66ab1e9d129468583869342f07c42bbbb674dfef
[firefly-linux-kernel-4.4.55.git] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  *  For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/hardirq.h>
24 #include <linux/rculist.h>
25 #include <linux/uaccess.h>
26 #include <linux/syscalls.h>
27 #include <linux/anon_inodes.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/perf_counter.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34  * Each CPU has a list of per CPU counters:
35  */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_counters __read_mostly;
44 static atomic_t nr_comm_counters __read_mostly;
45
46 /*
47  * perf counter paranoia level:
48  *  0 - not paranoid
49  *  1 - disallow cpu counters to unpriv
50  *  2 - disallow kernel profiling to unpriv
51  */
52 int sysctl_perf_counter_paranoid __read_mostly;
53
54 static inline bool perf_paranoid_cpu(void)
55 {
56         return sysctl_perf_counter_paranoid > 0;
57 }
58
59 static inline bool perf_paranoid_kernel(void)
60 {
61         return sysctl_perf_counter_paranoid > 1;
62 }
63
64 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
65
66 /*
67  * max perf counter sample rate
68  */
69 int sysctl_perf_counter_sample_rate __read_mostly = 100000;
70
71 static atomic64_t perf_counter_id;
72
73 /*
74  * Lock for (sysadmin-configurable) counter reservations:
75  */
76 static DEFINE_SPINLOCK(perf_resource_lock);
77
78 /*
79  * Architecture provided APIs - weak aliases:
80  */
81 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
82 {
83         return NULL;
84 }
85
86 void __weak hw_perf_disable(void)               { barrier(); }
87 void __weak hw_perf_enable(void)                { barrier(); }
88
89 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
90
91 int __weak
92 hw_perf_group_sched_in(struct perf_counter *group_leader,
93                struct perf_cpu_context *cpuctx,
94                struct perf_counter_context *ctx, int cpu)
95 {
96         return 0;
97 }
98
99 void __weak perf_counter_print_debug(void)      { }
100
101 static DEFINE_PER_CPU(int, disable_count);
102
103 void __perf_disable(void)
104 {
105         __get_cpu_var(disable_count)++;
106 }
107
108 bool __perf_enable(void)
109 {
110         return !--__get_cpu_var(disable_count);
111 }
112
113 void perf_disable(void)
114 {
115         __perf_disable();
116         hw_perf_disable();
117 }
118
119 void perf_enable(void)
120 {
121         if (__perf_enable())
122                 hw_perf_enable();
123 }
124
125 static void get_ctx(struct perf_counter_context *ctx)
126 {
127         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
128 }
129
130 static void free_ctx(struct rcu_head *head)
131 {
132         struct perf_counter_context *ctx;
133
134         ctx = container_of(head, struct perf_counter_context, rcu_head);
135         kfree(ctx);
136 }
137
138 static void put_ctx(struct perf_counter_context *ctx)
139 {
140         if (atomic_dec_and_test(&ctx->refcount)) {
141                 if (ctx->parent_ctx)
142                         put_ctx(ctx->parent_ctx);
143                 if (ctx->task)
144                         put_task_struct(ctx->task);
145                 call_rcu(&ctx->rcu_head, free_ctx);
146         }
147 }
148
149 /*
150  * Get the perf_counter_context for a task and lock it.
151  * This has to cope with with the fact that until it is locked,
152  * the context could get moved to another task.
153  */
154 static struct perf_counter_context *
155 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
156 {
157         struct perf_counter_context *ctx;
158
159         rcu_read_lock();
160  retry:
161         ctx = rcu_dereference(task->perf_counter_ctxp);
162         if (ctx) {
163                 /*
164                  * If this context is a clone of another, it might
165                  * get swapped for another underneath us by
166                  * perf_counter_task_sched_out, though the
167                  * rcu_read_lock() protects us from any context
168                  * getting freed.  Lock the context and check if it
169                  * got swapped before we could get the lock, and retry
170                  * if so.  If we locked the right context, then it
171                  * can't get swapped on us any more.
172                  */
173                 spin_lock_irqsave(&ctx->lock, *flags);
174                 if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
175                         spin_unlock_irqrestore(&ctx->lock, *flags);
176                         goto retry;
177                 }
178
179                 if (!atomic_inc_not_zero(&ctx->refcount)) {
180                         spin_unlock_irqrestore(&ctx->lock, *flags);
181                         ctx = NULL;
182                 }
183         }
184         rcu_read_unlock();
185         return ctx;
186 }
187
188 /*
189  * Get the context for a task and increment its pin_count so it
190  * can't get swapped to another task.  This also increments its
191  * reference count so that the context can't get freed.
192  */
193 static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
194 {
195         struct perf_counter_context *ctx;
196         unsigned long flags;
197
198         ctx = perf_lock_task_context(task, &flags);
199         if (ctx) {
200                 ++ctx->pin_count;
201                 spin_unlock_irqrestore(&ctx->lock, flags);
202         }
203         return ctx;
204 }
205
206 static void perf_unpin_context(struct perf_counter_context *ctx)
207 {
208         unsigned long flags;
209
210         spin_lock_irqsave(&ctx->lock, flags);
211         --ctx->pin_count;
212         spin_unlock_irqrestore(&ctx->lock, flags);
213         put_ctx(ctx);
214 }
215
216 /*
217  * Add a counter from the lists for its context.
218  * Must be called with ctx->mutex and ctx->lock held.
219  */
220 static void
221 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
222 {
223         struct perf_counter *group_leader = counter->group_leader;
224
225         /*
226          * Depending on whether it is a standalone or sibling counter,
227          * add it straight to the context's counter list, or to the group
228          * leader's sibling list:
229          */
230         if (group_leader == counter)
231                 list_add_tail(&counter->list_entry, &ctx->counter_list);
232         else {
233                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
234                 group_leader->nr_siblings++;
235         }
236
237         list_add_rcu(&counter->event_entry, &ctx->event_list);
238         ctx->nr_counters++;
239         if (counter->attr.inherit_stat)
240                 ctx->nr_stat++;
241 }
242
243 /*
244  * Remove a counter from the lists for its context.
245  * Must be called with ctx->mutex and ctx->lock held.
246  */
247 static void
248 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
249 {
250         struct perf_counter *sibling, *tmp;
251
252         if (list_empty(&counter->list_entry))
253                 return;
254         ctx->nr_counters--;
255         if (counter->attr.inherit_stat)
256                 ctx->nr_stat--;
257
258         list_del_init(&counter->list_entry);
259         list_del_rcu(&counter->event_entry);
260
261         if (counter->group_leader != counter)
262                 counter->group_leader->nr_siblings--;
263
264         /*
265          * If this was a group counter with sibling counters then
266          * upgrade the siblings to singleton counters by adding them
267          * to the context list directly:
268          */
269         list_for_each_entry_safe(sibling, tmp,
270                                  &counter->sibling_list, list_entry) {
271
272                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
273                 sibling->group_leader = sibling;
274         }
275 }
276
277 static void
278 counter_sched_out(struct perf_counter *counter,
279                   struct perf_cpu_context *cpuctx,
280                   struct perf_counter_context *ctx)
281 {
282         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
283                 return;
284
285         counter->state = PERF_COUNTER_STATE_INACTIVE;
286         counter->tstamp_stopped = ctx->time;
287         counter->pmu->disable(counter);
288         counter->oncpu = -1;
289
290         if (!is_software_counter(counter))
291                 cpuctx->active_oncpu--;
292         ctx->nr_active--;
293         if (counter->attr.exclusive || !cpuctx->active_oncpu)
294                 cpuctx->exclusive = 0;
295 }
296
297 static void
298 group_sched_out(struct perf_counter *group_counter,
299                 struct perf_cpu_context *cpuctx,
300                 struct perf_counter_context *ctx)
301 {
302         struct perf_counter *counter;
303
304         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
305                 return;
306
307         counter_sched_out(group_counter, cpuctx, ctx);
308
309         /*
310          * Schedule out siblings (if any):
311          */
312         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
313                 counter_sched_out(counter, cpuctx, ctx);
314
315         if (group_counter->attr.exclusive)
316                 cpuctx->exclusive = 0;
317 }
318
319 /*
320  * Cross CPU call to remove a performance counter
321  *
322  * We disable the counter on the hardware level first. After that we
323  * remove it from the context list.
324  */
325 static void __perf_counter_remove_from_context(void *info)
326 {
327         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
328         struct perf_counter *counter = info;
329         struct perf_counter_context *ctx = counter->ctx;
330
331         /*
332          * If this is a task context, we need to check whether it is
333          * the current task context of this cpu. If not it has been
334          * scheduled out before the smp call arrived.
335          */
336         if (ctx->task && cpuctx->task_ctx != ctx)
337                 return;
338
339         spin_lock(&ctx->lock);
340         /*
341          * Protect the list operation against NMI by disabling the
342          * counters on a global level.
343          */
344         perf_disable();
345
346         counter_sched_out(counter, cpuctx, ctx);
347
348         list_del_counter(counter, ctx);
349
350         if (!ctx->task) {
351                 /*
352                  * Allow more per task counters with respect to the
353                  * reservation:
354                  */
355                 cpuctx->max_pertask =
356                         min(perf_max_counters - ctx->nr_counters,
357                             perf_max_counters - perf_reserved_percpu);
358         }
359
360         perf_enable();
361         spin_unlock(&ctx->lock);
362 }
363
364
365 /*
366  * Remove the counter from a task's (or a CPU's) list of counters.
367  *
368  * Must be called with ctx->mutex held.
369  *
370  * CPU counters are removed with a smp call. For task counters we only
371  * call when the task is on a CPU.
372  *
373  * If counter->ctx is a cloned context, callers must make sure that
374  * every task struct that counter->ctx->task could possibly point to
375  * remains valid.  This is OK when called from perf_release since
376  * that only calls us on the top-level context, which can't be a clone.
377  * When called from perf_counter_exit_task, it's OK because the
378  * context has been detached from its task.
379  */
380 static void perf_counter_remove_from_context(struct perf_counter *counter)
381 {
382         struct perf_counter_context *ctx = counter->ctx;
383         struct task_struct *task = ctx->task;
384
385         if (!task) {
386                 /*
387                  * Per cpu counters are removed via an smp call and
388                  * the removal is always sucessful.
389                  */
390                 smp_call_function_single(counter->cpu,
391                                          __perf_counter_remove_from_context,
392                                          counter, 1);
393                 return;
394         }
395
396 retry:
397         task_oncpu_function_call(task, __perf_counter_remove_from_context,
398                                  counter);
399
400         spin_lock_irq(&ctx->lock);
401         /*
402          * If the context is active we need to retry the smp call.
403          */
404         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
405                 spin_unlock_irq(&ctx->lock);
406                 goto retry;
407         }
408
409         /*
410          * The lock prevents that this context is scheduled in so we
411          * can remove the counter safely, if the call above did not
412          * succeed.
413          */
414         if (!list_empty(&counter->list_entry)) {
415                 list_del_counter(counter, ctx);
416         }
417         spin_unlock_irq(&ctx->lock);
418 }
419
420 static inline u64 perf_clock(void)
421 {
422         return cpu_clock(smp_processor_id());
423 }
424
425 /*
426  * Update the record of the current time in a context.
427  */
428 static void update_context_time(struct perf_counter_context *ctx)
429 {
430         u64 now = perf_clock();
431
432         ctx->time += now - ctx->timestamp;
433         ctx->timestamp = now;
434 }
435
436 /*
437  * Update the total_time_enabled and total_time_running fields for a counter.
438  */
439 static void update_counter_times(struct perf_counter *counter)
440 {
441         struct perf_counter_context *ctx = counter->ctx;
442         u64 run_end;
443
444         if (counter->state < PERF_COUNTER_STATE_INACTIVE)
445                 return;
446
447         counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
448
449         if (counter->state == PERF_COUNTER_STATE_INACTIVE)
450                 run_end = counter->tstamp_stopped;
451         else
452                 run_end = ctx->time;
453
454         counter->total_time_running = run_end - counter->tstamp_running;
455 }
456
457 /*
458  * Update total_time_enabled and total_time_running for all counters in a group.
459  */
460 static void update_group_times(struct perf_counter *leader)
461 {
462         struct perf_counter *counter;
463
464         update_counter_times(leader);
465         list_for_each_entry(counter, &leader->sibling_list, list_entry)
466                 update_counter_times(counter);
467 }
468
469 /*
470  * Cross CPU call to disable a performance counter
471  */
472 static void __perf_counter_disable(void *info)
473 {
474         struct perf_counter *counter = info;
475         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
476         struct perf_counter_context *ctx = counter->ctx;
477
478         /*
479          * If this is a per-task counter, need to check whether this
480          * counter's task is the current task on this cpu.
481          */
482         if (ctx->task && cpuctx->task_ctx != ctx)
483                 return;
484
485         spin_lock(&ctx->lock);
486
487         /*
488          * If the counter is on, turn it off.
489          * If it is in error state, leave it in error state.
490          */
491         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
492                 update_context_time(ctx);
493                 update_counter_times(counter);
494                 if (counter == counter->group_leader)
495                         group_sched_out(counter, cpuctx, ctx);
496                 else
497                         counter_sched_out(counter, cpuctx, ctx);
498                 counter->state = PERF_COUNTER_STATE_OFF;
499         }
500
501         spin_unlock(&ctx->lock);
502 }
503
504 /*
505  * Disable a counter.
506  *
507  * If counter->ctx is a cloned context, callers must make sure that
508  * every task struct that counter->ctx->task could possibly point to
509  * remains valid.  This condition is satisifed when called through
510  * perf_counter_for_each_child or perf_counter_for_each because they
511  * hold the top-level counter's child_mutex, so any descendant that
512  * goes to exit will block in sync_child_counter.
513  * When called from perf_pending_counter it's OK because counter->ctx
514  * is the current context on this CPU and preemption is disabled,
515  * hence we can't get into perf_counter_task_sched_out for this context.
516  */
517 static void perf_counter_disable(struct perf_counter *counter)
518 {
519         struct perf_counter_context *ctx = counter->ctx;
520         struct task_struct *task = ctx->task;
521
522         if (!task) {
523                 /*
524                  * Disable the counter on the cpu that it's on
525                  */
526                 smp_call_function_single(counter->cpu, __perf_counter_disable,
527                                          counter, 1);
528                 return;
529         }
530
531  retry:
532         task_oncpu_function_call(task, __perf_counter_disable, counter);
533
534         spin_lock_irq(&ctx->lock);
535         /*
536          * If the counter is still active, we need to retry the cross-call.
537          */
538         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
539                 spin_unlock_irq(&ctx->lock);
540                 goto retry;
541         }
542
543         /*
544          * Since we have the lock this context can't be scheduled
545          * in, so we can change the state safely.
546          */
547         if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
548                 update_counter_times(counter);
549                 counter->state = PERF_COUNTER_STATE_OFF;
550         }
551
552         spin_unlock_irq(&ctx->lock);
553 }
554
555 static int
556 counter_sched_in(struct perf_counter *counter,
557                  struct perf_cpu_context *cpuctx,
558                  struct perf_counter_context *ctx,
559                  int cpu)
560 {
561         if (counter->state <= PERF_COUNTER_STATE_OFF)
562                 return 0;
563
564         counter->state = PERF_COUNTER_STATE_ACTIVE;
565         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
566         /*
567          * The new state must be visible before we turn it on in the hardware:
568          */
569         smp_wmb();
570
571         if (counter->pmu->enable(counter)) {
572                 counter->state = PERF_COUNTER_STATE_INACTIVE;
573                 counter->oncpu = -1;
574                 return -EAGAIN;
575         }
576
577         counter->tstamp_running += ctx->time - counter->tstamp_stopped;
578
579         if (!is_software_counter(counter))
580                 cpuctx->active_oncpu++;
581         ctx->nr_active++;
582
583         if (counter->attr.exclusive)
584                 cpuctx->exclusive = 1;
585
586         return 0;
587 }
588
589 static int
590 group_sched_in(struct perf_counter *group_counter,
591                struct perf_cpu_context *cpuctx,
592                struct perf_counter_context *ctx,
593                int cpu)
594 {
595         struct perf_counter *counter, *partial_group;
596         int ret;
597
598         if (group_counter->state == PERF_COUNTER_STATE_OFF)
599                 return 0;
600
601         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
602         if (ret)
603                 return ret < 0 ? ret : 0;
604
605         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
606                 return -EAGAIN;
607
608         /*
609          * Schedule in siblings as one group (if any):
610          */
611         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
612                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
613                         partial_group = counter;
614                         goto group_error;
615                 }
616         }
617
618         return 0;
619
620 group_error:
621         /*
622          * Groups can be scheduled in as one unit only, so undo any
623          * partial group before returning:
624          */
625         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
626                 if (counter == partial_group)
627                         break;
628                 counter_sched_out(counter, cpuctx, ctx);
629         }
630         counter_sched_out(group_counter, cpuctx, ctx);
631
632         return -EAGAIN;
633 }
634
635 /*
636  * Return 1 for a group consisting entirely of software counters,
637  * 0 if the group contains any hardware counters.
638  */
639 static int is_software_only_group(struct perf_counter *leader)
640 {
641         struct perf_counter *counter;
642
643         if (!is_software_counter(leader))
644                 return 0;
645
646         list_for_each_entry(counter, &leader->sibling_list, list_entry)
647                 if (!is_software_counter(counter))
648                         return 0;
649
650         return 1;
651 }
652
653 /*
654  * Work out whether we can put this counter group on the CPU now.
655  */
656 static int group_can_go_on(struct perf_counter *counter,
657                            struct perf_cpu_context *cpuctx,
658                            int can_add_hw)
659 {
660         /*
661          * Groups consisting entirely of software counters can always go on.
662          */
663         if (is_software_only_group(counter))
664                 return 1;
665         /*
666          * If an exclusive group is already on, no other hardware
667          * counters can go on.
668          */
669         if (cpuctx->exclusive)
670                 return 0;
671         /*
672          * If this group is exclusive and there are already
673          * counters on the CPU, it can't go on.
674          */
675         if (counter->attr.exclusive && cpuctx->active_oncpu)
676                 return 0;
677         /*
678          * Otherwise, try to add it if all previous groups were able
679          * to go on.
680          */
681         return can_add_hw;
682 }
683
684 static void add_counter_to_ctx(struct perf_counter *counter,
685                                struct perf_counter_context *ctx)
686 {
687         list_add_counter(counter, ctx);
688         counter->tstamp_enabled = ctx->time;
689         counter->tstamp_running = ctx->time;
690         counter->tstamp_stopped = ctx->time;
691 }
692
693 /*
694  * Cross CPU call to install and enable a performance counter
695  *
696  * Must be called with ctx->mutex held
697  */
698 static void __perf_install_in_context(void *info)
699 {
700         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
701         struct perf_counter *counter = info;
702         struct perf_counter_context *ctx = counter->ctx;
703         struct perf_counter *leader = counter->group_leader;
704         int cpu = smp_processor_id();
705         int err;
706
707         /*
708          * If this is a task context, we need to check whether it is
709          * the current task context of this cpu. If not it has been
710          * scheduled out before the smp call arrived.
711          * Or possibly this is the right context but it isn't
712          * on this cpu because it had no counters.
713          */
714         if (ctx->task && cpuctx->task_ctx != ctx) {
715                 if (cpuctx->task_ctx || ctx->task != current)
716                         return;
717                 cpuctx->task_ctx = ctx;
718         }
719
720         spin_lock(&ctx->lock);
721         ctx->is_active = 1;
722         update_context_time(ctx);
723
724         /*
725          * Protect the list operation against NMI by disabling the
726          * counters on a global level. NOP for non NMI based counters.
727          */
728         perf_disable();
729
730         add_counter_to_ctx(counter, ctx);
731
732         /*
733          * Don't put the counter on if it is disabled or if
734          * it is in a group and the group isn't on.
735          */
736         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
737             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
738                 goto unlock;
739
740         /*
741          * An exclusive counter can't go on if there are already active
742          * hardware counters, and no hardware counter can go on if there
743          * is already an exclusive counter on.
744          */
745         if (!group_can_go_on(counter, cpuctx, 1))
746                 err = -EEXIST;
747         else
748                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
749
750         if (err) {
751                 /*
752                  * This counter couldn't go on.  If it is in a group
753                  * then we have to pull the whole group off.
754                  * If the counter group is pinned then put it in error state.
755                  */
756                 if (leader != counter)
757                         group_sched_out(leader, cpuctx, ctx);
758                 if (leader->attr.pinned) {
759                         update_group_times(leader);
760                         leader->state = PERF_COUNTER_STATE_ERROR;
761                 }
762         }
763
764         if (!err && !ctx->task && cpuctx->max_pertask)
765                 cpuctx->max_pertask--;
766
767  unlock:
768         perf_enable();
769
770         spin_unlock(&ctx->lock);
771 }
772
773 /*
774  * Attach a performance counter to a context
775  *
776  * First we add the counter to the list with the hardware enable bit
777  * in counter->hw_config cleared.
778  *
779  * If the counter is attached to a task which is on a CPU we use a smp
780  * call to enable it in the task context. The task might have been
781  * scheduled away, but we check this in the smp call again.
782  *
783  * Must be called with ctx->mutex held.
784  */
785 static void
786 perf_install_in_context(struct perf_counter_context *ctx,
787                         struct perf_counter *counter,
788                         int cpu)
789 {
790         struct task_struct *task = ctx->task;
791
792         if (!task) {
793                 /*
794                  * Per cpu counters are installed via an smp call and
795                  * the install is always sucessful.
796                  */
797                 smp_call_function_single(cpu, __perf_install_in_context,
798                                          counter, 1);
799                 return;
800         }
801
802 retry:
803         task_oncpu_function_call(task, __perf_install_in_context,
804                                  counter);
805
806         spin_lock_irq(&ctx->lock);
807         /*
808          * we need to retry the smp call.
809          */
810         if (ctx->is_active && list_empty(&counter->list_entry)) {
811                 spin_unlock_irq(&ctx->lock);
812                 goto retry;
813         }
814
815         /*
816          * The lock prevents that this context is scheduled in so we
817          * can add the counter safely, if it the call above did not
818          * succeed.
819          */
820         if (list_empty(&counter->list_entry))
821                 add_counter_to_ctx(counter, ctx);
822         spin_unlock_irq(&ctx->lock);
823 }
824
825 /*
826  * Cross CPU call to enable a performance counter
827  */
828 static void __perf_counter_enable(void *info)
829 {
830         struct perf_counter *counter = info;
831         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
832         struct perf_counter_context *ctx = counter->ctx;
833         struct perf_counter *leader = counter->group_leader;
834         int err;
835
836         /*
837          * If this is a per-task counter, need to check whether this
838          * counter's task is the current task on this cpu.
839          */
840         if (ctx->task && cpuctx->task_ctx != ctx) {
841                 if (cpuctx->task_ctx || ctx->task != current)
842                         return;
843                 cpuctx->task_ctx = ctx;
844         }
845
846         spin_lock(&ctx->lock);
847         ctx->is_active = 1;
848         update_context_time(ctx);
849
850         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
851                 goto unlock;
852         counter->state = PERF_COUNTER_STATE_INACTIVE;
853         counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
854
855         /*
856          * If the counter is in a group and isn't the group leader,
857          * then don't put it on unless the group is on.
858          */
859         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
860                 goto unlock;
861
862         if (!group_can_go_on(counter, cpuctx, 1)) {
863                 err = -EEXIST;
864         } else {
865                 perf_disable();
866                 if (counter == leader)
867                         err = group_sched_in(counter, cpuctx, ctx,
868                                              smp_processor_id());
869                 else
870                         err = counter_sched_in(counter, cpuctx, ctx,
871                                                smp_processor_id());
872                 perf_enable();
873         }
874
875         if (err) {
876                 /*
877                  * If this counter can't go on and it's part of a
878                  * group, then the whole group has to come off.
879                  */
880                 if (leader != counter)
881                         group_sched_out(leader, cpuctx, ctx);
882                 if (leader->attr.pinned) {
883                         update_group_times(leader);
884                         leader->state = PERF_COUNTER_STATE_ERROR;
885                 }
886         }
887
888  unlock:
889         spin_unlock(&ctx->lock);
890 }
891
892 /*
893  * Enable a counter.
894  *
895  * If counter->ctx is a cloned context, callers must make sure that
896  * every task struct that counter->ctx->task could possibly point to
897  * remains valid.  This condition is satisfied when called through
898  * perf_counter_for_each_child or perf_counter_for_each as described
899  * for perf_counter_disable.
900  */
901 static void perf_counter_enable(struct perf_counter *counter)
902 {
903         struct perf_counter_context *ctx = counter->ctx;
904         struct task_struct *task = ctx->task;
905
906         if (!task) {
907                 /*
908                  * Enable the counter on the cpu that it's on
909                  */
910                 smp_call_function_single(counter->cpu, __perf_counter_enable,
911                                          counter, 1);
912                 return;
913         }
914
915         spin_lock_irq(&ctx->lock);
916         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
917                 goto out;
918
919         /*
920          * If the counter is in error state, clear that first.
921          * That way, if we see the counter in error state below, we
922          * know that it has gone back into error state, as distinct
923          * from the task having been scheduled away before the
924          * cross-call arrived.
925          */
926         if (counter->state == PERF_COUNTER_STATE_ERROR)
927                 counter->state = PERF_COUNTER_STATE_OFF;
928
929  retry:
930         spin_unlock_irq(&ctx->lock);
931         task_oncpu_function_call(task, __perf_counter_enable, counter);
932
933         spin_lock_irq(&ctx->lock);
934
935         /*
936          * If the context is active and the counter is still off,
937          * we need to retry the cross-call.
938          */
939         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
940                 goto retry;
941
942         /*
943          * Since we have the lock this context can't be scheduled
944          * in, so we can change the state safely.
945          */
946         if (counter->state == PERF_COUNTER_STATE_OFF) {
947                 counter->state = PERF_COUNTER_STATE_INACTIVE;
948                 counter->tstamp_enabled =
949                         ctx->time - counter->total_time_enabled;
950         }
951  out:
952         spin_unlock_irq(&ctx->lock);
953 }
954
955 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
956 {
957         /*
958          * not supported on inherited counters
959          */
960         if (counter->attr.inherit)
961                 return -EINVAL;
962
963         atomic_add(refresh, &counter->event_limit);
964         perf_counter_enable(counter);
965
966         return 0;
967 }
968
969 void __perf_counter_sched_out(struct perf_counter_context *ctx,
970                               struct perf_cpu_context *cpuctx)
971 {
972         struct perf_counter *counter;
973
974         spin_lock(&ctx->lock);
975         ctx->is_active = 0;
976         if (likely(!ctx->nr_counters))
977                 goto out;
978         update_context_time(ctx);
979
980         perf_disable();
981         if (ctx->nr_active) {
982                 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
983                         if (counter != counter->group_leader)
984                                 counter_sched_out(counter, cpuctx, ctx);
985                         else
986                                 group_sched_out(counter, cpuctx, ctx);
987                 }
988         }
989         perf_enable();
990  out:
991         spin_unlock(&ctx->lock);
992 }
993
994 /*
995  * Test whether two contexts are equivalent, i.e. whether they
996  * have both been cloned from the same version of the same context
997  * and they both have the same number of enabled counters.
998  * If the number of enabled counters is the same, then the set
999  * of enabled counters should be the same, because these are both
1000  * inherited contexts, therefore we can't access individual counters
1001  * in them directly with an fd; we can only enable/disable all
1002  * counters via prctl, or enable/disable all counters in a family
1003  * via ioctl, which will have the same effect on both contexts.
1004  */
1005 static int context_equiv(struct perf_counter_context *ctx1,
1006                          struct perf_counter_context *ctx2)
1007 {
1008         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1009                 && ctx1->parent_gen == ctx2->parent_gen
1010                 && !ctx1->pin_count && !ctx2->pin_count;
1011 }
1012
1013 static void __perf_counter_read(void *counter);
1014
1015 static void __perf_counter_sync_stat(struct perf_counter *counter,
1016                                      struct perf_counter *next_counter)
1017 {
1018         u64 value;
1019
1020         if (!counter->attr.inherit_stat)
1021                 return;
1022
1023         /*
1024          * Update the counter value, we cannot use perf_counter_read()
1025          * because we're in the middle of a context switch and have IRQs
1026          * disabled, which upsets smp_call_function_single(), however
1027          * we know the counter must be on the current CPU, therefore we
1028          * don't need to use it.
1029          */
1030         switch (counter->state) {
1031         case PERF_COUNTER_STATE_ACTIVE:
1032                 __perf_counter_read(counter);
1033                 break;
1034
1035         case PERF_COUNTER_STATE_INACTIVE:
1036                 update_counter_times(counter);
1037                 break;
1038
1039         default:
1040                 break;
1041         }
1042
1043         /*
1044          * In order to keep per-task stats reliable we need to flip the counter
1045          * values when we flip the contexts.
1046          */
1047         value = atomic64_read(&next_counter->count);
1048         value = atomic64_xchg(&counter->count, value);
1049         atomic64_set(&next_counter->count, value);
1050
1051         swap(counter->total_time_enabled, next_counter->total_time_enabled);
1052         swap(counter->total_time_running, next_counter->total_time_running);
1053
1054         /*
1055          * Since we swizzled the values, update the user visible data too.
1056          */
1057         perf_counter_update_userpage(counter);
1058         perf_counter_update_userpage(next_counter);
1059 }
1060
1061 #define list_next_entry(pos, member) \
1062         list_entry(pos->member.next, typeof(*pos), member)
1063
1064 static void perf_counter_sync_stat(struct perf_counter_context *ctx,
1065                                    struct perf_counter_context *next_ctx)
1066 {
1067         struct perf_counter *counter, *next_counter;
1068
1069         if (!ctx->nr_stat)
1070                 return;
1071
1072         counter = list_first_entry(&ctx->event_list,
1073                                    struct perf_counter, event_entry);
1074
1075         next_counter = list_first_entry(&next_ctx->event_list,
1076                                         struct perf_counter, event_entry);
1077
1078         while (&counter->event_entry != &ctx->event_list &&
1079                &next_counter->event_entry != &next_ctx->event_list) {
1080
1081                 __perf_counter_sync_stat(counter, next_counter);
1082
1083                 counter = list_next_entry(counter, event_entry);
1084                 next_counter = list_next_entry(counter, event_entry);
1085         }
1086 }
1087
1088 /*
1089  * Called from scheduler to remove the counters of the current task,
1090  * with interrupts disabled.
1091  *
1092  * We stop each counter and update the counter value in counter->count.
1093  *
1094  * This does not protect us against NMI, but disable()
1095  * sets the disabled bit in the control field of counter _before_
1096  * accessing the counter control register. If a NMI hits, then it will
1097  * not restart the counter.
1098  */
1099 void perf_counter_task_sched_out(struct task_struct *task,
1100                                  struct task_struct *next, int cpu)
1101 {
1102         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1103         struct perf_counter_context *ctx = task->perf_counter_ctxp;
1104         struct perf_counter_context *next_ctx;
1105         struct perf_counter_context *parent;
1106         struct pt_regs *regs;
1107         int do_switch = 1;
1108
1109         regs = task_pt_regs(task);
1110         perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1111
1112         if (likely(!ctx || !cpuctx->task_ctx))
1113                 return;
1114
1115         update_context_time(ctx);
1116
1117         rcu_read_lock();
1118         parent = rcu_dereference(ctx->parent_ctx);
1119         next_ctx = next->perf_counter_ctxp;
1120         if (parent && next_ctx &&
1121             rcu_dereference(next_ctx->parent_ctx) == parent) {
1122                 /*
1123                  * Looks like the two contexts are clones, so we might be
1124                  * able to optimize the context switch.  We lock both
1125                  * contexts and check that they are clones under the
1126                  * lock (including re-checking that neither has been
1127                  * uncloned in the meantime).  It doesn't matter which
1128                  * order we take the locks because no other cpu could
1129                  * be trying to lock both of these tasks.
1130                  */
1131                 spin_lock(&ctx->lock);
1132                 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1133                 if (context_equiv(ctx, next_ctx)) {
1134                         /*
1135                          * XXX do we need a memory barrier of sorts
1136                          * wrt to rcu_dereference() of perf_counter_ctxp
1137                          */
1138                         task->perf_counter_ctxp = next_ctx;
1139                         next->perf_counter_ctxp = ctx;
1140                         ctx->task = next;
1141                         next_ctx->task = task;
1142                         do_switch = 0;
1143
1144                         perf_counter_sync_stat(ctx, next_ctx);
1145                 }
1146                 spin_unlock(&next_ctx->lock);
1147                 spin_unlock(&ctx->lock);
1148         }
1149         rcu_read_unlock();
1150
1151         if (do_switch) {
1152                 __perf_counter_sched_out(ctx, cpuctx);
1153                 cpuctx->task_ctx = NULL;
1154         }
1155 }
1156
1157 /*
1158  * Called with IRQs disabled
1159  */
1160 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
1161 {
1162         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1163
1164         if (!cpuctx->task_ctx)
1165                 return;
1166
1167         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1168                 return;
1169
1170         __perf_counter_sched_out(ctx, cpuctx);
1171         cpuctx->task_ctx = NULL;
1172 }
1173
1174 /*
1175  * Called with IRQs disabled
1176  */
1177 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1178 {
1179         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1180 }
1181
1182 static void
1183 __perf_counter_sched_in(struct perf_counter_context *ctx,
1184                         struct perf_cpu_context *cpuctx, int cpu)
1185 {
1186         struct perf_counter *counter;
1187         int can_add_hw = 1;
1188
1189         spin_lock(&ctx->lock);
1190         ctx->is_active = 1;
1191         if (likely(!ctx->nr_counters))
1192                 goto out;
1193
1194         ctx->timestamp = perf_clock();
1195
1196         perf_disable();
1197
1198         /*
1199          * First go through the list and put on any pinned groups
1200          * in order to give them the best chance of going on.
1201          */
1202         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1203                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1204                     !counter->attr.pinned)
1205                         continue;
1206                 if (counter->cpu != -1 && counter->cpu != cpu)
1207                         continue;
1208
1209                 if (counter != counter->group_leader)
1210                         counter_sched_in(counter, cpuctx, ctx, cpu);
1211                 else {
1212                         if (group_can_go_on(counter, cpuctx, 1))
1213                                 group_sched_in(counter, cpuctx, ctx, cpu);
1214                 }
1215
1216                 /*
1217                  * If this pinned group hasn't been scheduled,
1218                  * put it in error state.
1219                  */
1220                 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1221                         update_group_times(counter);
1222                         counter->state = PERF_COUNTER_STATE_ERROR;
1223                 }
1224         }
1225
1226         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1227                 /*
1228                  * Ignore counters in OFF or ERROR state, and
1229                  * ignore pinned counters since we did them already.
1230                  */
1231                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1232                     counter->attr.pinned)
1233                         continue;
1234
1235                 /*
1236                  * Listen to the 'cpu' scheduling filter constraint
1237                  * of counters:
1238                  */
1239                 if (counter->cpu != -1 && counter->cpu != cpu)
1240                         continue;
1241
1242                 if (counter != counter->group_leader) {
1243                         if (counter_sched_in(counter, cpuctx, ctx, cpu))
1244                                 can_add_hw = 0;
1245                 } else {
1246                         if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1247                                 if (group_sched_in(counter, cpuctx, ctx, cpu))
1248                                         can_add_hw = 0;
1249                         }
1250                 }
1251         }
1252         perf_enable();
1253  out:
1254         spin_unlock(&ctx->lock);
1255 }
1256
1257 /*
1258  * Called from scheduler to add the counters of the current task
1259  * with interrupts disabled.
1260  *
1261  * We restore the counter value and then enable it.
1262  *
1263  * This does not protect us against NMI, but enable()
1264  * sets the enabled bit in the control field of counter _before_
1265  * accessing the counter control register. If a NMI hits, then it will
1266  * keep the counter running.
1267  */
1268 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1269 {
1270         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1271         struct perf_counter_context *ctx = task->perf_counter_ctxp;
1272
1273         if (likely(!ctx))
1274                 return;
1275         if (cpuctx->task_ctx == ctx)
1276                 return;
1277         __perf_counter_sched_in(ctx, cpuctx, cpu);
1278         cpuctx->task_ctx = ctx;
1279 }
1280
1281 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1282 {
1283         struct perf_counter_context *ctx = &cpuctx->ctx;
1284
1285         __perf_counter_sched_in(ctx, cpuctx, cpu);
1286 }
1287
1288 #define MAX_INTERRUPTS (~0ULL)
1289
1290 static void perf_log_throttle(struct perf_counter *counter, int enable);
1291 static void perf_log_period(struct perf_counter *counter, u64 period);
1292
1293 static void perf_adjust_period(struct perf_counter *counter, u64 events)
1294 {
1295         struct hw_perf_counter *hwc = &counter->hw;
1296         u64 period, sample_period;
1297         s64 delta;
1298
1299         events *= hwc->sample_period;
1300         period = div64_u64(events, counter->attr.sample_freq);
1301
1302         delta = (s64)(period - hwc->sample_period);
1303         delta = (delta + 7) / 8; /* low pass filter */
1304
1305         sample_period = hwc->sample_period + delta;
1306
1307         if (!sample_period)
1308                 sample_period = 1;
1309
1310         perf_log_period(counter, sample_period);
1311
1312         hwc->sample_period = sample_period;
1313 }
1314
1315 static void perf_ctx_adjust_freq(struct perf_counter_context *ctx)
1316 {
1317         struct perf_counter *counter;
1318         struct hw_perf_counter *hwc;
1319         u64 interrupts, freq;
1320
1321         spin_lock(&ctx->lock);
1322         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1323                 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1324                         continue;
1325
1326                 hwc = &counter->hw;
1327
1328                 interrupts = hwc->interrupts;
1329                 hwc->interrupts = 0;
1330
1331                 /*
1332                  * unthrottle counters on the tick
1333                  */
1334                 if (interrupts == MAX_INTERRUPTS) {
1335                         perf_log_throttle(counter, 1);
1336                         counter->pmu->unthrottle(counter);
1337                         interrupts = 2*sysctl_perf_counter_sample_rate/HZ;
1338                 }
1339
1340                 if (!counter->attr.freq || !counter->attr.sample_freq)
1341                         continue;
1342
1343                 /*
1344                  * if the specified freq < HZ then we need to skip ticks
1345                  */
1346                 if (counter->attr.sample_freq < HZ) {
1347                         freq = counter->attr.sample_freq;
1348
1349                         hwc->freq_count += freq;
1350                         hwc->freq_interrupts += interrupts;
1351
1352                         if (hwc->freq_count < HZ)
1353                                 continue;
1354
1355                         interrupts = hwc->freq_interrupts;
1356                         hwc->freq_interrupts = 0;
1357                         hwc->freq_count -= HZ;
1358                 } else
1359                         freq = HZ;
1360
1361                 perf_adjust_period(counter, freq * interrupts);
1362
1363                 /*
1364                  * In order to avoid being stalled by an (accidental) huge
1365                  * sample period, force reset the sample period if we didn't
1366                  * get any events in this freq period.
1367                  */
1368                 if (!interrupts) {
1369                         perf_disable();
1370                         counter->pmu->disable(counter);
1371                         atomic64_set(&hwc->period_left, 0);
1372                         counter->pmu->enable(counter);
1373                         perf_enable();
1374                 }
1375         }
1376         spin_unlock(&ctx->lock);
1377 }
1378
1379 /*
1380  * Round-robin a context's counters:
1381  */
1382 static void rotate_ctx(struct perf_counter_context *ctx)
1383 {
1384         struct perf_counter *counter;
1385
1386         if (!ctx->nr_counters)
1387                 return;
1388
1389         spin_lock(&ctx->lock);
1390         /*
1391          * Rotate the first entry last (works just fine for group counters too):
1392          */
1393         perf_disable();
1394         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1395                 list_move_tail(&counter->list_entry, &ctx->counter_list);
1396                 break;
1397         }
1398         perf_enable();
1399
1400         spin_unlock(&ctx->lock);
1401 }
1402
1403 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1404 {
1405         struct perf_cpu_context *cpuctx;
1406         struct perf_counter_context *ctx;
1407
1408         if (!atomic_read(&nr_counters))
1409                 return;
1410
1411         cpuctx = &per_cpu(perf_cpu_context, cpu);
1412         ctx = curr->perf_counter_ctxp;
1413
1414         perf_ctx_adjust_freq(&cpuctx->ctx);
1415         if (ctx)
1416                 perf_ctx_adjust_freq(ctx);
1417
1418         perf_counter_cpu_sched_out(cpuctx);
1419         if (ctx)
1420                 __perf_counter_task_sched_out(ctx);
1421
1422         rotate_ctx(&cpuctx->ctx);
1423         if (ctx)
1424                 rotate_ctx(ctx);
1425
1426         perf_counter_cpu_sched_in(cpuctx, cpu);
1427         if (ctx)
1428                 perf_counter_task_sched_in(curr, cpu);
1429 }
1430
1431 /*
1432  * Cross CPU call to read the hardware counter
1433  */
1434 static void __perf_counter_read(void *info)
1435 {
1436         struct perf_counter *counter = info;
1437         struct perf_counter_context *ctx = counter->ctx;
1438         unsigned long flags;
1439
1440         local_irq_save(flags);
1441         if (ctx->is_active)
1442                 update_context_time(ctx);
1443         counter->pmu->read(counter);
1444         update_counter_times(counter);
1445         local_irq_restore(flags);
1446 }
1447
1448 static u64 perf_counter_read(struct perf_counter *counter)
1449 {
1450         /*
1451          * If counter is enabled and currently active on a CPU, update the
1452          * value in the counter structure:
1453          */
1454         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1455                 smp_call_function_single(counter->oncpu,
1456                                          __perf_counter_read, counter, 1);
1457         } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1458                 update_counter_times(counter);
1459         }
1460
1461         return atomic64_read(&counter->count);
1462 }
1463
1464 /*
1465  * Initialize the perf_counter context in a task_struct:
1466  */
1467 static void
1468 __perf_counter_init_context(struct perf_counter_context *ctx,
1469                             struct task_struct *task)
1470 {
1471         memset(ctx, 0, sizeof(*ctx));
1472         spin_lock_init(&ctx->lock);
1473         mutex_init(&ctx->mutex);
1474         INIT_LIST_HEAD(&ctx->counter_list);
1475         INIT_LIST_HEAD(&ctx->event_list);
1476         atomic_set(&ctx->refcount, 1);
1477         ctx->task = task;
1478 }
1479
1480 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1481 {
1482         struct perf_counter_context *parent_ctx;
1483         struct perf_counter_context *ctx;
1484         struct perf_cpu_context *cpuctx;
1485         struct task_struct *task;
1486         unsigned long flags;
1487         int err;
1488
1489         /*
1490          * If cpu is not a wildcard then this is a percpu counter:
1491          */
1492         if (cpu != -1) {
1493                 /* Must be root to operate on a CPU counter: */
1494                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1495                         return ERR_PTR(-EACCES);
1496
1497                 if (cpu < 0 || cpu > num_possible_cpus())
1498                         return ERR_PTR(-EINVAL);
1499
1500                 /*
1501                  * We could be clever and allow to attach a counter to an
1502                  * offline CPU and activate it when the CPU comes up, but
1503                  * that's for later.
1504                  */
1505                 if (!cpu_isset(cpu, cpu_online_map))
1506                         return ERR_PTR(-ENODEV);
1507
1508                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1509                 ctx = &cpuctx->ctx;
1510                 get_ctx(ctx);
1511
1512                 return ctx;
1513         }
1514
1515         rcu_read_lock();
1516         if (!pid)
1517                 task = current;
1518         else
1519                 task = find_task_by_vpid(pid);
1520         if (task)
1521                 get_task_struct(task);
1522         rcu_read_unlock();
1523
1524         if (!task)
1525                 return ERR_PTR(-ESRCH);
1526
1527         /*
1528          * Can't attach counters to a dying task.
1529          */
1530         err = -ESRCH;
1531         if (task->flags & PF_EXITING)
1532                 goto errout;
1533
1534         /* Reuse ptrace permission checks for now. */
1535         err = -EACCES;
1536         if (!ptrace_may_access(task, PTRACE_MODE_READ))
1537                 goto errout;
1538
1539  retry:
1540         ctx = perf_lock_task_context(task, &flags);
1541         if (ctx) {
1542                 parent_ctx = ctx->parent_ctx;
1543                 if (parent_ctx) {
1544                         put_ctx(parent_ctx);
1545                         ctx->parent_ctx = NULL;         /* no longer a clone */
1546                 }
1547                 spin_unlock_irqrestore(&ctx->lock, flags);
1548         }
1549
1550         if (!ctx) {
1551                 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1552                 err = -ENOMEM;
1553                 if (!ctx)
1554                         goto errout;
1555                 __perf_counter_init_context(ctx, task);
1556                 get_ctx(ctx);
1557                 if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1558                         /*
1559                          * We raced with some other task; use
1560                          * the context they set.
1561                          */
1562                         kfree(ctx);
1563                         goto retry;
1564                 }
1565                 get_task_struct(task);
1566         }
1567
1568         put_task_struct(task);
1569         return ctx;
1570
1571  errout:
1572         put_task_struct(task);
1573         return ERR_PTR(err);
1574 }
1575
1576 static void free_counter_rcu(struct rcu_head *head)
1577 {
1578         struct perf_counter *counter;
1579
1580         counter = container_of(head, struct perf_counter, rcu_head);
1581         if (counter->ns)
1582                 put_pid_ns(counter->ns);
1583         kfree(counter);
1584 }
1585
1586 static void perf_pending_sync(struct perf_counter *counter);
1587
1588 static void free_counter(struct perf_counter *counter)
1589 {
1590         perf_pending_sync(counter);
1591
1592         if (!counter->parent) {
1593                 atomic_dec(&nr_counters);
1594                 if (counter->attr.mmap)
1595                         atomic_dec(&nr_mmap_counters);
1596                 if (counter->attr.comm)
1597                         atomic_dec(&nr_comm_counters);
1598         }
1599
1600         if (counter->destroy)
1601                 counter->destroy(counter);
1602
1603         put_ctx(counter->ctx);
1604         call_rcu(&counter->rcu_head, free_counter_rcu);
1605 }
1606
1607 /*
1608  * Called when the last reference to the file is gone.
1609  */
1610 static int perf_release(struct inode *inode, struct file *file)
1611 {
1612         struct perf_counter *counter = file->private_data;
1613         struct perf_counter_context *ctx = counter->ctx;
1614
1615         file->private_data = NULL;
1616
1617         WARN_ON_ONCE(ctx->parent_ctx);
1618         mutex_lock(&ctx->mutex);
1619         perf_counter_remove_from_context(counter);
1620         mutex_unlock(&ctx->mutex);
1621
1622         mutex_lock(&counter->owner->perf_counter_mutex);
1623         list_del_init(&counter->owner_entry);
1624         mutex_unlock(&counter->owner->perf_counter_mutex);
1625         put_task_struct(counter->owner);
1626
1627         free_counter(counter);
1628
1629         return 0;
1630 }
1631
1632 /*
1633  * Read the performance counter - simple non blocking version for now
1634  */
1635 static ssize_t
1636 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1637 {
1638         u64 values[4];
1639         int n;
1640
1641         /*
1642          * Return end-of-file for a read on a counter that is in
1643          * error state (i.e. because it was pinned but it couldn't be
1644          * scheduled on to the CPU at some point).
1645          */
1646         if (counter->state == PERF_COUNTER_STATE_ERROR)
1647                 return 0;
1648
1649         WARN_ON_ONCE(counter->ctx->parent_ctx);
1650         mutex_lock(&counter->child_mutex);
1651         values[0] = perf_counter_read(counter);
1652         n = 1;
1653         if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1654                 values[n++] = counter->total_time_enabled +
1655                         atomic64_read(&counter->child_total_time_enabled);
1656         if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1657                 values[n++] = counter->total_time_running +
1658                         atomic64_read(&counter->child_total_time_running);
1659         if (counter->attr.read_format & PERF_FORMAT_ID)
1660                 values[n++] = counter->id;
1661         mutex_unlock(&counter->child_mutex);
1662
1663         if (count < n * sizeof(u64))
1664                 return -EINVAL;
1665         count = n * sizeof(u64);
1666
1667         if (copy_to_user(buf, values, count))
1668                 return -EFAULT;
1669
1670         return count;
1671 }
1672
1673 static ssize_t
1674 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1675 {
1676         struct perf_counter *counter = file->private_data;
1677
1678         return perf_read_hw(counter, buf, count);
1679 }
1680
1681 static unsigned int perf_poll(struct file *file, poll_table *wait)
1682 {
1683         struct perf_counter *counter = file->private_data;
1684         struct perf_mmap_data *data;
1685         unsigned int events = POLL_HUP;
1686
1687         rcu_read_lock();
1688         data = rcu_dereference(counter->data);
1689         if (data)
1690                 events = atomic_xchg(&data->poll, 0);
1691         rcu_read_unlock();
1692
1693         poll_wait(file, &counter->waitq, wait);
1694
1695         return events;
1696 }
1697
1698 static void perf_counter_reset(struct perf_counter *counter)
1699 {
1700         (void)perf_counter_read(counter);
1701         atomic64_set(&counter->count, 0);
1702         perf_counter_update_userpage(counter);
1703 }
1704
1705 /*
1706  * Holding the top-level counter's child_mutex means that any
1707  * descendant process that has inherited this counter will block
1708  * in sync_child_counter if it goes to exit, thus satisfying the
1709  * task existence requirements of perf_counter_enable/disable.
1710  */
1711 static void perf_counter_for_each_child(struct perf_counter *counter,
1712                                         void (*func)(struct perf_counter *))
1713 {
1714         struct perf_counter *child;
1715
1716         WARN_ON_ONCE(counter->ctx->parent_ctx);
1717         mutex_lock(&counter->child_mutex);
1718         func(counter);
1719         list_for_each_entry(child, &counter->child_list, child_list)
1720                 func(child);
1721         mutex_unlock(&counter->child_mutex);
1722 }
1723
1724 static void perf_counter_for_each(struct perf_counter *counter,
1725                                   void (*func)(struct perf_counter *))
1726 {
1727         struct perf_counter_context *ctx = counter->ctx;
1728         struct perf_counter *sibling;
1729
1730         WARN_ON_ONCE(ctx->parent_ctx);
1731         mutex_lock(&ctx->mutex);
1732         counter = counter->group_leader;
1733
1734         perf_counter_for_each_child(counter, func);
1735         func(counter);
1736         list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1737                 perf_counter_for_each_child(counter, func);
1738         mutex_unlock(&ctx->mutex);
1739 }
1740
1741 static int perf_counter_period(struct perf_counter *counter, u64 __user *arg)
1742 {
1743         struct perf_counter_context *ctx = counter->ctx;
1744         unsigned long size;
1745         int ret = 0;
1746         u64 value;
1747
1748         if (!counter->attr.sample_period)
1749                 return -EINVAL;
1750
1751         size = copy_from_user(&value, arg, sizeof(value));
1752         if (size != sizeof(value))
1753                 return -EFAULT;
1754
1755         if (!value)
1756                 return -EINVAL;
1757
1758         spin_lock_irq(&ctx->lock);
1759         if (counter->attr.freq) {
1760                 if (value > sysctl_perf_counter_sample_rate) {
1761                         ret = -EINVAL;
1762                         goto unlock;
1763                 }
1764
1765                 counter->attr.sample_freq = value;
1766         } else {
1767                 perf_log_period(counter, value);
1768
1769                 counter->attr.sample_period = value;
1770                 counter->hw.sample_period = value;
1771         }
1772 unlock:
1773         spin_unlock_irq(&ctx->lock);
1774
1775         return ret;
1776 }
1777
1778 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1779 {
1780         struct perf_counter *counter = file->private_data;
1781         void (*func)(struct perf_counter *);
1782         u32 flags = arg;
1783
1784         switch (cmd) {
1785         case PERF_COUNTER_IOC_ENABLE:
1786                 func = perf_counter_enable;
1787                 break;
1788         case PERF_COUNTER_IOC_DISABLE:
1789                 func = perf_counter_disable;
1790                 break;
1791         case PERF_COUNTER_IOC_RESET:
1792                 func = perf_counter_reset;
1793                 break;
1794
1795         case PERF_COUNTER_IOC_REFRESH:
1796                 return perf_counter_refresh(counter, arg);
1797
1798         case PERF_COUNTER_IOC_PERIOD:
1799                 return perf_counter_period(counter, (u64 __user *)arg);
1800
1801         default:
1802                 return -ENOTTY;
1803         }
1804
1805         if (flags & PERF_IOC_FLAG_GROUP)
1806                 perf_counter_for_each(counter, func);
1807         else
1808                 perf_counter_for_each_child(counter, func);
1809
1810         return 0;
1811 }
1812
1813 int perf_counter_task_enable(void)
1814 {
1815         struct perf_counter *counter;
1816
1817         mutex_lock(&current->perf_counter_mutex);
1818         list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1819                 perf_counter_for_each_child(counter, perf_counter_enable);
1820         mutex_unlock(&current->perf_counter_mutex);
1821
1822         return 0;
1823 }
1824
1825 int perf_counter_task_disable(void)
1826 {
1827         struct perf_counter *counter;
1828
1829         mutex_lock(&current->perf_counter_mutex);
1830         list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1831                 perf_counter_for_each_child(counter, perf_counter_disable);
1832         mutex_unlock(&current->perf_counter_mutex);
1833
1834         return 0;
1835 }
1836
1837 static int perf_counter_index(struct perf_counter *counter)
1838 {
1839         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1840                 return 0;
1841
1842         return counter->hw.idx + 1 - PERF_COUNTER_INDEX_OFFSET;
1843 }
1844
1845 /*
1846  * Callers need to ensure there can be no nesting of this function, otherwise
1847  * the seqlock logic goes bad. We can not serialize this because the arch
1848  * code calls this from NMI context.
1849  */
1850 void perf_counter_update_userpage(struct perf_counter *counter)
1851 {
1852         struct perf_counter_mmap_page *userpg;
1853         struct perf_mmap_data *data;
1854
1855         rcu_read_lock();
1856         data = rcu_dereference(counter->data);
1857         if (!data)
1858                 goto unlock;
1859
1860         userpg = data->user_page;
1861
1862         /*
1863          * Disable preemption so as to not let the corresponding user-space
1864          * spin too long if we get preempted.
1865          */
1866         preempt_disable();
1867         ++userpg->lock;
1868         barrier();
1869         userpg->index = perf_counter_index(counter);
1870         userpg->offset = atomic64_read(&counter->count);
1871         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1872                 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1873
1874         userpg->time_enabled = counter->total_time_enabled +
1875                         atomic64_read(&counter->child_total_time_enabled);
1876
1877         userpg->time_running = counter->total_time_running +
1878                         atomic64_read(&counter->child_total_time_running);
1879
1880         barrier();
1881         ++userpg->lock;
1882         preempt_enable();
1883 unlock:
1884         rcu_read_unlock();
1885 }
1886
1887 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1888 {
1889         struct perf_counter *counter = vma->vm_file->private_data;
1890         struct perf_mmap_data *data;
1891         int ret = VM_FAULT_SIGBUS;
1892
1893         if (vmf->flags & FAULT_FLAG_MKWRITE) {
1894                 if (vmf->pgoff == 0)
1895                         ret = 0;
1896                 return ret;
1897         }
1898
1899         rcu_read_lock();
1900         data = rcu_dereference(counter->data);
1901         if (!data)
1902                 goto unlock;
1903
1904         if (vmf->pgoff == 0) {
1905                 vmf->page = virt_to_page(data->user_page);
1906         } else {
1907                 int nr = vmf->pgoff - 1;
1908
1909                 if ((unsigned)nr > data->nr_pages)
1910                         goto unlock;
1911
1912                 if (vmf->flags & FAULT_FLAG_WRITE)
1913                         goto unlock;
1914
1915                 vmf->page = virt_to_page(data->data_pages[nr]);
1916         }
1917
1918         get_page(vmf->page);
1919         vmf->page->mapping = vma->vm_file->f_mapping;
1920         vmf->page->index   = vmf->pgoff;
1921
1922         ret = 0;
1923 unlock:
1924         rcu_read_unlock();
1925
1926         return ret;
1927 }
1928
1929 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1930 {
1931         struct perf_mmap_data *data;
1932         unsigned long size;
1933         int i;
1934
1935         WARN_ON(atomic_read(&counter->mmap_count));
1936
1937         size = sizeof(struct perf_mmap_data);
1938         size += nr_pages * sizeof(void *);
1939
1940         data = kzalloc(size, GFP_KERNEL);
1941         if (!data)
1942                 goto fail;
1943
1944         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1945         if (!data->user_page)
1946                 goto fail_user_page;
1947
1948         for (i = 0; i < nr_pages; i++) {
1949                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1950                 if (!data->data_pages[i])
1951                         goto fail_data_pages;
1952         }
1953
1954         data->nr_pages = nr_pages;
1955         atomic_set(&data->lock, -1);
1956
1957         rcu_assign_pointer(counter->data, data);
1958
1959         return 0;
1960
1961 fail_data_pages:
1962         for (i--; i >= 0; i--)
1963                 free_page((unsigned long)data->data_pages[i]);
1964
1965         free_page((unsigned long)data->user_page);
1966
1967 fail_user_page:
1968         kfree(data);
1969
1970 fail:
1971         return -ENOMEM;
1972 }
1973
1974 static void perf_mmap_free_page(unsigned long addr)
1975 {
1976         struct page *page = virt_to_page(addr);
1977
1978         page->mapping = NULL;
1979         __free_page(page);
1980 }
1981
1982 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1983 {
1984         struct perf_mmap_data *data;
1985         int i;
1986
1987         data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
1988
1989         perf_mmap_free_page((unsigned long)data->user_page);
1990         for (i = 0; i < data->nr_pages; i++)
1991                 perf_mmap_free_page((unsigned long)data->data_pages[i]);
1992
1993         kfree(data);
1994 }
1995
1996 static void perf_mmap_data_free(struct perf_counter *counter)
1997 {
1998         struct perf_mmap_data *data = counter->data;
1999
2000         WARN_ON(atomic_read(&counter->mmap_count));
2001
2002         rcu_assign_pointer(counter->data, NULL);
2003         call_rcu(&data->rcu_head, __perf_mmap_data_free);
2004 }
2005
2006 static void perf_mmap_open(struct vm_area_struct *vma)
2007 {
2008         struct perf_counter *counter = vma->vm_file->private_data;
2009
2010         atomic_inc(&counter->mmap_count);
2011 }
2012
2013 static void perf_mmap_close(struct vm_area_struct *vma)
2014 {
2015         struct perf_counter *counter = vma->vm_file->private_data;
2016
2017         WARN_ON_ONCE(counter->ctx->parent_ctx);
2018         if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
2019                 struct user_struct *user = current_user();
2020
2021                 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
2022                 vma->vm_mm->locked_vm -= counter->data->nr_locked;
2023                 perf_mmap_data_free(counter);
2024                 mutex_unlock(&counter->mmap_mutex);
2025         }
2026 }
2027
2028 static struct vm_operations_struct perf_mmap_vmops = {
2029         .open           = perf_mmap_open,
2030         .close          = perf_mmap_close,
2031         .fault          = perf_mmap_fault,
2032         .page_mkwrite   = perf_mmap_fault,
2033 };
2034
2035 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2036 {
2037         struct perf_counter *counter = file->private_data;
2038         unsigned long user_locked, user_lock_limit;
2039         struct user_struct *user = current_user();
2040         unsigned long locked, lock_limit;
2041         unsigned long vma_size;
2042         unsigned long nr_pages;
2043         long user_extra, extra;
2044         int ret = 0;
2045
2046         if (!(vma->vm_flags & VM_SHARED))
2047                 return -EINVAL;
2048
2049         vma_size = vma->vm_end - vma->vm_start;
2050         nr_pages = (vma_size / PAGE_SIZE) - 1;
2051
2052         /*
2053          * If we have data pages ensure they're a power-of-two number, so we
2054          * can do bitmasks instead of modulo.
2055          */
2056         if (nr_pages != 0 && !is_power_of_2(nr_pages))
2057                 return -EINVAL;
2058
2059         if (vma_size != PAGE_SIZE * (1 + nr_pages))
2060                 return -EINVAL;
2061
2062         if (vma->vm_pgoff != 0)
2063                 return -EINVAL;
2064
2065         WARN_ON_ONCE(counter->ctx->parent_ctx);
2066         mutex_lock(&counter->mmap_mutex);
2067         if (atomic_inc_not_zero(&counter->mmap_count)) {
2068                 if (nr_pages != counter->data->nr_pages)
2069                         ret = -EINVAL;
2070                 goto unlock;
2071         }
2072
2073         user_extra = nr_pages + 1;
2074         user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
2075
2076         /*
2077          * Increase the limit linearly with more CPUs:
2078          */
2079         user_lock_limit *= num_online_cpus();
2080
2081         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2082
2083         extra = 0;
2084         if (user_locked > user_lock_limit)
2085                 extra = user_locked - user_lock_limit;
2086
2087         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2088         lock_limit >>= PAGE_SHIFT;
2089         locked = vma->vm_mm->locked_vm + extra;
2090
2091         if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
2092                 ret = -EPERM;
2093                 goto unlock;
2094         }
2095
2096         WARN_ON(counter->data);
2097         ret = perf_mmap_data_alloc(counter, nr_pages);
2098         if (ret)
2099                 goto unlock;
2100
2101         atomic_set(&counter->mmap_count, 1);
2102         atomic_long_add(user_extra, &user->locked_vm);
2103         vma->vm_mm->locked_vm += extra;
2104         counter->data->nr_locked = extra;
2105         if (vma->vm_flags & VM_WRITE)
2106                 counter->data->writable = 1;
2107
2108 unlock:
2109         mutex_unlock(&counter->mmap_mutex);
2110
2111         vma->vm_flags |= VM_RESERVED;
2112         vma->vm_ops = &perf_mmap_vmops;
2113
2114         return ret;
2115 }
2116
2117 static int perf_fasync(int fd, struct file *filp, int on)
2118 {
2119         struct inode *inode = filp->f_path.dentry->d_inode;
2120         struct perf_counter *counter = filp->private_data;
2121         int retval;
2122
2123         mutex_lock(&inode->i_mutex);
2124         retval = fasync_helper(fd, filp, on, &counter->fasync);
2125         mutex_unlock(&inode->i_mutex);
2126
2127         if (retval < 0)
2128                 return retval;
2129
2130         return 0;
2131 }
2132
2133 static const struct file_operations perf_fops = {
2134         .release                = perf_release,
2135         .read                   = perf_read,
2136         .poll                   = perf_poll,
2137         .unlocked_ioctl         = perf_ioctl,
2138         .compat_ioctl           = perf_ioctl,
2139         .mmap                   = perf_mmap,
2140         .fasync                 = perf_fasync,
2141 };
2142
2143 /*
2144  * Perf counter wakeup
2145  *
2146  * If there's data, ensure we set the poll() state and publish everything
2147  * to user-space before waking everybody up.
2148  */
2149
2150 void perf_counter_wakeup(struct perf_counter *counter)
2151 {
2152         wake_up_all(&counter->waitq);
2153
2154         if (counter->pending_kill) {
2155                 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
2156                 counter->pending_kill = 0;
2157         }
2158 }
2159
2160 /*
2161  * Pending wakeups
2162  *
2163  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2164  *
2165  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2166  * single linked list and use cmpxchg() to add entries lockless.
2167  */
2168
2169 static void perf_pending_counter(struct perf_pending_entry *entry)
2170 {
2171         struct perf_counter *counter = container_of(entry,
2172                         struct perf_counter, pending);
2173
2174         if (counter->pending_disable) {
2175                 counter->pending_disable = 0;
2176                 perf_counter_disable(counter);
2177         }
2178
2179         if (counter->pending_wakeup) {
2180                 counter->pending_wakeup = 0;
2181                 perf_counter_wakeup(counter);
2182         }
2183 }
2184
2185 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2186
2187 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2188         PENDING_TAIL,
2189 };
2190
2191 static void perf_pending_queue(struct perf_pending_entry *entry,
2192                                void (*func)(struct perf_pending_entry *))
2193 {
2194         struct perf_pending_entry **head;
2195
2196         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2197                 return;
2198
2199         entry->func = func;
2200
2201         head = &get_cpu_var(perf_pending_head);
2202
2203         do {
2204                 entry->next = *head;
2205         } while (cmpxchg(head, entry->next, entry) != entry->next);
2206
2207         set_perf_counter_pending();
2208
2209         put_cpu_var(perf_pending_head);
2210 }
2211
2212 static int __perf_pending_run(void)
2213 {
2214         struct perf_pending_entry *list;
2215         int nr = 0;
2216
2217         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2218         while (list != PENDING_TAIL) {
2219                 void (*func)(struct perf_pending_entry *);
2220                 struct perf_pending_entry *entry = list;
2221
2222                 list = list->next;
2223
2224                 func = entry->func;
2225                 entry->next = NULL;
2226                 /*
2227                  * Ensure we observe the unqueue before we issue the wakeup,
2228                  * so that we won't be waiting forever.
2229                  * -- see perf_not_pending().
2230                  */
2231                 smp_wmb();
2232
2233                 func(entry);
2234                 nr++;
2235         }
2236
2237         return nr;
2238 }
2239
2240 static inline int perf_not_pending(struct perf_counter *counter)
2241 {
2242         /*
2243          * If we flush on whatever cpu we run, there is a chance we don't
2244          * need to wait.
2245          */
2246         get_cpu();
2247         __perf_pending_run();
2248         put_cpu();
2249
2250         /*
2251          * Ensure we see the proper queue state before going to sleep
2252          * so that we do not miss the wakeup. -- see perf_pending_handle()
2253          */
2254         smp_rmb();
2255         return counter->pending.next == NULL;
2256 }
2257
2258 static void perf_pending_sync(struct perf_counter *counter)
2259 {
2260         wait_event(counter->waitq, perf_not_pending(counter));
2261 }
2262
2263 void perf_counter_do_pending(void)
2264 {
2265         __perf_pending_run();
2266 }
2267
2268 /*
2269  * Callchain support -- arch specific
2270  */
2271
2272 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2273 {
2274         return NULL;
2275 }
2276
2277 /*
2278  * Output
2279  */
2280
2281 struct perf_output_handle {
2282         struct perf_counter     *counter;
2283         struct perf_mmap_data   *data;
2284         unsigned long           head;
2285         unsigned long           offset;
2286         int                     nmi;
2287         int                     sample;
2288         int                     locked;
2289         unsigned long           flags;
2290 };
2291
2292 static bool perf_output_space(struct perf_mmap_data *data,
2293                               unsigned int offset, unsigned int head)
2294 {
2295         unsigned long tail;
2296         unsigned long mask;
2297
2298         if (!data->writable)
2299                 return true;
2300
2301         mask = (data->nr_pages << PAGE_SHIFT) - 1;
2302         /*
2303          * Userspace could choose to issue a mb() before updating the tail
2304          * pointer. So that all reads will be completed before the write is
2305          * issued.
2306          */
2307         tail = ACCESS_ONCE(data->user_page->data_tail);
2308         smp_rmb();
2309
2310         offset = (offset - tail) & mask;
2311         head   = (head   - tail) & mask;
2312
2313         if ((int)(head - offset) < 0)
2314                 return false;
2315
2316         return true;
2317 }
2318
2319 static void perf_output_wakeup(struct perf_output_handle *handle)
2320 {
2321         atomic_set(&handle->data->poll, POLL_IN);
2322
2323         if (handle->nmi) {
2324                 handle->counter->pending_wakeup = 1;
2325                 perf_pending_queue(&handle->counter->pending,
2326                                    perf_pending_counter);
2327         } else
2328                 perf_counter_wakeup(handle->counter);
2329 }
2330
2331 /*
2332  * Curious locking construct.
2333  *
2334  * We need to ensure a later event doesn't publish a head when a former
2335  * event isn't done writing. However since we need to deal with NMIs we
2336  * cannot fully serialize things.
2337  *
2338  * What we do is serialize between CPUs so we only have to deal with NMI
2339  * nesting on a single CPU.
2340  *
2341  * We only publish the head (and generate a wakeup) when the outer-most
2342  * event completes.
2343  */
2344 static void perf_output_lock(struct perf_output_handle *handle)
2345 {
2346         struct perf_mmap_data *data = handle->data;
2347         int cpu;
2348
2349         handle->locked = 0;
2350
2351         local_irq_save(handle->flags);
2352         cpu = smp_processor_id();
2353
2354         if (in_nmi() && atomic_read(&data->lock) == cpu)
2355                 return;
2356
2357         while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2358                 cpu_relax();
2359
2360         handle->locked = 1;
2361 }
2362
2363 static void perf_output_unlock(struct perf_output_handle *handle)
2364 {
2365         struct perf_mmap_data *data = handle->data;
2366         unsigned long head;
2367         int cpu;
2368
2369         data->done_head = data->head;
2370
2371         if (!handle->locked)
2372                 goto out;
2373
2374 again:
2375         /*
2376          * The xchg implies a full barrier that ensures all writes are done
2377          * before we publish the new head, matched by a rmb() in userspace when
2378          * reading this position.
2379          */
2380         while ((head = atomic_long_xchg(&data->done_head, 0)))
2381                 data->user_page->data_head = head;
2382
2383         /*
2384          * NMI can happen here, which means we can miss a done_head update.
2385          */
2386
2387         cpu = atomic_xchg(&data->lock, -1);
2388         WARN_ON_ONCE(cpu != smp_processor_id());
2389
2390         /*
2391          * Therefore we have to validate we did not indeed do so.
2392          */
2393         if (unlikely(atomic_long_read(&data->done_head))) {
2394                 /*
2395                  * Since we had it locked, we can lock it again.
2396                  */
2397                 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2398                         cpu_relax();
2399
2400                 goto again;
2401         }
2402
2403         if (atomic_xchg(&data->wakeup, 0))
2404                 perf_output_wakeup(handle);
2405 out:
2406         local_irq_restore(handle->flags);
2407 }
2408
2409 static void perf_output_copy(struct perf_output_handle *handle,
2410                              const void *buf, unsigned int len)
2411 {
2412         unsigned int pages_mask;
2413         unsigned int offset;
2414         unsigned int size;
2415         void **pages;
2416
2417         offset          = handle->offset;
2418         pages_mask      = handle->data->nr_pages - 1;
2419         pages           = handle->data->data_pages;
2420
2421         do {
2422                 unsigned int page_offset;
2423                 int nr;
2424
2425                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
2426                 page_offset = offset & (PAGE_SIZE - 1);
2427                 size        = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2428
2429                 memcpy(pages[nr] + page_offset, buf, size);
2430
2431                 len         -= size;
2432                 buf         += size;
2433                 offset      += size;
2434         } while (len);
2435
2436         handle->offset = offset;
2437
2438         /*
2439          * Check we didn't copy past our reservation window, taking the
2440          * possible unsigned int wrap into account.
2441          */
2442         WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2443 }
2444
2445 #define perf_output_put(handle, x) \
2446         perf_output_copy((handle), &(x), sizeof(x))
2447
2448 static int perf_output_begin(struct perf_output_handle *handle,
2449                              struct perf_counter *counter, unsigned int size,
2450                              int nmi, int sample)
2451 {
2452         struct perf_mmap_data *data;
2453         unsigned int offset, head;
2454         int have_lost;
2455         struct {
2456                 struct perf_event_header header;
2457                 u64                      id;
2458                 u64                      lost;
2459         } lost_event;
2460
2461         /*
2462          * For inherited counters we send all the output towards the parent.
2463          */
2464         if (counter->parent)
2465                 counter = counter->parent;
2466
2467         rcu_read_lock();
2468         data = rcu_dereference(counter->data);
2469         if (!data)
2470                 goto out;
2471
2472         handle->data    = data;
2473         handle->counter = counter;
2474         handle->nmi     = nmi;
2475         handle->sample  = sample;
2476
2477         if (!data->nr_pages)
2478                 goto fail;
2479
2480         have_lost = atomic_read(&data->lost);
2481         if (have_lost)
2482                 size += sizeof(lost_event);
2483
2484         perf_output_lock(handle);
2485
2486         do {
2487                 offset = head = atomic_long_read(&data->head);
2488                 head += size;
2489                 if (unlikely(!perf_output_space(data, offset, head)))
2490                         goto fail;
2491         } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2492
2493         handle->offset  = offset;
2494         handle->head    = head;
2495
2496         if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2497                 atomic_set(&data->wakeup, 1);
2498
2499         if (have_lost) {
2500                 lost_event.header.type = PERF_EVENT_LOST;
2501                 lost_event.header.misc = 0;
2502                 lost_event.header.size = sizeof(lost_event);
2503                 lost_event.id          = counter->id;
2504                 lost_event.lost        = atomic_xchg(&data->lost, 0);
2505
2506                 perf_output_put(handle, lost_event);
2507         }
2508
2509         return 0;
2510
2511 fail:
2512         atomic_inc(&data->lost);
2513         perf_output_unlock(handle);
2514 out:
2515         rcu_read_unlock();
2516
2517         return -ENOSPC;
2518 }
2519
2520 static void perf_output_end(struct perf_output_handle *handle)
2521 {
2522         struct perf_counter *counter = handle->counter;
2523         struct perf_mmap_data *data = handle->data;
2524
2525         int wakeup_events = counter->attr.wakeup_events;
2526
2527         if (handle->sample && wakeup_events) {
2528                 int events = atomic_inc_return(&data->events);
2529                 if (events >= wakeup_events) {
2530                         atomic_sub(wakeup_events, &data->events);
2531                         atomic_set(&data->wakeup, 1);
2532                 }
2533         }
2534
2535         perf_output_unlock(handle);
2536         rcu_read_unlock();
2537 }
2538
2539 static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
2540 {
2541         /*
2542          * only top level counters have the pid namespace they were created in
2543          */
2544         if (counter->parent)
2545                 counter = counter->parent;
2546
2547         return task_tgid_nr_ns(p, counter->ns);
2548 }
2549
2550 static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
2551 {
2552         /*
2553          * only top level counters have the pid namespace they were created in
2554          */
2555         if (counter->parent)
2556                 counter = counter->parent;
2557
2558         return task_pid_nr_ns(p, counter->ns);
2559 }
2560
2561 static void perf_counter_output(struct perf_counter *counter, int nmi,
2562                                 struct perf_sample_data *data)
2563 {
2564         int ret;
2565         u64 sample_type = counter->attr.sample_type;
2566         struct perf_output_handle handle;
2567         struct perf_event_header header;
2568         u64 ip;
2569         struct {
2570                 u32 pid, tid;
2571         } tid_entry;
2572         struct {
2573                 u64 id;
2574                 u64 counter;
2575         } group_entry;
2576         struct perf_callchain_entry *callchain = NULL;
2577         int callchain_size = 0;
2578         u64 time;
2579         struct {
2580                 u32 cpu, reserved;
2581         } cpu_entry;
2582
2583         header.type = PERF_EVENT_SAMPLE;
2584         header.size = sizeof(header);
2585
2586         header.misc = 0;
2587         header.misc |= perf_misc_flags(data->regs);
2588
2589         if (sample_type & PERF_SAMPLE_IP) {
2590                 ip = perf_instruction_pointer(data->regs);
2591                 header.size += sizeof(ip);
2592         }
2593
2594         if (sample_type & PERF_SAMPLE_TID) {
2595                 /* namespace issues */
2596                 tid_entry.pid = perf_counter_pid(counter, current);
2597                 tid_entry.tid = perf_counter_tid(counter, current);
2598
2599                 header.size += sizeof(tid_entry);
2600         }
2601
2602         if (sample_type & PERF_SAMPLE_TIME) {
2603                 /*
2604                  * Maybe do better on x86 and provide cpu_clock_nmi()
2605                  */
2606                 time = sched_clock();
2607
2608                 header.size += sizeof(u64);
2609         }
2610
2611         if (sample_type & PERF_SAMPLE_ADDR)
2612                 header.size += sizeof(u64);
2613
2614         if (sample_type & PERF_SAMPLE_ID)
2615                 header.size += sizeof(u64);
2616
2617         if (sample_type & PERF_SAMPLE_CPU) {
2618                 header.size += sizeof(cpu_entry);
2619
2620                 cpu_entry.cpu = raw_smp_processor_id();
2621         }
2622
2623         if (sample_type & PERF_SAMPLE_PERIOD)
2624                 header.size += sizeof(u64);
2625
2626         if (sample_type & PERF_SAMPLE_GROUP) {
2627                 header.size += sizeof(u64) +
2628                         counter->nr_siblings * sizeof(group_entry);
2629         }
2630
2631         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2632                 callchain = perf_callchain(data->regs);
2633
2634                 if (callchain) {
2635                         callchain_size = (1 + callchain->nr) * sizeof(u64);
2636                         header.size += callchain_size;
2637                 } else
2638                         header.size += sizeof(u64);
2639         }
2640
2641         ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2642         if (ret)
2643                 return;
2644
2645         perf_output_put(&handle, header);
2646
2647         if (sample_type & PERF_SAMPLE_IP)
2648                 perf_output_put(&handle, ip);
2649
2650         if (sample_type & PERF_SAMPLE_TID)
2651                 perf_output_put(&handle, tid_entry);
2652
2653         if (sample_type & PERF_SAMPLE_TIME)
2654                 perf_output_put(&handle, time);
2655
2656         if (sample_type & PERF_SAMPLE_ADDR)
2657                 perf_output_put(&handle, data->addr);
2658
2659         if (sample_type & PERF_SAMPLE_ID)
2660                 perf_output_put(&handle, counter->id);
2661
2662         if (sample_type & PERF_SAMPLE_CPU)
2663                 perf_output_put(&handle, cpu_entry);
2664
2665         if (sample_type & PERF_SAMPLE_PERIOD)
2666                 perf_output_put(&handle, data->period);
2667
2668         /*
2669          * XXX PERF_SAMPLE_GROUP vs inherited counters seems difficult.
2670          */
2671         if (sample_type & PERF_SAMPLE_GROUP) {
2672                 struct perf_counter *leader, *sub;
2673                 u64 nr = counter->nr_siblings;
2674
2675                 perf_output_put(&handle, nr);
2676
2677                 leader = counter->group_leader;
2678                 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2679                         if (sub != counter)
2680                                 sub->pmu->read(sub);
2681
2682                         group_entry.id = sub->id;
2683                         group_entry.counter = atomic64_read(&sub->count);
2684
2685                         perf_output_put(&handle, group_entry);
2686                 }
2687         }
2688
2689         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2690                 if (callchain)
2691                         perf_output_copy(&handle, callchain, callchain_size);
2692                 else {
2693                         u64 nr = 0;
2694                         perf_output_put(&handle, nr);
2695                 }
2696         }
2697
2698         perf_output_end(&handle);
2699 }
2700
2701 /*
2702  * read event
2703  */
2704
2705 struct perf_read_event {
2706         struct perf_event_header        header;
2707
2708         u32                             pid;
2709         u32                             tid;
2710         u64                             value;
2711         u64                             format[3];
2712 };
2713
2714 static void
2715 perf_counter_read_event(struct perf_counter *counter,
2716                         struct task_struct *task)
2717 {
2718         struct perf_output_handle handle;
2719         struct perf_read_event event = {
2720                 .header = {
2721                         .type = PERF_EVENT_READ,
2722                         .misc = 0,
2723                         .size = sizeof(event) - sizeof(event.format),
2724                 },
2725                 .pid = perf_counter_pid(counter, task),
2726                 .tid = perf_counter_tid(counter, task),
2727                 .value = atomic64_read(&counter->count),
2728         };
2729         int ret, i = 0;
2730
2731         if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2732                 event.header.size += sizeof(u64);
2733                 event.format[i++] = counter->total_time_enabled;
2734         }
2735
2736         if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2737                 event.header.size += sizeof(u64);
2738                 event.format[i++] = counter->total_time_running;
2739         }
2740
2741         if (counter->attr.read_format & PERF_FORMAT_ID) {
2742                 u64 id;
2743
2744                 event.header.size += sizeof(u64);
2745                 if (counter->parent)
2746                         id = counter->parent->id;
2747                 else
2748                         id = counter->id;
2749
2750                 event.format[i++] = id;
2751         }
2752
2753         ret = perf_output_begin(&handle, counter, event.header.size, 0, 0);
2754         if (ret)
2755                 return;
2756
2757         perf_output_copy(&handle, &event, event.header.size);
2758         perf_output_end(&handle);
2759 }
2760
2761 /*
2762  * fork tracking
2763  */
2764
2765 struct perf_fork_event {
2766         struct task_struct      *task;
2767
2768         struct {
2769                 struct perf_event_header        header;
2770
2771                 u32                             pid;
2772                 u32                             ppid;
2773         } event;
2774 };
2775
2776 static void perf_counter_fork_output(struct perf_counter *counter,
2777                                      struct perf_fork_event *fork_event)
2778 {
2779         struct perf_output_handle handle;
2780         int size = fork_event->event.header.size;
2781         struct task_struct *task = fork_event->task;
2782         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2783
2784         if (ret)
2785                 return;
2786
2787         fork_event->event.pid = perf_counter_pid(counter, task);
2788         fork_event->event.ppid = perf_counter_pid(counter, task->real_parent);
2789
2790         perf_output_put(&handle, fork_event->event);
2791         perf_output_end(&handle);
2792 }
2793
2794 static int perf_counter_fork_match(struct perf_counter *counter)
2795 {
2796         if (counter->attr.comm || counter->attr.mmap)
2797                 return 1;
2798
2799         return 0;
2800 }
2801
2802 static void perf_counter_fork_ctx(struct perf_counter_context *ctx,
2803                                   struct perf_fork_event *fork_event)
2804 {
2805         struct perf_counter *counter;
2806
2807         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2808                 return;
2809
2810         rcu_read_lock();
2811         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2812                 if (perf_counter_fork_match(counter))
2813                         perf_counter_fork_output(counter, fork_event);
2814         }
2815         rcu_read_unlock();
2816 }
2817
2818 static void perf_counter_fork_event(struct perf_fork_event *fork_event)
2819 {
2820         struct perf_cpu_context *cpuctx;
2821         struct perf_counter_context *ctx;
2822
2823         cpuctx = &get_cpu_var(perf_cpu_context);
2824         perf_counter_fork_ctx(&cpuctx->ctx, fork_event);
2825         put_cpu_var(perf_cpu_context);
2826
2827         rcu_read_lock();
2828         /*
2829          * doesn't really matter which of the child contexts the
2830          * events ends up in.
2831          */
2832         ctx = rcu_dereference(current->perf_counter_ctxp);
2833         if (ctx)
2834                 perf_counter_fork_ctx(ctx, fork_event);
2835         rcu_read_unlock();
2836 }
2837
2838 void perf_counter_fork(struct task_struct *task)
2839 {
2840         struct perf_fork_event fork_event;
2841
2842         if (!atomic_read(&nr_comm_counters) &&
2843             !atomic_read(&nr_mmap_counters))
2844                 return;
2845
2846         fork_event = (struct perf_fork_event){
2847                 .task   = task,
2848                 .event  = {
2849                         .header = {
2850                                 .type = PERF_EVENT_FORK,
2851                                 .size = sizeof(fork_event.event),
2852                         },
2853                 },
2854         };
2855
2856         perf_counter_fork_event(&fork_event);
2857 }
2858
2859 /*
2860  * comm tracking
2861  */
2862
2863 struct perf_comm_event {
2864         struct task_struct      *task;
2865         char                    *comm;
2866         int                     comm_size;
2867
2868         struct {
2869                 struct perf_event_header        header;
2870
2871                 u32                             pid;
2872                 u32                             tid;
2873         } event;
2874 };
2875
2876 static void perf_counter_comm_output(struct perf_counter *counter,
2877                                      struct perf_comm_event *comm_event)
2878 {
2879         struct perf_output_handle handle;
2880         int size = comm_event->event.header.size;
2881         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2882
2883         if (ret)
2884                 return;
2885
2886         comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
2887         comm_event->event.tid = perf_counter_tid(counter, comm_event->task);
2888
2889         perf_output_put(&handle, comm_event->event);
2890         perf_output_copy(&handle, comm_event->comm,
2891                                    comm_event->comm_size);
2892         perf_output_end(&handle);
2893 }
2894
2895 static int perf_counter_comm_match(struct perf_counter *counter)
2896 {
2897         if (counter->attr.comm)
2898                 return 1;
2899
2900         return 0;
2901 }
2902
2903 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2904                                   struct perf_comm_event *comm_event)
2905 {
2906         struct perf_counter *counter;
2907
2908         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2909                 return;
2910
2911         rcu_read_lock();
2912         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2913                 if (perf_counter_comm_match(counter))
2914                         perf_counter_comm_output(counter, comm_event);
2915         }
2916         rcu_read_unlock();
2917 }
2918
2919 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2920 {
2921         struct perf_cpu_context *cpuctx;
2922         struct perf_counter_context *ctx;
2923         unsigned int size;
2924         char *comm = comm_event->task->comm;
2925
2926         size = ALIGN(strlen(comm)+1, sizeof(u64));
2927
2928         comm_event->comm = comm;
2929         comm_event->comm_size = size;
2930
2931         comm_event->event.header.size = sizeof(comm_event->event) + size;
2932
2933         cpuctx = &get_cpu_var(perf_cpu_context);
2934         perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2935         put_cpu_var(perf_cpu_context);
2936
2937         rcu_read_lock();
2938         /*
2939          * doesn't really matter which of the child contexts the
2940          * events ends up in.
2941          */
2942         ctx = rcu_dereference(current->perf_counter_ctxp);
2943         if (ctx)
2944                 perf_counter_comm_ctx(ctx, comm_event);
2945         rcu_read_unlock();
2946 }
2947
2948 void perf_counter_comm(struct task_struct *task)
2949 {
2950         struct perf_comm_event comm_event;
2951
2952         if (!atomic_read(&nr_comm_counters))
2953                 return;
2954
2955         comm_event = (struct perf_comm_event){
2956                 .task   = task,
2957                 .event  = {
2958                         .header = { .type = PERF_EVENT_COMM, },
2959                 },
2960         };
2961
2962         perf_counter_comm_event(&comm_event);
2963 }
2964
2965 /*
2966  * mmap tracking
2967  */
2968
2969 struct perf_mmap_event {
2970         struct vm_area_struct   *vma;
2971
2972         const char              *file_name;
2973         int                     file_size;
2974
2975         struct {
2976                 struct perf_event_header        header;
2977
2978                 u32                             pid;
2979                 u32                             tid;
2980                 u64                             start;
2981                 u64                             len;
2982                 u64                             pgoff;
2983         } event;
2984 };
2985
2986 static void perf_counter_mmap_output(struct perf_counter *counter,
2987                                      struct perf_mmap_event *mmap_event)
2988 {
2989         struct perf_output_handle handle;
2990         int size = mmap_event->event.header.size;
2991         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2992
2993         if (ret)
2994                 return;
2995
2996         mmap_event->event.pid = perf_counter_pid(counter, current);
2997         mmap_event->event.tid = perf_counter_tid(counter, current);
2998
2999         perf_output_put(&handle, mmap_event->event);
3000         perf_output_copy(&handle, mmap_event->file_name,
3001                                    mmap_event->file_size);
3002         perf_output_end(&handle);
3003 }
3004
3005 static int perf_counter_mmap_match(struct perf_counter *counter,
3006                                    struct perf_mmap_event *mmap_event)
3007 {
3008         if (counter->attr.mmap)
3009                 return 1;
3010
3011         return 0;
3012 }
3013
3014 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
3015                                   struct perf_mmap_event *mmap_event)
3016 {
3017         struct perf_counter *counter;
3018
3019         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3020                 return;
3021
3022         rcu_read_lock();
3023         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3024                 if (perf_counter_mmap_match(counter, mmap_event))
3025                         perf_counter_mmap_output(counter, mmap_event);
3026         }
3027         rcu_read_unlock();
3028 }
3029
3030 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
3031 {
3032         struct perf_cpu_context *cpuctx;
3033         struct perf_counter_context *ctx;
3034         struct vm_area_struct *vma = mmap_event->vma;
3035         struct file *file = vma->vm_file;
3036         unsigned int size;
3037         char tmp[16];
3038         char *buf = NULL;
3039         const char *name;
3040
3041         if (file) {
3042                 buf = kzalloc(PATH_MAX, GFP_KERNEL);
3043                 if (!buf) {
3044                         name = strncpy(tmp, "//enomem", sizeof(tmp));
3045                         goto got_name;
3046                 }
3047                 name = d_path(&file->f_path, buf, PATH_MAX);
3048                 if (IS_ERR(name)) {
3049                         name = strncpy(tmp, "//toolong", sizeof(tmp));
3050                         goto got_name;
3051                 }
3052         } else {
3053                 name = arch_vma_name(mmap_event->vma);
3054                 if (name)
3055                         goto got_name;
3056
3057                 if (!vma->vm_mm) {
3058                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
3059                         goto got_name;
3060                 }
3061
3062                 name = strncpy(tmp, "//anon", sizeof(tmp));
3063                 goto got_name;
3064         }
3065
3066 got_name:
3067         size = ALIGN(strlen(name)+1, sizeof(u64));
3068
3069         mmap_event->file_name = name;
3070         mmap_event->file_size = size;
3071
3072         mmap_event->event.header.size = sizeof(mmap_event->event) + size;
3073
3074         cpuctx = &get_cpu_var(perf_cpu_context);
3075         perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
3076         put_cpu_var(perf_cpu_context);
3077
3078         rcu_read_lock();
3079         /*
3080          * doesn't really matter which of the child contexts the
3081          * events ends up in.
3082          */
3083         ctx = rcu_dereference(current->perf_counter_ctxp);
3084         if (ctx)
3085                 perf_counter_mmap_ctx(ctx, mmap_event);
3086         rcu_read_unlock();
3087
3088         kfree(buf);
3089 }
3090
3091 void __perf_counter_mmap(struct vm_area_struct *vma)
3092 {
3093         struct perf_mmap_event mmap_event;
3094
3095         if (!atomic_read(&nr_mmap_counters))
3096                 return;
3097
3098         mmap_event = (struct perf_mmap_event){
3099                 .vma    = vma,
3100                 .event  = {
3101                         .header = { .type = PERF_EVENT_MMAP, },
3102                         .start  = vma->vm_start,
3103                         .len    = vma->vm_end - vma->vm_start,
3104                         .pgoff  = vma->vm_pgoff,
3105                 },
3106         };
3107
3108         perf_counter_mmap_event(&mmap_event);
3109 }
3110
3111 /*
3112  * Log sample_period changes so that analyzing tools can re-normalize the
3113  * event flow.
3114  */
3115
3116 struct freq_event {
3117         struct perf_event_header        header;
3118         u64                             time;
3119         u64                             id;
3120         u64                             period;
3121 };
3122
3123 static void perf_log_period(struct perf_counter *counter, u64 period)
3124 {
3125         struct perf_output_handle handle;
3126         struct freq_event event;
3127         int ret;
3128
3129         if (counter->hw.sample_period == period)
3130                 return;
3131
3132         if (counter->attr.sample_type & PERF_SAMPLE_PERIOD)
3133                 return;
3134
3135         event = (struct freq_event) {
3136                 .header = {
3137                         .type = PERF_EVENT_PERIOD,
3138                         .misc = 0,
3139                         .size = sizeof(event),
3140                 },
3141                 .time = sched_clock(),
3142                 .id = counter->id,
3143                 .period = period,
3144         };
3145
3146         ret = perf_output_begin(&handle, counter, sizeof(event), 1, 0);
3147         if (ret)
3148                 return;
3149
3150         perf_output_put(&handle, event);
3151         perf_output_end(&handle);
3152 }
3153
3154 /*
3155  * IRQ throttle logging
3156  */
3157
3158 static void perf_log_throttle(struct perf_counter *counter, int enable)
3159 {
3160         struct perf_output_handle handle;
3161         int ret;
3162
3163         struct {
3164                 struct perf_event_header        header;
3165                 u64                             time;
3166                 u64                             id;
3167         } throttle_event = {
3168                 .header = {
3169                         .type = PERF_EVENT_THROTTLE + 1,
3170                         .misc = 0,
3171                         .size = sizeof(throttle_event),
3172                 },
3173                 .time   = sched_clock(),
3174                 .id     = counter->id,
3175         };
3176
3177         ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
3178         if (ret)
3179                 return;
3180
3181         perf_output_put(&handle, throttle_event);
3182         perf_output_end(&handle);
3183 }
3184
3185 /*
3186  * Generic counter overflow handling, sampling.
3187  */
3188
3189 int perf_counter_overflow(struct perf_counter *counter, int nmi,
3190                           struct perf_sample_data *data)
3191 {
3192         int events = atomic_read(&counter->event_limit);
3193         int throttle = counter->pmu->unthrottle != NULL;
3194         struct hw_perf_counter *hwc = &counter->hw;
3195         int ret = 0;
3196
3197         if (!throttle) {
3198                 hwc->interrupts++;
3199         } else {
3200                 if (hwc->interrupts != MAX_INTERRUPTS) {
3201                         hwc->interrupts++;
3202                         if (HZ * hwc->interrupts >
3203                                         (u64)sysctl_perf_counter_sample_rate) {
3204                                 hwc->interrupts = MAX_INTERRUPTS;
3205                                 perf_log_throttle(counter, 0);
3206                                 ret = 1;
3207                         }
3208                 } else {
3209                         /*
3210                          * Keep re-disabling counters even though on the previous
3211                          * pass we disabled it - just in case we raced with a
3212                          * sched-in and the counter got enabled again:
3213                          */
3214                         ret = 1;
3215                 }
3216         }
3217
3218         if (counter->attr.freq) {
3219                 u64 now = sched_clock();
3220                 s64 delta = now - hwc->freq_stamp;
3221
3222                 hwc->freq_stamp = now;
3223
3224                 if (delta > 0 && delta < TICK_NSEC)
3225                         perf_adjust_period(counter, NSEC_PER_SEC / (int)delta);
3226         }
3227
3228         /*
3229          * XXX event_limit might not quite work as expected on inherited
3230          * counters
3231          */
3232
3233         counter->pending_kill = POLL_IN;
3234         if (events && atomic_dec_and_test(&counter->event_limit)) {
3235                 ret = 1;
3236                 counter->pending_kill = POLL_HUP;
3237                 if (nmi) {
3238                         counter->pending_disable = 1;
3239                         perf_pending_queue(&counter->pending,
3240                                            perf_pending_counter);
3241                 } else
3242                         perf_counter_disable(counter);
3243         }
3244
3245         perf_counter_output(counter, nmi, data);
3246         return ret;
3247 }
3248
3249 /*
3250  * Generic software counter infrastructure
3251  */
3252
3253 static void perf_swcounter_update(struct perf_counter *counter)
3254 {
3255         struct hw_perf_counter *hwc = &counter->hw;
3256         u64 prev, now;
3257         s64 delta;
3258
3259 again:
3260         prev = atomic64_read(&hwc->prev_count);
3261         now = atomic64_read(&hwc->count);
3262         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
3263                 goto again;
3264
3265         delta = now - prev;
3266
3267         atomic64_add(delta, &counter->count);
3268         atomic64_sub(delta, &hwc->period_left);
3269 }
3270
3271 static void perf_swcounter_set_period(struct perf_counter *counter)
3272 {
3273         struct hw_perf_counter *hwc = &counter->hw;
3274         s64 left = atomic64_read(&hwc->period_left);
3275         s64 period = hwc->sample_period;
3276
3277         if (unlikely(left <= -period)) {
3278                 left = period;
3279                 atomic64_set(&hwc->period_left, left);
3280                 hwc->last_period = period;
3281         }
3282
3283         if (unlikely(left <= 0)) {
3284                 left += period;
3285                 atomic64_add(period, &hwc->period_left);
3286                 hwc->last_period = period;
3287         }
3288
3289         atomic64_set(&hwc->prev_count, -left);
3290         atomic64_set(&hwc->count, -left);
3291 }
3292
3293 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
3294 {
3295         enum hrtimer_restart ret = HRTIMER_RESTART;
3296         struct perf_sample_data data;
3297         struct perf_counter *counter;
3298         u64 period;
3299
3300         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
3301         counter->pmu->read(counter);
3302
3303         data.addr = 0;
3304         data.regs = get_irq_regs();
3305         /*
3306          * In case we exclude kernel IPs or are somehow not in interrupt
3307          * context, provide the next best thing, the user IP.
3308          */
3309         if ((counter->attr.exclude_kernel || !data.regs) &&
3310                         !counter->attr.exclude_user)
3311                 data.regs = task_pt_regs(current);
3312
3313         if (data.regs) {
3314                 if (perf_counter_overflow(counter, 0, &data))
3315                         ret = HRTIMER_NORESTART;
3316         }
3317
3318         period = max_t(u64, 10000, counter->hw.sample_period);
3319         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3320
3321         return ret;
3322 }
3323
3324 static void perf_swcounter_overflow(struct perf_counter *counter,
3325                                     int nmi, struct perf_sample_data *data)
3326 {
3327         data->period = counter->hw.last_period;
3328
3329         perf_swcounter_update(counter);
3330         perf_swcounter_set_period(counter);
3331         if (perf_counter_overflow(counter, nmi, data))
3332                 /* soft-disable the counter */
3333                 ;
3334 }
3335
3336 static int perf_swcounter_is_counting(struct perf_counter *counter)
3337 {
3338         struct perf_counter_context *ctx;
3339         unsigned long flags;
3340         int count;
3341
3342         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
3343                 return 1;
3344
3345         if (counter->state != PERF_COUNTER_STATE_INACTIVE)
3346                 return 0;
3347
3348         /*
3349          * If the counter is inactive, it could be just because
3350          * its task is scheduled out, or because it's in a group
3351          * which could not go on the PMU.  We want to count in
3352          * the first case but not the second.  If the context is
3353          * currently active then an inactive software counter must
3354          * be the second case.  If it's not currently active then
3355          * we need to know whether the counter was active when the
3356          * context was last active, which we can determine by
3357          * comparing counter->tstamp_stopped with ctx->time.
3358          *
3359          * We are within an RCU read-side critical section,
3360          * which protects the existence of *ctx.
3361          */
3362         ctx = counter->ctx;
3363         spin_lock_irqsave(&ctx->lock, flags);
3364         count = 1;
3365         /* Re-check state now we have the lock */
3366         if (counter->state < PERF_COUNTER_STATE_INACTIVE ||
3367             counter->ctx->is_active ||
3368             counter->tstamp_stopped < ctx->time)
3369                 count = 0;
3370         spin_unlock_irqrestore(&ctx->lock, flags);
3371         return count;
3372 }
3373
3374 static int perf_swcounter_match(struct perf_counter *counter,
3375                                 enum perf_type_id type,
3376                                 u32 event, struct pt_regs *regs)
3377 {
3378         if (!perf_swcounter_is_counting(counter))
3379                 return 0;
3380
3381         if (counter->attr.type != type)
3382                 return 0;
3383         if (counter->attr.config != event)
3384                 return 0;
3385
3386         if (regs) {
3387                 if (counter->attr.exclude_user && user_mode(regs))
3388                         return 0;
3389
3390                 if (counter->attr.exclude_kernel && !user_mode(regs))
3391                         return 0;
3392         }
3393
3394         return 1;
3395 }
3396
3397 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
3398                                int nmi, struct perf_sample_data *data)
3399 {
3400         int neg = atomic64_add_negative(nr, &counter->hw.count);
3401
3402         if (counter->hw.sample_period && !neg && data->regs)
3403                 perf_swcounter_overflow(counter, nmi, data);
3404 }
3405
3406 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
3407                                      enum perf_type_id type,
3408                                      u32 event, u64 nr, int nmi,
3409                                      struct perf_sample_data *data)
3410 {
3411         struct perf_counter *counter;
3412
3413         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3414                 return;
3415
3416         rcu_read_lock();
3417         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3418                 if (perf_swcounter_match(counter, type, event, data->regs))
3419                         perf_swcounter_add(counter, nr, nmi, data);
3420         }
3421         rcu_read_unlock();
3422 }
3423
3424 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
3425 {
3426         if (in_nmi())
3427                 return &cpuctx->recursion[3];
3428
3429         if (in_irq())
3430                 return &cpuctx->recursion[2];
3431
3432         if (in_softirq())
3433                 return &cpuctx->recursion[1];
3434
3435         return &cpuctx->recursion[0];
3436 }
3437
3438 static void do_perf_swcounter_event(enum perf_type_id type, u32 event,
3439                                     u64 nr, int nmi,
3440                                     struct perf_sample_data *data)
3441 {
3442         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3443         int *recursion = perf_swcounter_recursion_context(cpuctx);
3444         struct perf_counter_context *ctx;
3445
3446         if (*recursion)
3447                 goto out;
3448
3449         (*recursion)++;
3450         barrier();
3451
3452         perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
3453                                  nr, nmi, data);
3454         rcu_read_lock();
3455         /*
3456          * doesn't really matter which of the child contexts the
3457          * events ends up in.
3458          */
3459         ctx = rcu_dereference(current->perf_counter_ctxp);
3460         if (ctx)
3461                 perf_swcounter_ctx_event(ctx, type, event, nr, nmi, data);
3462         rcu_read_unlock();
3463
3464         barrier();
3465         (*recursion)--;
3466
3467 out:
3468         put_cpu_var(perf_cpu_context);
3469 }
3470
3471 void __perf_swcounter_event(u32 event, u64 nr, int nmi,
3472                             struct pt_regs *regs, u64 addr)
3473 {
3474         struct perf_sample_data data = {
3475                 .regs = regs,
3476                 .addr = addr,
3477         };
3478
3479         do_perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, &data);
3480 }
3481
3482 static void perf_swcounter_read(struct perf_counter *counter)
3483 {
3484         perf_swcounter_update(counter);
3485 }
3486
3487 static int perf_swcounter_enable(struct perf_counter *counter)
3488 {
3489         perf_swcounter_set_period(counter);
3490         return 0;
3491 }
3492
3493 static void perf_swcounter_disable(struct perf_counter *counter)
3494 {
3495         perf_swcounter_update(counter);
3496 }
3497
3498 static const struct pmu perf_ops_generic = {
3499         .enable         = perf_swcounter_enable,
3500         .disable        = perf_swcounter_disable,
3501         .read           = perf_swcounter_read,
3502 };
3503
3504 /*
3505  * Software counter: cpu wall time clock
3506  */
3507
3508 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
3509 {
3510         int cpu = raw_smp_processor_id();
3511         s64 prev;
3512         u64 now;
3513
3514         now = cpu_clock(cpu);
3515         prev = atomic64_read(&counter->hw.prev_count);
3516         atomic64_set(&counter->hw.prev_count, now);
3517         atomic64_add(now - prev, &counter->count);
3518 }
3519
3520 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
3521 {
3522         struct hw_perf_counter *hwc = &counter->hw;
3523         int cpu = raw_smp_processor_id();
3524
3525         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3526         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3527         hwc->hrtimer.function = perf_swcounter_hrtimer;
3528         if (hwc->sample_period) {
3529                 u64 period = max_t(u64, 10000, hwc->sample_period);
3530                 __hrtimer_start_range_ns(&hwc->hrtimer,
3531                                 ns_to_ktime(period), 0,
3532                                 HRTIMER_MODE_REL, 0);
3533         }
3534
3535         return 0;
3536 }
3537
3538 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
3539 {
3540         if (counter->hw.sample_period)
3541                 hrtimer_cancel(&counter->hw.hrtimer);
3542         cpu_clock_perf_counter_update(counter);
3543 }
3544
3545 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
3546 {
3547         cpu_clock_perf_counter_update(counter);
3548 }
3549
3550 static const struct pmu perf_ops_cpu_clock = {
3551         .enable         = cpu_clock_perf_counter_enable,
3552         .disable        = cpu_clock_perf_counter_disable,
3553         .read           = cpu_clock_perf_counter_read,
3554 };
3555
3556 /*
3557  * Software counter: task time clock
3558  */
3559
3560 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
3561 {
3562         u64 prev;
3563         s64 delta;
3564
3565         prev = atomic64_xchg(&counter->hw.prev_count, now);
3566         delta = now - prev;
3567         atomic64_add(delta, &counter->count);
3568 }
3569
3570 static int task_clock_perf_counter_enable(struct perf_counter *counter)
3571 {
3572         struct hw_perf_counter *hwc = &counter->hw;
3573         u64 now;
3574
3575         now = counter->ctx->time;
3576
3577         atomic64_set(&hwc->prev_count, now);
3578         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3579         hwc->hrtimer.function = perf_swcounter_hrtimer;
3580         if (hwc->sample_period) {
3581                 u64 period = max_t(u64, 10000, hwc->sample_period);
3582                 __hrtimer_start_range_ns(&hwc->hrtimer,
3583                                 ns_to_ktime(period), 0,
3584                                 HRTIMER_MODE_REL, 0);
3585         }
3586
3587         return 0;
3588 }
3589
3590 static void task_clock_perf_counter_disable(struct perf_counter *counter)
3591 {
3592         if (counter->hw.sample_period)
3593                 hrtimer_cancel(&counter->hw.hrtimer);
3594         task_clock_perf_counter_update(counter, counter->ctx->time);
3595
3596 }
3597
3598 static void task_clock_perf_counter_read(struct perf_counter *counter)
3599 {
3600         u64 time;
3601
3602         if (!in_nmi()) {
3603                 update_context_time(counter->ctx);
3604                 time = counter->ctx->time;
3605         } else {
3606                 u64 now = perf_clock();
3607                 u64 delta = now - counter->ctx->timestamp;
3608                 time = counter->ctx->time + delta;
3609         }
3610
3611         task_clock_perf_counter_update(counter, time);
3612 }
3613
3614 static const struct pmu perf_ops_task_clock = {
3615         .enable         = task_clock_perf_counter_enable,
3616         .disable        = task_clock_perf_counter_disable,
3617         .read           = task_clock_perf_counter_read,
3618 };
3619
3620 #ifdef CONFIG_EVENT_PROFILE
3621 void perf_tpcounter_event(int event_id)
3622 {
3623         struct perf_sample_data data = {
3624                 .regs = get_irq_regs();
3625                 .addr = 0,
3626         };
3627
3628         if (!data.regs)
3629                 data.regs = task_pt_regs(current);
3630
3631         do_perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, &data);
3632 }
3633 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3634
3635 extern int ftrace_profile_enable(int);
3636 extern void ftrace_profile_disable(int);
3637
3638 static void tp_perf_counter_destroy(struct perf_counter *counter)
3639 {
3640         ftrace_profile_disable(perf_event_id(&counter->attr));
3641 }
3642
3643 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3644 {
3645         int event_id = perf_event_id(&counter->attr);
3646         int ret;
3647
3648         ret = ftrace_profile_enable(event_id);
3649         if (ret)
3650                 return NULL;
3651
3652         counter->destroy = tp_perf_counter_destroy;
3653
3654         return &perf_ops_generic;
3655 }
3656 #else
3657 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3658 {
3659         return NULL;
3660 }
3661 #endif
3662
3663 atomic_t perf_swcounter_enabled[PERF_COUNT_SW_MAX];
3664
3665 static void sw_perf_counter_destroy(struct perf_counter *counter)
3666 {
3667         u64 event = counter->attr.config;
3668
3669         WARN_ON(counter->parent);
3670
3671         atomic_dec(&perf_swcounter_enabled[event]);
3672 }
3673
3674 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3675 {
3676         const struct pmu *pmu = NULL;
3677         u64 event = counter->attr.config;
3678
3679         /*
3680          * Software counters (currently) can't in general distinguish
3681          * between user, kernel and hypervisor events.
3682          * However, context switches and cpu migrations are considered
3683          * to be kernel events, and page faults are never hypervisor
3684          * events.
3685          */
3686         switch (event) {
3687         case PERF_COUNT_SW_CPU_CLOCK:
3688                 pmu = &perf_ops_cpu_clock;
3689
3690                 break;
3691         case PERF_COUNT_SW_TASK_CLOCK:
3692                 /*
3693                  * If the user instantiates this as a per-cpu counter,
3694                  * use the cpu_clock counter instead.
3695                  */
3696                 if (counter->ctx->task)
3697                         pmu = &perf_ops_task_clock;
3698                 else
3699                         pmu = &perf_ops_cpu_clock;
3700
3701                 break;
3702         case PERF_COUNT_SW_PAGE_FAULTS:
3703         case PERF_COUNT_SW_PAGE_FAULTS_MIN:
3704         case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
3705         case PERF_COUNT_SW_CONTEXT_SWITCHES:
3706         case PERF_COUNT_SW_CPU_MIGRATIONS:
3707                 if (!counter->parent) {
3708                         atomic_inc(&perf_swcounter_enabled[event]);
3709                         counter->destroy = sw_perf_counter_destroy;
3710                 }
3711                 pmu = &perf_ops_generic;
3712                 break;
3713         }
3714
3715         return pmu;
3716 }
3717
3718 /*
3719  * Allocate and initialize a counter structure
3720  */
3721 static struct perf_counter *
3722 perf_counter_alloc(struct perf_counter_attr *attr,
3723                    int cpu,
3724                    struct perf_counter_context *ctx,
3725                    struct perf_counter *group_leader,
3726                    struct perf_counter *parent_counter,
3727                    gfp_t gfpflags)
3728 {
3729         const struct pmu *pmu;
3730         struct perf_counter *counter;
3731         struct hw_perf_counter *hwc;
3732         long err;
3733
3734         counter = kzalloc(sizeof(*counter), gfpflags);
3735         if (!counter)
3736                 return ERR_PTR(-ENOMEM);
3737
3738         /*
3739          * Single counters are their own group leaders, with an
3740          * empty sibling list:
3741          */
3742         if (!group_leader)
3743                 group_leader = counter;
3744
3745         mutex_init(&counter->child_mutex);
3746         INIT_LIST_HEAD(&counter->child_list);
3747
3748         INIT_LIST_HEAD(&counter->list_entry);
3749         INIT_LIST_HEAD(&counter->event_entry);
3750         INIT_LIST_HEAD(&counter->sibling_list);
3751         init_waitqueue_head(&counter->waitq);
3752
3753         mutex_init(&counter->mmap_mutex);
3754
3755         counter->cpu            = cpu;
3756         counter->attr           = *attr;
3757         counter->group_leader   = group_leader;
3758         counter->pmu            = NULL;
3759         counter->ctx            = ctx;
3760         counter->oncpu          = -1;
3761
3762         counter->parent         = parent_counter;
3763
3764         counter->ns             = get_pid_ns(current->nsproxy->pid_ns);
3765         counter->id             = atomic64_inc_return(&perf_counter_id);
3766
3767         counter->state          = PERF_COUNTER_STATE_INACTIVE;
3768
3769         if (attr->disabled)
3770                 counter->state = PERF_COUNTER_STATE_OFF;
3771
3772         pmu = NULL;
3773
3774         hwc = &counter->hw;
3775         hwc->sample_period = attr->sample_period;
3776         if (attr->freq && attr->sample_freq)
3777                 hwc->sample_period = 1;
3778
3779         atomic64_set(&hwc->period_left, hwc->sample_period);
3780
3781         /*
3782          * we currently do not support PERF_SAMPLE_GROUP on inherited counters
3783          */
3784         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_GROUP))
3785                 goto done;
3786
3787         switch (attr->type) {
3788         case PERF_TYPE_RAW:
3789         case PERF_TYPE_HARDWARE:
3790         case PERF_TYPE_HW_CACHE:
3791                 pmu = hw_perf_counter_init(counter);
3792                 break;
3793
3794         case PERF_TYPE_SOFTWARE:
3795                 pmu = sw_perf_counter_init(counter);
3796                 break;
3797
3798         case PERF_TYPE_TRACEPOINT:
3799                 pmu = tp_perf_counter_init(counter);
3800                 break;
3801
3802         default:
3803                 break;
3804         }
3805 done:
3806         err = 0;
3807         if (!pmu)
3808                 err = -EINVAL;
3809         else if (IS_ERR(pmu))
3810                 err = PTR_ERR(pmu);
3811
3812         if (err) {
3813                 if (counter->ns)
3814                         put_pid_ns(counter->ns);
3815                 kfree(counter);
3816                 return ERR_PTR(err);
3817         }
3818
3819         counter->pmu = pmu;
3820
3821         if (!counter->parent) {
3822                 atomic_inc(&nr_counters);
3823                 if (counter->attr.mmap)
3824                         atomic_inc(&nr_mmap_counters);
3825                 if (counter->attr.comm)
3826                         atomic_inc(&nr_comm_counters);
3827         }
3828
3829         return counter;
3830 }
3831
3832 static int perf_copy_attr(struct perf_counter_attr __user *uattr,
3833                           struct perf_counter_attr *attr)
3834 {
3835         int ret;
3836         u32 size;
3837
3838         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
3839                 return -EFAULT;
3840
3841         /*
3842          * zero the full structure, so that a short copy will be nice.
3843          */
3844         memset(attr, 0, sizeof(*attr));
3845
3846         ret = get_user(size, &uattr->size);
3847         if (ret)
3848                 return ret;
3849
3850         if (size > PAGE_SIZE)   /* silly large */
3851                 goto err_size;
3852
3853         if (!size)              /* abi compat */
3854                 size = PERF_ATTR_SIZE_VER0;
3855
3856         if (size < PERF_ATTR_SIZE_VER0)
3857                 goto err_size;
3858
3859         /*
3860          * If we're handed a bigger struct than we know of,
3861          * ensure all the unknown bits are 0.
3862          */
3863         if (size > sizeof(*attr)) {
3864                 unsigned long val;
3865                 unsigned long __user *addr;
3866                 unsigned long __user *end;
3867
3868                 addr = PTR_ALIGN((void __user *)uattr + sizeof(*attr),
3869                                 sizeof(unsigned long));
3870                 end  = PTR_ALIGN((void __user *)uattr + size,
3871                                 sizeof(unsigned long));
3872
3873                 for (; addr < end; addr += sizeof(unsigned long)) {
3874                         ret = get_user(val, addr);
3875                         if (ret)
3876                                 return ret;
3877                         if (val)
3878                                 goto err_size;
3879                 }
3880         }
3881
3882         ret = copy_from_user(attr, uattr, size);
3883         if (ret)
3884                 return -EFAULT;
3885
3886         /*
3887          * If the type exists, the corresponding creation will verify
3888          * the attr->config.
3889          */
3890         if (attr->type >= PERF_TYPE_MAX)
3891                 return -EINVAL;
3892
3893         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
3894                 return -EINVAL;
3895
3896         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
3897                 return -EINVAL;
3898
3899         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
3900                 return -EINVAL;
3901
3902 out:
3903         return ret;
3904
3905 err_size:
3906         put_user(sizeof(*attr), &uattr->size);
3907         ret = -E2BIG;
3908         goto out;
3909 }
3910
3911 /**
3912  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3913  *
3914  * @attr_uptr:  event type attributes for monitoring/sampling
3915  * @pid:                target pid
3916  * @cpu:                target cpu
3917  * @group_fd:           group leader counter fd
3918  */
3919 SYSCALL_DEFINE5(perf_counter_open,
3920                 struct perf_counter_attr __user *, attr_uptr,
3921                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3922 {
3923         struct perf_counter *counter, *group_leader;
3924         struct perf_counter_attr attr;
3925         struct perf_counter_context *ctx;
3926         struct file *counter_file = NULL;
3927         struct file *group_file = NULL;
3928         int fput_needed = 0;
3929         int fput_needed2 = 0;
3930         int ret;
3931
3932         /* for future expandability... */
3933         if (flags)
3934                 return -EINVAL;
3935
3936         ret = perf_copy_attr(attr_uptr, &attr);
3937         if (ret)
3938                 return ret;
3939
3940         if (!attr.exclude_kernel) {
3941                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
3942                         return -EACCES;
3943         }
3944
3945         if (attr.freq) {
3946                 if (attr.sample_freq > sysctl_perf_counter_sample_rate)
3947                         return -EINVAL;
3948         }
3949
3950         /*
3951          * Get the target context (task or percpu):
3952          */
3953         ctx = find_get_context(pid, cpu);
3954         if (IS_ERR(ctx))
3955                 return PTR_ERR(ctx);
3956
3957         /*
3958          * Look up the group leader (we will attach this counter to it):
3959          */
3960         group_leader = NULL;
3961         if (group_fd != -1) {
3962                 ret = -EINVAL;
3963                 group_file = fget_light(group_fd, &fput_needed);
3964                 if (!group_file)
3965                         goto err_put_context;
3966                 if (group_file->f_op != &perf_fops)
3967                         goto err_put_context;
3968
3969                 group_leader = group_file->private_data;
3970                 /*
3971                  * Do not allow a recursive hierarchy (this new sibling
3972                  * becoming part of another group-sibling):
3973                  */
3974                 if (group_leader->group_leader != group_leader)
3975                         goto err_put_context;
3976                 /*
3977                  * Do not allow to attach to a group in a different
3978                  * task or CPU context:
3979                  */
3980                 if (group_leader->ctx != ctx)
3981                         goto err_put_context;
3982                 /*
3983                  * Only a group leader can be exclusive or pinned
3984                  */
3985                 if (attr.exclusive || attr.pinned)
3986                         goto err_put_context;
3987         }
3988
3989         counter = perf_counter_alloc(&attr, cpu, ctx, group_leader,
3990                                      NULL, GFP_KERNEL);
3991         ret = PTR_ERR(counter);
3992         if (IS_ERR(counter))
3993                 goto err_put_context;
3994
3995         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3996         if (ret < 0)
3997                 goto err_free_put_context;
3998
3999         counter_file = fget_light(ret, &fput_needed2);
4000         if (!counter_file)
4001                 goto err_free_put_context;
4002
4003         counter->filp = counter_file;
4004         WARN_ON_ONCE(ctx->parent_ctx);
4005         mutex_lock(&ctx->mutex);
4006         perf_install_in_context(ctx, counter, cpu);
4007         ++ctx->generation;
4008         mutex_unlock(&ctx->mutex);
4009
4010         counter->owner = current;
4011         get_task_struct(current);
4012         mutex_lock(&current->perf_counter_mutex);
4013         list_add_tail(&counter->owner_entry, &current->perf_counter_list);
4014         mutex_unlock(&current->perf_counter_mutex);
4015
4016         fput_light(counter_file, fput_needed2);
4017
4018 out_fput:
4019         fput_light(group_file, fput_needed);
4020
4021         return ret;
4022
4023 err_free_put_context:
4024         kfree(counter);
4025
4026 err_put_context:
4027         put_ctx(ctx);
4028
4029         goto out_fput;
4030 }
4031
4032 /*
4033  * inherit a counter from parent task to child task:
4034  */
4035 static struct perf_counter *
4036 inherit_counter(struct perf_counter *parent_counter,
4037               struct task_struct *parent,
4038               struct perf_counter_context *parent_ctx,
4039               struct task_struct *child,
4040               struct perf_counter *group_leader,
4041               struct perf_counter_context *child_ctx)
4042 {
4043         struct perf_counter *child_counter;
4044
4045         /*
4046          * Instead of creating recursive hierarchies of counters,
4047          * we link inherited counters back to the original parent,
4048          * which has a filp for sure, which we use as the reference
4049          * count:
4050          */
4051         if (parent_counter->parent)
4052                 parent_counter = parent_counter->parent;
4053
4054         child_counter = perf_counter_alloc(&parent_counter->attr,
4055                                            parent_counter->cpu, child_ctx,
4056                                            group_leader, parent_counter,
4057                                            GFP_KERNEL);
4058         if (IS_ERR(child_counter))
4059                 return child_counter;
4060         get_ctx(child_ctx);
4061
4062         /*
4063          * Make the child state follow the state of the parent counter,
4064          * not its attr.disabled bit.  We hold the parent's mutex,
4065          * so we won't race with perf_counter_{en, dis}able_family.
4066          */
4067         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
4068                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
4069         else
4070                 child_counter->state = PERF_COUNTER_STATE_OFF;
4071
4072         if (parent_counter->attr.freq)
4073                 child_counter->hw.sample_period = parent_counter->hw.sample_period;
4074
4075         /*
4076          * Link it up in the child's context:
4077          */
4078         add_counter_to_ctx(child_counter, child_ctx);
4079
4080         /*
4081          * Get a reference to the parent filp - we will fput it
4082          * when the child counter exits. This is safe to do because
4083          * we are in the parent and we know that the filp still
4084          * exists and has a nonzero count:
4085          */
4086         atomic_long_inc(&parent_counter->filp->f_count);
4087
4088         /*
4089          * Link this into the parent counter's child list
4090          */
4091         WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4092         mutex_lock(&parent_counter->child_mutex);
4093         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
4094         mutex_unlock(&parent_counter->child_mutex);
4095
4096         return child_counter;
4097 }
4098
4099 static int inherit_group(struct perf_counter *parent_counter,
4100               struct task_struct *parent,
4101               struct perf_counter_context *parent_ctx,
4102               struct task_struct *child,
4103               struct perf_counter_context *child_ctx)
4104 {
4105         struct perf_counter *leader;
4106         struct perf_counter *sub;
4107         struct perf_counter *child_ctr;
4108
4109         leader = inherit_counter(parent_counter, parent, parent_ctx,
4110                                  child, NULL, child_ctx);
4111         if (IS_ERR(leader))
4112                 return PTR_ERR(leader);
4113         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
4114                 child_ctr = inherit_counter(sub, parent, parent_ctx,
4115                                             child, leader, child_ctx);
4116                 if (IS_ERR(child_ctr))
4117                         return PTR_ERR(child_ctr);
4118         }
4119         return 0;
4120 }
4121
4122 static void sync_child_counter(struct perf_counter *child_counter,
4123                                struct task_struct *child)
4124 {
4125         struct perf_counter *parent_counter = child_counter->parent;
4126         u64 child_val;
4127
4128         if (child_counter->attr.inherit_stat)
4129                 perf_counter_read_event(child_counter, child);
4130
4131         child_val = atomic64_read(&child_counter->count);
4132
4133         /*
4134          * Add back the child's count to the parent's count:
4135          */
4136         atomic64_add(child_val, &parent_counter->count);
4137         atomic64_add(child_counter->total_time_enabled,
4138                      &parent_counter->child_total_time_enabled);
4139         atomic64_add(child_counter->total_time_running,
4140                      &parent_counter->child_total_time_running);
4141
4142         /*
4143          * Remove this counter from the parent's list
4144          */
4145         WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4146         mutex_lock(&parent_counter->child_mutex);
4147         list_del_init(&child_counter->child_list);
4148         mutex_unlock(&parent_counter->child_mutex);
4149
4150         /*
4151          * Release the parent counter, if this was the last
4152          * reference to it.
4153          */
4154         fput(parent_counter->filp);
4155 }
4156
4157 static void
4158 __perf_counter_exit_task(struct perf_counter *child_counter,
4159                          struct perf_counter_context *child_ctx,
4160                          struct task_struct *child)
4161 {
4162         struct perf_counter *parent_counter;
4163
4164         update_counter_times(child_counter);
4165         perf_counter_remove_from_context(child_counter);
4166
4167         parent_counter = child_counter->parent;
4168         /*
4169          * It can happen that parent exits first, and has counters
4170          * that are still around due to the child reference. These
4171          * counters need to be zapped - but otherwise linger.
4172          */
4173         if (parent_counter) {
4174                 sync_child_counter(child_counter, child);
4175                 free_counter(child_counter);
4176         }
4177 }
4178
4179 /*
4180  * When a child task exits, feed back counter values to parent counters.
4181  */
4182 void perf_counter_exit_task(struct task_struct *child)
4183 {
4184         struct perf_counter *child_counter, *tmp;
4185         struct perf_counter_context *child_ctx;
4186         unsigned long flags;
4187
4188         if (likely(!child->perf_counter_ctxp))
4189                 return;
4190
4191         local_irq_save(flags);
4192         /*
4193          * We can't reschedule here because interrupts are disabled,
4194          * and either child is current or it is a task that can't be
4195          * scheduled, so we are now safe from rescheduling changing
4196          * our context.
4197          */
4198         child_ctx = child->perf_counter_ctxp;
4199         __perf_counter_task_sched_out(child_ctx);
4200
4201         /*
4202          * Take the context lock here so that if find_get_context is
4203          * reading child->perf_counter_ctxp, we wait until it has
4204          * incremented the context's refcount before we do put_ctx below.
4205          */
4206         spin_lock(&child_ctx->lock);
4207         child->perf_counter_ctxp = NULL;
4208         if (child_ctx->parent_ctx) {
4209                 /*
4210                  * This context is a clone; unclone it so it can't get
4211                  * swapped to another process while we're removing all
4212                  * the counters from it.
4213                  */
4214                 put_ctx(child_ctx->parent_ctx);
4215                 child_ctx->parent_ctx = NULL;
4216         }
4217         spin_unlock(&child_ctx->lock);
4218         local_irq_restore(flags);
4219
4220         /*
4221          * We can recurse on the same lock type through:
4222          *
4223          *   __perf_counter_exit_task()
4224          *     sync_child_counter()
4225          *       fput(parent_counter->filp)
4226          *         perf_release()
4227          *           mutex_lock(&ctx->mutex)
4228          *
4229          * But since its the parent context it won't be the same instance.
4230          */
4231         mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4232
4233 again:
4234         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
4235                                  list_entry)
4236                 __perf_counter_exit_task(child_counter, child_ctx, child);
4237
4238         /*
4239          * If the last counter was a group counter, it will have appended all
4240          * its siblings to the list, but we obtained 'tmp' before that which
4241          * will still point to the list head terminating the iteration.
4242          */
4243         if (!list_empty(&child_ctx->counter_list))
4244                 goto again;
4245
4246         mutex_unlock(&child_ctx->mutex);
4247
4248         put_ctx(child_ctx);
4249 }
4250
4251 /*
4252  * free an unexposed, unused context as created by inheritance by
4253  * init_task below, used by fork() in case of fail.
4254  */
4255 void perf_counter_free_task(struct task_struct *task)
4256 {
4257         struct perf_counter_context *ctx = task->perf_counter_ctxp;
4258         struct perf_counter *counter, *tmp;
4259
4260         if (!ctx)
4261                 return;
4262
4263         mutex_lock(&ctx->mutex);
4264 again:
4265         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
4266                 struct perf_counter *parent = counter->parent;
4267
4268                 if (WARN_ON_ONCE(!parent))
4269                         continue;
4270
4271                 mutex_lock(&parent->child_mutex);
4272                 list_del_init(&counter->child_list);
4273                 mutex_unlock(&parent->child_mutex);
4274
4275                 fput(parent->filp);
4276
4277                 list_del_counter(counter, ctx);
4278                 free_counter(counter);
4279         }
4280
4281         if (!list_empty(&ctx->counter_list))
4282                 goto again;
4283
4284         mutex_unlock(&ctx->mutex);
4285
4286         put_ctx(ctx);
4287 }
4288
4289 /*
4290  * Initialize the perf_counter context in task_struct
4291  */
4292 int perf_counter_init_task(struct task_struct *child)
4293 {
4294         struct perf_counter_context *child_ctx, *parent_ctx;
4295         struct perf_counter_context *cloned_ctx;
4296         struct perf_counter *counter;
4297         struct task_struct *parent = current;
4298         int inherited_all = 1;
4299         int ret = 0;
4300
4301         child->perf_counter_ctxp = NULL;
4302
4303         mutex_init(&child->perf_counter_mutex);
4304         INIT_LIST_HEAD(&child->perf_counter_list);
4305
4306         if (likely(!parent->perf_counter_ctxp))
4307                 return 0;
4308
4309         /*
4310          * This is executed from the parent task context, so inherit
4311          * counters that have been marked for cloning.
4312          * First allocate and initialize a context for the child.
4313          */
4314
4315         child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
4316         if (!child_ctx)
4317                 return -ENOMEM;
4318
4319         __perf_counter_init_context(child_ctx, child);
4320         child->perf_counter_ctxp = child_ctx;
4321         get_task_struct(child);
4322
4323         /*
4324          * If the parent's context is a clone, pin it so it won't get
4325          * swapped under us.
4326          */
4327         parent_ctx = perf_pin_task_context(parent);
4328
4329         /*
4330          * No need to check if parent_ctx != NULL here; since we saw
4331          * it non-NULL earlier, the only reason for it to become NULL
4332          * is if we exit, and since we're currently in the middle of
4333          * a fork we can't be exiting at the same time.
4334          */
4335
4336         /*
4337          * Lock the parent list. No need to lock the child - not PID
4338          * hashed yet and not running, so nobody can access it.
4339          */
4340         mutex_lock(&parent_ctx->mutex);
4341
4342         /*
4343          * We dont have to disable NMIs - we are only looking at
4344          * the list, not manipulating it:
4345          */
4346         list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
4347                 if (counter != counter->group_leader)
4348                         continue;
4349
4350                 if (!counter->attr.inherit) {
4351                         inherited_all = 0;
4352                         continue;
4353                 }
4354
4355                 ret = inherit_group(counter, parent, parent_ctx,
4356                                              child, child_ctx);
4357                 if (ret) {
4358                         inherited_all = 0;
4359                         break;
4360                 }
4361         }
4362
4363         if (inherited_all) {
4364                 /*
4365                  * Mark the child context as a clone of the parent
4366                  * context, or of whatever the parent is a clone of.
4367                  * Note that if the parent is a clone, it could get
4368                  * uncloned at any point, but that doesn't matter
4369                  * because the list of counters and the generation
4370                  * count can't have changed since we took the mutex.
4371                  */
4372                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
4373                 if (cloned_ctx) {
4374                         child_ctx->parent_ctx = cloned_ctx;
4375                         child_ctx->parent_gen = parent_ctx->parent_gen;
4376                 } else {
4377                         child_ctx->parent_ctx = parent_ctx;
4378                         child_ctx->parent_gen = parent_ctx->generation;
4379                 }
4380                 get_ctx(child_ctx->parent_ctx);
4381         }
4382
4383         mutex_unlock(&parent_ctx->mutex);
4384
4385         perf_unpin_context(parent_ctx);
4386
4387         return ret;
4388 }
4389
4390 static void __cpuinit perf_counter_init_cpu(int cpu)
4391 {
4392         struct perf_cpu_context *cpuctx;
4393
4394         cpuctx = &per_cpu(perf_cpu_context, cpu);
4395         __perf_counter_init_context(&cpuctx->ctx, NULL);
4396
4397         spin_lock(&perf_resource_lock);
4398         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
4399         spin_unlock(&perf_resource_lock);
4400
4401         hw_perf_counter_setup(cpu);
4402 }
4403
4404 #ifdef CONFIG_HOTPLUG_CPU
4405 static void __perf_counter_exit_cpu(void *info)
4406 {
4407         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4408         struct perf_counter_context *ctx = &cpuctx->ctx;
4409         struct perf_counter *counter, *tmp;
4410
4411         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
4412                 __perf_counter_remove_from_context(counter);
4413 }
4414 static void perf_counter_exit_cpu(int cpu)
4415 {
4416         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4417         struct perf_counter_context *ctx = &cpuctx->ctx;
4418
4419         mutex_lock(&ctx->mutex);
4420         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
4421         mutex_unlock(&ctx->mutex);
4422 }
4423 #else
4424 static inline void perf_counter_exit_cpu(int cpu) { }
4425 #endif
4426
4427 static int __cpuinit
4428 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
4429 {
4430         unsigned int cpu = (long)hcpu;
4431
4432         switch (action) {
4433
4434         case CPU_UP_PREPARE:
4435         case CPU_UP_PREPARE_FROZEN:
4436                 perf_counter_init_cpu(cpu);
4437                 break;
4438
4439         case CPU_DOWN_PREPARE:
4440         case CPU_DOWN_PREPARE_FROZEN:
4441                 perf_counter_exit_cpu(cpu);
4442                 break;
4443
4444         default:
4445                 break;
4446         }
4447
4448         return NOTIFY_OK;
4449 }
4450
4451 /*
4452  * This has to have a higher priority than migration_notifier in sched.c.
4453  */
4454 static struct notifier_block __cpuinitdata perf_cpu_nb = {
4455         .notifier_call          = perf_cpu_notify,
4456         .priority               = 20,
4457 };
4458
4459 void __init perf_counter_init(void)
4460 {
4461         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
4462                         (void *)(long)smp_processor_id());
4463         register_cpu_notifier(&perf_cpu_nb);
4464 }
4465
4466 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
4467 {
4468         return sprintf(buf, "%d\n", perf_reserved_percpu);
4469 }
4470
4471 static ssize_t
4472 perf_set_reserve_percpu(struct sysdev_class *class,
4473                         const char *buf,
4474                         size_t count)
4475 {
4476         struct perf_cpu_context *cpuctx;
4477         unsigned long val;
4478         int err, cpu, mpt;
4479
4480         err = strict_strtoul(buf, 10, &val);
4481         if (err)
4482                 return err;
4483         if (val > perf_max_counters)
4484                 return -EINVAL;
4485
4486         spin_lock(&perf_resource_lock);
4487         perf_reserved_percpu = val;
4488         for_each_online_cpu(cpu) {
4489                 cpuctx = &per_cpu(perf_cpu_context, cpu);
4490                 spin_lock_irq(&cpuctx->ctx.lock);
4491                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
4492                           perf_max_counters - perf_reserved_percpu);
4493                 cpuctx->max_pertask = mpt;
4494                 spin_unlock_irq(&cpuctx->ctx.lock);
4495         }
4496         spin_unlock(&perf_resource_lock);
4497
4498         return count;
4499 }
4500
4501 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
4502 {
4503         return sprintf(buf, "%d\n", perf_overcommit);
4504 }
4505
4506 static ssize_t
4507 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
4508 {
4509         unsigned long val;
4510         int err;
4511
4512         err = strict_strtoul(buf, 10, &val);
4513         if (err)
4514                 return err;
4515         if (val > 1)
4516                 return -EINVAL;
4517
4518         spin_lock(&perf_resource_lock);
4519         perf_overcommit = val;
4520         spin_unlock(&perf_resource_lock);
4521
4522         return count;
4523 }
4524
4525 static SYSDEV_CLASS_ATTR(
4526                                 reserve_percpu,
4527                                 0644,
4528                                 perf_show_reserve_percpu,
4529                                 perf_set_reserve_percpu
4530                         );
4531
4532 static SYSDEV_CLASS_ATTR(
4533                                 overcommit,
4534                                 0644,
4535                                 perf_show_overcommit,
4536                                 perf_set_overcommit
4537                         );
4538
4539 static struct attribute *perfclass_attrs[] = {
4540         &attr_reserve_percpu.attr,
4541         &attr_overcommit.attr,
4542         NULL
4543 };
4544
4545 static struct attribute_group perfclass_attr_group = {
4546         .attrs                  = perfclass_attrs,
4547         .name                   = "perf_counters",
4548 };
4549
4550 static int __init perf_counter_sysfs_init(void)
4551 {
4552         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
4553                                   &perfclass_attr_group);
4554 }
4555 device_initcall(perf_counter_sysfs_init);