modify multiple instructions
442          * there is a chance that Nth instruction is interrupted. In that
443          * case, running interrupt can return to 2nd-Nth byte of jump
444          * instruction. This wait is for avoiding it.
445          */
446         synchronize_sched();
447
448         /*
449          * The optimization/unoptimization refers online_cpus via
450          * stop_machine() and cpu-hotplug modifies online_cpus.
451          * And same time, text_mutex will be held in cpu-hotplug and here.
452          * This combination can cause a deadlock (cpu-hotplug try to lock
453          * text_mutex but stop_machine can not be done because online_cpus
454          * has been changed)
455          * To avoid this deadlock, we need to call get_online_cpus()
456          * for preventing cpu-hotplug outside of text_mutex locking.
457          */
458         get_online_cpus();
459         mutex_lock(&text_mutex);
460         list_for_each_entry_safe(op, tmp, &optimizing_list, list) {
461                 WARN_ON(kprobe_disabled(&op->kp));
462                 if (arch_optimize_kprobe(op) < 0)
463                         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
464                 list_del_init(&op->list);
465         }
466         mutex_unlock(&text_mutex);
467         put_online_cpus();
468 end:
469         mutex_unlock(&kprobe_mutex);
470         mutex_unlock(&module_mutex);
471 }
472
473 /* Optimize kprobe if p is ready to be optimized */
474 static __kprobes void optimize_kprobe(struct kprobe *p)
475 {
476         struct optimized_kprobe *op;
477
478         /* Check if the kprobe is disabled or not ready for optimization. */
479         if (!kprobe_optready(p) || !kprobes_allow_optimization ||
480             (kprobe_disabled(p) || kprobes_all_disarmed))
481                 return;
482
483         /* Both of break_handler and post_handler are not supported. */
484         if (p->break_handler || p->post_handler)
485                 return;
486
487         op = container_of(p, struct optimized_kprobe, kp);
488
489         /* Check there is no other kprobes at the optimized instructions */
490         if (arch_check_optimized_kprobe(op) < 0)
491                 return;
492
493         /* Check if it is already optimized. */
494         if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
495                 return;
496
497         op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
498         list_add(&op->list, &optimizing_list);
499         if (!delayed_work_pending(&optimizing_work))
500                 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
501 }
502
503 /* Unoptimize a kprobe if p is optimized */
504 static __kprobes void unoptimize_kprobe(struct kprobe *p)
505 {
506         struct optimized_kprobe *op;
507
508         if ((p->flags & KPROBE_FLAG_OPTIMIZED) && kprobe_aggrprobe(p)) {
509                 op = container_of(p, struct optimized_kprobe, kp);
510                 if (!list_empty(&op->list))
511                         /* Dequeue from the optimization queue */
512                         list_del_init(&op->list);
513                 else
514                         /* Replace jump with break */
515                         arch_unoptimize_kprobe(op);
516                 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
517         }
518 }
519
520 /* Remove optimized instructions */
521 static void __kprobes kill_optimized_kprobe(struct kprobe *p)
522 {
523         struct optimized_kprobe *op;
524
525         op = container_of(p, struct optimized_kprobe, kp);
526         if (!list_empty(&op->list)) {
527                 /* Dequeue from the optimization queue */
528                 list_del_init(&op->list);
529                 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
530         }
531         /* Don't unoptimize, because the target code will be freed. */
532         arch_remove_optimized_kprobe(op);
533 }
534
535 /* Try to prepare optimized instructions */
536 static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
537 {
538         struct optimized_kprobe *op;
539
540         op = container_of(p, struct optimized_kprobe, kp);
541         arch_prepare_optimized_kprobe(op);
542 }
543
544 /* Free optimized instructions and optimized_kprobe */
545 static __kprobes void free_aggr_kprobe(struct kprobe *p)
546 {
547         struct optimized_kprobe *op;
548
549         op = container_of(p, struct optimized_kprobe, kp);
550         arch_remove_optimized_kprobe(op);
551         kfree(op);
552 }
553
554 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
555 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
556 {
557         struct optimized_kprobe *op;
558
559         op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
560         if (!op)
561                 return NULL;
562
563         INIT_LIST_HEAD(&op->list);
564         op->kp.addr = p->addr;
565         arch_prepare_optimized_kprobe(op);
566
567         return &op->kp;
568 }
569
570 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
571
572 /*
573  * Prepare an optimized_kprobe and optimize it
574  * NOTE: p must be a normal registered kprobe
575  */
576 static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
577 {
578         struct kprobe *ap;
579         struct optimized_kprobe *op;
580
581         ap = alloc_aggr_kprobe(p);
582         if (!ap)
583                 return;
584
585         op = container_of(ap, struct optimized_kprobe, kp);
586         if (!arch_prepared_optinsn(&op->optinsn)) {
587                 /* If failed to setup optimizing, fallback to kprobe */
588                 free_aggr_kprobe(ap);
589                 return;
590         }
591
592         init_aggr_kprobe(ap, p);
593         optimize_kprobe(ap);
594 }
595
596 #ifdef CONFIG_SYSCTL
597 static void __kprobes optimize_all_kprobes(void)
598 {
599         struct hlist_head *head;
600         struct hlist_node *node;
601         struct kprobe *p;
602         unsigned int i;
603
604         /* If optimization is already allowed, just return */
605         if (kprobes_allow_optimization)
606                 return;
607
608         kprobes_allow_optimization = true;
609         mutex_lock(&text_mutex);
610         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
611                 head = &kprobe_table[i];
612                 hlist_for_each_entry_rcu(p, node, head, hlist)
613                         if (!kprobe_disabled(p))
614                                 optimize_kprobe(p);
615         }
616         mutex_unlock(&text_mutex);
617         printk(KERN_INFO "Kprobes globally optimized\n");
618 }
619
620 static void __kprobes unoptimize_all_kprobes(void)
621 {
622         struct hlist_head *head;
623         struct hlist_node *node;
624         struct kprobe *p;
625         unsigned int i;
626
627         /* If optimization is already prohibited, just return */
628         if (!kprobes_allow_optimization)
629                 return;
630
631         kprobes_allow_optimization = false;
632         printk(KERN_INFO "Kprobes globally unoptimized\n");
633         get_online_cpus();      /* For avoiding text_mutex deadlock */
634         mutex_lock(&text_mutex);
635         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
636                 head = &kprobe_table[i];
637                 hlist_for_each_entry_rcu(p, node, head, hlist) {
638                         if (!kprobe_disabled(p))
639                                 unoptimize_kprobe(p);
640                 }
641         }
642
643         mutex_unlock(&text_mutex);
644         put_online_cpus();
645         /* Allow all currently running kprobes to complete */
646         synchronize_sched();
647 }
648
649 int sysctl_kprobes_optimization;
650 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
651                                       void __user *buffer, size_t *length,
652                                       loff_t *ppos)
653 {
654         int ret;
655
656         mutex_lock(&kprobe_mutex);
657         sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
658         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
659
660         if (sysctl_kprobes_optimization)
661                 optimize_all_kprobes();
662         else
663                 unoptimize_all_kprobes();
664         mutex_unlock(&kprobe_mutex);
665
666         return ret;
667 }
668 #endif /* CONFIG_SYSCTL */
669
670 static void __kprobes __arm_kprobe(struct kprobe *p)
671 {
672         struct kprobe *old_p;
673
674         /* Check collision with other optimized kprobes */
675         old_p = get_optimized_kprobe((unsigned long)p->addr);
676         if (unlikely(old_p))
677                 unoptimize_kprobe(old_p); /* Fallback to unoptimized kprobe */
678
679         arch_arm_kprobe(p);
680         optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
681 }
682
683 static void __kprobes __disarm_kprobe(struct kprobe *p)
684 {
685         struct kprobe *old_p;
686
687         unoptimize_kprobe(p);   /* Try to unoptimize */
688         arch_disarm_kprobe(p);
689
690         /* If another kprobe was blocked, optimize it. */
691         old_p = get_optimized_kprobe((unsigned long)p->addr);
692         if (unlikely(old_p))
693                 optimize_kprobe(old_p);
694 }
695
696 #else /* !CONFIG_OPTPROBES */
697
698 #define optimize_kprobe(p)                      do {} while (0)
699 #define unoptimize_kprobe(p)                    do {} while (0)
700 #define kill_optimized_kprobe(p)                do {} while (0)
701 #define prepare_optimized_kprobe(p)             do {} while (0)
702 #define try_to_optimize_kprobe(p)               do {} while (0)
703 #define __arm_kprobe(p)                         arch_arm_kprobe(p)
704 #define __disarm_kprobe(p)                      arch_disarm_kprobe(p)
705
706 static __kprobes void free_aggr_kprobe(struct kprobe *p)
707 {
708         kfree(p);
709 }
710
711 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
712 {
713         return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
714 }
715 #endif /* CONFIG_OPTPROBES */
716
717 /* Arm a kprobe with text_mutex */
718 static void __kprobes arm_kprobe(struct kprobe *kp)
719 {
720         /*
721          * Here, since __arm_kprobe() doesn't use stop_machine(),
722          * this doesn't cause deadlock on text_mutex. So, we don't
723          * need get_online_cpus().
724          */
725         mutex_lock(&text_mutex);
726         __arm_kprobe(kp);
727         mutex_unlock(&text_mutex);
728 }
729
730 /* Disarm a kprobe with text_mutex */
731 static void __kprobes disarm_kprobe(struct kprobe *kp)
732 {
733         get_online_cpus();      /* For avoiding text_mutex deadlock */
734         mutex_lock(&text_mutex);
735         __disarm_kprobe(kp);
736         mutex_unlock(&text_mutex);
737         put_online_cpus();
738 }
739
740 /*
741  * Aggregate handlers for multiple kprobes support - these handlers
742  * take care of invoking the individual kprobe handlers on p->list
743  */
744 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
745 {
746         struct kprobe *kp;
747
748         list_for_each_entry_rcu(kp, &p->list, list) {
749                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
750                         set_kprobe_instance(kp);
751                         if (kp->pre_handler(kp, regs))
752                                 return 1;
753                 }
754                 reset_kprobe_instance();
755         }
756         return 0;
757 }
758
759 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
760                                         unsigned long flags)
761 {
762         struct kprobe *kp;
763
764         list_for_each_entry_rcu(kp, &p->list, list) {
765                 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
766                         set_kprobe_instance(kp);
767                         kp->post_handler(kp, regs, flags);
768                         reset_kprobe_instance();
769                 }
770         }
771 }
772
773 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
774                                         int trapnr)
775 {
776         struct kprobe *cur = __get_cpu_var(kprobe_instance);
777
778         /*
779          * if we faulted "during" the execution of a user specified
780          * probe handler, invoke just that probe's fault handler
781          */
782         if (cur && cur->fault_handler) {
783                 if (cur->fault_handler(cur, regs, trapnr))
784                         return 1;
785         }
786         return 0;
787 }
788
789 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
790 {
791         struct kprobe *cur = __get_cpu_var(kprobe_instance);
792         int ret = 0;
793
794         if (cur && cur->break_handler) {
795                 if (cur->break_handler(cur, regs))
796                         ret = 1;
797         }
798         reset_kprobe_instance();
799         return ret;
800 }
801
802 /* Walks the list and increments nmissed count for multiprobe case */
803 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
804 {
805         struct kprobe *kp;
806         if (!kprobe_aggrprobe(p)) {
807                 p->nmissed++;
808         } else {
809                 list_for_each_entry_rcu(kp, &p->list, list)
810                         kp->nmissed++;
811         }
812         return;
813 }
814
815 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
816                                 struct hlist_head *head)
817 {
818         struct kretprobe *rp = ri->rp;
819
820         /* remove rp inst off the rprobe_inst_table */
821         hlist_del(&ri->hlist);
822         INIT_HLIST_NODE(&ri->hlist);
823         if (likely(rp)) {
824                 spin_lock(&rp->lock);
825                 hlist_add_head(&ri->hlist, &rp->free_instances);
826                 spin_unlock(&rp->lock);
827         } else
828                 /* Unregistering */
829                 hlist_add_head(&ri->hlist, head);
830 }
831
832 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
833                          struct hlist_head **head, unsigned long *flags)
834 __acquires(hlist_lock)
835 {
836         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
837         spinlock_t *hlist_lock;
838
839         *head = &kretprobe_inst_table[hash];
840         hlist_lock = kretprobe_table_lock_ptr(hash);
841         spin_lock_irqsave(hlist_lock, *flags);
842 }
843
844 static void __kprobes kretprobe_table_lock(unsigned long hash,
845         unsigned long *flags)
846 __acquires(hlist_lock)
847 {
848         spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
849         spin_lock_irqsave(hlist_lock, *flags);
850 }
851
852 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
853         unsigned long *flags)
854 __releases(hlist_lock)
855 {
856         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
857         spinlock_t *hlist_lock;
858
859         hlist_lock = kretprobe_table_lock_ptr(hash);
860         spin_unlock_irqrestore(hlist_lock, *flags);
861 }
862
863 static void __kprobes kretprobe_table_unlock(unsigned long hash,
864        unsigned long *flags)
865 __releases(hlist_lock)
866 {
867         spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
868         spin_unlock_irqrestore(hlist_lock, *flags);
869 }
870
871 /*
872  * This function is called from finish_task_switch when task tk becomes dead,
873  * so that we can recycle any function-return probe instances associated
874  * with this task. These left over instances represent probed functions
875  * that have been called but will never return.
876  */
877 void __kprobes kprobe_flush_task(struct task_struct *tk)
878 {
879         struct kretprobe_instance *ri;
880         struct hlist_head *head, empty_rp;
881         struct hlist_node *node, *tmp;
882         unsigned long hash, flags = 0;
883
884         if (unlikely(!kprobes_initialized))
885                 /* Early boot.  kretprobe_table_locks not yet initialized. */
886                 return;
887
888         hash = hash_ptr(tk, KPROBE_HASH_BITS);
889         head = &kretprobe_inst_table[hash];
890         kretprobe_table_lock(hash, &flags);
891         hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
892                 if (ri->task == tk)
893                         recycle_rp_inst(ri, &empty_rp);
894         }
895         kretprobe_table_unlock(hash, &flags);
896         INIT_HLIST_HEAD(&empty_rp);
897         hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
898                 hlist_del(&ri->hlist);
899                 kfree(ri);
900         }
901 }
902
903 static inline void free_rp_inst(struct kretprobe *rp)
904 {
905         struct kretprobe_instance *ri;
906         struct hlist_node *pos, *next;
907
908         hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
909                 hlist_del(&ri->hlist);
910                 kfree(ri);
911         }
912 }
913
914 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
915 {
916         unsigned long flags, hash;
917         struct kretprobe_instance *ri;
918         struct hlist_node *pos, *next;
919         struct hlist_head *head;
920
921         /* No race here */
922         for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
923                 kretprobe_table_lock(hash, &flags);
924                 head = &kretprobe_inst_table[hash];
925                 hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
926                         if (ri->rp == rp)
927                                 ri->rp = NULL;
928                 }
929                 kretprobe_table_unlock(hash, &flags);
930         }
931         free_rp_inst(rp);
932 }
933
934 /*
935 * Add the new probe to ap->list. Fail if this is the
936 * second jprobe at the address - two jprobes can't coexist
937 */
938 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
939 {
940         BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
941
942         if (p->break_handler || p->post_handler)
943                 unoptimize_kprobe(ap);  /* Fall back to normal kprobe */
944
945         if (p->break_handler) {
946                 if (ap->break_handler)
947                         return -EEXIST;
948                 list_add_tail_rcu(&p->list, &ap->list);
949                 ap->break_handler = aggr_break_handler;
950         } else
951                 list_add_rcu(&p->list, &ap->list);
952         if (p->post_handler && !ap->post_handler)
953                 ap->post_handler = aggr_post_handler;
954
955         if (kprobe_disabled(ap) && !kprobe_disabled(p)) {
956                 ap->flags &= ~KPROBE_FLAG_DISABLED;
957                 if (!kprobes_all_disarmed)
958                         /* Arm the breakpoint again. */
959                         __arm_kprobe(ap);
960         }
961         return 0;
962 }
963
964 /*
965  * Fill in the required fields of the "manager kprobe". Replace the
966  * earlier kprobe in the hlist with the manager kprobe
967  */
968 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
969 {
970         /* Copy p's insn slot to ap */
971         copy_kprobe(p, ap);
972         flush_insn_slot(ap);
973         ap->addr = p->addr;
974         ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
975         ap->pre_handler = aggr_pre_handler;
976         ap->fault_handler = aggr_fault_handler;
977         /* We don't care the kprobe which has gone. */
978         if (p->post_handler && !kprobe_gone(p))
979                 ap->post_handler = aggr_post_handler;
980         if (p->break_handler && !kprobe_gone(p))
981                 ap->break_handler = aggr_break_handler;
982
983         INIT_LIST_HEAD(&ap->list);
984         INIT_HLIST_NODE(&ap->hlist);
985
986         list_add_rcu(&p->list, &ap->list);
987         hlist_replace_rcu(&p->hlist, &ap->hlist);
988 }
989
990 /*
991  * This is the second or subsequent kprobe at the address - handle
992  * the intricacies
993  */
994 static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
995                                           struct kprobe *p)
996 {
997         int ret = 0;
998         struct kprobe *ap = old_p;
999
1000         if (!kprobe_aggrprobe(old_p)) {
1001                 /* If old_p is not an aggr_kprobe, create new aggr_kprobe. */
1002                 ap = alloc_aggr_kprobe(old_p);
1003                 if (!ap)
1004                         return -ENOMEM;
1005                 init_aggr_kprobe(ap, old_p);
1006         }
1007
1008         if (kprobe_gone(ap)) {
1009                 /*
1010                  * Attempting to insert new probe at the same location that
1011                  * had a probe in the module vaddr area which already
1012                  * freed. So, the instruction slot has already been
1013                  * released. We need a new slot for the new probe.
1014                  */
1015                 ret = arch_prepare_kprobe(ap);
1016                 if (ret)
1017                         /*
1018                          * Even if fail to allocate new slot, don't need to
1019                          * free aggr_probe. It will be used next time, or
1020                          * freed by unregister_kprobe.
1021                          */
1022                         return ret;
1023
1024                 /* Prepare optimized instructions if possible. */
1025                 prepare_optimized_kprobe(ap);
1026
1027                 /*
1028                  * Clear gone flag to prevent allocating new slot again, and
1029                  * set disabled flag because it is not armed yet.
1030                  */
1031                 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1032                             | KPROBE_FLAG_DISABLED;
1033         }
1034
1035         /* Copy ap's insn slot to p */
1036         copy_kprobe(ap, p);
1037         return add_new_kprobe(ap, p);
1038 }
1039
1040 /* Try to disable aggr_kprobe, and return 1 if succeeded.*/
1041 static int __kprobes try_to_disable_aggr_kprobe(struct kprobe *p)
1042 {
1043         struct kprobe *kp;
1044
1045         list_for_each_entry_rcu(kp, &p->list, list) {
1046                 if (!kprobe_disabled(kp))
1047                         /*
1048                          * There is an active probe on the list.
1049                          * We can't disable aggr_kprobe.
1050                          */
1051                         return 0;
1052         }
1053         p->flags |= KPROBE_FLAG_DISABLED;
1054         return 1;
1055 }
1056
1057 static int __kprobes in_kprobes_functions(unsigned long addr)
1058 {
1059         struct kprobe_blackpoint *kb;
1060
1061         if (addr >= (unsigned long)__kprobes_text_start &&
1062             addr < (unsigned long)__kprobes_text_end)
1063                 return -EINVAL;
1064         /*
1065          * If there exists a kprobe_blacklist, verify and
1066          * fail any probe registration in the prohibited area
1067          */
1068         for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1069                 if (kb->start_addr) {
1070                         if (addr >= kb->start_addr &&
1071                             addr < (kb->start_addr + kb->range))
1072                                 return -EINVAL;
1073                 }
1074         }
1075         return 0;
1076 }
1077
1078 /*
1079  * If we have a symbol_name argument, look it up and add the offset field
1080  * to it. This way, we can specify a relative address to a symbol.
1081  */
1082 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
1083 {
1084         kprobe_opcode_t *addr = p->addr;
1085         if (p->symbol_name) {
1086                 if (addr)
1087                         return NULL;
1088                 kprobe_lookup_name(p->symbol_name, addr);
1089         }
1090
1091         if (!addr)
1092                 return NULL;
1093         return (kprobe_opcode_t *)(((char *)addr) + p->offset);
1094 }
1095
1096 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1097 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1098 {
1099         struct kprobe *old_p, *list_p;
1100
1101         old_p = get_kprobe(p->addr);
1102         if (unlikely(!old_p))
1103                 return NULL;
1104
1105         if (p != old_p) {
1106                 list_for_each_entry_rcu(list_p, &old_p->list, list)
1107                         if (list_p == p)
1108                         /* kprobe p is a valid probe */
1109                                 goto valid;
1110                 return NULL;
1111         }
1112 valid:
1113         return old_p;
1114 }
1115
1116 /* Return error if the kprobe is being re-registered */
1117 static inline int check_kprobe_rereg(struct kprobe *p)
1118 {
1119         int ret = 0;
1120         struct kprobe *old_p;
1121
1122         mutex_lock(&kprobe_mutex);
1123         old_p = __get_valid_kprobe(p);
1124         if (old_p)
1125                 ret = -EINVAL;
1126         mutex_unlock(&kprobe_mutex);
1127         return ret;
1128 }
1129
1130 int __kprobes register_kprobe(struct kprobe *p)
1131 {
1132         int ret = 0;
1133         struct kprobe *old_p;
1134         struct module *probed_mod;
1135         kprobe_opcode_t *addr;
1136
1137         addr = kprobe_addr(p);
1138         if (!addr)
1139                 return -EINVAL;
1140         p->addr = addr;
1141
1142         ret = check_kprobe_rereg(p);
1143         if (ret)
1144                 return ret;
1145
1146         preempt_disable();
1147         if (!kernel_text_address((unsigned long) p->addr) ||
1148             in_kprobes_functions((unsigned long) p->addr) ||
1149             ftrace_text_reserved(p->addr, p->addr)) {
1150                 preempt_enable();
1151                 return -EINVAL;
1152         }
1153
1154         /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1155         p->flags &= KPROBE_FLAG_DISABLED;
1156
1157         /*
1158          * Check if are we probing a module.
1159          */
1160         probed_mod = __module_text_address((unsigned long) p->addr);
1161         if (probed_mod) {
1162                 /*
1163                  * We must hold a refcount of the probed module while updating
1164                  * its code to prohibit unexpected unloading.
1165                  */
1166                 if (unlikely(!try_module_get(probed_mod))) {
1167                         preempt_enable();
1168                         return -EINVAL;
1169                 }
1170                 /*
1171                  * If the module freed .init.text, we couldn't insert
1172                  * kprobes in there.
1173                  */
1174                 if (within_module_init((unsigned long)p->addr, probed_mod) &&
1175                     probed_mod->state != MODULE_STATE_COMING) {
1176                         module_put(probed_mod);
1177                         preempt_enable();
1178                         return -EINVAL;
1179                 }
1180         }
1181         preempt_enable();
1182
1183         p->nmissed = 0;
1184         INIT_LIST_HEAD(&p->list);
1185         mutex_lock(&kprobe_mutex);
1186
1187         get_online_cpus();      /* For avoiding text_mutex deadlock. */
1188         mutex_lock(&text_mutex);
1189
1190         old_p = get_kprobe(p->addr);
1191         if (old_p) {
1192                 /* Since this may unoptimize old_p, locking text_mutex. */
1193                 ret = register_aggr_kprobe(old_p, p);
1194                 goto out;
1195         }
1196
1197         ret = arch_prepare_kprobe(p);
1198         if (ret)
1199                 goto out;
1200
1201         INIT_HLIST_NODE(&p->hlist);
1202         hlist_add_head_rcu(&p->hlist,
1203                        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1204
1205         if (!kprobes_all_disarmed && !kprobe_disabled(p))
1206                 __arm_kprobe(p);
1207
1208         /* Try to optimize kprobe */
1209         try_to_optimize_kprobe(p);
1210
1211 out:
1212         mutex_unlock(&text_mutex);
1213         put_online_cpus();
1214         mutex_unlock(&kprobe_mutex);
1215
1216         if (probed_mod)
1217                 module_put(probed_mod);
1218
1219         return ret;
1220 }
1221 EXPORT_SYMBOL_GPL(register_kprobe);
1222
1223 /*
1224  * Unregister a kprobe without a scheduler synchronization.
1225  */
1226 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1227 {
1228         struct kprobe *old_p, *list_p;
1229
1230         old_p = __get_valid_kprobe(p);
1231         if (old_p == NULL)
1232                 return -EINVAL;
1233
1234         if (old_p == p ||
1235             (kprobe_aggrprobe(old_p) &&
1236              list_is_singular(&old_p->list))) {
1237                 /*
1238                  * Only probe on the hash list. Disarm only if kprobes are
1239                  * enabled and not gone - otherwise, the breakpoint would
1240                  * already have been removed. We save on flushing icache.
1241                  */
1242                 if (!kprobes_all_disarmed && !kprobe_disabled(old_p))
1243                         disarm_kprobe(old_p);
1244                 hlist_del_rcu(&old_p->hlist);
1245         } else {
1246                 if (p->break_handler && !kprobe_gone(p))
1247                         old_p->break_handler = NULL;
1248                 if (p->post_handler && !kprobe_gone(p)) {
1249                         list_for_each_entry_rcu(list_p, &old_p->list, list) {
1250                                 if ((list_p != p) && (list_p->post_handler))
1251                                         goto noclean;
1252                         }
1253                         old_p->post_handler = NULL;
1254                 }
1255 noclean:
1256                 list_del_rcu(&p->list);
1257                 if (!kprobe_disabled(old_p)) {
1258                         try_to_disable_aggr_kprobe(old_p);
1259                         if (!kprobes_all_disarmed) {
1260                                 if (kprobe_disabled(old_p))
1261                                         disarm_kprobe(old_p);
1262                                 else
1263                                         /* Try to optimize this probe again */
1264                                         optimize_kprobe(old_p);
1265                         }
1266                 }
1267         }
1268         return 0;
1269 }
1270
1271 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1272 {
1273         struct kprobe *old_p;
1274
1275         if (list_empty(&p->list))
1276                 arch_remove_kprobe(p);
1277         else if (list_is_singular(&p->list)) {
1278                 /* "p" is the last child of an aggr_kprobe */
1279                 old_p = list_entry(p->list.next, struct kprobe, list);
1280                 list_del(&p->list);
1281                 arch_remove_kprobe(old_p);
1282                 free_aggr_kprobe(old_p);
1283         }
1284 }
1285
1286 int __kprobes register_kprobes(struct kprobe **kps, int num)
1287 {
1288         int i, ret = 0;
1289
1290         if (num <= 0)
1291                 return -EINVAL;
1292         for (i = 0; i < num; i++) {
1293                 ret = register_kprobe(kps[i]);
1294                 if (ret < 0) {
1295                         if (i > 0)
1296                                 unregister_kprobes(kps, i);
1297                         break;
1298                 }
1299         }
1300         return ret;
1301 }
1302 EXPORT_SYMBOL_GPL(register_kprobes);
1303
1304 void __kprobes unregister_kprobe(struct kprobe *p)
1305 {
1306         unregister_kprobes(&p, 1);
1307 }
1308 EXPORT_SYMBOL_GPL(unregister_kprobe);
1309
1310 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1311 {
1312         int i;
1313
1314         if (num <= 0)
1315                 return;
1316         mutex_lock(&kprobe_mutex);
1317         for (i = 0; i < num; i++)
1318                 if (__unregister_kprobe_top(kps[i]) < 0)
1319                         kps[i]->addr = NULL;
1320         mutex_unlock(&kprobe_mutex);
1321
1322         synchronize_sched();
1323         for (i = 0; i < num; i++)
1324                 if (kps[i]->addr)
1325                         __unregister_kprobe_bottom(kps[i]);
1326 }
1327 EXPORT_SYMBOL_GPL(unregister_kprobes);
1328
1329 static struct notifier_block kprobe_exceptions_nb = {
1330         .notifier_call = kprobe_exceptions_notify,
1331         .priority = 0x7fffffff /* we need to be notified first */
1332 };
1333
1334 unsigned long __weak arch_deref_entry_point(void *entry)
1335 {
1336         return (unsigned long)entry;
1337 }
1338
1339 int __kprobes register_jprobes(struct jprobe **jps, int num)
1340 {
1341         struct jprobe *jp;
1342         int ret = 0, i;
1343
1344         if (num <= 0)
1345                 return -EINVAL;
1346         for (i = 0; i < num; i++) {
1347                 unsigned long addr, offset;
1348                 jp = jps[i];
1349                 addr = arch_deref_entry_point(jp->entry);
1350
1351                 /* Verify probepoint is a function entry point */
1352                 if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1353                     offset == 0) {
1354                         jp->kp.pre_handler = setjmp_pre_handler;
1355                         jp->kp.break_handler = longjmp_break_handler;
1356                         ret = register_kprobe(&jp->kp);
1357                 } else
1358                         ret = -EINVAL;
1359
1360                 if (ret < 0) {
1361                         if (i > 0)
1362                                 unregister_jprobes(jps, i);
1363                         break;
1364                 }
1365         }
1366         return ret;
1367 }
1368 EXPORT_SYMBOL_GPL(register_jprobes);
1369
1370 int __kprobes register_jprobe(struct jprobe *jp)
1371 {
1372         return register_jprobes(&jp, 1);
1373 }
1374 EXPORT_SYMBOL_GPL(register_jprobe);
1375
1376 void __kprobes unregister_jprobe(struct jprobe *jp)
1377 {
1378         unregister_jprobes(&jp, 1);
1379 }
1380 EXPORT_SYMBOL_GPL(unregister_jprobe);
1381
1382 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1383 {
1384         int i;
1385
1386         if (num <= 0)
1387                 return;
1388         mutex_lock(&kprobe_mutex);
1389         for (i = 0; i < num; i++)
1390                 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1391                         jps[i]->kp.addr = NULL;
1392         mutex_unlock(&kprobe_mutex);
1393
1394         synchronize_sched();
1395         for (i = 0; i < num; i++) {
1396                 if (jps[i]->kp.addr)
1397                         __unregister_kprobe_bottom(&jps[i]->kp);
1398         }
1399 }
1400 EXPORT_SYMBOL_GPL(unregister_jprobes);
1401
1402 #ifdef CONFIG_KRETPROBES
1403 /*
1404  * This kprobe pre_handler is registered with every kretprobe. When probe
1405  * hits it will set up the return probe.
1406  */
1407 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1408                                            struct pt_regs *regs)
1409 {
1410         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1411         unsigned long hash, flags = 0;
1412         struct kretprobe_instance *ri;
1413
1414         /*TODO: consider to only swap the RA after the last pre_handler fired */
1415         hash = hash_ptr(current, KPROBE_HASH_BITS);
1416         spin_lock_irqsave(&rp->lock, flags);
1417         if (!hlist_empty(&rp->free_instances)) {
1418                 ri = hlist_entry(rp->free_instances.first,
1419                                 struct kretprobe_instance, hlist);
1420                 hlist_del(&ri->hlist);
1421                 spin_unlock_irqrestore(&rp->lock, flags);
1422
1423                 ri->rp = rp;
1424                 ri->task = current;
1425
1426                 if (rp->entry_handler && rp->entry_handler(ri, regs))
1427                         return 0;
1428
1429                 arch_prepare_kretprobe(ri, regs);
1430
1431                 /* XXX(hch): why is there no hlist_move_head? */
1432                 INIT_HLIST_NODE(&ri->hlist);
1433                 kretprobe_table_lock(hash, &flags);
1434                 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1435                 kretprobe_table_unlock(hash, &flags);
1436         } else {
1437                 rp->nmissed++;
1438                 spin_unlock_irqrestore(&rp->lock, flags);
1439         }
1440         return 0;
1441 }
1442
1443 int __kprobes register_kretprobe(struct kretprobe *rp)
1444 {
1445         int ret = 0;
1446         struct kretprobe_instance *inst;
1447         int i;
1448         void *addr;
1449
1450         if (kretprobe_blacklist_size) {
1451                 addr = kprobe_addr(&rp->kp);
1452                 if (!addr)
1453                         return -EINVAL;
1454
1455                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1456                         if (kretprobe_blacklist[i].addr == addr)
1457                                 return -EINVAL;
1458                 }
1459         }
1460
1461         rp->kp.pre_handler = pre_handler_kretprobe;
1462         rp->kp.post_handler = NULL;
1463         rp->kp.fault_handler = NULL;
1464         rp->kp.break_handler = NULL;
1465
1466         /* Pre-allocate memory for max kretprobe instances */
1467         if (rp->maxactive <= 0) {
1468 #ifdef CONFIG_PREEMPT
1469                 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1470 #else
1471                 rp->maxactive = num_possible_cpus();
1472 #endif
1473         }
1474         spin_lock_init(&rp->lock);
1475         INIT_HLIST_HEAD(&rp->free_instances);
1476         for (i = 0; i < rp->maxactive; i++) {
1477                 inst = kmalloc(sizeof(struct kretprobe_instance) +
1478                                rp->data_size, GFP_KERNEL);
1479                 if (inst == NULL) {
1480                         free_rp_inst(rp);
1481                         return -ENOMEM;
1482                 }
1483                 INIT_HLIST_NODE(&inst->hlist);
1484                 hlist_add_head(&inst->hlist, &rp->free_instances);
1485         }
1486
1487         rp->nmissed = 0;
1488         /* Establish function entry probe point */
1489         ret = register_kprobe(&rp->kp);
1490         if (ret != 0)
1491                 free_rp_inst(rp);
1492         return ret;
1493 }
1494 EXPORT_SYMBOL_GPL(register_kretprobe);
1495
1496 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1497 {
1498         int ret = 0, i;
1499
1500         if (num <= 0)
1501                 return -EINVAL;
1502         for (i = 0; i < num; i++) {
1503                 ret = register_kretprobe(rps[i]);
1504                 if (ret < 0) {
1505                         if (i > 0)
1506                                 unregister_kretprobes(rps, i);
1507                         break;
1508                 }
1509         }
1510         return ret;
1511 }
1512 EXPORT_SYMBOL_GPL(register_kretprobes);
1513
1514 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1515 {
1516         unregister_kretprobes(&rp, 1);
1517 }
1518 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1519
1520 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1521 {
1522         int i;
1523
1524         if (num <= 0)
1525                 return;
1526         mutex_lock(&kprobe_mutex);
1527         for (i = 0; i < num; i++)
1528                 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1529                         rps[i]->kp.addr = NULL;
1530         mutex_unlock(&kprobe_mutex);
1531
1532         synchronize_sched();
1533         for (i = 0; i < num; i++) {
1534                 if (rps[i]->kp.addr) {
1535                         __unregister_kprobe_bottom(&rps[i]->kp);
1536                         cleanup_rp_inst(rps[i]);
1537                 }
1538         }
1539 }
1540 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1541
1542 #else /* CONFIG_KRETPROBES */
1543 int __kprobes register_kretprobe(struct kretprobe *rp)
1544 {
1545         return -ENOSYS;
1546 }
1547 EXPORT_SYMBOL_GPL(register_kretprobe);
1548
1549 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1550 {
1551         return -ENOSYS;
1552 }
1553 EXPORT_SYMBOL_GPL(register_kretprobes);
1554
1555 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1556 {
1557 }
1558 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1559
1560 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1561 {
1562 }
1563 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1564
1565 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1566                                            struct pt_regs *regs)
1567 {
1568         return 0;
1569 }
1570
1571 #endif /* CONFIG_KRETPROBES */
1572
1573 /* Set the kprobe gone and remove its instruction buffer. */
1574 static void __kprobes kill_kprobe(struct kprobe *p)
1575 {
1576         struct kprobe *kp;
1577
1578         p->flags |= KPROBE_FLAG_GONE;
1579         if (kprobe_aggrprobe(p)) {
1580                 /*
1581                  * If this is an aggr_kprobe, we have to list all the
1582                  * chained probes and mark them GONE.
1583                  */
1584                 list_for_each_entry_rcu(kp, &p->list, list)
1585                         kp->flags |= KPROBE_FLAG_GONE;
1586                 p->post_handler = NULL;
1587                 p->break_handler = NULL;
1588                 kill_optimized_kprobe(p);
1589         }
1590         /*
1591          * Here, we can remove insn_slot safely, because no thread calls
1592          * the original probed function (which will be freed soon) any more.
1593          */
1594         arch_remove_kprobe(p);
1595 }
1596
1597 /* Disable one kprobe */
1598 int __kprobes disable_kprobe(struct kprobe *kp)
1599 {
1600         int ret = 0;
1601         struct kprobe *p;
1602
1603         mutex_lock(&kprobe_mutex);
1604
1605         /* Check whether specified probe is valid. */
1606         p = __get_valid_kprobe(kp);
1607         if (unlikely(p == NULL)) {
1608                 ret = -EINVAL;
1609                 goto out;
1610         }
1611
1612         /* If the probe is already disabled (or gone), just return */
1613         if (kprobe_disabled(kp))
1614                 goto out;
1615
1616         kp->flags |= KPROBE_FLAG_DISABLED;
1617         if (p != kp)
1618                 /* When kp != p, p is always enabled. */
1619                 try_to_disable_aggr_kprobe(p);
1620
1621         if (!kprobes_all_disarmed && kprobe_disabled(p))
1622                 disarm_kprobe(p);
1623 out:
1624         mutex_unlock(&kprobe_mutex);
1625         return ret;
1626 }
1627 EXPORT_SYMBOL_GPL(disable_kprobe);
1628
1629 /* Enable one kprobe */
1630 int __kprobes enable_kprobe(struct kprobe *kp)
1631 {
1632         int ret = 0;
1633         struct kprobe *p;
1634
1635         mutex_lock(&kprobe_mutex);
1636
1637         /* Check whether specified probe is valid. */
1638         p = __get_valid_kprobe(kp);
1639         if (unlikely(p == NULL)) {
1640                 ret = -EINVAL;
1641                 goto out;
1642         }
1643
1644         if (kprobe_gone(kp)) {
1645                 /* This kprobe has gone, we couldn't enable it. */
1646                 ret = -EINVAL;
1647                 goto out;
1648         }
1649
1650         if (p != kp)
1651                 kp->flags &= ~KPROBE_FLAG_DISABLED;
1652
1653         if (!kprobes_all_disarmed && kprobe_disabled(p)) {
1654                 p->flags &= ~KPROBE_FLAG_DISABLED;
1655                 arm_kprobe(p);
1656         }
1657 out:
1658         mutex_unlock(&kprobe_mutex);
1659         return ret;
1660 }
1661 EXPORT_SYMBOL_GPL(enable_kprobe);
1662
1663 void __kprobes dump_kprobe(struct kprobe *kp)
1664 {
1665         printk(KERN_WARNING "Dumping kprobe:\n");
1666         printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
1667                kp->symbol_name, kp->addr, kp->offset);
1668 }
1669
1670 /* Module notifier call back, checking kprobes on the module */
1671 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1672                                              unsigned long val, void *data)
1673 {
1674         struct module *mod = data;
1675         struct hlist_head *head;
1676         struct hlist_node *node;
1677         struct kprobe *p;
1678         unsigned int i;
1679         int checkcore = (val == MODULE_STATE_GOING);
1680
1681         if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1682                 return NOTIFY_DONE;
1683
1684         /*
1685          * When MODULE_STATE_GOING was notified, both of module .text and
1686          * .init.text sections would be freed. When MODULE_STATE_LIVE was
1687          * notified, only .init.text section would be freed. We need to
1688          * disable kprobes which have been inserted in the sections.
1689          */
1690         mutex_lock(&kprobe_mutex);
1691         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1692                 head = &kprobe_table[i];
1693                 hlist_for_each_entry_rcu(p, node, head, hlist)
1694                         if (within_module_init((unsigned long)p->addr, mod) ||
1695                             (checkcore &&
1696                              within_module_core((unsigned long)p->addr, mod))) {
1697                                 /*
1698                                  * The vaddr this probe is installed will soon
1699                                  * be vfreed buy not synced to disk. Hence,
1700                                  * disarming the breakpoint isn't needed.
1701                                  */
1702                                 kill_kprobe(p);
1703                         }
1704         }
1705         mutex_unlock(&kprobe_mutex);
1706         return NOTIFY_DONE;
1707 }
1708
1709 static struct notifier_block kprobe_module_nb = {
1710         .notifier_call = kprobes_module_callback,
1711         .priority = 0
1712 };
1713
1714 static int __init init_kprobes(void)
1715 {
1716         int i, err = 0;
1717         unsigned long offset = 0, size = 0;
1718         char *modname, namebuf[128];
1719         const char *symbol_name;
1720         void *addr;
1721         struct kprobe_blackpoint *kb;
1722
1723         /* FIXME allocate the probe table, currently defined statically */
1724         /* initialize all list heads */
1725         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1726                 INIT_HLIST_HEAD(&kprobe_table[i]);
1727                 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1728                 spin_lock_init(&(kretprobe_table_locks[i].lock));
1729         }
1730
1731         /*
1732          * Lookup and populate the kprobe_blacklist.
1733          *
1734          * Unlike the kretprobe blacklist, we'll need to determine
1735          * the range of addresses that belong to the said functions,
1736          * since a kprobe need not necessarily be at the beginning
1737          * of a function.
1738          */
1739         for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1740                 kprobe_lookup_name(kb->name, addr);
1741                 if (!addr)
1742                         continue;
1743
1744                 kb->start_addr = (unsigned long)addr;
1745                 symbol_name = kallsyms_lookup(kb->start_addr,
1746                                 &size, &offset, &modname, namebuf);
1747                 if (!symbol_name)
1748                         kb->range = 0;
1749                 else
1750                         kb->range = size;
1751         }
1752
1753         if (kretprobe_blacklist_size) {
1754                 /* lookup the function address from its name */
1755                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1756                         kprobe_lookup_name(kretprobe_blacklist[i].name,
1757                                            kretprobe_blacklist[i].addr);
1758                         if (!kretprobe_blacklist[i].addr)
1759                                 printk("kretprobe: lookup failed: %s\n",
1760                                        kretprobe_blacklist[i].name);
1761                 }
1762         }
1763
1764 #if defined(CONFIG_OPTPROBES)
1765 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
1766         /* Init kprobe_optinsn_slots */
1767         kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
1768 #endif
1769         /* By default, kprobes can be optimized */
1770         kprobes_allow_optimization = true;
1771 #endif
1772
1773         /* By default, kprobes are armed */
1774         kprobes_all_disarmed = false;
1775
1776         err = arch_init_kprobes();
1777         if (!err)
1778                 err = register_die_notifier(&kprobe_exceptions_nb);
1779         if (!err)
1780                 err = register_module_notifier(&kprobe_module_nb);
1781
1782         kprobes_initialized = (err == 0);
1783
1784         if (!err)
1785                 init_test_probes();
1786         return err;
1787 }
1788
1789 #ifdef CONFIG_DEBUG_FS
1790 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
1791                 const char *sym, int offset, char *modname, struct kprobe *pp)
1792 {
1793         char *kprobe_type;
1794
1795         if (p->pre_handler == pre_handler_kretprobe)
1796                 kprobe_type = "r";
1797         else if (p->pre_handler == setjmp_pre_handler)
1798                 kprobe_type = "j";
1799         else
1800                 kprobe_type = "k";
1801
1802         if (sym)
1803                 seq_printf(pi, "%p  %s  %s+0x%x  %s ",
1804                         p->addr, kprobe_type, sym, offset,
1805                         (modname ? modname : " "));
1806         else
1807                 seq_printf(pi, "%p  %s  %p ",
1808                         p->addr, kprobe_type, p->addr);
1809
1810         if (!pp)
1811                 pp = p;
1812         seq_printf(pi, "%s%s%s\n",
1813                 (kprobe_gone(p) ? "[GONE]" : ""),
1814                 ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
1815                 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""));
1816 }
1817
1818 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
1819 {
1820         return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
1821 }
1822
1823 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
1824 {
1825         (*pos)++;
1826         if (*pos >= KPROBE_TABLE_SIZE)
1827                 return NULL;
1828         return pos;
1829 }
1830
1831 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
1832 {
1833         /* Nothing to do */
1834 }
1835
1836 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
1837 {
1838         struct hlist_head *head;
1839         struct hlist_node *node;
1840         struct kprobe *p, *kp;
1841         const char *sym = NULL;
1842         unsigned int i = *(loff_t *) v;
1843         unsigned long offset = 0;
1844         char *modname, namebuf[128];
1845
1846         head = &kprobe_table[i];
1847         preempt_disable();
1848         hlist_for_each_entry_rcu(p, node, head, hlist) {
1849                 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
1850                                         &offset, &modname, namebuf);
1851                 if (kprobe_aggrprobe(p)) {
1852                         list_for_each_entry_rcu(kp, &p->list, list)
1853                                 report_probe(pi, kp, sym, offset, modname, p);
1854                 } else
1855                         report_probe(pi, p, sym, offset, modname, NULL);
1856         }
1857         preempt_enable();
1858         return 0;
1859 }
1860
1861 static const struct seq_operations kprobes_seq_ops = {
1862         .start = kprobe_seq_start,
1863         .next  = kprobe_seq_next,
1864         .stop  = kprobe_seq_stop,
1865         .show  = show_kprobe_addr
1866 };
1867
1868 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
1869 {
1870         return seq_open(filp, &kprobes_seq_ops);
1871 }
1872
1873 static const struct file_operations debugfs_kprobes_operations = {
1874         .open           = kprobes_open,
1875         .read           = seq_read,
1876         .llseek         = seq_lseek,
1877         .release        = seq_release,
1878 };
1879
1880 static void __kprobes arm_all_kprobes(void)
1881 {
1882         struct hlist_head *head;
1883         struct hlist_node *node;
1884         struct kprobe *p;
1885         unsigned int i;
1886
1887         mutex_lock(&kprobe_mutex);
1888
1889         /* If kprobes are armed, just return */
1890         if (!kprobes_all_disarmed)
1891                 goto already_enabled;
1892
1893         /* Arming kprobes doesn't optimize kprobe itself */
1894         mutex_lock(&text_mutex);
1895         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1896                 head = &kprobe_table[i];
1897                 hlist_for_each_entry_rcu(p, node, head, hlist)
1898                         if (!kprobe_disabled(p))
1899                                 __arm_kprobe(p);
1900         }
1901         mutex_unlock(&text_mutex);
1902
1903         kprobes_all_disarmed = false;
1904         printk(KERN_INFO "Kprobes globally enabled\n");
1905
1906 already_enabled:
1907         mutex_unlock(&kprobe_mutex);
1908         return;
1909 }
1910
1911 static void __kprobes disarm_all_kprobes(void)
1912 {
1913         struct hlist_head *head;
1914         struct hlist_node *node;
1915         struct kprobe *p;
1916         unsigned int i;
1917
1918         mutex_lock(&kprobe_mutex);
1919
1920         /* If kprobes are already disarmed, just return */
1921         if (kprobes_all_disarmed)
1922                 goto already_disabled;
1923
1924         kprobes_all_disarmed = true;
1925         printk(KERN_INFO "Kprobes globally disabled\n");
1926
1927         /*
1928          * Here we call get_online_cpus() for avoiding text_mutex deadlock,
1929          * because disarming may also unoptimize kprobes.
1930          */
1931         get_online_cpus();
1932         mutex_lock(&text_mutex);
1933         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1934                 head = &kprobe_table[i];
1935                 hlist_for_each_entry_rcu(p, node, head, hlist) {
1936                         if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
1937                                 __disarm_kprobe(p);
1938                 }
1939         }
1940
1941         mutex_unlock(&text_mutex);
1942         put_online_cpus();
1943         mutex_unlock(&kprobe_mutex);
1944         /* Allow all currently running kprobes to complete */
1945         synchronize_sched();
1946         return;
1947
1948 already_disabled:
1949         mutex_unlock(&kprobe_mutex);
1950         return;
1951 }
1952
1953 /*
1954  * XXX: The debugfs bool file interface doesn't allow for callbacks
1955  * when the bool state is switched. We can reuse that facility when
1956  * available
1957  */
1958 static ssize_t read_enabled_file_bool(struct file *file,
1959                char __user *user_buf, size_t count, loff_t *ppos)
1960 {
1961         char buf[3];
1962
1963         if (!kprobes_all_disarmed)
1964                 buf[0] = '1';
1965         else
1966                 buf[0] = '0';
1967         buf[1] = '\n';
1968         buf[2] = 0x00;
1969         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
1970 }
1971
1972 static ssize_t write_enabled_file_bool(struct file *file,
1973                const char __user *user_buf, size_t count, loff_t *ppos)
1974 {
1975         char buf[32];
1976         int buf_size;
1977
1978         buf_size = min(count, (sizeof(buf)-1));
1979         if (copy_from_user(buf, user_buf, buf_size))
1980                 return -EFAULT;
1981
1982         switch (buf[0]) {
1983         case 'y':
1984         case 'Y':
1985         case '1':
1986                 arm_all_kprobes();
1987                 break;
1988         case 'n':
1989         case 'N':
1990         case '0':
1991                 disarm_all_kprobes();
1992                 break;
1993         }
1994
1995         return count;
1996 }
1997
1998 static const struct file_operations fops_kp = {
1999         .read =         read_enabled_file_bool,
2000         .write =        write_enabled_file_bool,
2001 };
2002
2003 static int __kprobes debugfs_kprobe_init(void)
2004 {
2005         struct dentry *dir, *file;
2006         unsigned int value = 1;
2007
2008         dir = debugfs_create_dir("kprobes", NULL);
2009         if (!dir)
2010                 return -ENOMEM;
2011
2012         file = debugfs_create_file("list", 0444, dir, NULL,
2013                                 &debugfs_kprobes_operations);
2014         if (!file) {
2015                 debugfs_remove(dir);
2016                 return -ENOMEM;
2017         }
2018
2019         file = debugfs_create_file("enabled", 0600, dir,
2020                                         &value, &fops_kp);
2021         if (!file) {
2022                 debugfs_remove(dir);
2023                 return -ENOMEM;
2024         }
2025
2026         return 0;
2027 }
2028
2029 late_initcall(debugfs_kprobe_init);
2030 #endif /* CONFIG_DEBUG_FS */
2031
2032 module_init(init_kprobes);
2033
2034 /* defined in arch/.../kernel/kprobes.c */
2035 EXPORT_SYMBOL_GPL(jprobe_return);