Merge branch 'perf/core' of git://git.kernel.org/pub/scm/linux/kernel/git/acme/linux...
[firefly-linux-kernel-4.4.55.git] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34 #include <linux/hw_breakpoint.h>
35
36 #include <asm/irq_regs.h>
37
38 atomic_t perf_task_events __read_mostly;
39 static atomic_t nr_mmap_events __read_mostly;
40 static atomic_t nr_comm_events __read_mostly;
41 static atomic_t nr_task_events __read_mostly;
42
43 static LIST_HEAD(pmus);
44 static DEFINE_MUTEX(pmus_lock);
45 static struct srcu_struct pmus_srcu;
46
47 /*
48  * perf event paranoia level:
49  *  -1 - not paranoid at all
50  *   0 - disallow raw tracepoint access for unpriv
51  *   1 - disallow cpu events for unpriv
52  *   2 - disallow kernel profiling for unpriv
53  */
54 int sysctl_perf_event_paranoid __read_mostly = 1;
55
56 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
57
58 /*
59  * max perf event sample rate
60  */
61 int sysctl_perf_event_sample_rate __read_mostly = 100000;
62
63 static atomic64_t perf_event_id;
64
65 void __weak perf_event_print_debug(void)        { }
66
67 extern __weak const char *perf_pmu_name(void)
68 {
69         return "pmu";
70 }
71
72 void perf_pmu_disable(struct pmu *pmu)
73 {
74         int *count = this_cpu_ptr(pmu->pmu_disable_count);
75         if (!(*count)++)
76                 pmu->pmu_disable(pmu);
77 }
78
79 void perf_pmu_enable(struct pmu *pmu)
80 {
81         int *count = this_cpu_ptr(pmu->pmu_disable_count);
82         if (!--(*count))
83                 pmu->pmu_enable(pmu);
84 }
85
86 static DEFINE_PER_CPU(struct list_head, rotation_list);
87
88 /*
89  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
90  * because they're strictly cpu affine and rotate_start is called with IRQs
91  * disabled, while rotate_context is called from IRQ context.
92  */
93 static void perf_pmu_rotate_start(struct pmu *pmu)
94 {
95         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
96         struct list_head *head = &__get_cpu_var(rotation_list);
97
98         WARN_ON(!irqs_disabled());
99
100         if (list_empty(&cpuctx->rotation_list))
101                 list_add(&cpuctx->rotation_list, head);
102 }
103
104 static void get_ctx(struct perf_event_context *ctx)
105 {
106         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
107 }
108
109 static void free_ctx(struct rcu_head *head)
110 {
111         struct perf_event_context *ctx;
112
113         ctx = container_of(head, struct perf_event_context, rcu_head);
114         kfree(ctx);
115 }
116
117 static void put_ctx(struct perf_event_context *ctx)
118 {
119         if (atomic_dec_and_test(&ctx->refcount)) {
120                 if (ctx->parent_ctx)
121                         put_ctx(ctx->parent_ctx);
122                 if (ctx->task)
123                         put_task_struct(ctx->task);
124                 call_rcu(&ctx->rcu_head, free_ctx);
125         }
126 }
127
128 static void unclone_ctx(struct perf_event_context *ctx)
129 {
130         if (ctx->parent_ctx) {
131                 put_ctx(ctx->parent_ctx);
132                 ctx->parent_ctx = NULL;
133         }
134 }
135
136 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
137 {
138         /*
139          * only top level events have the pid namespace they were created in
140          */
141         if (event->parent)
142                 event = event->parent;
143
144         return task_tgid_nr_ns(p, event->ns);
145 }
146
147 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
148 {
149         /*
150          * only top level events have the pid namespace they were created in
151          */
152         if (event->parent)
153                 event = event->parent;
154
155         return task_pid_nr_ns(p, event->ns);
156 }
157
158 /*
159  * If we inherit events we want to return the parent event id
160  * to userspace.
161  */
162 static u64 primary_event_id(struct perf_event *event)
163 {
164         u64 id = event->id;
165
166         if (event->parent)
167                 id = event->parent->id;
168
169         return id;
170 }
171
172 /*
173  * Get the perf_event_context for a task and lock it.
174  * This has to cope with with the fact that until it is locked,
175  * the context could get moved to another task.
176  */
177 static struct perf_event_context *
178 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
179 {
180         struct perf_event_context *ctx;
181
182         rcu_read_lock();
183 retry:
184         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
185         if (ctx) {
186                 /*
187                  * If this context is a clone of another, it might
188                  * get swapped for another underneath us by
189                  * perf_event_task_sched_out, though the
190                  * rcu_read_lock() protects us from any context
191                  * getting freed.  Lock the context and check if it
192                  * got swapped before we could get the lock, and retry
193                  * if so.  If we locked the right context, then it
194                  * can't get swapped on us any more.
195                  */
196                 raw_spin_lock_irqsave(&ctx->lock, *flags);
197                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
198                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
199                         goto retry;
200                 }
201
202                 if (!atomic_inc_not_zero(&ctx->refcount)) {
203                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
204                         ctx = NULL;
205                 }
206         }
207         rcu_read_unlock();
208         return ctx;
209 }
210
211 /*
212  * Get the context for a task and increment its pin_count so it
213  * can't get swapped to another task.  This also increments its
214  * reference count so that the context can't get freed.
215  */
216 static struct perf_event_context *
217 perf_pin_task_context(struct task_struct *task, int ctxn)
218 {
219         struct perf_event_context *ctx;
220         unsigned long flags;
221
222         ctx = perf_lock_task_context(task, ctxn, &flags);
223         if (ctx) {
224                 ++ctx->pin_count;
225                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
226         }
227         return ctx;
228 }
229
230 static void perf_unpin_context(struct perf_event_context *ctx)
231 {
232         unsigned long flags;
233
234         raw_spin_lock_irqsave(&ctx->lock, flags);
235         --ctx->pin_count;
236         raw_spin_unlock_irqrestore(&ctx->lock, flags);
237         put_ctx(ctx);
238 }
239
240 static inline u64 perf_clock(void)
241 {
242         return local_clock();
243 }
244
245 /*
246  * Update the record of the current time in a context.
247  */
248 static void update_context_time(struct perf_event_context *ctx)
249 {
250         u64 now = perf_clock();
251
252         ctx->time += now - ctx->timestamp;
253         ctx->timestamp = now;
254 }
255
256 /*
257  * Update the total_time_enabled and total_time_running fields for a event.
258  */
259 static void update_event_times(struct perf_event *event)
260 {
261         struct perf_event_context *ctx = event->ctx;
262         u64 run_end;
263
264         if (event->state < PERF_EVENT_STATE_INACTIVE ||
265             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
266                 return;
267
268         if (ctx->is_active)
269                 run_end = ctx->time;
270         else
271                 run_end = event->tstamp_stopped;
272
273         event->total_time_enabled = run_end - event->tstamp_enabled;
274
275         if (event->state == PERF_EVENT_STATE_INACTIVE)
276                 run_end = event->tstamp_stopped;
277         else
278                 run_end = ctx->time;
279
280         event->total_time_running = run_end - event->tstamp_running;
281 }
282
283 /*
284  * Update total_time_enabled and total_time_running for all events in a group.
285  */
286 static void update_group_times(struct perf_event *leader)
287 {
288         struct perf_event *event;
289
290         update_event_times(leader);
291         list_for_each_entry(event, &leader->sibling_list, group_entry)
292                 update_event_times(event);
293 }
294
295 static struct list_head *
296 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
297 {
298         if (event->attr.pinned)
299                 return &ctx->pinned_groups;
300         else
301                 return &ctx->flexible_groups;
302 }
303
304 /*
305  * Add a event from the lists for its context.
306  * Must be called with ctx->mutex and ctx->lock held.
307  */
308 static void
309 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
310 {
311         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
312         event->attach_state |= PERF_ATTACH_CONTEXT;
313
314         /*
315          * If we're a stand alone event or group leader, we go to the context
316          * list, group events are kept attached to the group so that
317          * perf_group_detach can, at all times, locate all siblings.
318          */
319         if (event->group_leader == event) {
320                 struct list_head *list;
321
322                 if (is_software_event(event))
323                         event->group_flags |= PERF_GROUP_SOFTWARE;
324
325                 list = ctx_group_list(event, ctx);
326                 list_add_tail(&event->group_entry, list);
327         }
328
329         list_add_rcu(&event->event_entry, &ctx->event_list);
330         if (!ctx->nr_events)
331                 perf_pmu_rotate_start(ctx->pmu);
332         ctx->nr_events++;
333         if (event->attr.inherit_stat)
334                 ctx->nr_stat++;
335 }
336
337 /*
338  * Called at perf_event creation and when events are attached/detached from a
339  * group.
340  */
341 static void perf_event__read_size(struct perf_event *event)
342 {
343         int entry = sizeof(u64); /* value */
344         int size = 0;
345         int nr = 1;
346
347         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
348                 size += sizeof(u64);
349
350         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
351                 size += sizeof(u64);
352
353         if (event->attr.read_format & PERF_FORMAT_ID)
354                 entry += sizeof(u64);
355
356         if (event->attr.read_format & PERF_FORMAT_GROUP) {
357                 nr += event->group_leader->nr_siblings;
358                 size += sizeof(u64);
359         }
360
361         size += entry * nr;
362         event->read_size = size;
363 }
364
365 static void perf_event__header_size(struct perf_event *event)
366 {
367         struct perf_sample_data *data;
368         u64 sample_type = event->attr.sample_type;
369         u16 size = 0;
370
371         perf_event__read_size(event);
372
373         if (sample_type & PERF_SAMPLE_IP)
374                 size += sizeof(data->ip);
375
376         if (sample_type & PERF_SAMPLE_ADDR)
377                 size += sizeof(data->addr);
378
379         if (sample_type & PERF_SAMPLE_PERIOD)
380                 size += sizeof(data->period);
381
382         if (sample_type & PERF_SAMPLE_READ)
383                 size += event->read_size;
384
385         event->header_size = size;
386 }
387
388 static void perf_event__id_header_size(struct perf_event *event)
389 {
390         struct perf_sample_data *data;
391         u64 sample_type = event->attr.sample_type;
392         u16 size = 0;
393
394         if (sample_type & PERF_SAMPLE_TID)
395                 size += sizeof(data->tid_entry);
396
397         if (sample_type & PERF_SAMPLE_TIME)
398                 size += sizeof(data->time);
399
400         if (sample_type & PERF_SAMPLE_ID)
401                 size += sizeof(data->id);
402
403         if (sample_type & PERF_SAMPLE_STREAM_ID)
404                 size += sizeof(data->stream_id);
405
406         if (sample_type & PERF_SAMPLE_CPU)
407                 size += sizeof(data->cpu_entry);
408
409         event->id_header_size = size;
410 }
411
412 static void perf_group_attach(struct perf_event *event)
413 {
414         struct perf_event *group_leader = event->group_leader, *pos;
415
416         /*
417          * We can have double attach due to group movement in perf_event_open.
418          */
419         if (event->attach_state & PERF_ATTACH_GROUP)
420                 return;
421
422         event->attach_state |= PERF_ATTACH_GROUP;
423
424         if (group_leader == event)
425                 return;
426
427         if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
428                         !is_software_event(event))
429                 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
430
431         list_add_tail(&event->group_entry, &group_leader->sibling_list);
432         group_leader->nr_siblings++;
433
434         perf_event__header_size(group_leader);
435
436         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
437                 perf_event__header_size(pos);
438 }
439
440 /*
441  * Remove a event from the lists for its context.
442  * Must be called with ctx->mutex and ctx->lock held.
443  */
444 static void
445 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
446 {
447         /*
448          * We can have double detach due to exit/hot-unplug + close.
449          */
450         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
451                 return;
452
453         event->attach_state &= ~PERF_ATTACH_CONTEXT;
454
455         ctx->nr_events--;
456         if (event->attr.inherit_stat)
457                 ctx->nr_stat--;
458
459         list_del_rcu(&event->event_entry);
460
461         if (event->group_leader == event)
462                 list_del_init(&event->group_entry);
463
464         update_group_times(event);
465
466         /*
467          * If event was in error state, then keep it
468          * that way, otherwise bogus counts will be
469          * returned on read(). The only way to get out
470          * of error state is by explicit re-enabling
471          * of the event
472          */
473         if (event->state > PERF_EVENT_STATE_OFF)
474                 event->state = PERF_EVENT_STATE_OFF;
475 }
476
477 static void perf_group_detach(struct perf_event *event)
478 {
479         struct perf_event *sibling, *tmp;
480         struct list_head *list = NULL;
481
482         /*
483          * We can have double detach due to exit/hot-unplug + close.
484          */
485         if (!(event->attach_state & PERF_ATTACH_GROUP))
486                 return;
487
488         event->attach_state &= ~PERF_ATTACH_GROUP;
489
490         /*
491          * If this is a sibling, remove it from its group.
492          */
493         if (event->group_leader != event) {
494                 list_del_init(&event->group_entry);
495                 event->group_leader->nr_siblings--;
496                 goto out;
497         }
498
499         if (!list_empty(&event->group_entry))
500                 list = &event->group_entry;
501
502         /*
503          * If this was a group event with sibling events then
504          * upgrade the siblings to singleton events by adding them
505          * to whatever list we are on.
506          */
507         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
508                 if (list)
509                         list_move_tail(&sibling->group_entry, list);
510                 sibling->group_leader = sibling;
511
512                 /* Inherit group flags from the previous leader */
513                 sibling->group_flags = event->group_flags;
514         }
515
516 out:
517         perf_event__header_size(event->group_leader);
518
519         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
520                 perf_event__header_size(tmp);
521 }
522
523 static inline int
524 event_filter_match(struct perf_event *event)
525 {
526         return event->cpu == -1 || event->cpu == smp_processor_id();
527 }
528
529 static void
530 event_sched_out(struct perf_event *event,
531                   struct perf_cpu_context *cpuctx,
532                   struct perf_event_context *ctx)
533 {
534         u64 delta;
535         /*
536          * An event which could not be activated because of
537          * filter mismatch still needs to have its timings
538          * maintained, otherwise bogus information is return
539          * via read() for time_enabled, time_running:
540          */
541         if (event->state == PERF_EVENT_STATE_INACTIVE
542             && !event_filter_match(event)) {
543                 delta = ctx->time - event->tstamp_stopped;
544                 event->tstamp_running += delta;
545                 event->tstamp_stopped = ctx->time;
546         }
547
548         if (event->state != PERF_EVENT_STATE_ACTIVE)
549                 return;
550
551         event->state = PERF_EVENT_STATE_INACTIVE;
552         if (event->pending_disable) {
553                 event->pending_disable = 0;
554                 event->state = PERF_EVENT_STATE_OFF;
555         }
556         event->tstamp_stopped = ctx->time;
557         event->pmu->del(event, 0);
558         event->oncpu = -1;
559
560         if (!is_software_event(event))
561                 cpuctx->active_oncpu--;
562         ctx->nr_active--;
563         if (event->attr.exclusive || !cpuctx->active_oncpu)
564                 cpuctx->exclusive = 0;
565 }
566
567 static void
568 group_sched_out(struct perf_event *group_event,
569                 struct perf_cpu_context *cpuctx,
570                 struct perf_event_context *ctx)
571 {
572         struct perf_event *event;
573         int state = group_event->state;
574
575         event_sched_out(group_event, cpuctx, ctx);
576
577         /*
578          * Schedule out siblings (if any):
579          */
580         list_for_each_entry(event, &group_event->sibling_list, group_entry)
581                 event_sched_out(event, cpuctx, ctx);
582
583         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
584                 cpuctx->exclusive = 0;
585 }
586
587 static inline struct perf_cpu_context *
588 __get_cpu_context(struct perf_event_context *ctx)
589 {
590         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
591 }
592
593 /*
594  * Cross CPU call to remove a performance event
595  *
596  * We disable the event on the hardware level first. After that we
597  * remove it from the context list.
598  */
599 static void __perf_event_remove_from_context(void *info)
600 {
601         struct perf_event *event = info;
602         struct perf_event_context *ctx = event->ctx;
603         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
604
605         /*
606          * If this is a task context, we need to check whether it is
607          * the current task context of this cpu. If not it has been
608          * scheduled out before the smp call arrived.
609          */
610         if (ctx->task && cpuctx->task_ctx != ctx)
611                 return;
612
613         raw_spin_lock(&ctx->lock);
614
615         event_sched_out(event, cpuctx, ctx);
616
617         list_del_event(event, ctx);
618
619         raw_spin_unlock(&ctx->lock);
620 }
621
622
623 /*
624  * Remove the event from a task's (or a CPU's) list of events.
625  *
626  * Must be called with ctx->mutex held.
627  *
628  * CPU events are removed with a smp call. For task events we only
629  * call when the task is on a CPU.
630  *
631  * If event->ctx is a cloned context, callers must make sure that
632  * every task struct that event->ctx->task could possibly point to
633  * remains valid.  This is OK when called from perf_release since
634  * that only calls us on the top-level context, which can't be a clone.
635  * When called from perf_event_exit_task, it's OK because the
636  * context has been detached from its task.
637  */
638 static void perf_event_remove_from_context(struct perf_event *event)
639 {
640         struct perf_event_context *ctx = event->ctx;
641         struct task_struct *task = ctx->task;
642
643         if (!task) {
644                 /*
645                  * Per cpu events are removed via an smp call and
646                  * the removal is always successful.
647                  */
648                 smp_call_function_single(event->cpu,
649                                          __perf_event_remove_from_context,
650                                          event, 1);
651                 return;
652         }
653
654 retry:
655         task_oncpu_function_call(task, __perf_event_remove_from_context,
656                                  event);
657
658         raw_spin_lock_irq(&ctx->lock);
659         /*
660          * If the context is active we need to retry the smp call.
661          */
662         if (ctx->nr_active && !list_empty(&event->group_entry)) {
663                 raw_spin_unlock_irq(&ctx->lock);
664                 goto retry;
665         }
666
667         /*
668          * The lock prevents that this context is scheduled in so we
669          * can remove the event safely, if the call above did not
670          * succeed.
671          */
672         if (!list_empty(&event->group_entry))
673                 list_del_event(event, ctx);
674         raw_spin_unlock_irq(&ctx->lock);
675 }
676
677 /*
678  * Cross CPU call to disable a performance event
679  */
680 static void __perf_event_disable(void *info)
681 {
682         struct perf_event *event = info;
683         struct perf_event_context *ctx = event->ctx;
684         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
685
686         /*
687          * If this is a per-task event, need to check whether this
688          * event's task is the current task on this cpu.
689          */
690         if (ctx->task && cpuctx->task_ctx != ctx)
691                 return;
692
693         raw_spin_lock(&ctx->lock);
694
695         /*
696          * If the event is on, turn it off.
697          * If it is in error state, leave it in error state.
698          */
699         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
700                 update_context_time(ctx);
701                 update_group_times(event);
702                 if (event == event->group_leader)
703                         group_sched_out(event, cpuctx, ctx);
704                 else
705                         event_sched_out(event, cpuctx, ctx);
706                 event->state = PERF_EVENT_STATE_OFF;
707         }
708
709         raw_spin_unlock(&ctx->lock);
710 }
711
712 /*
713  * Disable a event.
714  *
715  * If event->ctx is a cloned context, callers must make sure that
716  * every task struct that event->ctx->task could possibly point to
717  * remains valid.  This condition is satisifed when called through
718  * perf_event_for_each_child or perf_event_for_each because they
719  * hold the top-level event's child_mutex, so any descendant that
720  * goes to exit will block in sync_child_event.
721  * When called from perf_pending_event it's OK because event->ctx
722  * is the current context on this CPU and preemption is disabled,
723  * hence we can't get into perf_event_task_sched_out for this context.
724  */
725 void perf_event_disable(struct perf_event *event)
726 {
727         struct perf_event_context *ctx = event->ctx;
728         struct task_struct *task = ctx->task;
729
730         if (!task) {
731                 /*
732                  * Disable the event on the cpu that it's on
733                  */
734                 smp_call_function_single(event->cpu, __perf_event_disable,
735                                          event, 1);
736                 return;
737         }
738
739 retry:
740         task_oncpu_function_call(task, __perf_event_disable, event);
741
742         raw_spin_lock_irq(&ctx->lock);
743         /*
744          * If the event is still active, we need to retry the cross-call.
745          */
746         if (event->state == PERF_EVENT_STATE_ACTIVE) {
747                 raw_spin_unlock_irq(&ctx->lock);
748                 goto retry;
749         }
750
751         /*
752          * Since we have the lock this context can't be scheduled
753          * in, so we can change the state safely.
754          */
755         if (event->state == PERF_EVENT_STATE_INACTIVE) {
756                 update_group_times(event);
757                 event->state = PERF_EVENT_STATE_OFF;
758         }
759
760         raw_spin_unlock_irq(&ctx->lock);
761 }
762
763 static int
764 event_sched_in(struct perf_event *event,
765                  struct perf_cpu_context *cpuctx,
766                  struct perf_event_context *ctx)
767 {
768         if (event->state <= PERF_EVENT_STATE_OFF)
769                 return 0;
770
771         event->state = PERF_EVENT_STATE_ACTIVE;
772         event->oncpu = smp_processor_id();
773         /*
774          * The new state must be visible before we turn it on in the hardware:
775          */
776         smp_wmb();
777
778         if (event->pmu->add(event, PERF_EF_START)) {
779                 event->state = PERF_EVENT_STATE_INACTIVE;
780                 event->oncpu = -1;
781                 return -EAGAIN;
782         }
783
784         event->tstamp_running += ctx->time - event->tstamp_stopped;
785
786         event->shadow_ctx_time = ctx->time - ctx->timestamp;
787
788         if (!is_software_event(event))
789                 cpuctx->active_oncpu++;
790         ctx->nr_active++;
791
792         if (event->attr.exclusive)
793                 cpuctx->exclusive = 1;
794
795         return 0;
796 }
797
798 static int
799 group_sched_in(struct perf_event *group_event,
800                struct perf_cpu_context *cpuctx,
801                struct perf_event_context *ctx)
802 {
803         struct perf_event *event, *partial_group = NULL;
804         struct pmu *pmu = group_event->pmu;
805         u64 now = ctx->time;
806         bool simulate = false;
807
808         if (group_event->state == PERF_EVENT_STATE_OFF)
809                 return 0;
810
811         pmu->start_txn(pmu);
812
813         if (event_sched_in(group_event, cpuctx, ctx)) {
814                 pmu->cancel_txn(pmu);
815                 return -EAGAIN;
816         }
817
818         /*
819          * Schedule in siblings as one group (if any):
820          */
821         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
822                 if (event_sched_in(event, cpuctx, ctx)) {
823                         partial_group = event;
824                         goto group_error;
825                 }
826         }
827
828         if (!pmu->commit_txn(pmu))
829                 return 0;
830
831 group_error:
832         /*
833          * Groups can be scheduled in as one unit only, so undo any
834          * partial group before returning:
835          * The events up to the failed event are scheduled out normally,
836          * tstamp_stopped will be updated.
837          *
838          * The failed events and the remaining siblings need to have
839          * their timings updated as if they had gone thru event_sched_in()
840          * and event_sched_out(). This is required to get consistent timings
841          * across the group. This also takes care of the case where the group
842          * could never be scheduled by ensuring tstamp_stopped is set to mark
843          * the time the event was actually stopped, such that time delta
844          * calculation in update_event_times() is correct.
845          */
846         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
847                 if (event == partial_group)
848                         simulate = true;
849
850                 if (simulate) {
851                         event->tstamp_running += now - event->tstamp_stopped;
852                         event->tstamp_stopped = now;
853                 } else {
854                         event_sched_out(event, cpuctx, ctx);
855                 }
856         }
857         event_sched_out(group_event, cpuctx, ctx);
858
859         pmu->cancel_txn(pmu);
860
861         return -EAGAIN;
862 }
863
864 /*
865  * Work out whether we can put this event group on the CPU now.
866  */
867 static int group_can_go_on(struct perf_event *event,
868                            struct perf_cpu_context *cpuctx,
869                            int can_add_hw)
870 {
871         /*
872          * Groups consisting entirely of software events can always go on.
873          */
874         if (event->group_flags & PERF_GROUP_SOFTWARE)
875                 return 1;
876         /*
877          * If an exclusive group is already on, no other hardware
878          * events can go on.
879          */
880         if (cpuctx->exclusive)
881                 return 0;
882         /*
883          * If this group is exclusive and there are already
884          * events on the CPU, it can't go on.
885          */
886         if (event->attr.exclusive && cpuctx->active_oncpu)
887                 return 0;
888         /*
889          * Otherwise, try to add it if all previous groups were able
890          * to go on.
891          */
892         return can_add_hw;
893 }
894
895 static void add_event_to_ctx(struct perf_event *event,
896                                struct perf_event_context *ctx)
897 {
898         list_add_event(event, ctx);
899         perf_group_attach(event);
900         event->tstamp_enabled = ctx->time;
901         event->tstamp_running = ctx->time;
902         event->tstamp_stopped = ctx->time;
903 }
904
905 /*
906  * Cross CPU call to install and enable a performance event
907  *
908  * Must be called with ctx->mutex held
909  */
910 static void __perf_install_in_context(void *info)
911 {
912         struct perf_event *event = info;
913         struct perf_event_context *ctx = event->ctx;
914         struct perf_event *leader = event->group_leader;
915         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
916         int err;
917
918         /*
919          * If this is a task context, we need to check whether it is
920          * the current task context of this cpu. If not it has been
921          * scheduled out before the smp call arrived.
922          * Or possibly this is the right context but it isn't
923          * on this cpu because it had no events.
924          */
925         if (ctx->task && cpuctx->task_ctx != ctx) {
926                 if (cpuctx->task_ctx || ctx->task != current)
927                         return;
928                 cpuctx->task_ctx = ctx;
929         }
930
931         raw_spin_lock(&ctx->lock);
932         ctx->is_active = 1;
933         update_context_time(ctx);
934
935         add_event_to_ctx(event, ctx);
936
937         if (event->cpu != -1 && event->cpu != smp_processor_id())
938                 goto unlock;
939
940         /*
941          * Don't put the event on if it is disabled or if
942          * it is in a group and the group isn't on.
943          */
944         if (event->state != PERF_EVENT_STATE_INACTIVE ||
945             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
946                 goto unlock;
947
948         /*
949          * An exclusive event can't go on if there are already active
950          * hardware events, and no hardware event can go on if there
951          * is already an exclusive event on.
952          */
953         if (!group_can_go_on(event, cpuctx, 1))
954                 err = -EEXIST;
955         else
956                 err = event_sched_in(event, cpuctx, ctx);
957
958         if (err) {
959                 /*
960                  * This event couldn't go on.  If it is in a group
961                  * then we have to pull the whole group off.
962                  * If the event group is pinned then put it in error state.
963                  */
964                 if (leader != event)
965                         group_sched_out(leader, cpuctx, ctx);
966                 if (leader->attr.pinned) {
967                         update_group_times(leader);
968                         leader->state = PERF_EVENT_STATE_ERROR;
969                 }
970         }
971
972 unlock:
973         raw_spin_unlock(&ctx->lock);
974 }
975
976 /*
977  * Attach a performance event to a context
978  *
979  * First we add the event to the list with the hardware enable bit
980  * in event->hw_config cleared.
981  *
982  * If the event is attached to a task which is on a CPU we use a smp
983  * call to enable it in the task context. The task might have been
984  * scheduled away, but we check this in the smp call again.
985  *
986  * Must be called with ctx->mutex held.
987  */
988 static void
989 perf_install_in_context(struct perf_event_context *ctx,
990                         struct perf_event *event,
991                         int cpu)
992 {
993         struct task_struct *task = ctx->task;
994
995         event->ctx = ctx;
996
997         if (!task) {
998                 /*
999                  * Per cpu events are installed via an smp call and
1000                  * the install is always successful.
1001                  */
1002                 smp_call_function_single(cpu, __perf_install_in_context,
1003                                          event, 1);
1004                 return;
1005         }
1006
1007 retry:
1008         task_oncpu_function_call(task, __perf_install_in_context,
1009                                  event);
1010
1011         raw_spin_lock_irq(&ctx->lock);
1012         /*
1013          * we need to retry the smp call.
1014          */
1015         if (ctx->is_active && list_empty(&event->group_entry)) {
1016                 raw_spin_unlock_irq(&ctx->lock);
1017                 goto retry;
1018         }
1019
1020         /*
1021          * The lock prevents that this context is scheduled in so we
1022          * can add the event safely, if it the call above did not
1023          * succeed.
1024          */
1025         if (list_empty(&event->group_entry))
1026                 add_event_to_ctx(event, ctx);
1027         raw_spin_unlock_irq(&ctx->lock);
1028 }
1029
1030 /*
1031  * Put a event into inactive state and update time fields.
1032  * Enabling the leader of a group effectively enables all
1033  * the group members that aren't explicitly disabled, so we
1034  * have to update their ->tstamp_enabled also.
1035  * Note: this works for group members as well as group leaders
1036  * since the non-leader members' sibling_lists will be empty.
1037  */
1038 static void __perf_event_mark_enabled(struct perf_event *event,
1039                                         struct perf_event_context *ctx)
1040 {
1041         struct perf_event *sub;
1042
1043         event->state = PERF_EVENT_STATE_INACTIVE;
1044         event->tstamp_enabled = ctx->time - event->total_time_enabled;
1045         list_for_each_entry(sub, &event->sibling_list, group_entry) {
1046                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
1047                         sub->tstamp_enabled =
1048                                 ctx->time - sub->total_time_enabled;
1049                 }
1050         }
1051 }
1052
1053 /*
1054  * Cross CPU call to enable a performance event
1055  */
1056 static void __perf_event_enable(void *info)
1057 {
1058         struct perf_event *event = info;
1059         struct perf_event_context *ctx = event->ctx;
1060         struct perf_event *leader = event->group_leader;
1061         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1062         int err;
1063
1064         /*
1065          * If this is a per-task event, need to check whether this
1066          * event's task is the current task on this cpu.
1067          */
1068         if (ctx->task && cpuctx->task_ctx != ctx) {
1069                 if (cpuctx->task_ctx || ctx->task != current)
1070                         return;
1071                 cpuctx->task_ctx = ctx;
1072         }
1073
1074         raw_spin_lock(&ctx->lock);
1075         ctx->is_active = 1;
1076         update_context_time(ctx);
1077
1078         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1079                 goto unlock;
1080         __perf_event_mark_enabled(event, ctx);
1081
1082         if (event->cpu != -1 && event->cpu != smp_processor_id())
1083                 goto unlock;
1084
1085         /*
1086          * If the event is in a group and isn't the group leader,
1087          * then don't put it on unless the group is on.
1088          */
1089         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1090                 goto unlock;
1091
1092         if (!group_can_go_on(event, cpuctx, 1)) {
1093                 err = -EEXIST;
1094         } else {
1095                 if (event == leader)
1096                         err = group_sched_in(event, cpuctx, ctx);
1097                 else
1098                         err = event_sched_in(event, cpuctx, ctx);
1099         }
1100
1101         if (err) {
1102                 /*
1103                  * If this event can't go on and it's part of a
1104                  * group, then the whole group has to come off.
1105                  */
1106                 if (leader != event)
1107                         group_sched_out(leader, cpuctx, ctx);
1108                 if (leader->attr.pinned) {
1109                         update_group_times(leader);
1110                         leader->state = PERF_EVENT_STATE_ERROR;
1111                 }
1112         }
1113
1114 unlock:
1115         raw_spin_unlock(&ctx->lock);
1116 }
1117
1118 /*
1119  * Enable a event.
1120  *
1121  * If event->ctx is a cloned context, callers must make sure that
1122  * every task struct that event->ctx->task could possibly point to
1123  * remains valid.  This condition is satisfied when called through
1124  * perf_event_for_each_child or perf_event_for_each as described
1125  * for perf_event_disable.
1126  */
1127 void perf_event_enable(struct perf_event *event)
1128 {
1129         struct perf_event_context *ctx = event->ctx;
1130         struct task_struct *task = ctx->task;
1131
1132         if (!task) {
1133                 /*
1134                  * Enable the event on the cpu that it's on
1135                  */
1136                 smp_call_function_single(event->cpu, __perf_event_enable,
1137                                          event, 1);
1138                 return;
1139         }
1140
1141         raw_spin_lock_irq(&ctx->lock);
1142         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1143                 goto out;
1144
1145         /*
1146          * If the event is in error state, clear that first.
1147          * That way, if we see the event in error state below, we
1148          * know that it has gone back into error state, as distinct
1149          * from the task having been scheduled away before the
1150          * cross-call arrived.
1151          */
1152         if (event->state == PERF_EVENT_STATE_ERROR)
1153                 event->state = PERF_EVENT_STATE_OFF;
1154
1155 retry:
1156         raw_spin_unlock_irq(&ctx->lock);
1157         task_oncpu_function_call(task, __perf_event_enable, event);
1158
1159         raw_spin_lock_irq(&ctx->lock);
1160
1161         /*
1162          * If the context is active and the event is still off,
1163          * we need to retry the cross-call.
1164          */
1165         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1166                 goto retry;
1167
1168         /*
1169          * Since we have the lock this context can't be scheduled
1170          * in, so we can change the state safely.
1171          */
1172         if (event->state == PERF_EVENT_STATE_OFF)
1173                 __perf_event_mark_enabled(event, ctx);
1174
1175 out:
1176         raw_spin_unlock_irq(&ctx->lock);
1177 }
1178
1179 static int perf_event_refresh(struct perf_event *event, int refresh)
1180 {
1181         /*
1182          * not supported on inherited events
1183          */
1184         if (event->attr.inherit || !is_sampling_event(event))
1185                 return -EINVAL;
1186
1187         atomic_add(refresh, &event->event_limit);
1188         perf_event_enable(event);
1189
1190         return 0;
1191 }
1192
1193 enum event_type_t {
1194         EVENT_FLEXIBLE = 0x1,
1195         EVENT_PINNED = 0x2,
1196         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1197 };
1198
1199 static void ctx_sched_out(struct perf_event_context *ctx,
1200                           struct perf_cpu_context *cpuctx,
1201                           enum event_type_t event_type)
1202 {
1203         struct perf_event *event;
1204
1205         raw_spin_lock(&ctx->lock);
1206         perf_pmu_disable(ctx->pmu);
1207         ctx->is_active = 0;
1208         if (likely(!ctx->nr_events))
1209                 goto out;
1210         update_context_time(ctx);
1211
1212         if (!ctx->nr_active)
1213                 goto out;
1214
1215         if (event_type & EVENT_PINNED) {
1216                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1217                         group_sched_out(event, cpuctx, ctx);
1218         }
1219
1220         if (event_type & EVENT_FLEXIBLE) {
1221                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1222                         group_sched_out(event, cpuctx, ctx);
1223         }
1224 out:
1225         perf_pmu_enable(ctx->pmu);
1226         raw_spin_unlock(&ctx->lock);
1227 }
1228
1229 /*
1230  * Test whether two contexts are equivalent, i.e. whether they
1231  * have both been cloned from the same version of the same context
1232  * and they both have the same number of enabled events.
1233  * If the number of enabled events is the same, then the set
1234  * of enabled events should be the same, because these are both
1235  * inherited contexts, therefore we can't access individual events
1236  * in them directly with an fd; we can only enable/disable all
1237  * events via prctl, or enable/disable all events in a family
1238  * via ioctl, which will have the same effect on both contexts.
1239  */
1240 static int context_equiv(struct perf_event_context *ctx1,
1241                          struct perf_event_context *ctx2)
1242 {
1243         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1244                 && ctx1->parent_gen == ctx2->parent_gen
1245                 && !ctx1->pin_count && !ctx2->pin_count;
1246 }
1247
1248 static void __perf_event_sync_stat(struct perf_event *event,
1249                                      struct perf_event *next_event)
1250 {
1251         u64 value;
1252
1253         if (!event->attr.inherit_stat)
1254                 return;
1255
1256         /*
1257          * Update the event value, we cannot use perf_event_read()
1258          * because we're in the middle of a context switch and have IRQs
1259          * disabled, which upsets smp_call_function_single(), however
1260          * we know the event must be on the current CPU, therefore we
1261          * don't need to use it.
1262          */
1263         switch (event->state) {
1264         case PERF_EVENT_STATE_ACTIVE:
1265                 event->pmu->read(event);
1266                 /* fall-through */
1267
1268         case PERF_EVENT_STATE_INACTIVE:
1269                 update_event_times(event);
1270                 break;
1271
1272         default:
1273                 break;
1274         }
1275
1276         /*
1277          * In order to keep per-task stats reliable we need to flip the event
1278          * values when we flip the contexts.
1279          */
1280         value = local64_read(&next_event->count);
1281         value = local64_xchg(&event->count, value);
1282         local64_set(&next_event->count, value);
1283
1284         swap(event->total_time_enabled, next_event->total_time_enabled);
1285         swap(event->total_time_running, next_event->total_time_running);
1286
1287         /*
1288          * Since we swizzled the values, update the user visible data too.
1289          */
1290         perf_event_update_userpage(event);
1291         perf_event_update_userpage(next_event);
1292 }
1293
1294 #define list_next_entry(pos, member) \
1295         list_entry(pos->member.next, typeof(*pos), member)
1296
1297 static void perf_event_sync_stat(struct perf_event_context *ctx,
1298                                    struct perf_event_context *next_ctx)
1299 {
1300         struct perf_event *event, *next_event;
1301
1302         if (!ctx->nr_stat)
1303                 return;
1304
1305         update_context_time(ctx);
1306
1307         event = list_first_entry(&ctx->event_list,
1308                                    struct perf_event, event_entry);
1309
1310         next_event = list_first_entry(&next_ctx->event_list,
1311                                         struct perf_event, event_entry);
1312
1313         while (&event->event_entry != &ctx->event_list &&
1314                &next_event->event_entry != &next_ctx->event_list) {
1315
1316                 __perf_event_sync_stat(event, next_event);
1317
1318                 event = list_next_entry(event, event_entry);
1319                 next_event = list_next_entry(next_event, event_entry);
1320         }
1321 }
1322
1323 void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1324                                   struct task_struct *next)
1325 {
1326         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1327         struct perf_event_context *next_ctx;
1328         struct perf_event_context *parent;
1329         struct perf_cpu_context *cpuctx;
1330         int do_switch = 1;
1331
1332         if (likely(!ctx))
1333                 return;
1334
1335         cpuctx = __get_cpu_context(ctx);
1336         if (!cpuctx->task_ctx)
1337                 return;
1338
1339         rcu_read_lock();
1340         parent = rcu_dereference(ctx->parent_ctx);
1341         next_ctx = next->perf_event_ctxp[ctxn];
1342         if (parent && next_ctx &&
1343             rcu_dereference(next_ctx->parent_ctx) == parent) {
1344                 /*
1345                  * Looks like the two contexts are clones, so we might be
1346                  * able to optimize the context switch.  We lock both
1347                  * contexts and check that they are clones under the
1348                  * lock (including re-checking that neither has been
1349                  * uncloned in the meantime).  It doesn't matter which
1350                  * order we take the locks because no other cpu could
1351                  * be trying to lock both of these tasks.
1352                  */
1353                 raw_spin_lock(&ctx->lock);
1354                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1355                 if (context_equiv(ctx, next_ctx)) {
1356                         /*
1357                          * XXX do we need a memory barrier of sorts
1358                          * wrt to rcu_dereference() of perf_event_ctxp
1359                          */
1360                         task->perf_event_ctxp[ctxn] = next_ctx;
1361                         next->perf_event_ctxp[ctxn] = ctx;
1362                         ctx->task = next;
1363                         next_ctx->task = task;
1364                         do_switch = 0;
1365
1366                         perf_event_sync_stat(ctx, next_ctx);
1367                 }
1368                 raw_spin_unlock(&next_ctx->lock);
1369                 raw_spin_unlock(&ctx->lock);
1370         }
1371         rcu_read_unlock();
1372
1373         if (do_switch) {
1374                 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1375                 cpuctx->task_ctx = NULL;
1376         }
1377 }
1378
1379 #define for_each_task_context_nr(ctxn)                                  \
1380         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1381
1382 /*
1383  * Called from scheduler to remove the events of the current task,
1384  * with interrupts disabled.
1385  *
1386  * We stop each event and update the event value in event->count.
1387  *
1388  * This does not protect us against NMI, but disable()
1389  * sets the disabled bit in the control field of event _before_
1390  * accessing the event control register. If a NMI hits, then it will
1391  * not restart the event.
1392  */
1393 void __perf_event_task_sched_out(struct task_struct *task,
1394                                  struct task_struct *next)
1395 {
1396         int ctxn;
1397
1398         for_each_task_context_nr(ctxn)
1399                 perf_event_context_sched_out(task, ctxn, next);
1400 }
1401
1402 static void task_ctx_sched_out(struct perf_event_context *ctx,
1403                                enum event_type_t event_type)
1404 {
1405         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1406
1407         if (!cpuctx->task_ctx)
1408                 return;
1409
1410         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1411                 return;
1412
1413         ctx_sched_out(ctx, cpuctx, event_type);
1414         cpuctx->task_ctx = NULL;
1415 }
1416
1417 /*
1418  * Called with IRQs disabled
1419  */
1420 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1421                               enum event_type_t event_type)
1422 {
1423         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1424 }
1425
1426 static void
1427 ctx_pinned_sched_in(struct perf_event_context *ctx,
1428                     struct perf_cpu_context *cpuctx)
1429 {
1430         struct perf_event *event;
1431
1432         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1433                 if (event->state <= PERF_EVENT_STATE_OFF)
1434                         continue;
1435                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1436                         continue;
1437
1438                 if (group_can_go_on(event, cpuctx, 1))
1439                         group_sched_in(event, cpuctx, ctx);
1440
1441                 /*
1442                  * If this pinned group hasn't been scheduled,
1443                  * put it in error state.
1444                  */
1445                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1446                         update_group_times(event);
1447                         event->state = PERF_EVENT_STATE_ERROR;
1448                 }
1449         }
1450 }
1451
1452 static void
1453 ctx_flexible_sched_in(struct perf_event_context *ctx,
1454                       struct perf_cpu_context *cpuctx)
1455 {
1456         struct perf_event *event;
1457         int can_add_hw = 1;
1458
1459         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1460                 /* Ignore events in OFF or ERROR state */
1461                 if (event->state <= PERF_EVENT_STATE_OFF)
1462                         continue;
1463                 /*
1464                  * Listen to the 'cpu' scheduling filter constraint
1465                  * of events:
1466                  */
1467                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1468                         continue;
1469
1470                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1471                         if (group_sched_in(event, cpuctx, ctx))
1472                                 can_add_hw = 0;
1473                 }
1474         }
1475 }
1476
1477 static void
1478 ctx_sched_in(struct perf_event_context *ctx,
1479              struct perf_cpu_context *cpuctx,
1480              enum event_type_t event_type)
1481 {
1482         raw_spin_lock(&ctx->lock);
1483         ctx->is_active = 1;
1484         if (likely(!ctx->nr_events))
1485                 goto out;
1486
1487         ctx->timestamp = perf_clock();
1488
1489         /*
1490          * First go through the list and put on any pinned groups
1491          * in order to give them the best chance of going on.
1492          */
1493         if (event_type & EVENT_PINNED)
1494                 ctx_pinned_sched_in(ctx, cpuctx);
1495
1496         /* Then walk through the lower prio flexible groups */
1497         if (event_type & EVENT_FLEXIBLE)
1498                 ctx_flexible_sched_in(ctx, cpuctx);
1499
1500 out:
1501         raw_spin_unlock(&ctx->lock);
1502 }
1503
1504 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1505                              enum event_type_t event_type)
1506 {
1507         struct perf_event_context *ctx = &cpuctx->ctx;
1508
1509         ctx_sched_in(ctx, cpuctx, event_type);
1510 }
1511
1512 static void task_ctx_sched_in(struct perf_event_context *ctx,
1513                               enum event_type_t event_type)
1514 {
1515         struct perf_cpu_context *cpuctx;
1516
1517         cpuctx = __get_cpu_context(ctx);
1518         if (cpuctx->task_ctx == ctx)
1519                 return;
1520
1521         ctx_sched_in(ctx, cpuctx, event_type);
1522         cpuctx->task_ctx = ctx;
1523 }
1524
1525 void perf_event_context_sched_in(struct perf_event_context *ctx)
1526 {
1527         struct perf_cpu_context *cpuctx;
1528
1529         cpuctx = __get_cpu_context(ctx);
1530         if (cpuctx->task_ctx == ctx)
1531                 return;
1532
1533         perf_pmu_disable(ctx->pmu);
1534         /*
1535          * We want to keep the following priority order:
1536          * cpu pinned (that don't need to move), task pinned,
1537          * cpu flexible, task flexible.
1538          */
1539         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1540
1541         ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1542         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1543         ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1544
1545         cpuctx->task_ctx = ctx;
1546
1547         /*
1548          * Since these rotations are per-cpu, we need to ensure the
1549          * cpu-context we got scheduled on is actually rotating.
1550          */
1551         perf_pmu_rotate_start(ctx->pmu);
1552         perf_pmu_enable(ctx->pmu);
1553 }
1554
1555 /*
1556  * Called from scheduler to add the events of the current task
1557  * with interrupts disabled.
1558  *
1559  * We restore the event value and then enable it.
1560  *
1561  * This does not protect us against NMI, but enable()
1562  * sets the enabled bit in the control field of event _before_
1563  * accessing the event control register. If a NMI hits, then it will
1564  * keep the event running.
1565  */
1566 void __perf_event_task_sched_in(struct task_struct *task)
1567 {
1568         struct perf_event_context *ctx;
1569         int ctxn;
1570
1571         for_each_task_context_nr(ctxn) {
1572                 ctx = task->perf_event_ctxp[ctxn];
1573                 if (likely(!ctx))
1574                         continue;
1575
1576                 perf_event_context_sched_in(ctx);
1577         }
1578 }
1579
1580 #define MAX_INTERRUPTS (~0ULL)
1581
1582 static void perf_log_throttle(struct perf_event *event, int enable);
1583
1584 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1585 {
1586         u64 frequency = event->attr.sample_freq;
1587         u64 sec = NSEC_PER_SEC;
1588         u64 divisor, dividend;
1589
1590         int count_fls, nsec_fls, frequency_fls, sec_fls;
1591
1592         count_fls = fls64(count);
1593         nsec_fls = fls64(nsec);
1594         frequency_fls = fls64(frequency);
1595         sec_fls = 30;
1596
1597         /*
1598          * We got @count in @nsec, with a target of sample_freq HZ
1599          * the target period becomes:
1600          *
1601          *             @count * 10^9
1602          * period = -------------------
1603          *          @nsec * sample_freq
1604          *
1605          */
1606
1607         /*
1608          * Reduce accuracy by one bit such that @a and @b converge
1609          * to a similar magnitude.
1610          */
1611 #define REDUCE_FLS(a, b)                \
1612 do {                                    \
1613         if (a##_fls > b##_fls) {        \
1614                 a >>= 1;                \
1615                 a##_fls--;              \
1616         } else {                        \
1617                 b >>= 1;                \
1618                 b##_fls--;              \
1619         }                               \
1620 } while (0)
1621
1622         /*
1623          * Reduce accuracy until either term fits in a u64, then proceed with
1624          * the other, so that finally we can do a u64/u64 division.
1625          */
1626         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1627                 REDUCE_FLS(nsec, frequency);
1628                 REDUCE_FLS(sec, count);
1629         }
1630
1631         if (count_fls + sec_fls > 64) {
1632                 divisor = nsec * frequency;
1633
1634                 while (count_fls + sec_fls > 64) {
1635                         REDUCE_FLS(count, sec);
1636                         divisor >>= 1;
1637                 }
1638
1639                 dividend = count * sec;
1640         } else {
1641                 dividend = count * sec;
1642
1643                 while (nsec_fls + frequency_fls > 64) {
1644                         REDUCE_FLS(nsec, frequency);
1645                         dividend >>= 1;
1646                 }
1647
1648                 divisor = nsec * frequency;
1649         }
1650
1651         if (!divisor)
1652                 return dividend;
1653
1654         return div64_u64(dividend, divisor);
1655 }
1656
1657 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1658 {
1659         struct hw_perf_event *hwc = &event->hw;
1660         s64 period, sample_period;
1661         s64 delta;
1662
1663         period = perf_calculate_period(event, nsec, count);
1664
1665         delta = (s64)(period - hwc->sample_period);
1666         delta = (delta + 7) / 8; /* low pass filter */
1667
1668         sample_period = hwc->sample_period + delta;
1669
1670         if (!sample_period)
1671                 sample_period = 1;
1672
1673         hwc->sample_period = sample_period;
1674
1675         if (local64_read(&hwc->period_left) > 8*sample_period) {
1676                 event->pmu->stop(event, PERF_EF_UPDATE);
1677                 local64_set(&hwc->period_left, 0);
1678                 event->pmu->start(event, PERF_EF_RELOAD);
1679         }
1680 }
1681
1682 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1683 {
1684         struct perf_event *event;
1685         struct hw_perf_event *hwc;
1686         u64 interrupts, now;
1687         s64 delta;
1688
1689         raw_spin_lock(&ctx->lock);
1690         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1691                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1692                         continue;
1693
1694                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1695                         continue;
1696
1697                 hwc = &event->hw;
1698
1699                 interrupts = hwc->interrupts;
1700                 hwc->interrupts = 0;
1701
1702                 /*
1703                  * unthrottle events on the tick
1704                  */
1705                 if (interrupts == MAX_INTERRUPTS) {
1706                         perf_log_throttle(event, 1);
1707                         event->pmu->start(event, 0);
1708                 }
1709
1710                 if (!event->attr.freq || !event->attr.sample_freq)
1711                         continue;
1712
1713                 event->pmu->read(event);
1714                 now = local64_read(&event->count);
1715                 delta = now - hwc->freq_count_stamp;
1716                 hwc->freq_count_stamp = now;
1717
1718                 if (delta > 0)
1719                         perf_adjust_period(event, period, delta);
1720         }
1721         raw_spin_unlock(&ctx->lock);
1722 }
1723
1724 /*
1725  * Round-robin a context's events:
1726  */
1727 static void rotate_ctx(struct perf_event_context *ctx)
1728 {
1729         raw_spin_lock(&ctx->lock);
1730
1731         /*
1732          * Rotate the first entry last of non-pinned groups. Rotation might be
1733          * disabled by the inheritance code.
1734          */
1735         if (!ctx->rotate_disable)
1736                 list_rotate_left(&ctx->flexible_groups);
1737
1738         raw_spin_unlock(&ctx->lock);
1739 }
1740
1741 /*
1742  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
1743  * because they're strictly cpu affine and rotate_start is called with IRQs
1744  * disabled, while rotate_context is called from IRQ context.
1745  */
1746 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1747 {
1748         u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
1749         struct perf_event_context *ctx = NULL;
1750         int rotate = 0, remove = 1;
1751
1752         if (cpuctx->ctx.nr_events) {
1753                 remove = 0;
1754                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1755                         rotate = 1;
1756         }
1757
1758         ctx = cpuctx->task_ctx;
1759         if (ctx && ctx->nr_events) {
1760                 remove = 0;
1761                 if (ctx->nr_events != ctx->nr_active)
1762                         rotate = 1;
1763         }
1764
1765         perf_pmu_disable(cpuctx->ctx.pmu);
1766         perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1767         if (ctx)
1768                 perf_ctx_adjust_freq(ctx, interval);
1769
1770         if (!rotate)
1771                 goto done;
1772
1773         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1774         if (ctx)
1775                 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1776
1777         rotate_ctx(&cpuctx->ctx);
1778         if (ctx)
1779                 rotate_ctx(ctx);
1780
1781         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1782         if (ctx)
1783                 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1784
1785 done:
1786         if (remove)
1787                 list_del_init(&cpuctx->rotation_list);
1788
1789         perf_pmu_enable(cpuctx->ctx.pmu);
1790 }
1791
1792 void perf_event_task_tick(void)
1793 {
1794         struct list_head *head = &__get_cpu_var(rotation_list);
1795         struct perf_cpu_context *cpuctx, *tmp;
1796
1797         WARN_ON(!irqs_disabled());
1798
1799         list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
1800                 if (cpuctx->jiffies_interval == 1 ||
1801                                 !(jiffies % cpuctx->jiffies_interval))
1802                         perf_rotate_context(cpuctx);
1803         }
1804 }
1805
1806 static int event_enable_on_exec(struct perf_event *event,
1807                                 struct perf_event_context *ctx)
1808 {
1809         if (!event->attr.enable_on_exec)
1810                 return 0;
1811
1812         event->attr.enable_on_exec = 0;
1813         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1814                 return 0;
1815
1816         __perf_event_mark_enabled(event, ctx);
1817
1818         return 1;
1819 }
1820
1821 /*
1822  * Enable all of a task's events that have been marked enable-on-exec.
1823  * This expects task == current.
1824  */
1825 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1826 {
1827         struct perf_event *event;
1828         unsigned long flags;
1829         int enabled = 0;
1830         int ret;
1831
1832         local_irq_save(flags);
1833         if (!ctx || !ctx->nr_events)
1834                 goto out;
1835
1836         task_ctx_sched_out(ctx, EVENT_ALL);
1837
1838         raw_spin_lock(&ctx->lock);
1839
1840         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1841                 ret = event_enable_on_exec(event, ctx);
1842                 if (ret)
1843                         enabled = 1;
1844         }
1845
1846         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1847                 ret = event_enable_on_exec(event, ctx);
1848                 if (ret)
1849                         enabled = 1;
1850         }
1851
1852         /*
1853          * Unclone this context if we enabled any event.
1854          */
1855         if (enabled)
1856                 unclone_ctx(ctx);
1857
1858         raw_spin_unlock(&ctx->lock);
1859
1860         perf_event_context_sched_in(ctx);
1861 out:
1862         local_irq_restore(flags);
1863 }
1864
1865 /*
1866  * Cross CPU call to read the hardware event
1867  */
1868 static void __perf_event_read(void *info)
1869 {
1870         struct perf_event *event = info;
1871         struct perf_event_context *ctx = event->ctx;
1872         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1873
1874         /*
1875          * If this is a task context, we need to check whether it is
1876          * the current task context of this cpu.  If not it has been
1877          * scheduled out before the smp call arrived.  In that case
1878          * event->count would have been updated to a recent sample
1879          * when the event was scheduled out.
1880          */
1881         if (ctx->task && cpuctx->task_ctx != ctx)
1882                 return;
1883
1884         raw_spin_lock(&ctx->lock);
1885         update_context_time(ctx);
1886         update_event_times(event);
1887         raw_spin_unlock(&ctx->lock);
1888
1889         event->pmu->read(event);
1890 }
1891
1892 static inline u64 perf_event_count(struct perf_event *event)
1893 {
1894         return local64_read(&event->count) + atomic64_read(&event->child_count);
1895 }
1896
1897 static u64 perf_event_read(struct perf_event *event)
1898 {
1899         /*
1900          * If event is enabled and currently active on a CPU, update the
1901          * value in the event structure:
1902          */
1903         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1904                 smp_call_function_single(event->oncpu,
1905                                          __perf_event_read, event, 1);
1906         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1907                 struct perf_event_context *ctx = event->ctx;
1908                 unsigned long flags;
1909
1910                 raw_spin_lock_irqsave(&ctx->lock, flags);
1911                 /*
1912                  * may read while context is not active
1913                  * (e.g., thread is blocked), in that case
1914                  * we cannot update context time
1915                  */
1916                 if (ctx->is_active)
1917                         update_context_time(ctx);
1918                 update_event_times(event);
1919                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1920         }
1921
1922         return perf_event_count(event);
1923 }
1924
1925 /*
1926  * Callchain support
1927  */
1928
1929 struct callchain_cpus_entries {
1930         struct rcu_head                 rcu_head;
1931         struct perf_callchain_entry     *cpu_entries[0];
1932 };
1933
1934 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1935 static atomic_t nr_callchain_events;
1936 static DEFINE_MUTEX(callchain_mutex);
1937 struct callchain_cpus_entries *callchain_cpus_entries;
1938
1939
1940 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1941                                   struct pt_regs *regs)
1942 {
1943 }
1944
1945 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1946                                 struct pt_regs *regs)
1947 {
1948 }
1949
1950 static void release_callchain_buffers_rcu(struct rcu_head *head)
1951 {
1952         struct callchain_cpus_entries *entries;
1953         int cpu;
1954
1955         entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1956
1957         for_each_possible_cpu(cpu)
1958                 kfree(entries->cpu_entries[cpu]);
1959
1960         kfree(entries);
1961 }
1962
1963 static void release_callchain_buffers(void)
1964 {
1965         struct callchain_cpus_entries *entries;
1966
1967         entries = callchain_cpus_entries;
1968         rcu_assign_pointer(callchain_cpus_entries, NULL);
1969         call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1970 }
1971
1972 static int alloc_callchain_buffers(void)
1973 {
1974         int cpu;
1975         int size;
1976         struct callchain_cpus_entries *entries;
1977
1978         /*
1979          * We can't use the percpu allocation API for data that can be
1980          * accessed from NMI. Use a temporary manual per cpu allocation
1981          * until that gets sorted out.
1982          */
1983         size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
1984                 num_possible_cpus();
1985
1986         entries = kzalloc(size, GFP_KERNEL);
1987         if (!entries)
1988                 return -ENOMEM;
1989
1990         size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1991
1992         for_each_possible_cpu(cpu) {
1993                 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
1994                                                          cpu_to_node(cpu));
1995                 if (!entries->cpu_entries[cpu])
1996                         goto fail;
1997         }
1998
1999         rcu_assign_pointer(callchain_cpus_entries, entries);
2000
2001         return 0;
2002
2003 fail:
2004         for_each_possible_cpu(cpu)
2005                 kfree(entries->cpu_entries[cpu]);
2006         kfree(entries);
2007
2008         return -ENOMEM;
2009 }
2010
2011 static int get_callchain_buffers(void)
2012 {
2013         int err = 0;
2014         int count;
2015
2016         mutex_lock(&callchain_mutex);
2017
2018         count = atomic_inc_return(&nr_callchain_events);
2019         if (WARN_ON_ONCE(count < 1)) {
2020                 err = -EINVAL;
2021                 goto exit;
2022         }
2023
2024         if (count > 1) {
2025                 /* If the allocation failed, give up */
2026                 if (!callchain_cpus_entries)
2027                         err = -ENOMEM;
2028                 goto exit;
2029         }
2030
2031         err = alloc_callchain_buffers();
2032         if (err)
2033                 release_callchain_buffers();
2034 exit:
2035         mutex_unlock(&callchain_mutex);
2036
2037         return err;
2038 }
2039
2040 static void put_callchain_buffers(void)
2041 {
2042         if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
2043                 release_callchain_buffers();
2044                 mutex_unlock(&callchain_mutex);
2045         }
2046 }
2047
2048 static int get_recursion_context(int *recursion)
2049 {
2050         int rctx;
2051
2052         if (in_nmi())
2053                 rctx = 3;
2054         else if (in_irq())
2055                 rctx = 2;
2056         else if (in_softirq())
2057                 rctx = 1;
2058         else
2059                 rctx = 0;
2060
2061         if (recursion[rctx])
2062                 return -1;
2063
2064         recursion[rctx]++;
2065         barrier();
2066
2067         return rctx;
2068 }
2069
2070 static inline void put_recursion_context(int *recursion, int rctx)
2071 {
2072         barrier();
2073         recursion[rctx]--;
2074 }
2075
2076 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
2077 {
2078         int cpu;
2079         struct callchain_cpus_entries *entries;
2080
2081         *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
2082         if (*rctx == -1)
2083                 return NULL;
2084
2085         entries = rcu_dereference(callchain_cpus_entries);
2086         if (!entries)
2087                 return NULL;
2088
2089         cpu = smp_processor_id();
2090
2091         return &entries->cpu_entries[cpu][*rctx];
2092 }
2093
2094 static void
2095 put_callchain_entry(int rctx)
2096 {
2097         put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
2098 }
2099
2100 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2101 {
2102         int rctx;
2103         struct perf_callchain_entry *entry;
2104
2105
2106         entry = get_callchain_entry(&rctx);
2107         if (rctx == -1)
2108                 return NULL;
2109
2110         if (!entry)
2111                 goto exit_put;
2112
2113         entry->nr = 0;
2114
2115         if (!user_mode(regs)) {
2116                 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2117                 perf_callchain_kernel(entry, regs);
2118                 if (current->mm)
2119                         regs = task_pt_regs(current);
2120                 else
2121                         regs = NULL;
2122         }
2123
2124         if (regs) {
2125                 perf_callchain_store(entry, PERF_CONTEXT_USER);
2126                 perf_callchain_user(entry, regs);
2127         }
2128
2129 exit_put:
2130         put_callchain_entry(rctx);
2131
2132         return entry;
2133 }
2134
2135 /*
2136  * Initialize the perf_event context in a task_struct:
2137  */
2138 static void __perf_event_init_context(struct perf_event_context *ctx)
2139 {
2140         raw_spin_lock_init(&ctx->lock);
2141         mutex_init(&ctx->mutex);
2142         INIT_LIST_HEAD(&ctx->pinned_groups);
2143         INIT_LIST_HEAD(&ctx->flexible_groups);
2144         INIT_LIST_HEAD(&ctx->event_list);
2145         atomic_set(&ctx->refcount, 1);
2146 }
2147
2148 static struct perf_event_context *
2149 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2150 {
2151         struct perf_event_context *ctx;
2152
2153         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2154         if (!ctx)
2155                 return NULL;
2156
2157         __perf_event_init_context(ctx);
2158         if (task) {
2159                 ctx->task = task;
2160                 get_task_struct(task);
2161         }
2162         ctx->pmu = pmu;
2163
2164         return ctx;
2165 }
2166
2167 static struct task_struct *
2168 find_lively_task_by_vpid(pid_t vpid)
2169 {
2170         struct task_struct *task;
2171         int err;
2172
2173         rcu_read_lock();
2174         if (!vpid)
2175                 task = current;
2176         else
2177                 task = find_task_by_vpid(vpid);
2178         if (task)
2179                 get_task_struct(task);
2180         rcu_read_unlock();
2181
2182         if (!task)
2183                 return ERR_PTR(-ESRCH);
2184
2185         /*
2186          * Can't attach events to a dying task.
2187          */
2188         err = -ESRCH;
2189         if (task->flags & PF_EXITING)
2190                 goto errout;
2191
2192         /* Reuse ptrace permission checks for now. */
2193         err = -EACCES;
2194         if (!ptrace_may_access(task, PTRACE_MODE_READ))
2195                 goto errout;
2196
2197         return task;
2198 errout:
2199         put_task_struct(task);
2200         return ERR_PTR(err);
2201
2202 }
2203
2204 static struct perf_event_context *
2205 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2206 {
2207         struct perf_event_context *ctx;
2208         struct perf_cpu_context *cpuctx;
2209         unsigned long flags;
2210         int ctxn, err;
2211
2212         if (!task && cpu != -1) {
2213                 /* Must be root to operate on a CPU event: */
2214                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2215                         return ERR_PTR(-EACCES);
2216
2217                 if (cpu < 0 || cpu >= nr_cpumask_bits)
2218                         return ERR_PTR(-EINVAL);
2219
2220                 /*
2221                  * We could be clever and allow to attach a event to an
2222                  * offline CPU and activate it when the CPU comes up, but
2223                  * that's for later.
2224                  */
2225                 if (!cpu_online(cpu))
2226                         return ERR_PTR(-ENODEV);
2227
2228                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2229                 ctx = &cpuctx->ctx;
2230                 get_ctx(ctx);
2231
2232                 return ctx;
2233         }
2234
2235         err = -EINVAL;
2236         ctxn = pmu->task_ctx_nr;
2237         if (ctxn < 0)
2238                 goto errout;
2239
2240 retry:
2241         ctx = perf_lock_task_context(task, ctxn, &flags);
2242         if (ctx) {
2243                 unclone_ctx(ctx);
2244                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2245         }
2246
2247         if (!ctx) {
2248                 ctx = alloc_perf_context(pmu, task);
2249                 err = -ENOMEM;
2250                 if (!ctx)
2251                         goto errout;
2252
2253                 get_ctx(ctx);
2254
2255                 if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2256                         /*
2257                          * We raced with some other task; use
2258                          * the context they set.
2259                          */
2260                         put_task_struct(task);
2261                         kfree(ctx);
2262                         goto retry;
2263                 }
2264         }
2265
2266         return ctx;
2267
2268 errout:
2269         return ERR_PTR(err);
2270 }
2271
2272 static void perf_event_free_filter(struct perf_event *event);
2273
2274 static void free_event_rcu(struct rcu_head *head)
2275 {
2276         struct perf_event *event;
2277
2278         event = container_of(head, struct perf_event, rcu_head);
2279         if (event->ns)
2280                 put_pid_ns(event->ns);
2281         perf_event_free_filter(event);
2282         kfree(event);
2283 }
2284
2285 static void perf_buffer_put(struct perf_buffer *buffer);
2286
2287 static void free_event(struct perf_event *event)
2288 {
2289         irq_work_sync(&event->pending);
2290
2291         if (!event->parent) {
2292                 if (event->attach_state & PERF_ATTACH_TASK)
2293                         jump_label_dec(&perf_task_events);
2294                 if (event->attr.mmap || event->attr.mmap_data)
2295                         atomic_dec(&nr_mmap_events);
2296                 if (event->attr.comm)
2297                         atomic_dec(&nr_comm_events);
2298                 if (event->attr.task)
2299                         atomic_dec(&nr_task_events);
2300                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2301                         put_callchain_buffers();
2302         }
2303
2304         if (event->buffer) {
2305                 perf_buffer_put(event->buffer);
2306                 event->buffer = NULL;
2307         }
2308
2309         if (event->destroy)
2310                 event->destroy(event);
2311
2312         if (event->ctx)
2313                 put_ctx(event->ctx);
2314
2315         call_rcu(&event->rcu_head, free_event_rcu);
2316 }
2317
2318 int perf_event_release_kernel(struct perf_event *event)
2319 {
2320         struct perf_event_context *ctx = event->ctx;
2321
2322         /*
2323          * Remove from the PMU, can't get re-enabled since we got
2324          * here because the last ref went.
2325          */
2326         perf_event_disable(event);
2327
2328         WARN_ON_ONCE(ctx->parent_ctx);
2329         /*
2330          * There are two ways this annotation is useful:
2331          *
2332          *  1) there is a lock recursion from perf_event_exit_task
2333          *     see the comment there.
2334          *
2335          *  2) there is a lock-inversion with mmap_sem through
2336          *     perf_event_read_group(), which takes faults while
2337          *     holding ctx->mutex, however this is called after
2338          *     the last filedesc died, so there is no possibility
2339          *     to trigger the AB-BA case.
2340          */
2341         mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2342         raw_spin_lock_irq(&ctx->lock);
2343         perf_group_detach(event);
2344         list_del_event(event, ctx);
2345         raw_spin_unlock_irq(&ctx->lock);
2346         mutex_unlock(&ctx->mutex);
2347
2348         free_event(event);
2349
2350         return 0;
2351 }
2352 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2353
2354 /*
2355  * Called when the last reference to the file is gone.
2356  */
2357 static int perf_release(struct inode *inode, struct file *file)
2358 {
2359         struct perf_event *event = file->private_data;
2360         struct task_struct *owner;
2361
2362         file->private_data = NULL;
2363
2364         rcu_read_lock();
2365         owner = ACCESS_ONCE(event->owner);
2366         /*
2367          * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2368          * !owner it means the list deletion is complete and we can indeed
2369          * free this event, otherwise we need to serialize on
2370          * owner->perf_event_mutex.
2371          */
2372         smp_read_barrier_depends();
2373         if (owner) {
2374                 /*
2375                  * Since delayed_put_task_struct() also drops the last
2376                  * task reference we can safely take a new reference
2377                  * while holding the rcu_read_lock().
2378                  */
2379                 get_task_struct(owner);
2380         }
2381         rcu_read_unlock();
2382
2383         if (owner) {
2384                 mutex_lock(&owner->perf_event_mutex);
2385                 /*
2386                  * We have to re-check the event->owner field, if it is cleared
2387                  * we raced with perf_event_exit_task(), acquiring the mutex
2388                  * ensured they're done, and we can proceed with freeing the
2389                  * event.
2390                  */
2391                 if (event->owner)
2392                         list_del_init(&event->owner_entry);
2393                 mutex_unlock(&owner->perf_event_mutex);
2394                 put_task_struct(owner);
2395         }
2396
2397         return perf_event_release_kernel(event);
2398 }
2399
2400 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2401 {
2402         struct perf_event *child;
2403         u64 total = 0;
2404
2405         *enabled = 0;
2406         *running = 0;
2407
2408         mutex_lock(&event->child_mutex);
2409         total += perf_event_read(event);
2410         *enabled += event->total_time_enabled +
2411                         atomic64_read(&event->child_total_time_enabled);
2412         *running += event->total_time_running +
2413                         atomic64_read(&event->child_total_time_running);
2414
2415         list_for_each_entry(child, &event->child_list, child_list) {
2416                 total += perf_event_read(child);
2417                 *enabled += child->total_time_enabled;
2418                 *running += child->total_time_running;
2419         }
2420         mutex_unlock(&event->child_mutex);
2421
2422         return total;
2423 }
2424 EXPORT_SYMBOL_GPL(perf_event_read_value);
2425
2426 static int perf_event_read_group(struct perf_event *event,
2427                                    u64 read_format, char __user *buf)
2428 {
2429         struct perf_event *leader = event->group_leader, *sub;
2430         int n = 0, size = 0, ret = -EFAULT;
2431         struct perf_event_context *ctx = leader->ctx;
2432         u64 values[5];
2433         u64 count, enabled, running;
2434
2435         mutex_lock(&ctx->mutex);
2436         count = perf_event_read_value(leader, &enabled, &running);
2437
2438         values[n++] = 1 + leader->nr_siblings;
2439         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2440                 values[n++] = enabled;
2441         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2442                 values[n++] = running;
2443         values[n++] = count;
2444         if (read_format & PERF_FORMAT_ID)
2445                 values[n++] = primary_event_id(leader);
2446
2447         size = n * sizeof(u64);
2448
2449         if (copy_to_user(buf, values, size))
2450                 goto unlock;
2451
2452         ret = size;
2453
2454         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2455                 n = 0;
2456
2457                 values[n++] = perf_event_read_value(sub, &enabled, &running);
2458                 if (read_format & PERF_FORMAT_ID)
2459                         values[n++] = primary_event_id(sub);
2460
2461                 size = n * sizeof(u64);
2462
2463                 if (copy_to_user(buf + ret, values, size)) {
2464                         ret = -EFAULT;
2465                         goto unlock;
2466                 }
2467
2468                 ret += size;
2469         }
2470 unlock:
2471         mutex_unlock(&ctx->mutex);
2472
2473         return ret;
2474 }
2475
2476 static int perf_event_read_one(struct perf_event *event,
2477                                  u64 read_format, char __user *buf)
2478 {
2479         u64 enabled, running;
2480         u64 values[4];
2481         int n = 0;
2482
2483         values[n++] = perf_event_read_value(event, &enabled, &running);
2484         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2485                 values[n++] = enabled;
2486         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2487                 values[n++] = running;
2488         if (read_format & PERF_FORMAT_ID)
2489                 values[n++] = primary_event_id(event);
2490
2491         if (copy_to_user(buf, values, n * sizeof(u64)))
2492                 return -EFAULT;
2493
2494         return n * sizeof(u64);
2495 }
2496
2497 /*
2498  * Read the performance event - simple non blocking version for now
2499  */
2500 static ssize_t
2501 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2502 {
2503         u64 read_format = event->attr.read_format;
2504         int ret;
2505
2506         /*
2507          * Return end-of-file for a read on a event that is in
2508          * error state (i.e. because it was pinned but it couldn't be
2509          * scheduled on to the CPU at some point).
2510          */
2511         if (event->state == PERF_EVENT_STATE_ERROR)
2512                 return 0;
2513
2514         if (count < event->read_size)
2515                 return -ENOSPC;
2516
2517         WARN_ON_ONCE(event->ctx->parent_ctx);
2518         if (read_format & PERF_FORMAT_GROUP)
2519                 ret = perf_event_read_group(event, read_format, buf);
2520         else
2521                 ret = perf_event_read_one(event, read_format, buf);
2522
2523         return ret;
2524 }
2525
2526 static ssize_t
2527 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2528 {
2529         struct perf_event *event = file->private_data;
2530
2531         return perf_read_hw(event, buf, count);
2532 }
2533
2534 static unsigned int perf_poll(struct file *file, poll_table *wait)
2535 {
2536         struct perf_event *event = file->private_data;
2537         struct perf_buffer *buffer;
2538         unsigned int events = POLL_HUP;
2539
2540         rcu_read_lock();
2541         buffer = rcu_dereference(event->buffer);
2542         if (buffer)
2543                 events = atomic_xchg(&buffer->poll, 0);
2544         rcu_read_unlock();
2545
2546         poll_wait(file, &event->waitq, wait);
2547
2548         return events;
2549 }
2550
2551 static void perf_event_reset(struct perf_event *event)
2552 {
2553         (void)perf_event_read(event);
2554         local64_set(&event->count, 0);
2555         perf_event_update_userpage(event);
2556 }
2557
2558 /*
2559  * Holding the top-level event's child_mutex means that any
2560  * descendant process that has inherited this event will block
2561  * in sync_child_event if it goes to exit, thus satisfying the
2562  * task existence requirements of perf_event_enable/disable.
2563  */
2564 static void perf_event_for_each_child(struct perf_event *event,
2565                                         void (*func)(struct perf_event *))
2566 {
2567         struct perf_event *child;
2568
2569         WARN_ON_ONCE(event->ctx->parent_ctx);
2570         mutex_lock(&event->child_mutex);
2571         func(event);
2572         list_for_each_entry(child, &event->child_list, child_list)
2573                 func(child);
2574         mutex_unlock(&event->child_mutex);
2575 }
2576
2577 static void perf_event_for_each(struct perf_event *event,
2578                                   void (*func)(struct perf_event *))
2579 {
2580         struct perf_event_context *ctx = event->ctx;
2581         struct perf_event *sibling;
2582
2583         WARN_ON_ONCE(ctx->parent_ctx);
2584         mutex_lock(&ctx->mutex);
2585         event = event->group_leader;
2586
2587         perf_event_for_each_child(event, func);
2588         func(event);
2589         list_for_each_entry(sibling, &event->sibling_list, group_entry)
2590                 perf_event_for_each_child(event, func);
2591         mutex_unlock(&ctx->mutex);
2592 }
2593
2594 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2595 {
2596         struct perf_event_context *ctx = event->ctx;
2597         int ret = 0;
2598         u64 value;
2599
2600         if (!is_sampling_event(event))
2601                 return -EINVAL;
2602
2603         if (copy_from_user(&value, arg, sizeof(value)))
2604                 return -EFAULT;
2605
2606         if (!value)
2607                 return -EINVAL;
2608
2609         raw_spin_lock_irq(&ctx->lock);
2610         if (event->attr.freq) {
2611                 if (value > sysctl_perf_event_sample_rate) {
2612                         ret = -EINVAL;
2613                         goto unlock;
2614                 }
2615
2616                 event->attr.sample_freq = value;
2617         } else {
2618                 event->attr.sample_period = value;
2619                 event->hw.sample_period = value;
2620         }
2621 unlock:
2622         raw_spin_unlock_irq(&ctx->lock);
2623
2624         return ret;
2625 }
2626
2627 static const struct file_operations perf_fops;
2628
2629 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2630 {
2631         struct file *file;
2632
2633         file = fget_light(fd, fput_needed);
2634         if (!file)
2635                 return ERR_PTR(-EBADF);
2636
2637         if (file->f_op != &perf_fops) {
2638                 fput_light(file, *fput_needed);
2639                 *fput_needed = 0;
2640                 return ERR_PTR(-EBADF);
2641         }
2642
2643         return file->private_data;
2644 }
2645
2646 static int perf_event_set_output(struct perf_event *event,
2647                                  struct perf_event *output_event);
2648 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2649
2650 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2651 {
2652         struct perf_event *event = file->private_data;
2653         void (*func)(struct perf_event *);
2654         u32 flags = arg;
2655
2656         switch (cmd) {
2657         case PERF_EVENT_IOC_ENABLE:
2658                 func = perf_event_enable;
2659                 break;
2660         case PERF_EVENT_IOC_DISABLE:
2661                 func = perf_event_disable;
2662                 break;
2663         case PERF_EVENT_IOC_RESET:
2664                 func = perf_event_reset;
2665                 break;
2666
2667         case PERF_EVENT_IOC_REFRESH:
2668                 return perf_event_refresh(event, arg);
2669
2670         case PERF_EVENT_IOC_PERIOD:
2671                 return perf_event_period(event, (u64 __user *)arg);
2672
2673         case PERF_EVENT_IOC_SET_OUTPUT:
2674         {
2675                 struct perf_event *output_event = NULL;
2676                 int fput_needed = 0;
2677                 int ret;
2678
2679                 if (arg != -1) {
2680                         output_event = perf_fget_light(arg, &fput_needed);
2681                         if (IS_ERR(output_event))
2682                                 return PTR_ERR(output_event);
2683                 }
2684
2685                 ret = perf_event_set_output(event, output_event);
2686                 if (output_event)
2687                         fput_light(output_event->filp, fput_needed);
2688
2689                 return ret;
2690         }
2691
2692         case PERF_EVENT_IOC_SET_FILTER:
2693                 return perf_event_set_filter(event, (void __user *)arg);
2694
2695         default:
2696                 return -ENOTTY;
2697         }
2698
2699         if (flags & PERF_IOC_FLAG_GROUP)
2700                 perf_event_for_each(event, func);
2701         else
2702                 perf_event_for_each_child(event, func);
2703
2704         return 0;
2705 }
2706
2707 int perf_event_task_enable(void)
2708 {
2709         struct perf_event *event;
2710
2711         mutex_lock(&current->perf_event_mutex);
2712         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2713                 perf_event_for_each_child(event, perf_event_enable);
2714         mutex_unlock(&current->perf_event_mutex);
2715
2716         return 0;
2717 }
2718
2719 int perf_event_task_disable(void)
2720 {
2721         struct perf_event *event;
2722
2723         mutex_lock(&current->perf_event_mutex);
2724         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2725                 perf_event_for_each_child(event, perf_event_disable);
2726         mutex_unlock(&current->perf_event_mutex);
2727
2728         return 0;
2729 }
2730
2731 #ifndef PERF_EVENT_INDEX_OFFSET
2732 # define PERF_EVENT_INDEX_OFFSET 0
2733 #endif
2734
2735 static int perf_event_index(struct perf_event *event)
2736 {
2737         if (event->hw.state & PERF_HES_STOPPED)
2738                 return 0;
2739
2740         if (event->state != PERF_EVENT_STATE_ACTIVE)
2741                 return 0;
2742
2743         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2744 }
2745
2746 /*
2747  * Callers need to ensure there can be no nesting of this function, otherwise
2748  * the seqlock logic goes bad. We can not serialize this because the arch
2749  * code calls this from NMI context.
2750  */
2751 void perf_event_update_userpage(struct perf_event *event)
2752 {
2753         struct perf_event_mmap_page *userpg;
2754         struct perf_buffer *buffer;
2755
2756         rcu_read_lock();
2757         buffer = rcu_dereference(event->buffer);
2758         if (!buffer)
2759                 goto unlock;
2760
2761         userpg = buffer->user_page;
2762
2763         /*
2764          * Disable preemption so as to not let the corresponding user-space
2765          * spin too long if we get preempted.
2766          */
2767         preempt_disable();
2768         ++userpg->lock;
2769         barrier();
2770         userpg->index = perf_event_index(event);
2771         userpg->offset = perf_event_count(event);
2772         if (event->state == PERF_EVENT_STATE_ACTIVE)
2773                 userpg->offset -= local64_read(&event->hw.prev_count);
2774
2775         userpg->time_enabled = event->total_time_enabled +
2776                         atomic64_read(&event->child_total_time_enabled);
2777
2778         userpg->time_running = event->total_time_running +
2779                         atomic64_read(&event->child_total_time_running);
2780
2781         barrier();
2782         ++userpg->lock;
2783         preempt_enable();
2784 unlock:
2785         rcu_read_unlock();
2786 }
2787
2788 static unsigned long perf_data_size(struct perf_buffer *buffer);
2789
2790 static void
2791 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2792 {
2793         long max_size = perf_data_size(buffer);
2794
2795         if (watermark)
2796                 buffer->watermark = min(max_size, watermark);
2797
2798         if (!buffer->watermark)
2799                 buffer->watermark = max_size / 2;
2800
2801         if (flags & PERF_BUFFER_WRITABLE)
2802                 buffer->writable = 1;
2803
2804         atomic_set(&buffer->refcount, 1);
2805 }
2806
2807 #ifndef CONFIG_PERF_USE_VMALLOC
2808
2809 /*
2810  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2811  */
2812
2813 static struct page *
2814 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2815 {
2816         if (pgoff > buffer->nr_pages)
2817                 return NULL;
2818
2819         if (pgoff == 0)
2820                 return virt_to_page(buffer->user_page);
2821
2822         return virt_to_page(buffer->data_pages[pgoff - 1]);
2823 }
2824
2825 static void *perf_mmap_alloc_page(int cpu)
2826 {
2827         struct page *page;
2828         int node;
2829
2830         node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2831         page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2832         if (!page)
2833                 return NULL;
2834
2835         return page_address(page);
2836 }
2837
2838 static struct perf_buffer *
2839 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2840 {
2841         struct perf_buffer *buffer;
2842         unsigned long size;
2843         int i;
2844
2845         size = sizeof(struct perf_buffer);
2846         size += nr_pages * sizeof(void *);
2847
2848         buffer = kzalloc(size, GFP_KERNEL);
2849         if (!buffer)
2850                 goto fail;
2851
2852         buffer->user_page = perf_mmap_alloc_page(cpu);
2853         if (!buffer->user_page)
2854                 goto fail_user_page;
2855
2856         for (i = 0; i < nr_pages; i++) {
2857                 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2858                 if (!buffer->data_pages[i])
2859                         goto fail_data_pages;
2860         }
2861
2862         buffer->nr_pages = nr_pages;
2863
2864         perf_buffer_init(buffer, watermark, flags);
2865
2866         return buffer;
2867
2868 fail_data_pages:
2869         for (i--; i >= 0; i--)
2870                 free_page((unsigned long)buffer->data_pages[i]);
2871
2872         free_page((unsigned long)buffer->user_page);
2873
2874 fail_user_page:
2875         kfree(buffer);
2876
2877 fail:
2878         return NULL;
2879 }
2880
2881 static void perf_mmap_free_page(unsigned long addr)
2882 {
2883         struct page *page = virt_to_page((void *)addr);
2884
2885         page->mapping = NULL;
2886         __free_page(page);
2887 }
2888
2889 static void perf_buffer_free(struct perf_buffer *buffer)
2890 {
2891         int i;
2892
2893         perf_mmap_free_page((unsigned long)buffer->user_page);
2894         for (i = 0; i < buffer->nr_pages; i++)
2895                 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2896         kfree(buffer);
2897 }
2898
2899 static inline int page_order(struct perf_buffer *buffer)
2900 {
2901         return 0;
2902 }
2903
2904 #else
2905
2906 /*
2907  * Back perf_mmap() with vmalloc memory.
2908  *
2909  * Required for architectures that have d-cache aliasing issues.
2910  */
2911
2912 static inline int page_order(struct perf_buffer *buffer)
2913 {
2914         return buffer->page_order;
2915 }
2916
2917 static struct page *
2918 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2919 {
2920         if (pgoff > (1UL << page_order(buffer)))
2921                 return NULL;
2922
2923         return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2924 }
2925
2926 static void perf_mmap_unmark_page(void *addr)
2927 {
2928         struct page *page = vmalloc_to_page(addr);
2929
2930         page->mapping = NULL;
2931 }
2932
2933 static void perf_buffer_free_work(struct work_struct *work)
2934 {
2935         struct perf_buffer *buffer;
2936         void *base;
2937         int i, nr;
2938
2939         buffer = container_of(work, struct perf_buffer, work);
2940         nr = 1 << page_order(buffer);
2941
2942         base = buffer->user_page;
2943         for (i = 0; i < nr + 1; i++)
2944                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2945
2946         vfree(base);
2947         kfree(buffer);
2948 }
2949
2950 static void perf_buffer_free(struct perf_buffer *buffer)
2951 {
2952         schedule_work(&buffer->work);
2953 }
2954
2955 static struct perf_buffer *
2956 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2957 {
2958         struct perf_buffer *buffer;
2959         unsigned long size;
2960         void *all_buf;
2961
2962         size = sizeof(struct perf_buffer);
2963         size += sizeof(void *);
2964
2965         buffer = kzalloc(size, GFP_KERNEL);
2966         if (!buffer)
2967                 goto fail;
2968
2969         INIT_WORK(&buffer->work, perf_buffer_free_work);
2970
2971         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2972         if (!all_buf)
2973                 goto fail_all_buf;
2974
2975         buffer->user_page = all_buf;
2976         buffer->data_pages[0] = all_buf + PAGE_SIZE;
2977         buffer->page_order = ilog2(nr_pages);
2978         buffer->nr_pages = 1;
2979
2980         perf_buffer_init(buffer, watermark, flags);
2981
2982         return buffer;
2983
2984 fail_all_buf:
2985         kfree(buffer);
2986
2987 fail:
2988         return NULL;
2989 }
2990
2991 #endif
2992
2993 static unsigned long perf_data_size(struct perf_buffer *buffer)
2994 {
2995         return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2996 }
2997
2998 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2999 {
3000         struct perf_event *event = vma->vm_file->private_data;
3001         struct perf_buffer *buffer;
3002         int ret = VM_FAULT_SIGBUS;
3003
3004         if (vmf->flags & FAULT_FLAG_MKWRITE) {
3005                 if (vmf->pgoff == 0)
3006                         ret = 0;
3007                 return ret;
3008         }
3009
3010         rcu_read_lock();
3011         buffer = rcu_dereference(event->buffer);
3012         if (!buffer)
3013                 goto unlock;
3014
3015         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3016                 goto unlock;
3017
3018         vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
3019         if (!vmf->page)
3020                 goto unlock;
3021
3022         get_page(vmf->page);
3023         vmf->page->mapping = vma->vm_file->f_mapping;
3024         vmf->page->index   = vmf->pgoff;
3025
3026         ret = 0;
3027 unlock:
3028         rcu_read_unlock();
3029
3030         return ret;
3031 }
3032
3033 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
3034 {
3035         struct perf_buffer *buffer;
3036
3037         buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
3038         perf_buffer_free(buffer);
3039 }
3040
3041 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
3042 {
3043         struct perf_buffer *buffer;
3044
3045         rcu_read_lock();
3046         buffer = rcu_dereference(event->buffer);
3047         if (buffer) {
3048                 if (!atomic_inc_not_zero(&buffer->refcount))
3049                         buffer = NULL;
3050         }
3051         rcu_read_unlock();
3052
3053         return buffer;
3054 }
3055
3056 static void perf_buffer_put(struct perf_buffer *buffer)
3057 {
3058         if (!atomic_dec_and_test(&buffer->refcount))
3059                 return;
3060
3061         call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
3062 }
3063
3064 static void perf_mmap_open(struct vm_area_struct *vma)
3065 {
3066         struct perf_event *event = vma->vm_file->private_data;
3067
3068         atomic_inc(&event->mmap_count);
3069 }
3070
3071 static void perf_mmap_close(struct vm_area_struct *vma)
3072 {
3073         struct perf_event *event = vma->vm_file->private_data;
3074
3075         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3076                 unsigned long size = perf_data_size(event->buffer);
3077                 struct user_struct *user = event->mmap_user;
3078                 struct perf_buffer *buffer = event->buffer;
3079
3080                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3081                 vma->vm_mm->locked_vm -= event->mmap_locked;
3082                 rcu_assign_pointer(event->buffer, NULL);
3083                 mutex_unlock(&event->mmap_mutex);
3084
3085                 perf_buffer_put(buffer);
3086                 free_uid(user);
3087         }
3088 }
3089
3090 static const struct vm_operations_struct perf_mmap_vmops = {
3091         .open           = perf_mmap_open,
3092         .close          = perf_mmap_close,
3093         .fault          = perf_mmap_fault,
3094         .page_mkwrite   = perf_mmap_fault,
3095 };
3096
3097 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3098 {
3099         struct perf_event *event = file->private_data;
3100         unsigned long user_locked, user_lock_limit;
3101         struct user_struct *user = current_user();
3102         unsigned long locked, lock_limit;
3103         struct perf_buffer *buffer;
3104         unsigned long vma_size;
3105         unsigned long nr_pages;
3106         long user_extra, extra;
3107         int ret = 0, flags = 0;
3108
3109         /*
3110          * Don't allow mmap() of inherited per-task counters. This would
3111          * create a performance issue due to all children writing to the
3112          * same buffer.
3113          */
3114         if (event->cpu == -1 && event->attr.inherit)
3115                 return -EINVAL;
3116
3117         if (!(vma->vm_flags & VM_SHARED))
3118                 return -EINVAL;
3119
3120         vma_size = vma->vm_end - vma->vm_start;
3121         nr_pages = (vma_size / PAGE_SIZE) - 1;
3122
3123         /*
3124          * If we have buffer pages ensure they're a power-of-two number, so we
3125          * can do bitmasks instead of modulo.
3126          */
3127         if (nr_pages != 0 && !is_power_of_2(nr_pages))
3128                 return -EINVAL;
3129
3130         if (vma_size != PAGE_SIZE * (1 + nr_pages))
3131                 return -EINVAL;
3132
3133         if (vma->vm_pgoff != 0)
3134                 return -EINVAL;
3135
3136         WARN_ON_ONCE(event->ctx->parent_ctx);
3137         mutex_lock(&event->mmap_mutex);
3138         if (event->buffer) {
3139                 if (event->buffer->nr_pages == nr_pages)
3140                         atomic_inc(&event->buffer->refcount);
3141                 else
3142                         ret = -EINVAL;
3143                 goto unlock;
3144         }
3145
3146         user_extra = nr_pages + 1;
3147         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3148
3149         /*
3150          * Increase the limit linearly with more CPUs:
3151          */
3152         user_lock_limit *= num_online_cpus();
3153
3154         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3155
3156         extra = 0;
3157         if (user_locked > user_lock_limit)
3158                 extra = user_locked - user_lock_limit;
3159
3160         lock_limit = rlimit(RLIMIT_MEMLOCK);
3161         lock_limit >>= PAGE_SHIFT;
3162         locked = vma->vm_mm->locked_vm + extra;
3163
3164         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3165                 !capable(CAP_IPC_LOCK)) {
3166                 ret = -EPERM;
3167                 goto unlock;
3168         }
3169
3170         WARN_ON(event->buffer);
3171
3172         if (vma->vm_flags & VM_WRITE)
3173                 flags |= PERF_BUFFER_WRITABLE;
3174
3175         buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3176                                    event->cpu, flags);
3177         if (!buffer) {
3178                 ret = -ENOMEM;
3179                 goto unlock;
3180         }
3181         rcu_assign_pointer(event->buffer, buffer);
3182
3183         atomic_long_add(user_extra, &user->locked_vm);
3184         event->mmap_locked = extra;
3185         event->mmap_user = get_current_user();
3186         vma->vm_mm->locked_vm += event->mmap_locked;
3187
3188 unlock:
3189         if (!ret)
3190                 atomic_inc(&event->mmap_count);
3191         mutex_unlock(&event->mmap_mutex);
3192
3193         vma->vm_flags |= VM_RESERVED;
3194         vma->vm_ops = &perf_mmap_vmops;
3195
3196         return ret;
3197 }
3198
3199 static int perf_fasync(int fd, struct file *filp, int on)
3200 {
3201         struct inode *inode = filp->f_path.dentry->d_inode;
3202         struct perf_event *event = filp->private_data;
3203         int retval;
3204
3205         mutex_lock(&inode->i_mutex);
3206         retval = fasync_helper(fd, filp, on, &event->fasync);
3207         mutex_unlock(&inode->i_mutex);
3208
3209         if (retval < 0)
3210                 return retval;
3211
3212         return 0;
3213 }
3214
3215 static const struct file_operations perf_fops = {
3216         .llseek                 = no_llseek,
3217         .release                = perf_release,
3218         .read                   = perf_read,
3219         .poll                   = perf_poll,
3220         .unlocked_ioctl         = perf_ioctl,
3221         .compat_ioctl           = perf_ioctl,
3222         .mmap                   = perf_mmap,
3223         .fasync                 = perf_fasync,
3224 };
3225
3226 /*
3227  * Perf event wakeup
3228  *
3229  * If there's data, ensure we set the poll() state and publish everything
3230  * to user-space before waking everybody up.
3231  */
3232
3233 void perf_event_wakeup(struct perf_event *event)
3234 {
3235         wake_up_all(&event->waitq);
3236
3237         if (event->pending_kill) {
3238                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3239                 event->pending_kill = 0;
3240         }
3241 }
3242
3243 static void perf_pending_event(struct irq_work *entry)
3244 {
3245         struct perf_event *event = container_of(entry,
3246                         struct perf_event, pending);
3247
3248         if (event->pending_disable) {
3249                 event->pending_disable = 0;
3250                 __perf_event_disable(event);
3251         }
3252
3253         if (event->pending_wakeup) {
3254                 event->pending_wakeup = 0;
3255                 perf_event_wakeup(event);
3256         }
3257 }
3258
3259 /*
3260  * We assume there is only KVM supporting the callbacks.
3261  * Later on, we might change it to a list if there is
3262  * another virtualization implementation supporting the callbacks.
3263  */
3264 struct perf_guest_info_callbacks *perf_guest_cbs;
3265
3266 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3267 {
3268         perf_guest_cbs = cbs;
3269         return 0;
3270 }
3271 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3272
3273 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3274 {
3275         perf_guest_cbs = NULL;
3276         return 0;
3277 }
3278 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3279
3280 /*
3281  * Output
3282  */
3283 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3284                               unsigned long offset, unsigned long head)
3285 {
3286         unsigned long mask;
3287
3288         if (!buffer->writable)
3289                 return true;
3290
3291         mask = perf_data_size(buffer) - 1;
3292
3293         offset = (offset - tail) & mask;
3294         head   = (head   - tail) & mask;
3295
3296         if ((int)(head - offset) < 0)
3297                 return false;
3298
3299         return true;
3300 }
3301
3302 static void perf_output_wakeup(struct perf_output_handle *handle)
3303 {
3304         atomic_set(&handle->buffer->poll, POLL_IN);
3305
3306         if (handle->nmi) {
3307                 handle->event->pending_wakeup = 1;
3308                 irq_work_queue(&handle->event->pending);
3309         } else
3310                 perf_event_wakeup(handle->event);
3311 }
3312
3313 /*
3314  * We need to ensure a later event_id doesn't publish a head when a former
3315  * event isn't done writing. However since we need to deal with NMIs we
3316  * cannot fully serialize things.
3317  *
3318  * We only publish the head (and generate a wakeup) when the outer-most
3319  * event completes.
3320  */
3321 static void perf_output_get_handle(struct perf_output_handle *handle)
3322 {
3323         struct perf_buffer *buffer = handle->buffer;
3324
3325         preempt_disable();
3326         local_inc(&buffer->nest);
3327         handle->wakeup = local_read(&buffer->wakeup);
3328 }
3329
3330 static void perf_output_put_handle(struct perf_output_handle *handle)
3331 {
3332         struct perf_buffer *buffer = handle->buffer;
3333         unsigned long head;
3334
3335 again:
3336         head = local_read(&buffer->head);
3337
3338         /*
3339          * IRQ/NMI can happen here, which means we can miss a head update.
3340          */
3341
3342         if (!local_dec_and_test(&buffer->nest))
3343                 goto out;
3344
3345         /*
3346          * Publish the known good head. Rely on the full barrier implied
3347          * by atomic_dec_and_test() order the buffer->head read and this
3348          * write.
3349          */
3350         buffer->user_page->data_head = head;
3351
3352         /*
3353          * Now check if we missed an update, rely on the (compiler)
3354          * barrier in atomic_dec_and_test() to re-read buffer->head.
3355          */
3356         if (unlikely(head != local_read(&buffer->head))) {
3357                 local_inc(&buffer->nest);
3358                 goto again;
3359         }
3360
3361         if (handle->wakeup != local_read(&buffer->wakeup))
3362                 perf_output_wakeup(handle);
3363
3364 out:
3365         preempt_enable();
3366 }
3367
3368 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3369                       const void *buf, unsigned int len)
3370 {
3371         do {
3372                 unsigned long size = min_t(unsigned long, handle->size, len);
3373
3374                 memcpy(handle->addr, buf, size);
3375
3376                 len -= size;
3377                 handle->addr += size;
3378                 buf += size;
3379                 handle->size -= size;
3380                 if (!handle->size) {
3381                         struct perf_buffer *buffer = handle->buffer;
3382
3383                         handle->page++;
3384                         handle->page &= buffer->nr_pages - 1;
3385                         handle->addr = buffer->data_pages[handle->page];
3386                         handle->size = PAGE_SIZE << page_order(buffer);
3387                 }
3388         } while (len);
3389 }
3390
3391 static void __perf_event_header__init_id(struct perf_event_header *header,
3392                                          struct perf_sample_data *data,
3393                                          struct perf_event *event)
3394 {
3395         u64 sample_type = event->attr.sample_type;
3396
3397         data->type = sample_type;
3398         header->size += event->id_header_size;
3399
3400         if (sample_type & PERF_SAMPLE_TID) {
3401                 /* namespace issues */
3402                 data->tid_entry.pid = perf_event_pid(event, current);
3403                 data->tid_entry.tid = perf_event_tid(event, current);
3404         }
3405
3406         if (sample_type & PERF_SAMPLE_TIME)
3407                 data->time = perf_clock();
3408
3409         if (sample_type & PERF_SAMPLE_ID)
3410                 data->id = primary_event_id(event);
3411
3412         if (sample_type & PERF_SAMPLE_STREAM_ID)
3413                 data->stream_id = event->id;
3414
3415         if (sample_type & PERF_SAMPLE_CPU) {
3416                 data->cpu_entry.cpu      = raw_smp_processor_id();
3417                 data->cpu_entry.reserved = 0;
3418         }
3419 }
3420
3421 static void perf_event_header__init_id(struct perf_event_header *header,
3422                                        struct perf_sample_data *data,
3423                                        struct perf_event *event)
3424 {
3425         if (event->attr.sample_id_all)
3426                 __perf_event_header__init_id(header, data, event);
3427 }
3428
3429 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3430                                            struct perf_sample_data *data)
3431 {
3432         u64 sample_type = data->type;
3433
3434         if (sample_type & PERF_SAMPLE_TID)
3435                 perf_output_put(handle, data->tid_entry);
3436
3437         if (sample_type & PERF_SAMPLE_TIME)
3438                 perf_output_put(handle, data->time);
3439
3440         if (sample_type & PERF_SAMPLE_ID)
3441                 perf_output_put(handle, data->id);
3442
3443         if (sample_type & PERF_SAMPLE_STREAM_ID)
3444                 perf_output_put(handle, data->stream_id);
3445
3446         if (sample_type & PERF_SAMPLE_CPU)
3447                 perf_output_put(handle, data->cpu_entry);
3448 }
3449
3450 static void perf_event__output_id_sample(struct perf_event *event,
3451                                          struct perf_output_handle *handle,
3452                                          struct perf_sample_data *sample)
3453 {
3454         if (event->attr.sample_id_all)
3455                 __perf_event__output_id_sample(handle, sample);
3456 }
3457
3458 int perf_output_begin(struct perf_output_handle *handle,
3459                       struct perf_event *event, unsigned int size,
3460                       int nmi, int sample)
3461 {
3462         struct perf_buffer *buffer;
3463         unsigned long tail, offset, head;
3464         int have_lost;
3465         struct perf_sample_data sample_data;
3466         struct {
3467                 struct perf_event_header header;
3468                 u64                      id;
3469                 u64                      lost;
3470         } lost_event;
3471
3472         rcu_read_lock();
3473         /*
3474          * For inherited events we send all the output towards the parent.
3475          */
3476         if (event->parent)
3477                 event = event->parent;
3478
3479         buffer = rcu_dereference(event->buffer);
3480         if (!buffer)
3481                 goto out;
3482
3483         handle->buffer  = buffer;
3484         handle->event   = event;
3485         handle->nmi     = nmi;
3486         handle->sample  = sample;
3487
3488         if (!buffer->nr_pages)
3489                 goto out;
3490
3491         have_lost = local_read(&buffer->lost);
3492         if (have_lost) {
3493                 lost_event.header.size = sizeof(lost_event);
3494                 perf_event_header__init_id(&lost_event.header, &sample_data,
3495                                            event);
3496                 size += lost_event.header.size;
3497         }
3498
3499         perf_output_get_handle(handle);
3500
3501         do {
3502                 /*
3503                  * Userspace could choose to issue a mb() before updating the
3504                  * tail pointer. So that all reads will be completed before the
3505                  * write is issued.
3506                  */
3507                 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3508                 smp_rmb();
3509                 offset = head = local_read(&buffer->head);
3510                 head += size;
3511                 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3512                         goto fail;
3513         } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3514
3515         if (head - local_read(&buffer->wakeup) > buffer->watermark)
3516                 local_add(buffer->watermark, &buffer->wakeup);
3517
3518         handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3519         handle->page &= buffer->nr_pages - 1;
3520         handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3521         handle->addr = buffer->data_pages[handle->page];
3522         handle->addr += handle->size;
3523         handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3524
3525         if (have_lost) {
3526                 lost_event.header.type = PERF_RECORD_LOST;
3527                 lost_event.header.misc = 0;
3528                 lost_event.id          = event->id;
3529                 lost_event.lost        = local_xchg(&buffer->lost, 0);
3530
3531                 perf_output_put(handle, lost_event);
3532                 perf_event__output_id_sample(event, handle, &sample_data);
3533         }
3534
3535         return 0;
3536
3537 fail:
3538         local_inc(&buffer->lost);
3539         perf_output_put_handle(handle);
3540 out:
3541         rcu_read_unlock();
3542
3543         return -ENOSPC;
3544 }
3545
3546 void perf_output_end(struct perf_output_handle *handle)
3547 {
3548         struct perf_event *event = handle->event;
3549         struct perf_buffer *buffer = handle->buffer;
3550
3551         int wakeup_events = event->attr.wakeup_events;
3552
3553         if (handle->sample && wakeup_events) {
3554                 int events = local_inc_return(&buffer->events);
3555                 if (events >= wakeup_events) {
3556                         local_sub(wakeup_events, &buffer->events);
3557                         local_inc(&buffer->wakeup);
3558                 }
3559         }
3560
3561         perf_output_put_handle(handle);
3562         rcu_read_unlock();
3563 }
3564
3565 static void perf_output_read_one(struct perf_output_handle *handle,
3566                                  struct perf_event *event,
3567                                  u64 enabled, u64 running)
3568 {
3569         u64 read_format = event->attr.read_format;
3570         u64 values[4];
3571         int n = 0;
3572
3573         values[n++] = perf_event_count(event);
3574         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3575                 values[n++] = enabled +
3576                         atomic64_read(&event->child_total_time_enabled);
3577         }
3578         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3579                 values[n++] = running +
3580                         atomic64_read(&event->child_total_time_running);
3581         }
3582         if (read_format & PERF_FORMAT_ID)
3583                 values[n++] = primary_event_id(event);
3584
3585         perf_output_copy(handle, values, n * sizeof(u64));
3586 }
3587
3588 /*
3589  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3590  */
3591 static void perf_output_read_group(struct perf_output_handle *handle,
3592                             struct perf_event *event,
3593                             u64 enabled, u64 running)
3594 {
3595         struct perf_event *leader = event->group_leader, *sub;
3596         u64 read_format = event->attr.read_format;
3597         u64 values[5];
3598         int n = 0;
3599
3600         values[n++] = 1 + leader->nr_siblings;
3601
3602         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3603                 values[n++] = enabled;
3604
3605         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3606                 values[n++] = running;
3607
3608         if (leader != event)
3609                 leader->pmu->read(leader);
3610
3611         values[n++] = perf_event_count(leader);
3612         if (read_format & PERF_FORMAT_ID)
3613                 values[n++] = primary_event_id(leader);
3614
3615         perf_output_copy(handle, values, n * sizeof(u64));
3616
3617         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3618                 n = 0;
3619
3620                 if (sub != event)
3621                         sub->pmu->read(sub);
3622
3623                 values[n++] = perf_event_count(sub);
3624                 if (read_format & PERF_FORMAT_ID)
3625                         values[n++] = primary_event_id(sub);
3626
3627                 perf_output_copy(handle, values, n * sizeof(u64));
3628         }
3629 }
3630
3631 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3632                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
3633
3634 static void perf_output_read(struct perf_output_handle *handle,
3635                              struct perf_event *event)
3636 {
3637         u64 enabled = 0, running = 0, now, ctx_time;
3638         u64 read_format = event->attr.read_format;
3639
3640         /*
3641          * compute total_time_enabled, total_time_running
3642          * based on snapshot values taken when the event
3643          * was last scheduled in.
3644          *
3645          * we cannot simply called update_context_time()
3646          * because of locking issue as we are called in
3647          * NMI context
3648          */
3649         if (read_format & PERF_FORMAT_TOTAL_TIMES) {
3650                 now = perf_clock();
3651                 ctx_time = event->shadow_ctx_time + now;
3652                 enabled = ctx_time - event->tstamp_enabled;
3653                 running = ctx_time - event->tstamp_running;
3654         }
3655
3656         if (event->attr.read_format & PERF_FORMAT_GROUP)
3657                 perf_output_read_group(handle, event, enabled, running);
3658         else
3659                 perf_output_read_one(handle, event, enabled, running);
3660 }
3661
3662 void perf_output_sample(struct perf_output_handle *handle,
3663                         struct perf_event_header *header,
3664                         struct perf_sample_data *data,
3665                         struct perf_event *event)
3666 {
3667         u64 sample_type = data->type;
3668
3669         perf_output_put(handle, *header);
3670
3671         if (sample_type & PERF_SAMPLE_IP)
3672                 perf_output_put(handle, data->ip);
3673
3674         if (sample_type & PERF_SAMPLE_TID)
3675                 perf_output_put(handle, data->tid_entry);
3676
3677         if (sample_type & PERF_SAMPLE_TIME)
3678                 perf_output_put(handle, data->time);
3679
3680         if (sample_type & PERF_SAMPLE_ADDR)
3681                 perf_output_put(handle, data->addr);
3682
3683         if (sample_type & PERF_SAMPLE_ID)
3684                 perf_output_put(handle, data->id);
3685
3686         if (sample_type & PERF_SAMPLE_STREAM_ID)
3687                 perf_output_put(handle, data->stream_id);
3688
3689         if (sample_type & PERF_SAMPLE_CPU)
3690                 perf_output_put(handle, data->cpu_entry);
3691
3692         if (sample_type & PERF_SAMPLE_PERIOD)
3693                 perf_output_put(handle, data->period);
3694
3695         if (sample_type & PERF_SAMPLE_READ)
3696                 perf_output_read(handle, event);
3697
3698         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3699                 if (data->callchain) {
3700                         int size = 1;
3701
3702                         if (data->callchain)
3703                                 size += data->callchain->nr;
3704
3705                         size *= sizeof(u64);
3706
3707                         perf_output_copy(handle, data->callchain, size);
3708                 } else {
3709                         u64 nr = 0;
3710                         perf_output_put(handle, nr);
3711                 }
3712         }
3713
3714         if (sample_type & PERF_SAMPLE_RAW) {
3715                 if (data->raw) {
3716                         perf_output_put(handle, data->raw->size);
3717                         perf_output_copy(handle, data->raw->data,
3718                                          data->raw->size);
3719                 } else {
3720                         struct {
3721                                 u32     size;
3722                                 u32     data;
3723                         } raw = {
3724                                 .size = sizeof(u32),
3725                                 .data = 0,
3726                         };
3727                         perf_output_put(handle, raw);
3728                 }
3729         }
3730 }
3731
3732 void perf_prepare_sample(struct perf_event_header *header,
3733                          struct perf_sample_data *data,
3734                          struct perf_event *event,
3735                          struct pt_regs *regs)
3736 {
3737         u64 sample_type = event->attr.sample_type;
3738
3739         header->type = PERF_RECORD_SAMPLE;
3740         header->size = sizeof(*header) + event->header_size;
3741
3742         header->misc = 0;
3743         header->misc |= perf_misc_flags(regs);
3744
3745         __perf_event_header__init_id(header, data, event);
3746
3747         if (sample_type & PERF_SAMPLE_IP)
3748                 data->ip = perf_instruction_pointer(regs);
3749
3750         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3751                 int size = 1;
3752
3753                 data->callchain = perf_callchain(regs);
3754
3755                 if (data->callchain)
3756                         size += data->callchain->nr;
3757
3758                 header->size += size * sizeof(u64);
3759         }
3760
3761         if (sample_type & PERF_SAMPLE_RAW) {
3762                 int size = sizeof(u32);
3763
3764                 if (data->raw)
3765                         size += data->raw->size;
3766                 else
3767                         size += sizeof(u32);
3768
3769                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3770                 header->size += size;
3771         }
3772 }
3773
3774 static void perf_event_output(struct perf_event *event, int nmi,
3775                                 struct perf_sample_data *data,
3776                                 struct pt_regs *regs)
3777 {
3778         struct perf_output_handle handle;
3779         struct perf_event_header header;
3780
3781         /* protect the callchain buffers */
3782         rcu_read_lock();
3783
3784         perf_prepare_sample(&header, data, event, regs);
3785
3786         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3787                 goto exit;
3788
3789         perf_output_sample(&handle, &header, data, event);
3790
3791         perf_output_end(&handle);
3792
3793 exit:
3794         rcu_read_unlock();
3795 }
3796
3797 /*
3798  * read event_id
3799  */
3800
3801 struct perf_read_event {
3802         struct perf_event_header        header;
3803
3804         u32                             pid;
3805         u32                             tid;
3806 };
3807
3808 static void
3809 perf_event_read_event(struct perf_event *event,
3810                         struct task_struct *task)
3811 {
3812         struct perf_output_handle handle;
3813         struct perf_sample_data sample;
3814         struct perf_read_event read_event = {
3815                 .header = {
3816                         .type = PERF_RECORD_READ,
3817                         .misc = 0,
3818                         .size = sizeof(read_event) + event->read_size,
3819                 },
3820                 .pid = perf_event_pid(event, task),
3821                 .tid = perf_event_tid(event, task),
3822         };
3823         int ret;
3824
3825         perf_event_header__init_id(&read_event.header, &sample, event);
3826         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3827         if (ret)
3828                 return;
3829
3830         perf_output_put(&handle, read_event);
3831         perf_output_read(&handle, event);
3832         perf_event__output_id_sample(event, &handle, &sample);
3833
3834         perf_output_end(&handle);
3835 }
3836
3837 /*
3838  * task tracking -- fork/exit
3839  *
3840  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3841  */
3842
3843 struct perf_task_event {
3844         struct task_struct              *task;
3845         struct perf_event_context       *task_ctx;
3846
3847         struct {
3848                 struct perf_event_header        header;
3849
3850                 u32                             pid;
3851                 u32                             ppid;
3852                 u32                             tid;
3853                 u32                             ptid;
3854                 u64                             time;
3855         } event_id;
3856 };
3857
3858 static void perf_event_task_output(struct perf_event *event,
3859                                      struct perf_task_event *task_event)
3860 {
3861         struct perf_output_handle handle;
3862         struct perf_sample_data sample;
3863         struct task_struct *task = task_event->task;
3864         int ret, size = task_event->event_id.header.size;
3865
3866         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
3867
3868         ret = perf_output_begin(&handle, event,
3869                                 task_event->event_id.header.size, 0, 0);
3870         if (ret)
3871                 goto out;
3872
3873         task_event->event_id.pid = perf_event_pid(event, task);
3874         task_event->event_id.ppid = perf_event_pid(event, current);
3875
3876         task_event->event_id.tid = perf_event_tid(event, task);
3877         task_event->event_id.ptid = perf_event_tid(event, current);
3878
3879         perf_output_put(&handle, task_event->event_id);
3880
3881         perf_event__output_id_sample(event, &handle, &sample);
3882
3883         perf_output_end(&handle);
3884 out:
3885         task_event->event_id.header.size = size;
3886 }
3887
3888 static int perf_event_task_match(struct perf_event *event)
3889 {
3890         if (event->state < PERF_EVENT_STATE_INACTIVE)
3891                 return 0;
3892
3893         if (event->cpu != -1 && event->cpu != smp_processor_id())
3894                 return 0;
3895
3896         if (event->attr.comm || event->attr.mmap ||
3897             event->attr.mmap_data || event->attr.task)
3898                 return 1;
3899
3900         return 0;
3901 }
3902
3903 static void perf_event_task_ctx(struct perf_event_context *ctx,
3904                                   struct perf_task_event *task_event)
3905 {
3906         struct perf_event *event;
3907
3908         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3909                 if (perf_event_task_match(event))
3910                         perf_event_task_output(event, task_event);
3911         }
3912 }
3913
3914 static void perf_event_task_event(struct perf_task_event *task_event)
3915 {
3916         struct perf_cpu_context *cpuctx;
3917         struct perf_event_context *ctx;
3918         struct pmu *pmu;
3919         int ctxn;
3920
3921         rcu_read_lock();
3922         list_for_each_entry_rcu(pmu, &pmus, entry) {
3923                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3924                 perf_event_task_ctx(&cpuctx->ctx, task_event);
3925
3926                 ctx = task_event->task_ctx;
3927                 if (!ctx) {
3928                         ctxn = pmu->task_ctx_nr;
3929                         if (ctxn < 0)
3930                                 goto next;
3931                         ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3932                 }
3933                 if (ctx)
3934                         perf_event_task_ctx(ctx, task_event);
3935 next:
3936                 put_cpu_ptr(pmu->pmu_cpu_context);
3937         }
3938         rcu_read_unlock();
3939 }
3940
3941 static void perf_event_task(struct task_struct *task,
3942                               struct perf_event_context *task_ctx,
3943                               int new)
3944 {
3945         struct perf_task_event task_event;
3946
3947         if (!atomic_read(&nr_comm_events) &&
3948             !atomic_read(&nr_mmap_events) &&
3949             !atomic_read(&nr_task_events))
3950                 return;
3951
3952         task_event = (struct perf_task_event){
3953                 .task     = task,
3954                 .task_ctx = task_ctx,
3955                 .event_id    = {
3956                         .header = {
3957                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3958                                 .misc = 0,
3959                                 .size = sizeof(task_event.event_id),
3960                         },
3961                         /* .pid  */
3962                         /* .ppid */
3963                         /* .tid  */
3964                         /* .ptid */
3965                         .time = perf_clock(),
3966                 },
3967         };
3968
3969         perf_event_task_event(&task_event);
3970 }
3971
3972 void perf_event_fork(struct task_struct *task)
3973 {
3974         perf_event_task(task, NULL, 1);
3975 }
3976
3977 /*
3978  * comm tracking
3979  */
3980
3981 struct perf_comm_event {
3982         struct task_struct      *task;
3983         char                    *comm;
3984         int                     comm_size;
3985
3986         struct {
3987                 struct perf_event_header        header;
3988
3989                 u32                             pid;
3990                 u32                             tid;
3991         } event_id;
3992 };
3993
3994 static void perf_event_comm_output(struct perf_event *event,
3995                                      struct perf_comm_event *comm_event)
3996 {
3997         struct perf_output_handle handle;
3998         struct perf_sample_data sample;
3999         int size = comm_event->event_id.header.size;
4000         int ret;
4001
4002         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4003         ret = perf_output_begin(&handle, event,
4004                                 comm_event->event_id.header.size, 0, 0);
4005
4006         if (ret)
4007                 goto out;
4008
4009         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4010         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4011
4012         perf_output_put(&handle, comm_event->event_id);
4013         perf_output_copy(&handle, comm_event->comm,
4014                                    comm_event->comm_size);
4015
4016         perf_event__output_id_sample(event, &handle, &sample);
4017
4018         perf_output_end(&handle);
4019 out:
4020         comm_event->event_id.header.size = size;
4021 }
4022
4023 static int perf_event_comm_match(struct perf_event *event)
4024 {
4025         if (event->state < PERF_EVENT_STATE_INACTIVE)
4026                 return 0;
4027
4028         if (event->cpu != -1 && event->cpu != smp_processor_id())
4029                 return 0;
4030
4031         if (event->attr.comm)
4032                 return 1;
4033
4034         return 0;
4035 }
4036
4037 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4038                                   struct perf_comm_event *comm_event)
4039 {
4040         struct perf_event *event;
4041
4042         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4043                 if (perf_event_comm_match(event))
4044                         perf_event_comm_output(event, comm_event);
4045         }
4046 }
4047
4048 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4049 {
4050         struct perf_cpu_context *cpuctx;
4051         struct perf_event_context *ctx;
4052         char comm[TASK_COMM_LEN];
4053         unsigned int size;
4054         struct pmu *pmu;
4055         int ctxn;
4056
4057         memset(comm, 0, sizeof(comm));
4058         strlcpy(comm, comm_event->task->comm, sizeof(comm));
4059         size = ALIGN(strlen(comm)+1, sizeof(u64));
4060
4061         comm_event->comm = comm;
4062         comm_event->comm_size = size;
4063
4064         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4065         rcu_read_lock();
4066         list_for_each_entry_rcu(pmu, &pmus, entry) {
4067                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4068                 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4069
4070                 ctxn = pmu->task_ctx_nr;
4071                 if (ctxn < 0)
4072                         goto next;
4073
4074                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4075                 if (ctx)
4076                         perf_event_comm_ctx(ctx, comm_event);
4077 next:
4078                 put_cpu_ptr(pmu->pmu_cpu_context);
4079         }
4080         rcu_read_unlock();
4081 }
4082
4083 void perf_event_comm(struct task_struct *task)
4084 {
4085         struct perf_comm_event comm_event;
4086         struct perf_event_context *ctx;
4087         int ctxn;
4088
4089         for_each_task_context_nr(ctxn) {
4090                 ctx = task->perf_event_ctxp[ctxn];
4091                 if (!ctx)
4092                         continue;
4093
4094                 perf_event_enable_on_exec(ctx);
4095         }
4096
4097         if (!atomic_read(&nr_comm_events))
4098                 return;
4099
4100         comm_event = (struct perf_comm_event){
4101                 .task   = task,
4102                 /* .comm      */
4103                 /* .comm_size */
4104                 .event_id  = {
4105                         .header = {
4106                                 .type = PERF_RECORD_COMM,
4107                                 .misc = 0,
4108                                 /* .size */
4109                         },
4110                         /* .pid */
4111                         /* .tid */
4112                 },
4113         };
4114
4115         perf_event_comm_event(&comm_event);
4116 }
4117
4118 /*
4119  * mmap tracking
4120  */
4121
4122 struct perf_mmap_event {
4123         struct vm_area_struct   *vma;
4124
4125         const char              *file_name;
4126         int                     file_size;
4127
4128         struct {
4129                 struct perf_event_header        header;
4130
4131                 u32                             pid;
4132                 u32                             tid;
4133                 u64                             start;
4134                 u64                             len;
4135                 u64                             pgoff;
4136         } event_id;
4137 };
4138
4139 static void perf_event_mmap_output(struct perf_event *event,
4140                                      struct perf_mmap_event *mmap_event)
4141 {
4142         struct perf_output_handle handle;
4143         struct perf_sample_data sample;
4144         int size = mmap_event->event_id.header.size;
4145         int ret;
4146
4147         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4148         ret = perf_output_begin(&handle, event,
4149                                 mmap_event->event_id.header.size, 0, 0);
4150         if (ret)
4151                 goto out;
4152
4153         mmap_event->event_id.pid = perf_event_pid(event, current);
4154         mmap_event->event_id.tid = perf_event_tid(event, current);
4155
4156         perf_output_put(&handle, mmap_event->event_id);
4157         perf_output_copy(&handle, mmap_event->file_name,
4158                                    mmap_event->file_size);
4159
4160         perf_event__output_id_sample(event, &handle, &sample);
4161
4162         perf_output_end(&handle);
4163 out:
4164         mmap_event->event_id.header.size = size;
4165 }
4166
4167 static int perf_event_mmap_match(struct perf_event *event,
4168                                    struct perf_mmap_event *mmap_event,
4169                                    int executable)
4170 {
4171         if (event->state < PERF_EVENT_STATE_INACTIVE)
4172                 return 0;
4173
4174         if (event->cpu != -1 && event->cpu != smp_processor_id())
4175                 return 0;
4176
4177         if ((!executable && event->attr.mmap_data) ||
4178             (executable && event->attr.mmap))
4179                 return 1;
4180
4181         return 0;
4182 }
4183
4184 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4185                                   struct perf_mmap_event *mmap_event,
4186                                   int executable)
4187 {
4188         struct perf_event *event;
4189
4190         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4191                 if (perf_event_mmap_match(event, mmap_event, executable))
4192                         perf_event_mmap_output(event, mmap_event);
4193         }
4194 }
4195
4196 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4197 {
4198         struct perf_cpu_context *cpuctx;
4199         struct perf_event_context *ctx;
4200         struct vm_area_struct *vma = mmap_event->vma;
4201         struct file *file = vma->vm_file;
4202         unsigned int size;
4203         char tmp[16];
4204         char *buf = NULL;
4205         const char *name;
4206         struct pmu *pmu;
4207         int ctxn;
4208
4209         memset(tmp, 0, sizeof(tmp));
4210
4211         if (file) {
4212                 /*
4213                  * d_path works from the end of the buffer backwards, so we
4214                  * need to add enough zero bytes after the string to handle
4215                  * the 64bit alignment we do later.
4216                  */
4217                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4218                 if (!buf) {
4219                         name = strncpy(tmp, "//enomem", sizeof(tmp));
4220                         goto got_name;
4221                 }
4222                 name = d_path(&file->f_path, buf, PATH_MAX);
4223                 if (IS_ERR(name)) {
4224                         name = strncpy(tmp, "//toolong", sizeof(tmp));
4225                         goto got_name;
4226                 }
4227         } else {
4228                 if (arch_vma_name(mmap_event->vma)) {
4229                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4230                                        sizeof(tmp));
4231                         goto got_name;
4232                 }
4233
4234                 if (!vma->vm_mm) {
4235                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
4236                         goto got_name;
4237                 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4238                                 vma->vm_end >= vma->vm_mm->brk) {
4239                         name = strncpy(tmp, "[heap]", sizeof(tmp));
4240                         goto got_name;
4241                 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4242                                 vma->vm_end >= vma->vm_mm->start_stack) {
4243                         name = strncpy(tmp, "[stack]", sizeof(tmp));
4244                         goto got_name;
4245                 }
4246
4247                 name = strncpy(tmp, "//anon", sizeof(tmp));
4248                 goto got_name;
4249         }
4250
4251 got_name:
4252         size = ALIGN(strlen(name)+1, sizeof(u64));
4253
4254         mmap_event->file_name = name;
4255         mmap_event->file_size = size;
4256
4257         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4258
4259         rcu_read_lock();
4260         list_for_each_entry_rcu(pmu, &pmus, entry) {
4261                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4262                 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4263                                         vma->vm_flags & VM_EXEC);
4264
4265                 ctxn = pmu->task_ctx_nr;
4266                 if (ctxn < 0)
4267                         goto next;
4268
4269                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4270                 if (ctx) {
4271                         perf_event_mmap_ctx(ctx, mmap_event,
4272                                         vma->vm_flags & VM_EXEC);
4273                 }
4274 next:
4275                 put_cpu_ptr(pmu->pmu_cpu_context);
4276         }
4277         rcu_read_unlock();
4278
4279         kfree(buf);
4280 }
4281
4282 void perf_event_mmap(struct vm_area_struct *vma)
4283 {
4284         struct perf_mmap_event mmap_event;
4285
4286         if (!atomic_read(&nr_mmap_events))
4287                 return;
4288
4289         mmap_event = (struct perf_mmap_event){
4290                 .vma    = vma,
4291                 /* .file_name */
4292                 /* .file_size */
4293                 .event_id  = {
4294                         .header = {
4295                                 .type = PERF_RECORD_MMAP,
4296                                 .misc = PERF_RECORD_MISC_USER,
4297                                 /* .size */
4298                         },
4299                         /* .pid */
4300                         /* .tid */
4301                         .start  = vma->vm_start,
4302                         .len    = vma->vm_end - vma->vm_start,
4303                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4304                 },
4305         };
4306
4307         perf_event_mmap_event(&mmap_event);
4308 }
4309
4310 /*
4311  * IRQ throttle logging
4312  */
4313
4314 static void perf_log_throttle(struct perf_event *event, int enable)
4315 {
4316         struct perf_output_handle handle;
4317         struct perf_sample_data sample;
4318         int ret;
4319
4320         struct {
4321                 struct perf_event_header        header;
4322                 u64                             time;
4323                 u64                             id;
4324                 u64                             stream_id;
4325         } throttle_event = {
4326                 .header = {
4327                         .type = PERF_RECORD_THROTTLE,
4328                         .misc = 0,
4329                         .size = sizeof(throttle_event),
4330                 },
4331                 .time           = perf_clock(),
4332                 .id             = primary_event_id(event),
4333                 .stream_id      = event->id,
4334         };
4335
4336         if (enable)
4337                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4338
4339         perf_event_header__init_id(&throttle_event.header, &sample, event);
4340
4341         ret = perf_output_begin(&handle, event,
4342                                 throttle_event.header.size, 1, 0);
4343         if (ret)
4344                 return;
4345
4346         perf_output_put(&handle, throttle_event);
4347         perf_event__output_id_sample(event, &handle, &sample);
4348         perf_output_end(&handle);
4349 }
4350
4351 /*
4352  * Generic event overflow handling, sampling.
4353  */
4354
4355 static int __perf_event_overflow(struct perf_event *event, int nmi,
4356                                    int throttle, struct perf_sample_data *data,
4357                                    struct pt_regs *regs)
4358 {
4359         int events = atomic_read(&event->event_limit);
4360         struct hw_perf_event *hwc = &event->hw;
4361         int ret = 0;
4362
4363         /*
4364          * Non-sampling counters might still use the PMI to fold short
4365          * hardware counters, ignore those.
4366          */
4367         if (unlikely(!is_sampling_event(event)))
4368                 return 0;
4369
4370         if (!throttle) {
4371                 hwc->interrupts++;
4372         } else {
4373                 if (hwc->interrupts != MAX_INTERRUPTS) {
4374                         hwc->interrupts++;
4375                         if (HZ * hwc->interrupts >
4376                                         (u64)sysctl_perf_event_sample_rate) {
4377                                 hwc->interrupts = MAX_INTERRUPTS;
4378                                 perf_log_throttle(event, 0);
4379                                 ret = 1;
4380                         }
4381                 } else {
4382                         /*
4383                          * Keep re-disabling events even though on the previous
4384                          * pass we disabled it - just in case we raced with a
4385                          * sched-in and the event got enabled again:
4386                          */
4387                         ret = 1;
4388                 }
4389         }
4390
4391         if (event->attr.freq) {
4392                 u64 now = perf_clock();
4393                 s64 delta = now - hwc->freq_time_stamp;
4394
4395                 hwc->freq_time_stamp = now;
4396
4397                 if (delta > 0 && delta < 2*TICK_NSEC)
4398                         perf_adjust_period(event, delta, hwc->last_period);
4399         }
4400
4401         /*
4402          * XXX event_limit might not quite work as expected on inherited
4403          * events
4404          */
4405
4406         event->pending_kill = POLL_IN;
4407         if (events && atomic_dec_and_test(&event->event_limit)) {
4408                 ret = 1;
4409                 event->pending_kill = POLL_HUP;
4410                 if (nmi) {
4411                         event->pending_disable = 1;
4412                         irq_work_queue(&event->pending);
4413                 } else
4414                         perf_event_disable(event);
4415         }
4416
4417         if (event->overflow_handler)
4418                 event->overflow_handler(event, nmi, data, regs);
4419         else
4420                 perf_event_output(event, nmi, data, regs);
4421
4422         return ret;
4423 }
4424
4425 int perf_event_overflow(struct perf_event *event, int nmi,
4426                           struct perf_sample_data *data,
4427                           struct pt_regs *regs)
4428 {
4429         return __perf_event_overflow(event, nmi, 1, data, regs);
4430 }
4431
4432 /*
4433  * Generic software event infrastructure
4434  */
4435
4436 struct swevent_htable {
4437         struct swevent_hlist            *swevent_hlist;
4438         struct mutex                    hlist_mutex;
4439         int                             hlist_refcount;
4440
4441         /* Recursion avoidance in each contexts */
4442         int                             recursion[PERF_NR_CONTEXTS];
4443 };
4444
4445 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4446
4447 /*
4448  * We directly increment event->count and keep a second value in
4449  * event->hw.period_left to count intervals. This period event
4450  * is kept in the range [-sample_period, 0] so that we can use the
4451  * sign as trigger.
4452  */
4453
4454 static u64 perf_swevent_set_period(struct perf_event *event)
4455 {
4456         struct hw_perf_event *hwc = &event->hw;
4457         u64 period = hwc->last_period;
4458         u64 nr, offset;
4459         s64 old, val;
4460
4461         hwc->last_period = hwc->sample_period;
4462
4463 again:
4464         old = val = local64_read(&hwc->period_left);
4465         if (val < 0)
4466                 return 0;
4467
4468         nr = div64_u64(period + val, period);
4469         offset = nr * period;
4470         val -= offset;
4471         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4472                 goto again;
4473
4474         return nr;
4475 }
4476
4477 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4478                                     int nmi, struct perf_sample_data *data,
4479                                     struct pt_regs *regs)
4480 {
4481         struct hw_perf_event *hwc = &event->hw;
4482         int throttle = 0;
4483
4484         data->period = event->hw.last_period;
4485         if (!overflow)
4486                 overflow = perf_swevent_set_period(event);
4487
4488         if (hwc->interrupts == MAX_INTERRUPTS)
4489                 return;
4490
4491         for (; overflow; overflow--) {
4492                 if (__perf_event_overflow(event, nmi, throttle,
4493                                             data, regs)) {
4494                         /*
4495                          * We inhibit the overflow from happening when
4496                          * hwc->interrupts == MAX_INTERRUPTS.
4497                          */
4498                         break;
4499                 }
4500                 throttle = 1;
4501         }
4502 }
4503
4504 static void perf_swevent_event(struct perf_event *event, u64 nr,
4505                                int nmi, struct perf_sample_data *data,
4506                                struct pt_regs *regs)
4507 {
4508         struct hw_perf_event *hwc = &event->hw;
4509
4510         local64_add(nr, &event->count);
4511
4512         if (!regs)
4513                 return;
4514
4515         if (!is_sampling_event(event))
4516                 return;
4517
4518         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4519                 return perf_swevent_overflow(event, 1, nmi, data, regs);
4520
4521         if (local64_add_negative(nr, &hwc->period_left))
4522                 return;
4523
4524         perf_swevent_overflow(event, 0, nmi, data, regs);
4525 }
4526
4527 static int perf_exclude_event(struct perf_event *event,
4528                               struct pt_regs *regs)
4529 {
4530         if (event->hw.state & PERF_HES_STOPPED)
4531                 return 0;
4532
4533         if (regs) {
4534                 if (event->attr.exclude_user && user_mode(regs))
4535                         return 1;
4536
4537                 if (event->attr.exclude_kernel && !user_mode(regs))
4538                         return 1;
4539         }
4540
4541         return 0;
4542 }
4543
4544 static int perf_swevent_match(struct perf_event *event,
4545                                 enum perf_type_id type,
4546                                 u32 event_id,
4547                                 struct perf_sample_data *data,
4548                                 struct pt_regs *regs)
4549 {
4550         if (event->attr.type != type)
4551                 return 0;
4552
4553         if (event->attr.config != event_id)
4554                 return 0;
4555
4556         if (perf_exclude_event(event, regs))
4557                 return 0;
4558
4559         return 1;
4560 }
4561
4562 static inline u64 swevent_hash(u64 type, u32 event_id)
4563 {
4564         u64 val = event_id | (type << 32);
4565
4566         return hash_64(val, SWEVENT_HLIST_BITS);
4567 }
4568
4569 static inline struct hlist_head *
4570 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4571 {
4572         u64 hash = swevent_hash(type, event_id);
4573
4574         return &hlist->heads[hash];
4575 }
4576
4577 /* For the read side: events when they trigger */
4578 static inline struct hlist_head *
4579 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4580 {
4581         struct swevent_hlist *hlist;
4582
4583         hlist = rcu_dereference(swhash->swevent_hlist);
4584         if (!hlist)
4585                 return NULL;
4586
4587         return __find_swevent_head(hlist, type, event_id);
4588 }
4589
4590 /* For the event head insertion and removal in the hlist */
4591 static inline struct hlist_head *
4592 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4593 {
4594         struct swevent_hlist *hlist;
4595         u32 event_id = event->attr.config;
4596         u64 type = event->attr.type;
4597
4598         /*
4599          * Event scheduling is always serialized against hlist allocation
4600          * and release. Which makes the protected version suitable here.
4601          * The context lock guarantees that.
4602          */
4603         hlist = rcu_dereference_protected(swhash->swevent_hlist,
4604                                           lockdep_is_held(&event->ctx->lock));
4605         if (!hlist)
4606                 return NULL;
4607
4608         return __find_swevent_head(hlist, type, event_id);
4609 }
4610
4611 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4612                                     u64 nr, int nmi,
4613                                     struct perf_sample_data *data,
4614                                     struct pt_regs *regs)
4615 {
4616         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4617         struct perf_event *event;
4618         struct hlist_node *node;
4619         struct hlist_head *head;
4620
4621         rcu_read_lock();
4622         head = find_swevent_head_rcu(swhash, type, event_id);
4623         if (!head)
4624                 goto end;
4625
4626         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4627                 if (perf_swevent_match(event, type, event_id, data, regs))
4628                         perf_swevent_event(event, nr, nmi, data, regs);
4629         }
4630 end:
4631         rcu_read_unlock();
4632 }
4633
4634 int perf_swevent_get_recursion_context(void)
4635 {
4636         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4637
4638         return get_recursion_context(swhash->recursion);
4639 }
4640 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4641
4642 void inline perf_swevent_put_recursion_context(int rctx)
4643 {
4644         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4645
4646         put_recursion_context(swhash->recursion, rctx);
4647 }
4648
4649 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4650                             struct pt_regs *regs, u64 addr)
4651 {
4652         struct perf_sample_data data;
4653         int rctx;
4654
4655         preempt_disable_notrace();
4656         rctx = perf_swevent_get_recursion_context();
4657         if (rctx < 0)
4658                 return;
4659
4660         perf_sample_data_init(&data, addr);
4661
4662         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4663
4664         perf_swevent_put_recursion_context(rctx);
4665         preempt_enable_notrace();
4666 }
4667
4668 static void perf_swevent_read(struct perf_event *event)
4669 {
4670 }
4671
4672 static int perf_swevent_add(struct perf_event *event, int flags)
4673 {
4674         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4675         struct hw_perf_event *hwc = &event->hw;
4676         struct hlist_head *head;
4677
4678         if (is_sampling_event(event)) {
4679                 hwc->last_period = hwc->sample_period;
4680                 perf_swevent_set_period(event);
4681         }
4682
4683         hwc->state = !(flags & PERF_EF_START);
4684
4685         head = find_swevent_head(swhash, event);
4686         if (WARN_ON_ONCE(!head))
4687                 return -EINVAL;
4688
4689         hlist_add_head_rcu(&event->hlist_entry, head);
4690
4691         return 0;
4692 }
4693
4694 static void perf_swevent_del(struct perf_event *event, int flags)
4695 {
4696         hlist_del_rcu(&event->hlist_entry);
4697 }
4698
4699 static void perf_swevent_start(struct perf_event *event, int flags)
4700 {
4701         event->hw.state = 0;
4702 }
4703
4704 static void perf_swevent_stop(struct perf_event *event, int flags)
4705 {
4706         event->hw.state = PERF_HES_STOPPED;
4707 }
4708
4709 /* Deref the hlist from the update side */
4710 static inline struct swevent_hlist *
4711 swevent_hlist_deref(struct swevent_htable *swhash)
4712 {
4713         return rcu_dereference_protected(swhash->swevent_hlist,
4714                                          lockdep_is_held(&swhash->hlist_mutex));
4715 }
4716
4717 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4718 {
4719         struct swevent_hlist *hlist;
4720
4721         hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4722         kfree(hlist);
4723 }
4724
4725 static void swevent_hlist_release(struct swevent_htable *swhash)
4726 {
4727         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4728
4729         if (!hlist)
4730                 return;
4731
4732         rcu_assign_pointer(swhash->swevent_hlist, NULL);
4733         call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4734 }
4735
4736 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4737 {
4738         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4739
4740         mutex_lock(&swhash->hlist_mutex);
4741
4742         if (!--swhash->hlist_refcount)
4743                 swevent_hlist_release(swhash);
4744
4745         mutex_unlock(&swhash->hlist_mutex);
4746 }
4747
4748 static void swevent_hlist_put(struct perf_event *event)
4749 {
4750         int cpu;
4751
4752         if (event->cpu != -1) {
4753                 swevent_hlist_put_cpu(event, event->cpu);
4754                 return;
4755         }
4756
4757         for_each_possible_cpu(cpu)
4758                 swevent_hlist_put_cpu(event, cpu);
4759 }
4760
4761 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4762 {
4763         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4764         int err = 0;
4765
4766         mutex_lock(&swhash->hlist_mutex);
4767
4768         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4769                 struct swevent_hlist *hlist;
4770
4771                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4772                 if (!hlist) {
4773                         err = -ENOMEM;
4774                         goto exit;
4775                 }
4776                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4777         }
4778         swhash->hlist_refcount++;
4779 exit:
4780         mutex_unlock(&swhash->hlist_mutex);
4781
4782         return err;
4783 }
4784
4785 static int swevent_hlist_get(struct perf_event *event)
4786 {
4787         int err;
4788         int cpu, failed_cpu;
4789
4790         if (event->cpu != -1)
4791                 return swevent_hlist_get_cpu(event, event->cpu);
4792
4793         get_online_cpus();
4794         for_each_possible_cpu(cpu) {
4795                 err = swevent_hlist_get_cpu(event, cpu);
4796                 if (err) {
4797                         failed_cpu = cpu;
4798                         goto fail;
4799                 }
4800         }
4801         put_online_cpus();
4802
4803         return 0;
4804 fail:
4805         for_each_possible_cpu(cpu) {
4806                 if (cpu == failed_cpu)
4807                         break;
4808                 swevent_hlist_put_cpu(event, cpu);
4809         }
4810
4811         put_online_cpus();
4812         return err;
4813 }
4814
4815 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4816
4817 static void sw_perf_event_destroy(struct perf_event *event)
4818 {
4819         u64 event_id = event->attr.config;
4820
4821         WARN_ON(event->parent);
4822
4823         jump_label_dec(&perf_swevent_enabled[event_id]);
4824         swevent_hlist_put(event);
4825 }
4826
4827 static int perf_swevent_init(struct perf_event *event)
4828 {
4829         int event_id = event->attr.config;
4830
4831         if (event->attr.type != PERF_TYPE_SOFTWARE)
4832                 return -ENOENT;
4833
4834         switch (event_id) {
4835         case PERF_COUNT_SW_CPU_CLOCK:
4836         case PERF_COUNT_SW_TASK_CLOCK:
4837                 return -ENOENT;
4838
4839         default:
4840                 break;
4841         }
4842
4843         if (event_id > PERF_COUNT_SW_MAX)
4844                 return -ENOENT;
4845
4846         if (!event->parent) {
4847                 int err;
4848
4849                 err = swevent_hlist_get(event);
4850                 if (err)
4851                         return err;
4852
4853                 jump_label_inc(&perf_swevent_enabled[event_id]);
4854                 event->destroy = sw_perf_event_destroy;
4855         }
4856
4857         return 0;
4858 }
4859
4860 static struct pmu perf_swevent = {
4861         .task_ctx_nr    = perf_sw_context,
4862
4863         .event_init     = perf_swevent_init,
4864         .add            = perf_swevent_add,
4865         .del            = perf_swevent_del,
4866         .start          = perf_swevent_start,
4867         .stop           = perf_swevent_stop,
4868         .read           = perf_swevent_read,
4869 };
4870
4871 #ifdef CONFIG_EVENT_TRACING
4872
4873 static int perf_tp_filter_match(struct perf_event *event,
4874                                 struct perf_sample_data *data)
4875 {
4876         void *record = data->raw->data;
4877
4878         if (likely(!event->filter) || filter_match_preds(event->filter, record))
4879                 return 1;
4880         return 0;
4881 }
4882
4883 static int perf_tp_event_match(struct perf_event *event,
4884                                 struct perf_sample_data *data,
4885                                 struct pt_regs *regs)
4886 {
4887         /*
4888          * All tracepoints are from kernel-space.
4889          */
4890         if (event->attr.exclude_kernel)
4891                 return 0;
4892
4893         if (!perf_tp_filter_match(event, data))
4894                 return 0;
4895
4896         return 1;
4897 }
4898
4899 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4900                    struct pt_regs *regs, struct hlist_head *head, int rctx)
4901 {
4902         struct perf_sample_data data;
4903         struct perf_event *event;
4904         struct hlist_node *node;
4905
4906         struct perf_raw_record raw = {
4907                 .size = entry_size,
4908                 .data = record,
4909         };
4910
4911         perf_sample_data_init(&data, addr);
4912         data.raw = &raw;
4913
4914         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4915                 if (perf_tp_event_match(event, &data, regs))
4916                         perf_swevent_event(event, count, 1, &data, regs);
4917         }
4918
4919         perf_swevent_put_recursion_context(rctx);
4920 }
4921 EXPORT_SYMBOL_GPL(perf_tp_event);
4922
4923 static void tp_perf_event_destroy(struct perf_event *event)
4924 {
4925         perf_trace_destroy(event);
4926 }
4927
4928 static int perf_tp_event_init(struct perf_event *event)
4929 {
4930         int err;
4931
4932         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4933                 return -ENOENT;
4934
4935         err = perf_trace_init(event);
4936         if (err)
4937                 return err;
4938
4939         event->destroy = tp_perf_event_destroy;
4940
4941         return 0;
4942 }
4943
4944 static struct pmu perf_tracepoint = {
4945         .task_ctx_nr    = perf_sw_context,
4946
4947         .event_init     = perf_tp_event_init,
4948         .add            = perf_trace_add,
4949         .del            = perf_trace_del,
4950         .start          = perf_swevent_start,
4951         .stop           = perf_swevent_stop,
4952         .read           = perf_swevent_read,
4953 };
4954
4955 static inline void perf_tp_register(void)
4956 {
4957         perf_pmu_register(&perf_tracepoint);
4958 }
4959
4960 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4961 {
4962         char *filter_str;
4963         int ret;
4964
4965         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4966                 return -EINVAL;
4967
4968         filter_str = strndup_user(arg, PAGE_SIZE);
4969         if (IS_ERR(filter_str))
4970                 return PTR_ERR(filter_str);
4971
4972         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4973
4974         kfree(filter_str);
4975         return ret;
4976 }
4977
4978 static void perf_event_free_filter(struct perf_event *event)
4979 {
4980         ftrace_profile_free_filter(event);
4981 }
4982
4983 #else
4984
4985 static inline void perf_tp_register(void)
4986 {
4987 }
4988
4989 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4990 {
4991         return -ENOENT;
4992 }
4993
4994 static void perf_event_free_filter(struct perf_event *event)
4995 {
4996 }
4997
4998 #endif /* CONFIG_EVENT_TRACING */
4999
5000 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5001 void perf_bp_event(struct perf_event *bp, void *data)
5002 {
5003         struct perf_sample_data sample;
5004         struct pt_regs *regs = data;
5005
5006         perf_sample_data_init(&sample, bp->attr.bp_addr);
5007
5008         if (!bp->hw.state && !perf_exclude_event(bp, regs))
5009                 perf_swevent_event(bp, 1, 1, &sample, regs);
5010 }
5011 #endif
5012
5013 /*
5014  * hrtimer based swevent callback
5015  */
5016
5017 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5018 {
5019         enum hrtimer_restart ret = HRTIMER_RESTART;
5020         struct perf_sample_data data;
5021         struct pt_regs *regs;
5022         struct perf_event *event;
5023         u64 period;
5024
5025         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5026         event->pmu->read(event);
5027
5028         perf_sample_data_init(&data, 0);
5029         data.period = event->hw.last_period;
5030         regs = get_irq_regs();
5031
5032         if (regs && !perf_exclude_event(event, regs)) {
5033                 if (!(event->attr.exclude_idle && current->pid == 0))
5034                         if (perf_event_overflow(event, 0, &data, regs))
5035                                 ret = HRTIMER_NORESTART;
5036         }
5037
5038         period = max_t(u64, 10000, event->hw.sample_period);
5039         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5040
5041         return ret;
5042 }
5043
5044 static void perf_swevent_start_hrtimer(struct perf_event *event)
5045 {
5046         struct hw_perf_event *hwc = &event->hw;
5047         s64 period;
5048
5049         if (!is_sampling_event(event))
5050                 return;
5051
5052         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5053         hwc->hrtimer.function = perf_swevent_hrtimer;
5054
5055         period = local64_read(&hwc->period_left);
5056         if (period) {
5057                 if (period < 0)
5058                         period = 10000;
5059
5060                 local64_set(&hwc->period_left, 0);
5061         } else {
5062                 period = max_t(u64, 10000, hwc->sample_period);
5063         }
5064         __hrtimer_start_range_ns(&hwc->hrtimer,
5065                                 ns_to_ktime(period), 0,
5066                                 HRTIMER_MODE_REL_PINNED, 0);
5067 }
5068
5069 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5070 {
5071         struct hw_perf_event *hwc = &event->hw;
5072
5073         if (is_sampling_event(event)) {
5074                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5075                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5076
5077                 hrtimer_cancel(&hwc->hrtimer);
5078         }
5079 }
5080
5081 /*
5082  * Software event: cpu wall time clock
5083  */
5084
5085 static void cpu_clock_event_update(struct perf_event *event)
5086 {
5087         s64 prev;
5088         u64 now;
5089
5090         now = local_clock();
5091         prev = local64_xchg(&event->hw.prev_count, now);
5092         local64_add(now - prev, &event->count);
5093 }
5094
5095 static void cpu_clock_event_start(struct perf_event *event, int flags)
5096 {
5097         local64_set(&event->hw.prev_count, local_clock());
5098         perf_swevent_start_hrtimer(event);
5099 }
5100
5101 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5102 {
5103         perf_swevent_cancel_hrtimer(event);
5104         cpu_clock_event_update(event);
5105 }
5106
5107 static int cpu_clock_event_add(struct perf_event *event, int flags)
5108 {
5109         if (flags & PERF_EF_START)
5110                 cpu_clock_event_start(event, flags);
5111
5112         return 0;
5113 }
5114
5115 static void cpu_clock_event_del(struct perf_event *event, int flags)
5116 {
5117         cpu_clock_event_stop(event, flags);
5118 }
5119
5120 static void cpu_clock_event_read(struct perf_event *event)
5121 {
5122         cpu_clock_event_update(event);
5123 }
5124
5125 static int cpu_clock_event_init(struct perf_event *event)
5126 {
5127         if (event->attr.type != PERF_TYPE_SOFTWARE)
5128                 return -ENOENT;
5129
5130         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5131                 return -ENOENT;
5132
5133         return 0;
5134 }
5135
5136 static struct pmu perf_cpu_clock = {
5137         .task_ctx_nr    = perf_sw_context,
5138
5139         .event_init     = cpu_clock_event_init,
5140         .add            = cpu_clock_event_add,
5141         .del            = cpu_clock_event_del,
5142         .start          = cpu_clock_event_start,
5143         .stop           = cpu_clock_event_stop,
5144         .read           = cpu_clock_event_read,
5145 };
5146
5147 /*
5148  * Software event: task time clock
5149  */
5150
5151 static void task_clock_event_update(struct perf_event *event, u64 now)
5152 {
5153         u64 prev;
5154         s64 delta;
5155
5156         prev = local64_xchg(&event->hw.prev_count, now);
5157         delta = now - prev;
5158         local64_add(delta, &event->count);
5159 }
5160
5161 static void task_clock_event_start(struct perf_event *event, int flags)
5162 {
5163         local64_set(&event->hw.prev_count, event->ctx->time);
5164         perf_swevent_start_hrtimer(event);
5165 }
5166
5167 static void task_clock_event_stop(struct perf_event *event, int flags)
5168 {
5169         perf_swevent_cancel_hrtimer(event);
5170         task_clock_event_update(event, event->ctx->time);
5171 }
5172
5173 static int task_clock_event_add(struct perf_event *event, int flags)
5174 {
5175         if (flags & PERF_EF_START)
5176                 task_clock_event_start(event, flags);
5177
5178         return 0;
5179 }
5180
5181 static void task_clock_event_del(struct perf_event *event, int flags)
5182 {
5183         task_clock_event_stop(event, PERF_EF_UPDATE);
5184 }
5185
5186 static void task_clock_event_read(struct perf_event *event)
5187 {
5188         u64 time;
5189
5190         if (!in_nmi()) {
5191                 update_context_time(event->ctx);
5192                 time = event->ctx->time;
5193         } else {
5194                 u64 now = perf_clock();
5195                 u64 delta = now - event->ctx->timestamp;
5196                 time = event->ctx->time + delta;
5197         }
5198
5199         task_clock_event_update(event, time);
5200 }
5201
5202 static int task_clock_event_init(struct perf_event *event)
5203 {
5204         if (event->attr.type != PERF_TYPE_SOFTWARE)
5205                 return -ENOENT;
5206
5207         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5208                 return -ENOENT;
5209
5210         return 0;
5211 }
5212
5213 static struct pmu perf_task_clock = {
5214         .task_ctx_nr    = perf_sw_context,
5215
5216         .event_init     = task_clock_event_init,
5217         .add            = task_clock_event_add,
5218         .del            = task_clock_event_del,
5219         .start          = task_clock_event_start,
5220         .stop           = task_clock_event_stop,
5221         .read           = task_clock_event_read,
5222 };
5223
5224 static void perf_pmu_nop_void(struct pmu *pmu)
5225 {
5226 }
5227
5228 static int perf_pmu_nop_int(struct pmu *pmu)
5229 {
5230         return 0;
5231 }
5232
5233 static void perf_pmu_start_txn(struct pmu *pmu)
5234 {
5235         perf_pmu_disable(pmu);
5236 }
5237
5238 static int perf_pmu_commit_txn(struct pmu *pmu)
5239 {
5240         perf_pmu_enable(pmu);
5241         return 0;
5242 }
5243
5244 static void perf_pmu_cancel_txn(struct pmu *pmu)
5245 {
5246         perf_pmu_enable(pmu);
5247 }
5248
5249 /*
5250  * Ensures all contexts with the same task_ctx_nr have the same
5251  * pmu_cpu_context too.
5252  */
5253 static void *find_pmu_context(int ctxn)
5254 {
5255         struct pmu *pmu;
5256
5257         if (ctxn < 0)
5258                 return NULL;
5259
5260         list_for_each_entry(pmu, &pmus, entry) {
5261                 if (pmu->task_ctx_nr == ctxn)
5262                         return pmu->pmu_cpu_context;
5263         }
5264
5265         return NULL;
5266 }
5267
5268 static void free_pmu_context(void * __percpu cpu_context)
5269 {
5270         struct pmu *pmu;
5271
5272         mutex_lock(&pmus_lock);
5273         /*
5274          * Like a real lame refcount.
5275          */
5276         list_for_each_entry(pmu, &pmus, entry) {
5277                 if (pmu->pmu_cpu_context == cpu_context)
5278                         goto out;
5279         }
5280
5281         free_percpu(cpu_context);
5282 out:
5283         mutex_unlock(&pmus_lock);
5284 }
5285
5286 int perf_pmu_register(struct pmu *pmu)
5287 {
5288         int cpu, ret;
5289
5290         mutex_lock(&pmus_lock);
5291         ret = -ENOMEM;
5292         pmu->pmu_disable_count = alloc_percpu(int);
5293         if (!pmu->pmu_disable_count)
5294                 goto unlock;
5295
5296         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5297         if (pmu->pmu_cpu_context)
5298                 goto got_cpu_context;
5299
5300         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5301         if (!pmu->pmu_cpu_context)
5302                 goto free_pdc;
5303
5304         for_each_possible_cpu(cpu) {
5305                 struct perf_cpu_context *cpuctx;
5306
5307                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5308                 __perf_event_init_context(&cpuctx->ctx);
5309                 cpuctx->ctx.type = cpu_context;
5310                 cpuctx->ctx.pmu = pmu;
5311                 cpuctx->jiffies_interval = 1;
5312                 INIT_LIST_HEAD(&cpuctx->rotation_list);
5313         }
5314
5315 got_cpu_context:
5316         if (!pmu->start_txn) {
5317                 if (pmu->pmu_enable) {
5318                         /*
5319                          * If we have pmu_enable/pmu_disable calls, install
5320                          * transaction stubs that use that to try and batch
5321                          * hardware accesses.
5322                          */
5323                         pmu->start_txn  = perf_pmu_start_txn;
5324                         pmu->commit_txn = perf_pmu_commit_txn;
5325                         pmu->cancel_txn = perf_pmu_cancel_txn;
5326                 } else {
5327                         pmu->start_txn  = perf_pmu_nop_void;
5328                         pmu->commit_txn = perf_pmu_nop_int;
5329                         pmu->cancel_txn = perf_pmu_nop_void;
5330                 }
5331         }
5332
5333         if (!pmu->pmu_enable) {
5334                 pmu->pmu_enable  = perf_pmu_nop_void;
5335                 pmu->pmu_disable = perf_pmu_nop_void;
5336         }
5337
5338         list_add_rcu(&pmu->entry, &pmus);
5339         ret = 0;
5340 unlock:
5341         mutex_unlock(&pmus_lock);
5342
5343         return ret;
5344
5345 free_pdc:
5346         free_percpu(pmu->pmu_disable_count);
5347         goto unlock;
5348 }
5349
5350 void perf_pmu_unregister(struct pmu *pmu)
5351 {
5352         mutex_lock(&pmus_lock);
5353         list_del_rcu(&pmu->entry);
5354         mutex_unlock(&pmus_lock);
5355
5356         /*
5357          * We dereference the pmu list under both SRCU and regular RCU, so
5358          * synchronize against both of those.
5359          */
5360         synchronize_srcu(&pmus_srcu);
5361         synchronize_rcu();
5362
5363         free_percpu(pmu->pmu_disable_count);
5364         free_pmu_context(pmu->pmu_cpu_context);
5365 }
5366
5367 struct pmu *perf_init_event(struct perf_event *event)
5368 {
5369         struct pmu *pmu = NULL;
5370         int idx;
5371
5372         idx = srcu_read_lock(&pmus_srcu);
5373         list_for_each_entry_rcu(pmu, &pmus, entry) {
5374                 int ret = pmu->event_init(event);
5375                 if (!ret)
5376                         goto unlock;
5377
5378                 if (ret != -ENOENT) {
5379                         pmu = ERR_PTR(ret);
5380                         goto unlock;
5381                 }
5382         }
5383         pmu = ERR_PTR(-ENOENT);
5384 unlock:
5385         srcu_read_unlock(&pmus_srcu, idx);
5386
5387         return pmu;
5388 }
5389
5390 /*
5391  * Allocate and initialize a event structure
5392  */
5393 static struct perf_event *
5394 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5395                  struct task_struct *task,
5396                  struct perf_event *group_leader,
5397                  struct perf_event *parent_event,
5398                  perf_overflow_handler_t overflow_handler)
5399 {
5400         struct pmu *pmu;
5401         struct perf_event *event;
5402         struct hw_perf_event *hwc;
5403         long err;
5404
5405         event = kzalloc(sizeof(*event), GFP_KERNEL);
5406         if (!event)
5407                 return ERR_PTR(-ENOMEM);
5408
5409         /*
5410          * Single events are their own group leaders, with an
5411          * empty sibling list:
5412          */
5413         if (!group_leader)
5414                 group_leader = event;
5415
5416         mutex_init(&event->child_mutex);
5417         INIT_LIST_HEAD(&event->child_list);
5418
5419         INIT_LIST_HEAD(&event->group_entry);
5420         INIT_LIST_HEAD(&event->event_entry);
5421         INIT_LIST_HEAD(&event->sibling_list);
5422         init_waitqueue_head(&event->waitq);
5423         init_irq_work(&event->pending, perf_pending_event);
5424
5425         mutex_init(&event->mmap_mutex);
5426
5427         event->cpu              = cpu;
5428         event->attr             = *attr;
5429         event->group_leader     = group_leader;
5430         event->pmu              = NULL;
5431         event->oncpu            = -1;
5432
5433         event->parent           = parent_event;
5434
5435         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
5436         event->id               = atomic64_inc_return(&perf_event_id);
5437
5438         event->state            = PERF_EVENT_STATE_INACTIVE;
5439
5440         if (task) {
5441                 event->attach_state = PERF_ATTACH_TASK;
5442 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5443                 /*
5444                  * hw_breakpoint is a bit difficult here..
5445                  */
5446                 if (attr->type == PERF_TYPE_BREAKPOINT)
5447                         event->hw.bp_target = task;
5448 #endif
5449         }
5450
5451         if (!overflow_handler && parent_event)
5452                 overflow_handler = parent_event->overflow_handler;
5453         
5454         event->overflow_handler = overflow_handler;
5455
5456         if (attr->disabled)
5457                 event->state = PERF_EVENT_STATE_OFF;
5458
5459         pmu = NULL;
5460
5461         hwc = &event->hw;
5462         hwc->sample_period = attr->sample_period;
5463         if (attr->freq && attr->sample_freq)
5464                 hwc->sample_period = 1;
5465         hwc->last_period = hwc->sample_period;
5466
5467         local64_set(&hwc->period_left, hwc->sample_period);
5468
5469         /*
5470          * we currently do not support PERF_FORMAT_GROUP on inherited events
5471          */
5472         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5473                 goto done;
5474
5475         pmu = perf_init_event(event);
5476
5477 done:
5478         err = 0;
5479         if (!pmu)
5480                 err = -EINVAL;
5481         else if (IS_ERR(pmu))
5482                 err = PTR_ERR(pmu);
5483
5484         if (err) {
5485                 if (event->ns)
5486                         put_pid_ns(event->ns);
5487                 kfree(event);
5488                 return ERR_PTR(err);
5489         }
5490
5491         event->pmu = pmu;
5492
5493         if (!event->parent) {
5494                 if (event->attach_state & PERF_ATTACH_TASK)
5495                         jump_label_inc(&perf_task_events);
5496                 if (event->attr.mmap || event->attr.mmap_data)
5497                         atomic_inc(&nr_mmap_events);
5498                 if (event->attr.comm)
5499                         atomic_inc(&nr_comm_events);
5500                 if (event->attr.task)
5501                         atomic_inc(&nr_task_events);
5502                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5503                         err = get_callchain_buffers();
5504                         if (err) {
5505                                 free_event(event);
5506                                 return ERR_PTR(err);
5507                         }
5508                 }
5509         }
5510
5511         return event;
5512 }
5513
5514 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5515                           struct perf_event_attr *attr)
5516 {
5517         u32 size;
5518         int ret;
5519
5520         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5521                 return -EFAULT;
5522
5523         /*
5524          * zero the full structure, so that a short copy will be nice.
5525          */
5526         memset(attr, 0, sizeof(*attr));
5527
5528         ret = get_user(size, &uattr->size);
5529         if (ret)
5530                 return ret;
5531
5532         if (size > PAGE_SIZE)   /* silly large */
5533                 goto err_size;
5534
5535         if (!size)              /* abi compat */
5536                 size = PERF_ATTR_SIZE_VER0;
5537
5538         if (size < PERF_ATTR_SIZE_VER0)
5539                 goto err_size;
5540
5541         /*
5542          * If we're handed a bigger struct than we know of,
5543          * ensure all the unknown bits are 0 - i.e. new
5544          * user-space does not rely on any kernel feature
5545          * extensions we dont know about yet.
5546          */
5547         if (size > sizeof(*attr)) {
5548                 unsigned char __user *addr;
5549                 unsigned char __user *end;
5550                 unsigned char val;
5551
5552                 addr = (void __user *)uattr + sizeof(*attr);
5553                 end  = (void __user *)uattr + size;
5554
5555                 for (; addr < end; addr++) {
5556                         ret = get_user(val, addr);
5557                         if (ret)
5558                                 return ret;
5559                         if (val)
5560                                 goto err_size;
5561                 }
5562                 size = sizeof(*attr);
5563         }
5564
5565         ret = copy_from_user(attr, uattr, size);
5566         if (ret)
5567                 return -EFAULT;
5568
5569         /*
5570          * If the type exists, the corresponding creation will verify
5571          * the attr->config.
5572          */
5573         if (attr->type >= PERF_TYPE_MAX)
5574                 return -EINVAL;
5575
5576         if (attr->__reserved_1)
5577                 return -EINVAL;
5578
5579         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5580                 return -EINVAL;
5581
5582         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5583                 return -EINVAL;
5584
5585 out:
5586         return ret;
5587
5588 err_size:
5589         put_user(sizeof(*attr), &uattr->size);
5590         ret = -E2BIG;
5591         goto out;
5592 }
5593
5594 static int
5595 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5596 {
5597         struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5598         int ret = -EINVAL;
5599
5600         if (!output_event)
5601                 goto set;
5602
5603         /* don't allow circular references */
5604         if (event == output_event)
5605                 goto out;
5606
5607         /*
5608          * Don't allow cross-cpu buffers
5609          */
5610         if (output_event->cpu != event->cpu)
5611                 goto out;
5612
5613         /*
5614          * If its not a per-cpu buffer, it must be the same task.
5615          */
5616         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5617                 goto out;
5618
5619 set:
5620         mutex_lock(&event->mmap_mutex);
5621         /* Can't redirect output if we've got an active mmap() */
5622         if (atomic_read(&event->mmap_count))
5623                 goto unlock;
5624
5625         if (output_event) {
5626                 /* get the buffer we want to redirect to */
5627                 buffer = perf_buffer_get(output_event);
5628                 if (!buffer)
5629                         goto unlock;
5630         }
5631
5632         old_buffer = event->buffer;
5633         rcu_assign_pointer(event->buffer, buffer);
5634         ret = 0;
5635 unlock:
5636         mutex_unlock(&event->mmap_mutex);
5637
5638         if (old_buffer)
5639                 perf_buffer_put(old_buffer);
5640 out:
5641         return ret;
5642 }
5643
5644 /**
5645  * sys_perf_event_open - open a performance event, associate it to a task/cpu
5646  *
5647  * @attr_uptr:  event_id type attributes for monitoring/sampling
5648  * @pid:                target pid
5649  * @cpu:                target cpu
5650  * @group_fd:           group leader event fd
5651  */
5652 SYSCALL_DEFINE5(perf_event_open,
5653                 struct perf_event_attr __user *, attr_uptr,
5654                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5655 {
5656         struct perf_event *group_leader = NULL, *output_event = NULL;
5657         struct perf_event *event, *sibling;
5658         struct perf_event_attr attr;
5659         struct perf_event_context *ctx;
5660         struct file *event_file = NULL;
5661         struct file *group_file = NULL;
5662         struct task_struct *task = NULL;
5663         struct pmu *pmu;
5664         int event_fd;
5665         int move_group = 0;
5666         int fput_needed = 0;
5667         int err;
5668
5669         /* for future expandability... */
5670         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5671                 return -EINVAL;
5672
5673         err = perf_copy_attr(attr_uptr, &attr);
5674         if (err)
5675                 return err;
5676
5677         if (!attr.exclude_kernel) {
5678                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5679                         return -EACCES;
5680         }
5681
5682         if (attr.freq) {
5683                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5684                         return -EINVAL;
5685         }
5686
5687         event_fd = get_unused_fd_flags(O_RDWR);
5688         if (event_fd < 0)
5689                 return event_fd;
5690
5691         if (group_fd != -1) {
5692                 group_leader = perf_fget_light(group_fd, &fput_needed);
5693                 if (IS_ERR(group_leader)) {
5694                         err = PTR_ERR(group_leader);
5695                         goto err_fd;
5696                 }
5697                 group_file = group_leader->filp;
5698                 if (flags & PERF_FLAG_FD_OUTPUT)
5699                         output_event = group_leader;
5700                 if (flags & PERF_FLAG_FD_NO_GROUP)
5701                         group_leader = NULL;
5702         }
5703
5704         if (pid != -1) {
5705                 task = find_lively_task_by_vpid(pid);
5706                 if (IS_ERR(task)) {
5707                         err = PTR_ERR(task);
5708                         goto err_group_fd;
5709                 }
5710         }
5711
5712         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
5713         if (IS_ERR(event)) {
5714                 err = PTR_ERR(event);
5715                 goto err_task;
5716         }
5717
5718         /*
5719          * Special case software events and allow them to be part of
5720          * any hardware group.
5721          */
5722         pmu = event->pmu;
5723
5724         if (group_leader &&
5725             (is_software_event(event) != is_software_event(group_leader))) {
5726                 if (is_software_event(event)) {
5727                         /*
5728                          * If event and group_leader are not both a software
5729                          * event, and event is, then group leader is not.
5730                          *
5731                          * Allow the addition of software events to !software
5732                          * groups, this is safe because software events never
5733                          * fail to schedule.
5734                          */
5735                         pmu = group_leader->pmu;
5736                 } else if (is_software_event(group_leader) &&
5737                            (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
5738                         /*
5739                          * In case the group is a pure software group, and we
5740                          * try to add a hardware event, move the whole group to
5741                          * the hardware context.
5742                          */
5743                         move_group = 1;
5744                 }
5745         }
5746
5747         /*
5748          * Get the target context (task or percpu):
5749          */
5750         ctx = find_get_context(pmu, task, cpu);
5751         if (IS_ERR(ctx)) {
5752                 err = PTR_ERR(ctx);
5753                 goto err_alloc;
5754         }
5755
5756         /*
5757          * Look up the group leader (we will attach this event to it):
5758          */
5759         if (group_leader) {
5760                 err = -EINVAL;
5761
5762                 /*
5763                  * Do not allow a recursive hierarchy (this new sibling
5764                  * becoming part of another group-sibling):
5765                  */
5766                 if (group_leader->group_leader != group_leader)
5767                         goto err_context;
5768                 /*
5769                  * Do not allow to attach to a group in a different
5770                  * task or CPU context:
5771                  */
5772                 if (move_group) {
5773                         if (group_leader->ctx->type != ctx->type)
5774                                 goto err_context;
5775                 } else {
5776                         if (group_leader->ctx != ctx)
5777                                 goto err_context;
5778                 }
5779
5780                 /*
5781                  * Only a group leader can be exclusive or pinned
5782                  */
5783                 if (attr.exclusive || attr.pinned)
5784                         goto err_context;
5785         }
5786
5787         if (output_event) {
5788                 err = perf_event_set_output(event, output_event);
5789                 if (err)
5790                         goto err_context;
5791         }
5792
5793         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5794         if (IS_ERR(event_file)) {
5795                 err = PTR_ERR(event_file);
5796                 goto err_context;
5797         }
5798
5799         if (move_group) {
5800                 struct perf_event_context *gctx = group_leader->ctx;
5801
5802                 mutex_lock(&gctx->mutex);
5803                 perf_event_remove_from_context(group_leader);
5804                 list_for_each_entry(sibling, &group_leader->sibling_list,
5805                                     group_entry) {
5806                         perf_event_remove_from_context(sibling);
5807                         put_ctx(gctx);
5808                 }
5809                 mutex_unlock(&gctx->mutex);
5810                 put_ctx(gctx);
5811         }
5812
5813         event->filp = event_file;
5814         WARN_ON_ONCE(ctx->parent_ctx);
5815         mutex_lock(&ctx->mutex);
5816
5817         if (move_group) {
5818                 perf_install_in_context(ctx, group_leader, cpu);
5819                 get_ctx(ctx);
5820                 list_for_each_entry(sibling, &group_leader->sibling_list,
5821                                     group_entry) {
5822                         perf_install_in_context(ctx, sibling, cpu);
5823                         get_ctx(ctx);
5824                 }
5825         }
5826
5827         perf_install_in_context(ctx, event, cpu);
5828         ++ctx->generation;
5829         mutex_unlock(&ctx->mutex);
5830
5831         event->owner = current;
5832
5833         mutex_lock(&current->perf_event_mutex);
5834         list_add_tail(&event->owner_entry, &current->perf_event_list);
5835         mutex_unlock(&current->perf_event_mutex);
5836
5837         /*
5838          * Precalculate sample_data sizes
5839          */
5840         perf_event__header_size(event);
5841         perf_event__id_header_size(event);
5842
5843         /*
5844          * Drop the reference on the group_event after placing the
5845          * new event on the sibling_list. This ensures destruction
5846          * of the group leader will find the pointer to itself in
5847          * perf_group_detach().
5848          */
5849         fput_light(group_file, fput_needed);
5850         fd_install(event_fd, event_file);
5851         return event_fd;
5852
5853 err_context:
5854         put_ctx(ctx);
5855 err_alloc:
5856         free_event(event);
5857 err_task:
5858         if (task)
5859                 put_task_struct(task);
5860 err_group_fd:
5861         fput_light(group_file, fput_needed);
5862 err_fd:
5863         put_unused_fd(event_fd);
5864         return err;
5865 }
5866
5867 /**
5868  * perf_event_create_kernel_counter
5869  *
5870  * @attr: attributes of the counter to create
5871  * @cpu: cpu in which the counter is bound
5872  * @task: task to profile (NULL for percpu)
5873  */
5874 struct perf_event *
5875 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5876                                  struct task_struct *task,
5877                                  perf_overflow_handler_t overflow_handler)
5878 {
5879         struct perf_event_context *ctx;
5880         struct perf_event *event;
5881         int err;
5882
5883         /*
5884          * Get the target context (task or percpu):
5885          */
5886
5887         event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
5888         if (IS_ERR(event)) {
5889                 err = PTR_ERR(event);
5890                 goto err;
5891         }
5892
5893         ctx = find_get_context(event->pmu, task, cpu);
5894         if (IS_ERR(ctx)) {
5895                 err = PTR_ERR(ctx);
5896                 goto err_free;
5897         }
5898
5899         event->filp = NULL;
5900         WARN_ON_ONCE(ctx->parent_ctx);
5901         mutex_lock(&ctx->mutex);
5902         perf_install_in_context(ctx, event, cpu);
5903         ++ctx->generation;
5904         mutex_unlock(&ctx->mutex);
5905
5906         return event;
5907
5908 err_free:
5909         free_event(event);
5910 err:
5911         return ERR_PTR(err);
5912 }
5913 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5914
5915 static void sync_child_event(struct perf_event *child_event,
5916                                struct task_struct *child)
5917 {
5918         struct perf_event *parent_event = child_event->parent;
5919         u64 child_val;
5920
5921         if (child_event->attr.inherit_stat)
5922                 perf_event_read_event(child_event, child);
5923
5924         child_val = perf_event_count(child_event);
5925
5926         /*
5927          * Add back the child's count to the parent's count:
5928          */
5929         atomic64_add(child_val, &parent_event->child_count);
5930         atomic64_add(child_event->total_time_enabled,
5931                      &parent_event->child_total_time_enabled);
5932         atomic64_add(child_event->total_time_running,
5933                      &parent_event->child_total_time_running);
5934
5935         /*
5936          * Remove this event from the parent's list
5937          */
5938         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5939         mutex_lock(&parent_event->child_mutex);
5940         list_del_init(&child_event->child_list);
5941         mutex_unlock(&parent_event->child_mutex);
5942
5943         /*
5944          * Release the parent event, if this was the last
5945          * reference to it.
5946          */
5947         fput(parent_event->filp);
5948 }
5949
5950 static void
5951 __perf_event_exit_task(struct perf_event *child_event,
5952                          struct perf_event_context *child_ctx,
5953                          struct task_struct *child)
5954 {
5955         struct perf_event *parent_event;
5956
5957         perf_event_remove_from_context(child_event);
5958
5959         parent_event = child_event->parent;
5960         /*
5961          * It can happen that parent exits first, and has events
5962          * that are still around due to the child reference. These
5963          * events need to be zapped - but otherwise linger.
5964          */
5965         if (parent_event) {
5966                 sync_child_event(child_event, child);
5967                 free_event(child_event);
5968         }
5969 }
5970
5971 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5972 {
5973         struct perf_event *child_event, *tmp;
5974         struct perf_event_context *child_ctx;
5975         unsigned long flags;
5976
5977         if (likely(!child->perf_event_ctxp[ctxn])) {
5978                 perf_event_task(child, NULL, 0);
5979                 return;
5980         }
5981
5982         local_irq_save(flags);
5983         /*
5984          * We can't reschedule here because interrupts are disabled,
5985          * and either child is current or it is a task that can't be
5986          * scheduled, so we are now safe from rescheduling changing
5987          * our context.
5988          */
5989         child_ctx = child->perf_event_ctxp[ctxn];
5990         task_ctx_sched_out(child_ctx, EVENT_ALL);
5991
5992         /*
5993          * Take the context lock here so that if find_get_context is
5994          * reading child->perf_event_ctxp, we wait until it has
5995          * incremented the context's refcount before we do put_ctx below.
5996          */
5997         raw_spin_lock(&child_ctx->lock);
5998         child->perf_event_ctxp[ctxn] = NULL;
5999         /*
6000          * If this context is a clone; unclone it so it can't get
6001          * swapped to another process while we're removing all
6002          * the events from it.
6003          */
6004         unclone_ctx(child_ctx);
6005         update_context_time(child_ctx);
6006         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6007
6008         /*
6009          * Report the task dead after unscheduling the events so that we
6010          * won't get any samples after PERF_RECORD_EXIT. We can however still
6011          * get a few PERF_RECORD_READ events.
6012          */
6013         perf_event_task(child, child_ctx, 0);
6014
6015         /*
6016          * We can recurse on the same lock type through:
6017          *
6018          *   __perf_event_exit_task()
6019          *     sync_child_event()
6020          *       fput(parent_event->filp)
6021          *         perf_release()
6022          *           mutex_lock(&ctx->mutex)
6023          *
6024          * But since its the parent context it won't be the same instance.
6025          */
6026         mutex_lock(&child_ctx->mutex);
6027
6028 again:
6029         list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6030                                  group_entry)
6031                 __perf_event_exit_task(child_event, child_ctx, child);
6032
6033         list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6034                                  group_entry)
6035                 __perf_event_exit_task(child_event, child_ctx, child);
6036
6037         /*
6038          * If the last event was a group event, it will have appended all
6039          * its siblings to the list, but we obtained 'tmp' before that which
6040          * will still point to the list head terminating the iteration.
6041          */
6042         if (!list_empty(&child_ctx->pinned_groups) ||
6043             !list_empty(&child_ctx->flexible_groups))
6044                 goto again;
6045
6046         mutex_unlock(&child_ctx->mutex);
6047
6048         put_ctx(child_ctx);
6049 }
6050
6051 /*
6052  * When a child task exits, feed back event values to parent events.
6053  */
6054 void perf_event_exit_task(struct task_struct *child)
6055 {
6056         struct perf_event *event, *tmp;
6057         int ctxn;
6058
6059         mutex_lock(&child->perf_event_mutex);
6060         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6061                                  owner_entry) {
6062                 list_del_init(&event->owner_entry);
6063
6064                 /*
6065                  * Ensure the list deletion is visible before we clear
6066                  * the owner, closes a race against perf_release() where
6067                  * we need to serialize on the owner->perf_event_mutex.
6068                  */
6069                 smp_wmb();
6070                 event->owner = NULL;
6071         }
6072         mutex_unlock(&child->perf_event_mutex);
6073
6074         for_each_task_context_nr(ctxn)
6075                 perf_event_exit_task_context(child, ctxn);
6076 }
6077
6078 static void perf_free_event(struct perf_event *event,
6079                             struct perf_event_context *ctx)
6080 {
6081         struct perf_event *parent = event->parent;
6082
6083         if (WARN_ON_ONCE(!parent))
6084                 return;
6085
6086         mutex_lock(&parent->child_mutex);
6087         list_del_init(&event->child_list);
6088         mutex_unlock(&parent->child_mutex);
6089
6090         fput(parent->filp);
6091
6092         perf_group_detach(event);
6093         list_del_event(event, ctx);
6094         free_event(event);
6095 }
6096
6097 /*
6098  * free an unexposed, unused context as created by inheritance by
6099  * perf_event_init_task below, used by fork() in case of fail.
6100  */
6101 void perf_event_free_task(struct task_struct *task)
6102 {
6103         struct perf_event_context *ctx;
6104         struct perf_event *event, *tmp;
6105         int ctxn;
6106
6107         for_each_task_context_nr(ctxn) {
6108                 ctx = task->perf_event_ctxp[ctxn];
6109                 if (!ctx)
6110                         continue;
6111
6112                 mutex_lock(&ctx->mutex);
6113 again:
6114                 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6115                                 group_entry)
6116                         perf_free_event(event, ctx);
6117
6118                 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6119                                 group_entry)
6120                         perf_free_event(event, ctx);
6121
6122                 if (!list_empty(&ctx->pinned_groups) ||
6123                                 !list_empty(&ctx->flexible_groups))
6124                         goto again;
6125
6126                 mutex_unlock(&ctx->mutex);
6127
6128                 put_ctx(ctx);
6129         }
6130 }
6131
6132 void perf_event_delayed_put(struct task_struct *task)
6133 {
6134         int ctxn;
6135
6136         for_each_task_context_nr(ctxn)
6137                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6138 }
6139
6140 /*
6141  * inherit a event from parent task to child task:
6142  */
6143 static struct perf_event *
6144 inherit_event(struct perf_event *parent_event,
6145               struct task_struct *parent,
6146               struct perf_event_context *parent_ctx,
6147               struct task_struct *child,
6148               struct perf_event *group_leader,
6149               struct perf_event_context *child_ctx)
6150 {
6151         struct perf_event *child_event;
6152         unsigned long flags;
6153
6154         /*
6155          * Instead of creating recursive hierarchies of events,
6156          * we link inherited events back to the original parent,
6157          * which has a filp for sure, which we use as the reference
6158          * count:
6159          */
6160         if (parent_event->parent)
6161                 parent_event = parent_event->parent;
6162
6163         child_event = perf_event_alloc(&parent_event->attr,
6164                                            parent_event->cpu,
6165                                            child,
6166                                            group_leader, parent_event,
6167                                            NULL);
6168         if (IS_ERR(child_event))
6169                 return child_event;
6170         get_ctx(child_ctx);
6171
6172         /*
6173          * Make the child state follow the state of the parent event,
6174          * not its attr.disabled bit.  We hold the parent's mutex,
6175          * so we won't race with perf_event_{en, dis}able_family.
6176          */
6177         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6178                 child_event->state = PERF_EVENT_STATE_INACTIVE;
6179         else
6180                 child_event->state = PERF_EVENT_STATE_OFF;
6181
6182         if (parent_event->attr.freq) {
6183                 u64 sample_period = parent_event->hw.sample_period;
6184                 struct hw_perf_event *hwc = &child_event->hw;
6185
6186                 hwc->sample_period = sample_period;
6187                 hwc->last_period   = sample_period;
6188
6189                 local64_set(&hwc->period_left, sample_period);
6190         }
6191
6192         child_event->ctx = child_ctx;
6193         child_event->overflow_handler = parent_event->overflow_handler;
6194
6195         /*
6196          * Precalculate sample_data sizes
6197          */
6198         perf_event__header_size(child_event);
6199         perf_event__id_header_size(child_event);
6200
6201         /*
6202          * Link it up in the child's context:
6203          */
6204         raw_spin_lock_irqsave(&child_ctx->lock, flags);
6205         add_event_to_ctx(child_event, child_ctx);
6206         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6207
6208         /*
6209          * Get a reference to the parent filp - we will fput it
6210          * when the child event exits. This is safe to do because
6211          * we are in the parent and we know that the filp still
6212          * exists and has a nonzero count:
6213          */
6214         atomic_long_inc(&parent_event->filp->f_count);
6215
6216         /*
6217          * Link this into the parent event's child list
6218          */
6219         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6220         mutex_lock(&parent_event->child_mutex);
6221         list_add_tail(&child_event->child_list, &parent_event->child_list);
6222         mutex_unlock(&parent_event->child_mutex);
6223
6224         return child_event;
6225 }
6226
6227 static int inherit_group(struct perf_event *parent_event,
6228               struct task_struct *parent,
6229               struct perf_event_context *parent_ctx,
6230               struct task_struct *child,
6231               struct perf_event_context *child_ctx)
6232 {
6233         struct perf_event *leader;
6234         struct perf_event *sub;
6235         struct perf_event *child_ctr;
6236
6237         leader = inherit_event(parent_event, parent, parent_ctx,
6238                                  child, NULL, child_ctx);
6239         if (IS_ERR(leader))
6240                 return PTR_ERR(leader);
6241         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6242                 child_ctr = inherit_event(sub, parent, parent_ctx,
6243                                             child, leader, child_ctx);
6244                 if (IS_ERR(child_ctr))
6245                         return PTR_ERR(child_ctr);
6246         }
6247         return 0;
6248 }
6249
6250 static int
6251 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6252                    struct perf_event_context *parent_ctx,
6253                    struct task_struct *child, int ctxn,
6254                    int *inherited_all)
6255 {
6256         int ret;
6257         struct perf_event_context *child_ctx;
6258
6259         if (!event->attr.inherit) {
6260                 *inherited_all = 0;
6261                 return 0;
6262         }
6263
6264         child_ctx = child->perf_event_ctxp[ctxn];
6265         if (!child_ctx) {
6266                 /*
6267                  * This is executed from the parent task context, so
6268                  * inherit events that have been marked for cloning.
6269                  * First allocate and initialize a context for the
6270                  * child.
6271                  */
6272
6273                 child_ctx = alloc_perf_context(event->pmu, child);
6274                 if (!child_ctx)
6275                         return -ENOMEM;
6276
6277                 child->perf_event_ctxp[ctxn] = child_ctx;
6278         }
6279
6280         ret = inherit_group(event, parent, parent_ctx,
6281                             child, child_ctx);
6282
6283         if (ret)
6284                 *inherited_all = 0;
6285
6286         return ret;
6287 }
6288
6289 /*
6290  * Initialize the perf_event context in task_struct
6291  */
6292 int perf_event_init_context(struct task_struct *child, int ctxn)
6293 {
6294         struct perf_event_context *child_ctx, *parent_ctx;
6295         struct perf_event_context *cloned_ctx;
6296         struct perf_event *event;
6297         struct task_struct *parent = current;
6298         int inherited_all = 1;
6299         unsigned long flags;
6300         int ret = 0;
6301
6302         child->perf_event_ctxp[ctxn] = NULL;
6303
6304         mutex_init(&child->perf_event_mutex);
6305         INIT_LIST_HEAD(&child->perf_event_list);
6306
6307         if (likely(!parent->perf_event_ctxp[ctxn]))
6308                 return 0;
6309
6310         /*
6311          * If the parent's context is a clone, pin it so it won't get
6312          * swapped under us.
6313          */
6314         parent_ctx = perf_pin_task_context(parent, ctxn);
6315
6316         /*
6317          * No need to check if parent_ctx != NULL here; since we saw
6318          * it non-NULL earlier, the only reason for it to become NULL
6319          * is if we exit, and since we're currently in the middle of
6320          * a fork we can't be exiting at the same time.
6321          */
6322
6323         /*
6324          * Lock the parent list. No need to lock the child - not PID
6325          * hashed yet and not running, so nobody can access it.
6326          */
6327         mutex_lock(&parent_ctx->mutex);
6328
6329         /*
6330          * We dont have to disable NMIs - we are only looking at
6331          * the list, not manipulating it:
6332          */
6333         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6334                 ret = inherit_task_group(event, parent, parent_ctx,
6335                                          child, ctxn, &inherited_all);
6336                 if (ret)
6337                         break;
6338         }
6339
6340         /*
6341          * We can't hold ctx->lock when iterating the ->flexible_group list due
6342          * to allocations, but we need to prevent rotation because
6343          * rotate_ctx() will change the list from interrupt context.
6344          */
6345         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6346         parent_ctx->rotate_disable = 1;
6347         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6348
6349         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6350                 ret = inherit_task_group(event, parent, parent_ctx,
6351                                          child, ctxn, &inherited_all);
6352                 if (ret)
6353                         break;
6354         }
6355
6356         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6357         parent_ctx->rotate_disable = 0;
6358         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6359
6360         child_ctx = child->perf_event_ctxp[ctxn];
6361
6362         if (child_ctx && inherited_all) {
6363                 /*
6364                  * Mark the child context as a clone of the parent
6365                  * context, or of whatever the parent is a clone of.
6366                  * Note that if the parent is a clone, it could get
6367                  * uncloned at any point, but that doesn't matter
6368                  * because the list of events and the generation
6369                  * count can't have changed since we took the mutex.
6370                  */
6371                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
6372                 if (cloned_ctx) {
6373                         child_ctx->parent_ctx = cloned_ctx;
6374                         child_ctx->parent_gen = parent_ctx->parent_gen;
6375                 } else {
6376                         child_ctx->parent_ctx = parent_ctx;
6377                         child_ctx->parent_gen = parent_ctx->generation;
6378                 }
6379                 get_ctx(child_ctx->parent_ctx);
6380         }
6381
6382         mutex_unlock(&parent_ctx->mutex);
6383
6384         perf_unpin_context(parent_ctx);
6385
6386         return ret;
6387 }
6388
6389 /*
6390  * Initialize the perf_event context in task_struct
6391  */
6392 int perf_event_init_task(struct task_struct *child)
6393 {
6394         int ctxn, ret;
6395
6396         for_each_task_context_nr(ctxn) {
6397                 ret = perf_event_init_context(child, ctxn);
6398                 if (ret)
6399                         return ret;
6400         }
6401
6402         return 0;
6403 }
6404
6405 static void __init perf_event_init_all_cpus(void)
6406 {
6407         struct swevent_htable *swhash;
6408         int cpu;
6409
6410         for_each_possible_cpu(cpu) {
6411                 swhash = &per_cpu(swevent_htable, cpu);
6412                 mutex_init(&swhash->hlist_mutex);
6413                 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6414         }
6415 }
6416
6417 static void __cpuinit perf_event_init_cpu(int cpu)
6418 {
6419         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6420
6421         mutex_lock(&swhash->hlist_mutex);
6422         if (swhash->hlist_refcount > 0) {
6423                 struct swevent_hlist *hlist;
6424
6425                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6426                 WARN_ON(!hlist);
6427                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6428         }
6429         mutex_unlock(&swhash->hlist_mutex);
6430 }
6431
6432 #ifdef CONFIG_HOTPLUG_CPU
6433 static void perf_pmu_rotate_stop(struct pmu *pmu)
6434 {
6435         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6436
6437         WARN_ON(!irqs_disabled());
6438
6439         list_del_init(&cpuctx->rotation_list);
6440 }
6441
6442 static void __perf_event_exit_context(void *__info)
6443 {
6444         struct perf_event_context *ctx = __info;
6445         struct perf_event *event, *tmp;
6446
6447         perf_pmu_rotate_stop(ctx->pmu);
6448
6449         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6450                 __perf_event_remove_from_context(event);
6451         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6452                 __perf_event_remove_from_context(event);
6453 }
6454
6455 static void perf_event_exit_cpu_context(int cpu)
6456 {
6457         struct perf_event_context *ctx;
6458         struct pmu *pmu;
6459         int idx;
6460
6461         idx = srcu_read_lock(&pmus_srcu);
6462         list_for_each_entry_rcu(pmu, &pmus, entry) {
6463                 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6464
6465                 mutex_lock(&ctx->mutex);
6466                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6467                 mutex_unlock(&ctx->mutex);
6468         }
6469         srcu_read_unlock(&pmus_srcu, idx);
6470 }
6471
6472 static void perf_event_exit_cpu(int cpu)
6473 {
6474         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6475
6476         mutex_lock(&swhash->hlist_mutex);
6477         swevent_hlist_release(swhash);
6478         mutex_unlock(&swhash->hlist_mutex);
6479
6480         perf_event_exit_cpu_context(cpu);
6481 }
6482 #else
6483 static inline void perf_event_exit_cpu(int cpu) { }
6484 #endif
6485
6486 static int __cpuinit
6487 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6488 {
6489         unsigned int cpu = (long)hcpu;
6490
6491         switch (action & ~CPU_TASKS_FROZEN) {
6492
6493         case CPU_UP_PREPARE:
6494         case CPU_DOWN_FAILED:
6495                 perf_event_init_cpu(cpu);
6496                 break;
6497
6498         case CPU_UP_CANCELED:
6499         case CPU_DOWN_PREPARE:
6500                 perf_event_exit_cpu(cpu);
6501                 break;
6502
6503         default:
6504                 break;
6505         }
6506
6507         return NOTIFY_OK;
6508 }
6509
6510 void __init perf_event_init(void)
6511 {
6512         int ret;
6513
6514         perf_event_init_all_cpus();
6515         init_srcu_struct(&pmus_srcu);
6516         perf_pmu_register(&perf_swevent);
6517         perf_pmu_register(&perf_cpu_clock);
6518         perf_pmu_register(&perf_task_clock);
6519         perf_tp_register();
6520         perf_cpu_notifier(perf_cpu_notify);
6521
6522         ret = init_hw_breakpoint();
6523         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
6524 }