perf_events: Fix transaction recovery in group_sched_in()
[firefly-linux-kernel-4.4.55.git] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34
35 #include <asm/irq_regs.h>
36
37 static atomic_t nr_events __read_mostly;
38 static atomic_t nr_mmap_events __read_mostly;
39 static atomic_t nr_comm_events __read_mostly;
40 static atomic_t nr_task_events __read_mostly;
41
42 static LIST_HEAD(pmus);
43 static DEFINE_MUTEX(pmus_lock);
44 static struct srcu_struct pmus_srcu;
45
46 /*
47  * perf event paranoia level:
48  *  -1 - not paranoid at all
49  *   0 - disallow raw tracepoint access for unpriv
50  *   1 - disallow cpu events for unpriv
51  *   2 - disallow kernel profiling for unpriv
52  */
53 int sysctl_perf_event_paranoid __read_mostly = 1;
54
55 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
56
57 /*
58  * max perf event sample rate
59  */
60 int sysctl_perf_event_sample_rate __read_mostly = 100000;
61
62 static atomic64_t perf_event_id;
63
64 void __weak perf_event_print_debug(void)        { }
65
66 extern __weak const char *perf_pmu_name(void)
67 {
68         return "pmu";
69 }
70
71 void perf_pmu_disable(struct pmu *pmu)
72 {
73         int *count = this_cpu_ptr(pmu->pmu_disable_count);
74         if (!(*count)++)
75                 pmu->pmu_disable(pmu);
76 }
77
78 void perf_pmu_enable(struct pmu *pmu)
79 {
80         int *count = this_cpu_ptr(pmu->pmu_disable_count);
81         if (!--(*count))
82                 pmu->pmu_enable(pmu);
83 }
84
85 static DEFINE_PER_CPU(struct list_head, rotation_list);
86
87 /*
88  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
89  * because they're strictly cpu affine and rotate_start is called with IRQs
90  * disabled, while rotate_context is called from IRQ context.
91  */
92 static void perf_pmu_rotate_start(struct pmu *pmu)
93 {
94         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95         struct list_head *head = &__get_cpu_var(rotation_list);
96
97         WARN_ON(!irqs_disabled());
98
99         if (list_empty(&cpuctx->rotation_list))
100                 list_add(&cpuctx->rotation_list, head);
101 }
102
103 static void get_ctx(struct perf_event_context *ctx)
104 {
105         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
106 }
107
108 static void free_ctx(struct rcu_head *head)
109 {
110         struct perf_event_context *ctx;
111
112         ctx = container_of(head, struct perf_event_context, rcu_head);
113         kfree(ctx);
114 }
115
116 static void put_ctx(struct perf_event_context *ctx)
117 {
118         if (atomic_dec_and_test(&ctx->refcount)) {
119                 if (ctx->parent_ctx)
120                         put_ctx(ctx->parent_ctx);
121                 if (ctx->task)
122                         put_task_struct(ctx->task);
123                 call_rcu(&ctx->rcu_head, free_ctx);
124         }
125 }
126
127 static void unclone_ctx(struct perf_event_context *ctx)
128 {
129         if (ctx->parent_ctx) {
130                 put_ctx(ctx->parent_ctx);
131                 ctx->parent_ctx = NULL;
132         }
133 }
134
135 /*
136  * If we inherit events we want to return the parent event id
137  * to userspace.
138  */
139 static u64 primary_event_id(struct perf_event *event)
140 {
141         u64 id = event->id;
142
143         if (event->parent)
144                 id = event->parent->id;
145
146         return id;
147 }
148
149 /*
150  * Get the perf_event_context for a task and lock it.
151  * This has to cope with with the fact that until it is locked,
152  * the context could get moved to another task.
153  */
154 static struct perf_event_context *
155 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
156 {
157         struct perf_event_context *ctx;
158
159         rcu_read_lock();
160 retry:
161         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
162         if (ctx) {
163                 /*
164                  * If this context is a clone of another, it might
165                  * get swapped for another underneath us by
166                  * perf_event_task_sched_out, though the
167                  * rcu_read_lock() protects us from any context
168                  * getting freed.  Lock the context and check if it
169                  * got swapped before we could get the lock, and retry
170                  * if so.  If we locked the right context, then it
171                  * can't get swapped on us any more.
172                  */
173                 raw_spin_lock_irqsave(&ctx->lock, *flags);
174                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
175                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
176                         goto retry;
177                 }
178
179                 if (!atomic_inc_not_zero(&ctx->refcount)) {
180                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
181                         ctx = NULL;
182                 }
183         }
184         rcu_read_unlock();
185         return ctx;
186 }
187
188 /*
189  * Get the context for a task and increment its pin_count so it
190  * can't get swapped to another task.  This also increments its
191  * reference count so that the context can't get freed.
192  */
193 static struct perf_event_context *
194 perf_pin_task_context(struct task_struct *task, int ctxn)
195 {
196         struct perf_event_context *ctx;
197         unsigned long flags;
198
199         ctx = perf_lock_task_context(task, ctxn, &flags);
200         if (ctx) {
201                 ++ctx->pin_count;
202                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
203         }
204         return ctx;
205 }
206
207 static void perf_unpin_context(struct perf_event_context *ctx)
208 {
209         unsigned long flags;
210
211         raw_spin_lock_irqsave(&ctx->lock, flags);
212         --ctx->pin_count;
213         raw_spin_unlock_irqrestore(&ctx->lock, flags);
214         put_ctx(ctx);
215 }
216
217 static inline u64 perf_clock(void)
218 {
219         return local_clock();
220 }
221
222 /*
223  * Update the record of the current time in a context.
224  */
225 static void update_context_time(struct perf_event_context *ctx)
226 {
227         u64 now = perf_clock();
228
229         ctx->time += now - ctx->timestamp;
230         ctx->timestamp = now;
231 }
232
233 /*
234  * Update the total_time_enabled and total_time_running fields for a event.
235  */
236 static void update_event_times(struct perf_event *event)
237 {
238         struct perf_event_context *ctx = event->ctx;
239         u64 run_end;
240
241         if (event->state < PERF_EVENT_STATE_INACTIVE ||
242             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
243                 return;
244
245         if (ctx->is_active)
246                 run_end = ctx->time;
247         else
248                 run_end = event->tstamp_stopped;
249
250         event->total_time_enabled = run_end - event->tstamp_enabled;
251
252         if (event->state == PERF_EVENT_STATE_INACTIVE)
253                 run_end = event->tstamp_stopped;
254         else
255                 run_end = ctx->time;
256
257         event->total_time_running = run_end - event->tstamp_running;
258 }
259
260 /*
261  * Update total_time_enabled and total_time_running for all events in a group.
262  */
263 static void update_group_times(struct perf_event *leader)
264 {
265         struct perf_event *event;
266
267         update_event_times(leader);
268         list_for_each_entry(event, &leader->sibling_list, group_entry)
269                 update_event_times(event);
270 }
271
272 static struct list_head *
273 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
274 {
275         if (event->attr.pinned)
276                 return &ctx->pinned_groups;
277         else
278                 return &ctx->flexible_groups;
279 }
280
281 /*
282  * Add a event from the lists for its context.
283  * Must be called with ctx->mutex and ctx->lock held.
284  */
285 static void
286 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
287 {
288         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
289         event->attach_state |= PERF_ATTACH_CONTEXT;
290
291         /*
292          * If we're a stand alone event or group leader, we go to the context
293          * list, group events are kept attached to the group so that
294          * perf_group_detach can, at all times, locate all siblings.
295          */
296         if (event->group_leader == event) {
297                 struct list_head *list;
298
299                 if (is_software_event(event))
300                         event->group_flags |= PERF_GROUP_SOFTWARE;
301
302                 list = ctx_group_list(event, ctx);
303                 list_add_tail(&event->group_entry, list);
304         }
305
306         list_add_rcu(&event->event_entry, &ctx->event_list);
307         if (!ctx->nr_events)
308                 perf_pmu_rotate_start(ctx->pmu);
309         ctx->nr_events++;
310         if (event->attr.inherit_stat)
311                 ctx->nr_stat++;
312 }
313
314 static void perf_group_attach(struct perf_event *event)
315 {
316         struct perf_event *group_leader = event->group_leader;
317
318         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
319         event->attach_state |= PERF_ATTACH_GROUP;
320
321         if (group_leader == event)
322                 return;
323
324         if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
325                         !is_software_event(event))
326                 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
327
328         list_add_tail(&event->group_entry, &group_leader->sibling_list);
329         group_leader->nr_siblings++;
330 }
331
332 /*
333  * Remove a event from the lists for its context.
334  * Must be called with ctx->mutex and ctx->lock held.
335  */
336 static void
337 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
338 {
339         /*
340          * We can have double detach due to exit/hot-unplug + close.
341          */
342         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
343                 return;
344
345         event->attach_state &= ~PERF_ATTACH_CONTEXT;
346
347         ctx->nr_events--;
348         if (event->attr.inherit_stat)
349                 ctx->nr_stat--;
350
351         list_del_rcu(&event->event_entry);
352
353         if (event->group_leader == event)
354                 list_del_init(&event->group_entry);
355
356         update_group_times(event);
357
358         /*
359          * If event was in error state, then keep it
360          * that way, otherwise bogus counts will be
361          * returned on read(). The only way to get out
362          * of error state is by explicit re-enabling
363          * of the event
364          */
365         if (event->state > PERF_EVENT_STATE_OFF)
366                 event->state = PERF_EVENT_STATE_OFF;
367 }
368
369 static void perf_group_detach(struct perf_event *event)
370 {
371         struct perf_event *sibling, *tmp;
372         struct list_head *list = NULL;
373
374         /*
375          * We can have double detach due to exit/hot-unplug + close.
376          */
377         if (!(event->attach_state & PERF_ATTACH_GROUP))
378                 return;
379
380         event->attach_state &= ~PERF_ATTACH_GROUP;
381
382         /*
383          * If this is a sibling, remove it from its group.
384          */
385         if (event->group_leader != event) {
386                 list_del_init(&event->group_entry);
387                 event->group_leader->nr_siblings--;
388                 return;
389         }
390
391         if (!list_empty(&event->group_entry))
392                 list = &event->group_entry;
393
394         /*
395          * If this was a group event with sibling events then
396          * upgrade the siblings to singleton events by adding them
397          * to whatever list we are on.
398          */
399         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
400                 if (list)
401                         list_move_tail(&sibling->group_entry, list);
402                 sibling->group_leader = sibling;
403
404                 /* Inherit group flags from the previous leader */
405                 sibling->group_flags = event->group_flags;
406         }
407 }
408
409 static inline int
410 event_filter_match(struct perf_event *event)
411 {
412         return event->cpu == -1 || event->cpu == smp_processor_id();
413 }
414
415 static int
416 __event_sched_out(struct perf_event *event,
417                   struct perf_cpu_context *cpuctx,
418                   struct perf_event_context *ctx)
419 {
420         u64 delta;
421         /*
422          * An event which could not be activated because of
423          * filter mismatch still needs to have its timings
424          * maintained, otherwise bogus information is return
425          * via read() for time_enabled, time_running:
426          */
427         if (event->state == PERF_EVENT_STATE_INACTIVE
428             && !event_filter_match(event)) {
429                 delta = ctx->time - event->tstamp_stopped;
430                 event->tstamp_running += delta;
431                 event->tstamp_stopped = ctx->time;
432         }
433
434         if (event->state != PERF_EVENT_STATE_ACTIVE)
435                 return 0;
436
437         event->state = PERF_EVENT_STATE_INACTIVE;
438         if (event->pending_disable) {
439                 event->pending_disable = 0;
440                 event->state = PERF_EVENT_STATE_OFF;
441         }
442         event->pmu->del(event, 0);
443         event->oncpu = -1;
444
445         if (!is_software_event(event))
446                 cpuctx->active_oncpu--;
447         ctx->nr_active--;
448         if (event->attr.exclusive || !cpuctx->active_oncpu)
449                 cpuctx->exclusive = 0;
450         return 1;
451 }
452
453 static void
454 event_sched_out(struct perf_event *event,
455                   struct perf_cpu_context *cpuctx,
456                   struct perf_event_context *ctx)
457 {
458         int ret;
459
460         ret = __event_sched_out(event, cpuctx, ctx);
461         if (ret)
462                 event->tstamp_stopped = ctx->time;
463 }
464
465 static void
466 group_sched_out(struct perf_event *group_event,
467                 struct perf_cpu_context *cpuctx,
468                 struct perf_event_context *ctx)
469 {
470         struct perf_event *event;
471         int state = group_event->state;
472
473         event_sched_out(group_event, cpuctx, ctx);
474
475         /*
476          * Schedule out siblings (if any):
477          */
478         list_for_each_entry(event, &group_event->sibling_list, group_entry)
479                 event_sched_out(event, cpuctx, ctx);
480
481         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
482                 cpuctx->exclusive = 0;
483 }
484
485 static inline struct perf_cpu_context *
486 __get_cpu_context(struct perf_event_context *ctx)
487 {
488         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
489 }
490
491 /*
492  * Cross CPU call to remove a performance event
493  *
494  * We disable the event on the hardware level first. After that we
495  * remove it from the context list.
496  */
497 static void __perf_event_remove_from_context(void *info)
498 {
499         struct perf_event *event = info;
500         struct perf_event_context *ctx = event->ctx;
501         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
502
503         /*
504          * If this is a task context, we need to check whether it is
505          * the current task context of this cpu. If not it has been
506          * scheduled out before the smp call arrived.
507          */
508         if (ctx->task && cpuctx->task_ctx != ctx)
509                 return;
510
511         raw_spin_lock(&ctx->lock);
512
513         event_sched_out(event, cpuctx, ctx);
514
515         list_del_event(event, ctx);
516
517         raw_spin_unlock(&ctx->lock);
518 }
519
520
521 /*
522  * Remove the event from a task's (or a CPU's) list of events.
523  *
524  * Must be called with ctx->mutex held.
525  *
526  * CPU events are removed with a smp call. For task events we only
527  * call when the task is on a CPU.
528  *
529  * If event->ctx is a cloned context, callers must make sure that
530  * every task struct that event->ctx->task could possibly point to
531  * remains valid.  This is OK when called from perf_release since
532  * that only calls us on the top-level context, which can't be a clone.
533  * When called from perf_event_exit_task, it's OK because the
534  * context has been detached from its task.
535  */
536 static void perf_event_remove_from_context(struct perf_event *event)
537 {
538         struct perf_event_context *ctx = event->ctx;
539         struct task_struct *task = ctx->task;
540
541         if (!task) {
542                 /*
543                  * Per cpu events are removed via an smp call and
544                  * the removal is always successful.
545                  */
546                 smp_call_function_single(event->cpu,
547                                          __perf_event_remove_from_context,
548                                          event, 1);
549                 return;
550         }
551
552 retry:
553         task_oncpu_function_call(task, __perf_event_remove_from_context,
554                                  event);
555
556         raw_spin_lock_irq(&ctx->lock);
557         /*
558          * If the context is active we need to retry the smp call.
559          */
560         if (ctx->nr_active && !list_empty(&event->group_entry)) {
561                 raw_spin_unlock_irq(&ctx->lock);
562                 goto retry;
563         }
564
565         /*
566          * The lock prevents that this context is scheduled in so we
567          * can remove the event safely, if the call above did not
568          * succeed.
569          */
570         if (!list_empty(&event->group_entry))
571                 list_del_event(event, ctx);
572         raw_spin_unlock_irq(&ctx->lock);
573 }
574
575 /*
576  * Cross CPU call to disable a performance event
577  */
578 static void __perf_event_disable(void *info)
579 {
580         struct perf_event *event = info;
581         struct perf_event_context *ctx = event->ctx;
582         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
583
584         /*
585          * If this is a per-task event, need to check whether this
586          * event's task is the current task on this cpu.
587          */
588         if (ctx->task && cpuctx->task_ctx != ctx)
589                 return;
590
591         raw_spin_lock(&ctx->lock);
592
593         /*
594          * If the event is on, turn it off.
595          * If it is in error state, leave it in error state.
596          */
597         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
598                 update_context_time(ctx);
599                 update_group_times(event);
600                 if (event == event->group_leader)
601                         group_sched_out(event, cpuctx, ctx);
602                 else
603                         event_sched_out(event, cpuctx, ctx);
604                 event->state = PERF_EVENT_STATE_OFF;
605         }
606
607         raw_spin_unlock(&ctx->lock);
608 }
609
610 /*
611  * Disable a event.
612  *
613  * If event->ctx is a cloned context, callers must make sure that
614  * every task struct that event->ctx->task could possibly point to
615  * remains valid.  This condition is satisifed when called through
616  * perf_event_for_each_child or perf_event_for_each because they
617  * hold the top-level event's child_mutex, so any descendant that
618  * goes to exit will block in sync_child_event.
619  * When called from perf_pending_event it's OK because event->ctx
620  * is the current context on this CPU and preemption is disabled,
621  * hence we can't get into perf_event_task_sched_out for this context.
622  */
623 void perf_event_disable(struct perf_event *event)
624 {
625         struct perf_event_context *ctx = event->ctx;
626         struct task_struct *task = ctx->task;
627
628         if (!task) {
629                 /*
630                  * Disable the event on the cpu that it's on
631                  */
632                 smp_call_function_single(event->cpu, __perf_event_disable,
633                                          event, 1);
634                 return;
635         }
636
637 retry:
638         task_oncpu_function_call(task, __perf_event_disable, event);
639
640         raw_spin_lock_irq(&ctx->lock);
641         /*
642          * If the event is still active, we need to retry the cross-call.
643          */
644         if (event->state == PERF_EVENT_STATE_ACTIVE) {
645                 raw_spin_unlock_irq(&ctx->lock);
646                 goto retry;
647         }
648
649         /*
650          * Since we have the lock this context can't be scheduled
651          * in, so we can change the state safely.
652          */
653         if (event->state == PERF_EVENT_STATE_INACTIVE) {
654                 update_group_times(event);
655                 event->state = PERF_EVENT_STATE_OFF;
656         }
657
658         raw_spin_unlock_irq(&ctx->lock);
659 }
660
661 static int
662 __event_sched_in(struct perf_event *event,
663                  struct perf_cpu_context *cpuctx,
664                  struct perf_event_context *ctx)
665 {
666         if (event->state <= PERF_EVENT_STATE_OFF)
667                 return 0;
668
669         event->state = PERF_EVENT_STATE_ACTIVE;
670         event->oncpu = smp_processor_id();
671         /*
672          * The new state must be visible before we turn it on in the hardware:
673          */
674         smp_wmb();
675
676         if (event->pmu->add(event, PERF_EF_START)) {
677                 event->state = PERF_EVENT_STATE_INACTIVE;
678                 event->oncpu = -1;
679                 return -EAGAIN;
680         }
681
682         if (!is_software_event(event))
683                 cpuctx->active_oncpu++;
684         ctx->nr_active++;
685
686         if (event->attr.exclusive)
687                 cpuctx->exclusive = 1;
688
689         return 0;
690 }
691
692 static inline int
693 event_sched_in(struct perf_event *event,
694                  struct perf_cpu_context *cpuctx,
695                  struct perf_event_context *ctx)
696 {
697         int ret = __event_sched_in(event, cpuctx, ctx);
698         if (ret)
699                 return ret;
700         event->tstamp_running += ctx->time - event->tstamp_stopped;
701         return 0;
702 }
703
704 static void
705 group_commit_event_sched_in(struct perf_event *group_event,
706                struct perf_cpu_context *cpuctx,
707                struct perf_event_context *ctx)
708 {
709         struct perf_event *event;
710         u64 now = ctx->time;
711
712         group_event->tstamp_running += now - group_event->tstamp_stopped;
713         /*
714          * Schedule in siblings as one group (if any):
715          */
716         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
717                 event->tstamp_running += now - event->tstamp_stopped;
718         }
719 }
720
721 static int
722 group_sched_in(struct perf_event *group_event,
723                struct perf_cpu_context *cpuctx,
724                struct perf_event_context *ctx)
725 {
726         struct perf_event *event, *partial_group = NULL;
727         struct pmu *pmu = group_event->pmu;
728
729         if (group_event->state == PERF_EVENT_STATE_OFF)
730                 return 0;
731
732         pmu->start_txn(pmu);
733
734         /*
735          * use __event_sched_in() to delay updating tstamp_running
736          * until the transaction is committed. In case of failure
737          * we will keep an unmodified tstamp_running which is a
738          * requirement to get correct timing information
739          */
740         if (__event_sched_in(group_event, cpuctx, ctx)) {
741                 pmu->cancel_txn(pmu);
742                 return -EAGAIN;
743         }
744
745         /*
746          * Schedule in siblings as one group (if any):
747          */
748         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
749                 if (__event_sched_in(event, cpuctx, ctx)) {
750                         partial_group = event;
751                         goto group_error;
752                 }
753         }
754
755         if (!pmu->commit_txn(pmu)) {
756                 /* commit tstamp_running */
757                 group_commit_event_sched_in(group_event, cpuctx, ctx);
758                 return 0;
759         }
760 group_error:
761         /*
762          * Groups can be scheduled in as one unit only, so undo any
763          * partial group before returning:
764          *
765          * use __event_sched_out() to avoid updating tstamp_stopped
766          * because the event never actually ran
767          */
768         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
769                 if (event == partial_group)
770                         break;
771                 __event_sched_out(event, cpuctx, ctx);
772         }
773         __event_sched_out(group_event, cpuctx, ctx);
774
775         pmu->cancel_txn(pmu);
776
777         return -EAGAIN;
778 }
779
780 /*
781  * Work out whether we can put this event group on the CPU now.
782  */
783 static int group_can_go_on(struct perf_event *event,
784                            struct perf_cpu_context *cpuctx,
785                            int can_add_hw)
786 {
787         /*
788          * Groups consisting entirely of software events can always go on.
789          */
790         if (event->group_flags & PERF_GROUP_SOFTWARE)
791                 return 1;
792         /*
793          * If an exclusive group is already on, no other hardware
794          * events can go on.
795          */
796         if (cpuctx->exclusive)
797                 return 0;
798         /*
799          * If this group is exclusive and there are already
800          * events on the CPU, it can't go on.
801          */
802         if (event->attr.exclusive && cpuctx->active_oncpu)
803                 return 0;
804         /*
805          * Otherwise, try to add it if all previous groups were able
806          * to go on.
807          */
808         return can_add_hw;
809 }
810
811 static void add_event_to_ctx(struct perf_event *event,
812                                struct perf_event_context *ctx)
813 {
814         list_add_event(event, ctx);
815         perf_group_attach(event);
816         event->tstamp_enabled = ctx->time;
817         event->tstamp_running = ctx->time;
818         event->tstamp_stopped = ctx->time;
819 }
820
821 /*
822  * Cross CPU call to install and enable a performance event
823  *
824  * Must be called with ctx->mutex held
825  */
826 static void __perf_install_in_context(void *info)
827 {
828         struct perf_event *event = info;
829         struct perf_event_context *ctx = event->ctx;
830         struct perf_event *leader = event->group_leader;
831         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
832         int err;
833
834         /*
835          * If this is a task context, we need to check whether it is
836          * the current task context of this cpu. If not it has been
837          * scheduled out before the smp call arrived.
838          * Or possibly this is the right context but it isn't
839          * on this cpu because it had no events.
840          */
841         if (ctx->task && cpuctx->task_ctx != ctx) {
842                 if (cpuctx->task_ctx || ctx->task != current)
843                         return;
844                 cpuctx->task_ctx = ctx;
845         }
846
847         raw_spin_lock(&ctx->lock);
848         ctx->is_active = 1;
849         update_context_time(ctx);
850
851         add_event_to_ctx(event, ctx);
852
853         if (event->cpu != -1 && event->cpu != smp_processor_id())
854                 goto unlock;
855
856         /*
857          * Don't put the event on if it is disabled or if
858          * it is in a group and the group isn't on.
859          */
860         if (event->state != PERF_EVENT_STATE_INACTIVE ||
861             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
862                 goto unlock;
863
864         /*
865          * An exclusive event can't go on if there are already active
866          * hardware events, and no hardware event can go on if there
867          * is already an exclusive event on.
868          */
869         if (!group_can_go_on(event, cpuctx, 1))
870                 err = -EEXIST;
871         else
872                 err = event_sched_in(event, cpuctx, ctx);
873
874         if (err) {
875                 /*
876                  * This event couldn't go on.  If it is in a group
877                  * then we have to pull the whole group off.
878                  * If the event group is pinned then put it in error state.
879                  */
880                 if (leader != event)
881                         group_sched_out(leader, cpuctx, ctx);
882                 if (leader->attr.pinned) {
883                         update_group_times(leader);
884                         leader->state = PERF_EVENT_STATE_ERROR;
885                 }
886         }
887
888 unlock:
889         raw_spin_unlock(&ctx->lock);
890 }
891
892 /*
893  * Attach a performance event to a context
894  *
895  * First we add the event to the list with the hardware enable bit
896  * in event->hw_config cleared.
897  *
898  * If the event is attached to a task which is on a CPU we use a smp
899  * call to enable it in the task context. The task might have been
900  * scheduled away, but we check this in the smp call again.
901  *
902  * Must be called with ctx->mutex held.
903  */
904 static void
905 perf_install_in_context(struct perf_event_context *ctx,
906                         struct perf_event *event,
907                         int cpu)
908 {
909         struct task_struct *task = ctx->task;
910
911         event->ctx = ctx;
912
913         if (!task) {
914                 /*
915                  * Per cpu events are installed via an smp call and
916                  * the install is always successful.
917                  */
918                 smp_call_function_single(cpu, __perf_install_in_context,
919                                          event, 1);
920                 return;
921         }
922
923 retry:
924         task_oncpu_function_call(task, __perf_install_in_context,
925                                  event);
926
927         raw_spin_lock_irq(&ctx->lock);
928         /*
929          * we need to retry the smp call.
930          */
931         if (ctx->is_active && list_empty(&event->group_entry)) {
932                 raw_spin_unlock_irq(&ctx->lock);
933                 goto retry;
934         }
935
936         /*
937          * The lock prevents that this context is scheduled in so we
938          * can add the event safely, if it the call above did not
939          * succeed.
940          */
941         if (list_empty(&event->group_entry))
942                 add_event_to_ctx(event, ctx);
943         raw_spin_unlock_irq(&ctx->lock);
944 }
945
946 /*
947  * Put a event into inactive state and update time fields.
948  * Enabling the leader of a group effectively enables all
949  * the group members that aren't explicitly disabled, so we
950  * have to update their ->tstamp_enabled also.
951  * Note: this works for group members as well as group leaders
952  * since the non-leader members' sibling_lists will be empty.
953  */
954 static void __perf_event_mark_enabled(struct perf_event *event,
955                                         struct perf_event_context *ctx)
956 {
957         struct perf_event *sub;
958
959         event->state = PERF_EVENT_STATE_INACTIVE;
960         event->tstamp_enabled = ctx->time - event->total_time_enabled;
961         list_for_each_entry(sub, &event->sibling_list, group_entry) {
962                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
963                         sub->tstamp_enabled =
964                                 ctx->time - sub->total_time_enabled;
965                 }
966         }
967 }
968
969 /*
970  * Cross CPU call to enable a performance event
971  */
972 static void __perf_event_enable(void *info)
973 {
974         struct perf_event *event = info;
975         struct perf_event_context *ctx = event->ctx;
976         struct perf_event *leader = event->group_leader;
977         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
978         int err;
979
980         /*
981          * If this is a per-task event, need to check whether this
982          * event's task is the current task on this cpu.
983          */
984         if (ctx->task && cpuctx->task_ctx != ctx) {
985                 if (cpuctx->task_ctx || ctx->task != current)
986                         return;
987                 cpuctx->task_ctx = ctx;
988         }
989
990         raw_spin_lock(&ctx->lock);
991         ctx->is_active = 1;
992         update_context_time(ctx);
993
994         if (event->state >= PERF_EVENT_STATE_INACTIVE)
995                 goto unlock;
996         __perf_event_mark_enabled(event, ctx);
997
998         if (event->cpu != -1 && event->cpu != smp_processor_id())
999                 goto unlock;
1000
1001         /*
1002          * If the event is in a group and isn't the group leader,
1003          * then don't put it on unless the group is on.
1004          */
1005         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1006                 goto unlock;
1007
1008         if (!group_can_go_on(event, cpuctx, 1)) {
1009                 err = -EEXIST;
1010         } else {
1011                 if (event == leader)
1012                         err = group_sched_in(event, cpuctx, ctx);
1013                 else
1014                         err = event_sched_in(event, cpuctx, ctx);
1015         }
1016
1017         if (err) {
1018                 /*
1019                  * If this event can't go on and it's part of a
1020                  * group, then the whole group has to come off.
1021                  */
1022                 if (leader != event)
1023                         group_sched_out(leader, cpuctx, ctx);
1024                 if (leader->attr.pinned) {
1025                         update_group_times(leader);
1026                         leader->state = PERF_EVENT_STATE_ERROR;
1027                 }
1028         }
1029
1030 unlock:
1031         raw_spin_unlock(&ctx->lock);
1032 }
1033
1034 /*
1035  * Enable a event.
1036  *
1037  * If event->ctx is a cloned context, callers must make sure that
1038  * every task struct that event->ctx->task could possibly point to
1039  * remains valid.  This condition is satisfied when called through
1040  * perf_event_for_each_child or perf_event_for_each as described
1041  * for perf_event_disable.
1042  */
1043 void perf_event_enable(struct perf_event *event)
1044 {
1045         struct perf_event_context *ctx = event->ctx;
1046         struct task_struct *task = ctx->task;
1047
1048         if (!task) {
1049                 /*
1050                  * Enable the event on the cpu that it's on
1051                  */
1052                 smp_call_function_single(event->cpu, __perf_event_enable,
1053                                          event, 1);
1054                 return;
1055         }
1056
1057         raw_spin_lock_irq(&ctx->lock);
1058         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1059                 goto out;
1060
1061         /*
1062          * If the event is in error state, clear that first.
1063          * That way, if we see the event in error state below, we
1064          * know that it has gone back into error state, as distinct
1065          * from the task having been scheduled away before the
1066          * cross-call arrived.
1067          */
1068         if (event->state == PERF_EVENT_STATE_ERROR)
1069                 event->state = PERF_EVENT_STATE_OFF;
1070
1071 retry:
1072         raw_spin_unlock_irq(&ctx->lock);
1073         task_oncpu_function_call(task, __perf_event_enable, event);
1074
1075         raw_spin_lock_irq(&ctx->lock);
1076
1077         /*
1078          * If the context is active and the event is still off,
1079          * we need to retry the cross-call.
1080          */
1081         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1082                 goto retry;
1083
1084         /*
1085          * Since we have the lock this context can't be scheduled
1086          * in, so we can change the state safely.
1087          */
1088         if (event->state == PERF_EVENT_STATE_OFF)
1089                 __perf_event_mark_enabled(event, ctx);
1090
1091 out:
1092         raw_spin_unlock_irq(&ctx->lock);
1093 }
1094
1095 static int perf_event_refresh(struct perf_event *event, int refresh)
1096 {
1097         /*
1098          * not supported on inherited events
1099          */
1100         if (event->attr.inherit)
1101                 return -EINVAL;
1102
1103         atomic_add(refresh, &event->event_limit);
1104         perf_event_enable(event);
1105
1106         return 0;
1107 }
1108
1109 enum event_type_t {
1110         EVENT_FLEXIBLE = 0x1,
1111         EVENT_PINNED = 0x2,
1112         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1113 };
1114
1115 static void ctx_sched_out(struct perf_event_context *ctx,
1116                           struct perf_cpu_context *cpuctx,
1117                           enum event_type_t event_type)
1118 {
1119         struct perf_event *event;
1120
1121         raw_spin_lock(&ctx->lock);
1122         perf_pmu_disable(ctx->pmu);
1123         ctx->is_active = 0;
1124         if (likely(!ctx->nr_events))
1125                 goto out;
1126         update_context_time(ctx);
1127
1128         if (!ctx->nr_active)
1129                 goto out;
1130
1131         if (event_type & EVENT_PINNED) {
1132                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1133                         group_sched_out(event, cpuctx, ctx);
1134         }
1135
1136         if (event_type & EVENT_FLEXIBLE) {
1137                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1138                         group_sched_out(event, cpuctx, ctx);
1139         }
1140 out:
1141         perf_pmu_enable(ctx->pmu);
1142         raw_spin_unlock(&ctx->lock);
1143 }
1144
1145 /*
1146  * Test whether two contexts are equivalent, i.e. whether they
1147  * have both been cloned from the same version of the same context
1148  * and they both have the same number of enabled events.
1149  * If the number of enabled events is the same, then the set
1150  * of enabled events should be the same, because these are both
1151  * inherited contexts, therefore we can't access individual events
1152  * in them directly with an fd; we can only enable/disable all
1153  * events via prctl, or enable/disable all events in a family
1154  * via ioctl, which will have the same effect on both contexts.
1155  */
1156 static int context_equiv(struct perf_event_context *ctx1,
1157                          struct perf_event_context *ctx2)
1158 {
1159         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1160                 && ctx1->parent_gen == ctx2->parent_gen
1161                 && !ctx1->pin_count && !ctx2->pin_count;
1162 }
1163
1164 static void __perf_event_sync_stat(struct perf_event *event,
1165                                      struct perf_event *next_event)
1166 {
1167         u64 value;
1168
1169         if (!event->attr.inherit_stat)
1170                 return;
1171
1172         /*
1173          * Update the event value, we cannot use perf_event_read()
1174          * because we're in the middle of a context switch and have IRQs
1175          * disabled, which upsets smp_call_function_single(), however
1176          * we know the event must be on the current CPU, therefore we
1177          * don't need to use it.
1178          */
1179         switch (event->state) {
1180         case PERF_EVENT_STATE_ACTIVE:
1181                 event->pmu->read(event);
1182                 /* fall-through */
1183
1184         case PERF_EVENT_STATE_INACTIVE:
1185                 update_event_times(event);
1186                 break;
1187
1188         default:
1189                 break;
1190         }
1191
1192         /*
1193          * In order to keep per-task stats reliable we need to flip the event
1194          * values when we flip the contexts.
1195          */
1196         value = local64_read(&next_event->count);
1197         value = local64_xchg(&event->count, value);
1198         local64_set(&next_event->count, value);
1199
1200         swap(event->total_time_enabled, next_event->total_time_enabled);
1201         swap(event->total_time_running, next_event->total_time_running);
1202
1203         /*
1204          * Since we swizzled the values, update the user visible data too.
1205          */
1206         perf_event_update_userpage(event);
1207         perf_event_update_userpage(next_event);
1208 }
1209
1210 #define list_next_entry(pos, member) \
1211         list_entry(pos->member.next, typeof(*pos), member)
1212
1213 static void perf_event_sync_stat(struct perf_event_context *ctx,
1214                                    struct perf_event_context *next_ctx)
1215 {
1216         struct perf_event *event, *next_event;
1217
1218         if (!ctx->nr_stat)
1219                 return;
1220
1221         update_context_time(ctx);
1222
1223         event = list_first_entry(&ctx->event_list,
1224                                    struct perf_event, event_entry);
1225
1226         next_event = list_first_entry(&next_ctx->event_list,
1227                                         struct perf_event, event_entry);
1228
1229         while (&event->event_entry != &ctx->event_list &&
1230                &next_event->event_entry != &next_ctx->event_list) {
1231
1232                 __perf_event_sync_stat(event, next_event);
1233
1234                 event = list_next_entry(event, event_entry);
1235                 next_event = list_next_entry(next_event, event_entry);
1236         }
1237 }
1238
1239 void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1240                                   struct task_struct *next)
1241 {
1242         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1243         struct perf_event_context *next_ctx;
1244         struct perf_event_context *parent;
1245         struct perf_cpu_context *cpuctx;
1246         int do_switch = 1;
1247
1248         if (likely(!ctx))
1249                 return;
1250
1251         cpuctx = __get_cpu_context(ctx);
1252         if (!cpuctx->task_ctx)
1253                 return;
1254
1255         rcu_read_lock();
1256         parent = rcu_dereference(ctx->parent_ctx);
1257         next_ctx = next->perf_event_ctxp[ctxn];
1258         if (parent && next_ctx &&
1259             rcu_dereference(next_ctx->parent_ctx) == parent) {
1260                 /*
1261                  * Looks like the two contexts are clones, so we might be
1262                  * able to optimize the context switch.  We lock both
1263                  * contexts and check that they are clones under the
1264                  * lock (including re-checking that neither has been
1265                  * uncloned in the meantime).  It doesn't matter which
1266                  * order we take the locks because no other cpu could
1267                  * be trying to lock both of these tasks.
1268                  */
1269                 raw_spin_lock(&ctx->lock);
1270                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1271                 if (context_equiv(ctx, next_ctx)) {
1272                         /*
1273                          * XXX do we need a memory barrier of sorts
1274                          * wrt to rcu_dereference() of perf_event_ctxp
1275                          */
1276                         task->perf_event_ctxp[ctxn] = next_ctx;
1277                         next->perf_event_ctxp[ctxn] = ctx;
1278                         ctx->task = next;
1279                         next_ctx->task = task;
1280                         do_switch = 0;
1281
1282                         perf_event_sync_stat(ctx, next_ctx);
1283                 }
1284                 raw_spin_unlock(&next_ctx->lock);
1285                 raw_spin_unlock(&ctx->lock);
1286         }
1287         rcu_read_unlock();
1288
1289         if (do_switch) {
1290                 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1291                 cpuctx->task_ctx = NULL;
1292         }
1293 }
1294
1295 #define for_each_task_context_nr(ctxn)                                  \
1296         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1297
1298 /*
1299  * Called from scheduler to remove the events of the current task,
1300  * with interrupts disabled.
1301  *
1302  * We stop each event and update the event value in event->count.
1303  *
1304  * This does not protect us against NMI, but disable()
1305  * sets the disabled bit in the control field of event _before_
1306  * accessing the event control register. If a NMI hits, then it will
1307  * not restart the event.
1308  */
1309 void perf_event_task_sched_out(struct task_struct *task,
1310                                struct task_struct *next)
1311 {
1312         int ctxn;
1313
1314         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1315
1316         for_each_task_context_nr(ctxn)
1317                 perf_event_context_sched_out(task, ctxn, next);
1318 }
1319
1320 static void task_ctx_sched_out(struct perf_event_context *ctx,
1321                                enum event_type_t event_type)
1322 {
1323         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1324
1325         if (!cpuctx->task_ctx)
1326                 return;
1327
1328         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1329                 return;
1330
1331         ctx_sched_out(ctx, cpuctx, event_type);
1332         cpuctx->task_ctx = NULL;
1333 }
1334
1335 /*
1336  * Called with IRQs disabled
1337  */
1338 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1339 {
1340         task_ctx_sched_out(ctx, EVENT_ALL);
1341 }
1342
1343 /*
1344  * Called with IRQs disabled
1345  */
1346 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1347                               enum event_type_t event_type)
1348 {
1349         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1350 }
1351
1352 static void
1353 ctx_pinned_sched_in(struct perf_event_context *ctx,
1354                     struct perf_cpu_context *cpuctx)
1355 {
1356         struct perf_event *event;
1357
1358         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1359                 if (event->state <= PERF_EVENT_STATE_OFF)
1360                         continue;
1361                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1362                         continue;
1363
1364                 if (group_can_go_on(event, cpuctx, 1))
1365                         group_sched_in(event, cpuctx, ctx);
1366
1367                 /*
1368                  * If this pinned group hasn't been scheduled,
1369                  * put it in error state.
1370                  */
1371                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1372                         update_group_times(event);
1373                         event->state = PERF_EVENT_STATE_ERROR;
1374                 }
1375         }
1376 }
1377
1378 static void
1379 ctx_flexible_sched_in(struct perf_event_context *ctx,
1380                       struct perf_cpu_context *cpuctx)
1381 {
1382         struct perf_event *event;
1383         int can_add_hw = 1;
1384
1385         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1386                 /* Ignore events in OFF or ERROR state */
1387                 if (event->state <= PERF_EVENT_STATE_OFF)
1388                         continue;
1389                 /*
1390                  * Listen to the 'cpu' scheduling filter constraint
1391                  * of events:
1392                  */
1393                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1394                         continue;
1395
1396                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1397                         if (group_sched_in(event, cpuctx, ctx))
1398                                 can_add_hw = 0;
1399                 }
1400         }
1401 }
1402
1403 static void
1404 ctx_sched_in(struct perf_event_context *ctx,
1405              struct perf_cpu_context *cpuctx,
1406              enum event_type_t event_type)
1407 {
1408         raw_spin_lock(&ctx->lock);
1409         ctx->is_active = 1;
1410         if (likely(!ctx->nr_events))
1411                 goto out;
1412
1413         ctx->timestamp = perf_clock();
1414
1415         /*
1416          * First go through the list and put on any pinned groups
1417          * in order to give them the best chance of going on.
1418          */
1419         if (event_type & EVENT_PINNED)
1420                 ctx_pinned_sched_in(ctx, cpuctx);
1421
1422         /* Then walk through the lower prio flexible groups */
1423         if (event_type & EVENT_FLEXIBLE)
1424                 ctx_flexible_sched_in(ctx, cpuctx);
1425
1426 out:
1427         raw_spin_unlock(&ctx->lock);
1428 }
1429
1430 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1431                              enum event_type_t event_type)
1432 {
1433         struct perf_event_context *ctx = &cpuctx->ctx;
1434
1435         ctx_sched_in(ctx, cpuctx, event_type);
1436 }
1437
1438 static void task_ctx_sched_in(struct perf_event_context *ctx,
1439                               enum event_type_t event_type)
1440 {
1441         struct perf_cpu_context *cpuctx;
1442
1443         cpuctx = __get_cpu_context(ctx);
1444         if (cpuctx->task_ctx == ctx)
1445                 return;
1446
1447         ctx_sched_in(ctx, cpuctx, event_type);
1448         cpuctx->task_ctx = ctx;
1449 }
1450
1451 void perf_event_context_sched_in(struct perf_event_context *ctx)
1452 {
1453         struct perf_cpu_context *cpuctx;
1454
1455         cpuctx = __get_cpu_context(ctx);
1456         if (cpuctx->task_ctx == ctx)
1457                 return;
1458
1459         perf_pmu_disable(ctx->pmu);
1460         /*
1461          * We want to keep the following priority order:
1462          * cpu pinned (that don't need to move), task pinned,
1463          * cpu flexible, task flexible.
1464          */
1465         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1466
1467         ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1468         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1469         ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1470
1471         cpuctx->task_ctx = ctx;
1472
1473         /*
1474          * Since these rotations are per-cpu, we need to ensure the
1475          * cpu-context we got scheduled on is actually rotating.
1476          */
1477         perf_pmu_rotate_start(ctx->pmu);
1478         perf_pmu_enable(ctx->pmu);
1479 }
1480
1481 /*
1482  * Called from scheduler to add the events of the current task
1483  * with interrupts disabled.
1484  *
1485  * We restore the event value and then enable it.
1486  *
1487  * This does not protect us against NMI, but enable()
1488  * sets the enabled bit in the control field of event _before_
1489  * accessing the event control register. If a NMI hits, then it will
1490  * keep the event running.
1491  */
1492 void perf_event_task_sched_in(struct task_struct *task)
1493 {
1494         struct perf_event_context *ctx;
1495         int ctxn;
1496
1497         for_each_task_context_nr(ctxn) {
1498                 ctx = task->perf_event_ctxp[ctxn];
1499                 if (likely(!ctx))
1500                         continue;
1501
1502                 perf_event_context_sched_in(ctx);
1503         }
1504 }
1505
1506 #define MAX_INTERRUPTS (~0ULL)
1507
1508 static void perf_log_throttle(struct perf_event *event, int enable);
1509
1510 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1511 {
1512         u64 frequency = event->attr.sample_freq;
1513         u64 sec = NSEC_PER_SEC;
1514         u64 divisor, dividend;
1515
1516         int count_fls, nsec_fls, frequency_fls, sec_fls;
1517
1518         count_fls = fls64(count);
1519         nsec_fls = fls64(nsec);
1520         frequency_fls = fls64(frequency);
1521         sec_fls = 30;
1522
1523         /*
1524          * We got @count in @nsec, with a target of sample_freq HZ
1525          * the target period becomes:
1526          *
1527          *             @count * 10^9
1528          * period = -------------------
1529          *          @nsec * sample_freq
1530          *
1531          */
1532
1533         /*
1534          * Reduce accuracy by one bit such that @a and @b converge
1535          * to a similar magnitude.
1536          */
1537 #define REDUCE_FLS(a, b)                \
1538 do {                                    \
1539         if (a##_fls > b##_fls) {        \
1540                 a >>= 1;                \
1541                 a##_fls--;              \
1542         } else {                        \
1543                 b >>= 1;                \
1544                 b##_fls--;              \
1545         }                               \
1546 } while (0)
1547
1548         /*
1549          * Reduce accuracy until either term fits in a u64, then proceed with
1550          * the other, so that finally we can do a u64/u64 division.
1551          */
1552         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1553                 REDUCE_FLS(nsec, frequency);
1554                 REDUCE_FLS(sec, count);
1555         }
1556
1557         if (count_fls + sec_fls > 64) {
1558                 divisor = nsec * frequency;
1559
1560                 while (count_fls + sec_fls > 64) {
1561                         REDUCE_FLS(count, sec);
1562                         divisor >>= 1;
1563                 }
1564
1565                 dividend = count * sec;
1566         } else {
1567                 dividend = count * sec;
1568
1569                 while (nsec_fls + frequency_fls > 64) {
1570                         REDUCE_FLS(nsec, frequency);
1571                         dividend >>= 1;
1572                 }
1573
1574                 divisor = nsec * frequency;
1575         }
1576
1577         if (!divisor)
1578                 return dividend;
1579
1580         return div64_u64(dividend, divisor);
1581 }
1582
1583 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1584 {
1585         struct hw_perf_event *hwc = &event->hw;
1586         s64 period, sample_period;
1587         s64 delta;
1588
1589         period = perf_calculate_period(event, nsec, count);
1590
1591         delta = (s64)(period - hwc->sample_period);
1592         delta = (delta + 7) / 8; /* low pass filter */
1593
1594         sample_period = hwc->sample_period + delta;
1595
1596         if (!sample_period)
1597                 sample_period = 1;
1598
1599         hwc->sample_period = sample_period;
1600
1601         if (local64_read(&hwc->period_left) > 8*sample_period) {
1602                 event->pmu->stop(event, PERF_EF_UPDATE);
1603                 local64_set(&hwc->period_left, 0);
1604                 event->pmu->start(event, PERF_EF_RELOAD);
1605         }
1606 }
1607
1608 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1609 {
1610         struct perf_event *event;
1611         struct hw_perf_event *hwc;
1612         u64 interrupts, now;
1613         s64 delta;
1614
1615         raw_spin_lock(&ctx->lock);
1616         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1617                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1618                         continue;
1619
1620                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1621                         continue;
1622
1623                 hwc = &event->hw;
1624
1625                 interrupts = hwc->interrupts;
1626                 hwc->interrupts = 0;
1627
1628                 /*
1629                  * unthrottle events on the tick
1630                  */
1631                 if (interrupts == MAX_INTERRUPTS) {
1632                         perf_log_throttle(event, 1);
1633                         event->pmu->start(event, 0);
1634                 }
1635
1636                 if (!event->attr.freq || !event->attr.sample_freq)
1637                         continue;
1638
1639                 event->pmu->read(event);
1640                 now = local64_read(&event->count);
1641                 delta = now - hwc->freq_count_stamp;
1642                 hwc->freq_count_stamp = now;
1643
1644                 if (delta > 0)
1645                         perf_adjust_period(event, period, delta);
1646         }
1647         raw_spin_unlock(&ctx->lock);
1648 }
1649
1650 /*
1651  * Round-robin a context's events:
1652  */
1653 static void rotate_ctx(struct perf_event_context *ctx)
1654 {
1655         raw_spin_lock(&ctx->lock);
1656
1657         /* Rotate the first entry last of non-pinned groups */
1658         list_rotate_left(&ctx->flexible_groups);
1659
1660         raw_spin_unlock(&ctx->lock);
1661 }
1662
1663 /*
1664  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
1665  * because they're strictly cpu affine and rotate_start is called with IRQs
1666  * disabled, while rotate_context is called from IRQ context.
1667  */
1668 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1669 {
1670         u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
1671         struct perf_event_context *ctx = NULL;
1672         int rotate = 0, remove = 1;
1673
1674         if (cpuctx->ctx.nr_events) {
1675                 remove = 0;
1676                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1677                         rotate = 1;
1678         }
1679
1680         ctx = cpuctx->task_ctx;
1681         if (ctx && ctx->nr_events) {
1682                 remove = 0;
1683                 if (ctx->nr_events != ctx->nr_active)
1684                         rotate = 1;
1685         }
1686
1687         perf_pmu_disable(cpuctx->ctx.pmu);
1688         perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1689         if (ctx)
1690                 perf_ctx_adjust_freq(ctx, interval);
1691
1692         if (!rotate)
1693                 goto done;
1694
1695         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1696         if (ctx)
1697                 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1698
1699         rotate_ctx(&cpuctx->ctx);
1700         if (ctx)
1701                 rotate_ctx(ctx);
1702
1703         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1704         if (ctx)
1705                 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1706
1707 done:
1708         if (remove)
1709                 list_del_init(&cpuctx->rotation_list);
1710
1711         perf_pmu_enable(cpuctx->ctx.pmu);
1712 }
1713
1714 void perf_event_task_tick(void)
1715 {
1716         struct list_head *head = &__get_cpu_var(rotation_list);
1717         struct perf_cpu_context *cpuctx, *tmp;
1718
1719         WARN_ON(!irqs_disabled());
1720
1721         list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
1722                 if (cpuctx->jiffies_interval == 1 ||
1723                                 !(jiffies % cpuctx->jiffies_interval))
1724                         perf_rotate_context(cpuctx);
1725         }
1726 }
1727
1728 static int event_enable_on_exec(struct perf_event *event,
1729                                 struct perf_event_context *ctx)
1730 {
1731         if (!event->attr.enable_on_exec)
1732                 return 0;
1733
1734         event->attr.enable_on_exec = 0;
1735         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1736                 return 0;
1737
1738         __perf_event_mark_enabled(event, ctx);
1739
1740         return 1;
1741 }
1742
1743 /*
1744  * Enable all of a task's events that have been marked enable-on-exec.
1745  * This expects task == current.
1746  */
1747 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1748 {
1749         struct perf_event *event;
1750         unsigned long flags;
1751         int enabled = 0;
1752         int ret;
1753
1754         local_irq_save(flags);
1755         if (!ctx || !ctx->nr_events)
1756                 goto out;
1757
1758         task_ctx_sched_out(ctx, EVENT_ALL);
1759
1760         raw_spin_lock(&ctx->lock);
1761
1762         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1763                 ret = event_enable_on_exec(event, ctx);
1764                 if (ret)
1765                         enabled = 1;
1766         }
1767
1768         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1769                 ret = event_enable_on_exec(event, ctx);
1770                 if (ret)
1771                         enabled = 1;
1772         }
1773
1774         /*
1775          * Unclone this context if we enabled any event.
1776          */
1777         if (enabled)
1778                 unclone_ctx(ctx);
1779
1780         raw_spin_unlock(&ctx->lock);
1781
1782         perf_event_context_sched_in(ctx);
1783 out:
1784         local_irq_restore(flags);
1785 }
1786
1787 /*
1788  * Cross CPU call to read the hardware event
1789  */
1790 static void __perf_event_read(void *info)
1791 {
1792         struct perf_event *event = info;
1793         struct perf_event_context *ctx = event->ctx;
1794         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1795
1796         /*
1797          * If this is a task context, we need to check whether it is
1798          * the current task context of this cpu.  If not it has been
1799          * scheduled out before the smp call arrived.  In that case
1800          * event->count would have been updated to a recent sample
1801          * when the event was scheduled out.
1802          */
1803         if (ctx->task && cpuctx->task_ctx != ctx)
1804                 return;
1805
1806         raw_spin_lock(&ctx->lock);
1807         update_context_time(ctx);
1808         update_event_times(event);
1809         raw_spin_unlock(&ctx->lock);
1810
1811         event->pmu->read(event);
1812 }
1813
1814 static inline u64 perf_event_count(struct perf_event *event)
1815 {
1816         return local64_read(&event->count) + atomic64_read(&event->child_count);
1817 }
1818
1819 static u64 perf_event_read(struct perf_event *event)
1820 {
1821         /*
1822          * If event is enabled and currently active on a CPU, update the
1823          * value in the event structure:
1824          */
1825         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1826                 smp_call_function_single(event->oncpu,
1827                                          __perf_event_read, event, 1);
1828         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1829                 struct perf_event_context *ctx = event->ctx;
1830                 unsigned long flags;
1831
1832                 raw_spin_lock_irqsave(&ctx->lock, flags);
1833                 /*
1834                  * may read while context is not active
1835                  * (e.g., thread is blocked), in that case
1836                  * we cannot update context time
1837                  */
1838                 if (ctx->is_active)
1839                         update_context_time(ctx);
1840                 update_event_times(event);
1841                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1842         }
1843
1844         return perf_event_count(event);
1845 }
1846
1847 /*
1848  * Callchain support
1849  */
1850
1851 struct callchain_cpus_entries {
1852         struct rcu_head                 rcu_head;
1853         struct perf_callchain_entry     *cpu_entries[0];
1854 };
1855
1856 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1857 static atomic_t nr_callchain_events;
1858 static DEFINE_MUTEX(callchain_mutex);
1859 struct callchain_cpus_entries *callchain_cpus_entries;
1860
1861
1862 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1863                                   struct pt_regs *regs)
1864 {
1865 }
1866
1867 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1868                                 struct pt_regs *regs)
1869 {
1870 }
1871
1872 static void release_callchain_buffers_rcu(struct rcu_head *head)
1873 {
1874         struct callchain_cpus_entries *entries;
1875         int cpu;
1876
1877         entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1878
1879         for_each_possible_cpu(cpu)
1880                 kfree(entries->cpu_entries[cpu]);
1881
1882         kfree(entries);
1883 }
1884
1885 static void release_callchain_buffers(void)
1886 {
1887         struct callchain_cpus_entries *entries;
1888
1889         entries = callchain_cpus_entries;
1890         rcu_assign_pointer(callchain_cpus_entries, NULL);
1891         call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1892 }
1893
1894 static int alloc_callchain_buffers(void)
1895 {
1896         int cpu;
1897         int size;
1898         struct callchain_cpus_entries *entries;
1899
1900         /*
1901          * We can't use the percpu allocation API for data that can be
1902          * accessed from NMI. Use a temporary manual per cpu allocation
1903          * until that gets sorted out.
1904          */
1905         size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
1906                 num_possible_cpus();
1907
1908         entries = kzalloc(size, GFP_KERNEL);
1909         if (!entries)
1910                 return -ENOMEM;
1911
1912         size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1913
1914         for_each_possible_cpu(cpu) {
1915                 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
1916                                                          cpu_to_node(cpu));
1917                 if (!entries->cpu_entries[cpu])
1918                         goto fail;
1919         }
1920
1921         rcu_assign_pointer(callchain_cpus_entries, entries);
1922
1923         return 0;
1924
1925 fail:
1926         for_each_possible_cpu(cpu)
1927                 kfree(entries->cpu_entries[cpu]);
1928         kfree(entries);
1929
1930         return -ENOMEM;
1931 }
1932
1933 static int get_callchain_buffers(void)
1934 {
1935         int err = 0;
1936         int count;
1937
1938         mutex_lock(&callchain_mutex);
1939
1940         count = atomic_inc_return(&nr_callchain_events);
1941         if (WARN_ON_ONCE(count < 1)) {
1942                 err = -EINVAL;
1943                 goto exit;
1944         }
1945
1946         if (count > 1) {
1947                 /* If the allocation failed, give up */
1948                 if (!callchain_cpus_entries)
1949                         err = -ENOMEM;
1950                 goto exit;
1951         }
1952
1953         err = alloc_callchain_buffers();
1954         if (err)
1955                 release_callchain_buffers();
1956 exit:
1957         mutex_unlock(&callchain_mutex);
1958
1959         return err;
1960 }
1961
1962 static void put_callchain_buffers(void)
1963 {
1964         if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
1965                 release_callchain_buffers();
1966                 mutex_unlock(&callchain_mutex);
1967         }
1968 }
1969
1970 static int get_recursion_context(int *recursion)
1971 {
1972         int rctx;
1973
1974         if (in_nmi())
1975                 rctx = 3;
1976         else if (in_irq())
1977                 rctx = 2;
1978         else if (in_softirq())
1979                 rctx = 1;
1980         else
1981                 rctx = 0;
1982
1983         if (recursion[rctx])
1984                 return -1;
1985
1986         recursion[rctx]++;
1987         barrier();
1988
1989         return rctx;
1990 }
1991
1992 static inline void put_recursion_context(int *recursion, int rctx)
1993 {
1994         barrier();
1995         recursion[rctx]--;
1996 }
1997
1998 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
1999 {
2000         int cpu;
2001         struct callchain_cpus_entries *entries;
2002
2003         *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
2004         if (*rctx == -1)
2005                 return NULL;
2006
2007         entries = rcu_dereference(callchain_cpus_entries);
2008         if (!entries)
2009                 return NULL;
2010
2011         cpu = smp_processor_id();
2012
2013         return &entries->cpu_entries[cpu][*rctx];
2014 }
2015
2016 static void
2017 put_callchain_entry(int rctx)
2018 {
2019         put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
2020 }
2021
2022 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2023 {
2024         int rctx;
2025         struct perf_callchain_entry *entry;
2026
2027
2028         entry = get_callchain_entry(&rctx);
2029         if (rctx == -1)
2030                 return NULL;
2031
2032         if (!entry)
2033                 goto exit_put;
2034
2035         entry->nr = 0;
2036
2037         if (!user_mode(regs)) {
2038                 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2039                 perf_callchain_kernel(entry, regs);
2040                 if (current->mm)
2041                         regs = task_pt_regs(current);
2042                 else
2043                         regs = NULL;
2044         }
2045
2046         if (regs) {
2047                 perf_callchain_store(entry, PERF_CONTEXT_USER);
2048                 perf_callchain_user(entry, regs);
2049         }
2050
2051 exit_put:
2052         put_callchain_entry(rctx);
2053
2054         return entry;
2055 }
2056
2057 /*
2058  * Initialize the perf_event context in a task_struct:
2059  */
2060 static void __perf_event_init_context(struct perf_event_context *ctx)
2061 {
2062         raw_spin_lock_init(&ctx->lock);
2063         mutex_init(&ctx->mutex);
2064         INIT_LIST_HEAD(&ctx->pinned_groups);
2065         INIT_LIST_HEAD(&ctx->flexible_groups);
2066         INIT_LIST_HEAD(&ctx->event_list);
2067         atomic_set(&ctx->refcount, 1);
2068 }
2069
2070 static struct perf_event_context *
2071 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2072 {
2073         struct perf_event_context *ctx;
2074
2075         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2076         if (!ctx)
2077                 return NULL;
2078
2079         __perf_event_init_context(ctx);
2080         if (task) {
2081                 ctx->task = task;
2082                 get_task_struct(task);
2083         }
2084         ctx->pmu = pmu;
2085
2086         return ctx;
2087 }
2088
2089 static struct task_struct *
2090 find_lively_task_by_vpid(pid_t vpid)
2091 {
2092         struct task_struct *task;
2093         int err;
2094
2095         rcu_read_lock();
2096         if (!vpid)
2097                 task = current;
2098         else
2099                 task = find_task_by_vpid(vpid);
2100         if (task)
2101                 get_task_struct(task);
2102         rcu_read_unlock();
2103
2104         if (!task)
2105                 return ERR_PTR(-ESRCH);
2106
2107         /*
2108          * Can't attach events to a dying task.
2109          */
2110         err = -ESRCH;
2111         if (task->flags & PF_EXITING)
2112                 goto errout;
2113
2114         /* Reuse ptrace permission checks for now. */
2115         err = -EACCES;
2116         if (!ptrace_may_access(task, PTRACE_MODE_READ))
2117                 goto errout;
2118
2119         return task;
2120 errout:
2121         put_task_struct(task);
2122         return ERR_PTR(err);
2123
2124 }
2125
2126 static struct perf_event_context *
2127 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2128 {
2129         struct perf_event_context *ctx;
2130         struct perf_cpu_context *cpuctx;
2131         unsigned long flags;
2132         int ctxn, err;
2133
2134         if (!task && cpu != -1) {
2135                 /* Must be root to operate on a CPU event: */
2136                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2137                         return ERR_PTR(-EACCES);
2138
2139                 if (cpu < 0 || cpu >= nr_cpumask_bits)
2140                         return ERR_PTR(-EINVAL);
2141
2142                 /*
2143                  * We could be clever and allow to attach a event to an
2144                  * offline CPU and activate it when the CPU comes up, but
2145                  * that's for later.
2146                  */
2147                 if (!cpu_online(cpu))
2148                         return ERR_PTR(-ENODEV);
2149
2150                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2151                 ctx = &cpuctx->ctx;
2152                 get_ctx(ctx);
2153
2154                 return ctx;
2155         }
2156
2157         err = -EINVAL;
2158         ctxn = pmu->task_ctx_nr;
2159         if (ctxn < 0)
2160                 goto errout;
2161
2162 retry:
2163         ctx = perf_lock_task_context(task, ctxn, &flags);
2164         if (ctx) {
2165                 unclone_ctx(ctx);
2166                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2167         }
2168
2169         if (!ctx) {
2170                 ctx = alloc_perf_context(pmu, task);
2171                 err = -ENOMEM;
2172                 if (!ctx)
2173                         goto errout;
2174
2175                 get_ctx(ctx);
2176
2177                 if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2178                         /*
2179                          * We raced with some other task; use
2180                          * the context they set.
2181                          */
2182                         put_task_struct(task);
2183                         kfree(ctx);
2184                         goto retry;
2185                 }
2186         }
2187
2188         put_task_struct(task);
2189         return ctx;
2190
2191 errout:
2192         put_task_struct(task);
2193         return ERR_PTR(err);
2194 }
2195
2196 static void perf_event_free_filter(struct perf_event *event);
2197
2198 static void free_event_rcu(struct rcu_head *head)
2199 {
2200         struct perf_event *event;
2201
2202         event = container_of(head, struct perf_event, rcu_head);
2203         if (event->ns)
2204                 put_pid_ns(event->ns);
2205         perf_event_free_filter(event);
2206         kfree(event);
2207 }
2208
2209 static void perf_pending_sync(struct perf_event *event);
2210 static void perf_buffer_put(struct perf_buffer *buffer);
2211
2212 static void free_event(struct perf_event *event)
2213 {
2214         perf_pending_sync(event);
2215
2216         if (!event->parent) {
2217                 atomic_dec(&nr_events);
2218                 if (event->attr.mmap || event->attr.mmap_data)
2219                         atomic_dec(&nr_mmap_events);
2220                 if (event->attr.comm)
2221                         atomic_dec(&nr_comm_events);
2222                 if (event->attr.task)
2223                         atomic_dec(&nr_task_events);
2224                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2225                         put_callchain_buffers();
2226         }
2227
2228         if (event->buffer) {
2229                 perf_buffer_put(event->buffer);
2230                 event->buffer = NULL;
2231         }
2232
2233         if (event->destroy)
2234                 event->destroy(event);
2235
2236         if (event->ctx)
2237                 put_ctx(event->ctx);
2238
2239         call_rcu(&event->rcu_head, free_event_rcu);
2240 }
2241
2242 int perf_event_release_kernel(struct perf_event *event)
2243 {
2244         struct perf_event_context *ctx = event->ctx;
2245
2246         /*
2247          * Remove from the PMU, can't get re-enabled since we got
2248          * here because the last ref went.
2249          */
2250         perf_event_disable(event);
2251
2252         WARN_ON_ONCE(ctx->parent_ctx);
2253         /*
2254          * There are two ways this annotation is useful:
2255          *
2256          *  1) there is a lock recursion from perf_event_exit_task
2257          *     see the comment there.
2258          *
2259          *  2) there is a lock-inversion with mmap_sem through
2260          *     perf_event_read_group(), which takes faults while
2261          *     holding ctx->mutex, however this is called after
2262          *     the last filedesc died, so there is no possibility
2263          *     to trigger the AB-BA case.
2264          */
2265         mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2266         raw_spin_lock_irq(&ctx->lock);
2267         perf_group_detach(event);
2268         list_del_event(event, ctx);
2269         raw_spin_unlock_irq(&ctx->lock);
2270         mutex_unlock(&ctx->mutex);
2271
2272         mutex_lock(&event->owner->perf_event_mutex);
2273         list_del_init(&event->owner_entry);
2274         mutex_unlock(&event->owner->perf_event_mutex);
2275         put_task_struct(event->owner);
2276
2277         free_event(event);
2278
2279         return 0;
2280 }
2281 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2282
2283 /*
2284  * Called when the last reference to the file is gone.
2285  */
2286 static int perf_release(struct inode *inode, struct file *file)
2287 {
2288         struct perf_event *event = file->private_data;
2289
2290         file->private_data = NULL;
2291
2292         return perf_event_release_kernel(event);
2293 }
2294
2295 static int perf_event_read_size(struct perf_event *event)
2296 {
2297         int entry = sizeof(u64); /* value */
2298         int size = 0;
2299         int nr = 1;
2300
2301         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2302                 size += sizeof(u64);
2303
2304         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2305                 size += sizeof(u64);
2306
2307         if (event->attr.read_format & PERF_FORMAT_ID)
2308                 entry += sizeof(u64);
2309
2310         if (event->attr.read_format & PERF_FORMAT_GROUP) {
2311                 nr += event->group_leader->nr_siblings;
2312                 size += sizeof(u64);
2313         }
2314
2315         size += entry * nr;
2316
2317         return size;
2318 }
2319
2320 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2321 {
2322         struct perf_event *child;
2323         u64 total = 0;
2324
2325         *enabled = 0;
2326         *running = 0;
2327
2328         mutex_lock(&event->child_mutex);
2329         total += perf_event_read(event);
2330         *enabled += event->total_time_enabled +
2331                         atomic64_read(&event->child_total_time_enabled);
2332         *running += event->total_time_running +
2333                         atomic64_read(&event->child_total_time_running);
2334
2335         list_for_each_entry(child, &event->child_list, child_list) {
2336                 total += perf_event_read(child);
2337                 *enabled += child->total_time_enabled;
2338                 *running += child->total_time_running;
2339         }
2340         mutex_unlock(&event->child_mutex);
2341
2342         return total;
2343 }
2344 EXPORT_SYMBOL_GPL(perf_event_read_value);
2345
2346 static int perf_event_read_group(struct perf_event *event,
2347                                    u64 read_format, char __user *buf)
2348 {
2349         struct perf_event *leader = event->group_leader, *sub;
2350         int n = 0, size = 0, ret = -EFAULT;
2351         struct perf_event_context *ctx = leader->ctx;
2352         u64 values[5];
2353         u64 count, enabled, running;
2354
2355         mutex_lock(&ctx->mutex);
2356         count = perf_event_read_value(leader, &enabled, &running);
2357
2358         values[n++] = 1 + leader->nr_siblings;
2359         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2360                 values[n++] = enabled;
2361         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2362                 values[n++] = running;
2363         values[n++] = count;
2364         if (read_format & PERF_FORMAT_ID)
2365                 values[n++] = primary_event_id(leader);
2366
2367         size = n * sizeof(u64);
2368
2369         if (copy_to_user(buf, values, size))
2370                 goto unlock;
2371
2372         ret = size;
2373
2374         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2375                 n = 0;
2376
2377                 values[n++] = perf_event_read_value(sub, &enabled, &running);
2378                 if (read_format & PERF_FORMAT_ID)
2379                         values[n++] = primary_event_id(sub);
2380
2381                 size = n * sizeof(u64);
2382
2383                 if (copy_to_user(buf + ret, values, size)) {
2384                         ret = -EFAULT;
2385                         goto unlock;
2386                 }
2387
2388                 ret += size;
2389         }
2390 unlock:
2391         mutex_unlock(&ctx->mutex);
2392
2393         return ret;
2394 }
2395
2396 static int perf_event_read_one(struct perf_event *event,
2397                                  u64 read_format, char __user *buf)
2398 {
2399         u64 enabled, running;
2400         u64 values[4];
2401         int n = 0;
2402
2403         values[n++] = perf_event_read_value(event, &enabled, &running);
2404         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2405                 values[n++] = enabled;
2406         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2407                 values[n++] = running;
2408         if (read_format & PERF_FORMAT_ID)
2409                 values[n++] = primary_event_id(event);
2410
2411         if (copy_to_user(buf, values, n * sizeof(u64)))
2412                 return -EFAULT;
2413
2414         return n * sizeof(u64);
2415 }
2416
2417 /*
2418  * Read the performance event - simple non blocking version for now
2419  */
2420 static ssize_t
2421 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2422 {
2423         u64 read_format = event->attr.read_format;
2424         int ret;
2425
2426         /*
2427          * Return end-of-file for a read on a event that is in
2428          * error state (i.e. because it was pinned but it couldn't be
2429          * scheduled on to the CPU at some point).
2430          */
2431         if (event->state == PERF_EVENT_STATE_ERROR)
2432                 return 0;
2433
2434         if (count < perf_event_read_size(event))
2435                 return -ENOSPC;
2436
2437         WARN_ON_ONCE(event->ctx->parent_ctx);
2438         if (read_format & PERF_FORMAT_GROUP)
2439                 ret = perf_event_read_group(event, read_format, buf);
2440         else
2441                 ret = perf_event_read_one(event, read_format, buf);
2442
2443         return ret;
2444 }
2445
2446 static ssize_t
2447 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2448 {
2449         struct perf_event *event = file->private_data;
2450
2451         return perf_read_hw(event, buf, count);
2452 }
2453
2454 static unsigned int perf_poll(struct file *file, poll_table *wait)
2455 {
2456         struct perf_event *event = file->private_data;
2457         struct perf_buffer *buffer;
2458         unsigned int events = POLL_HUP;
2459
2460         rcu_read_lock();
2461         buffer = rcu_dereference(event->buffer);
2462         if (buffer)
2463                 events = atomic_xchg(&buffer->poll, 0);
2464         rcu_read_unlock();
2465
2466         poll_wait(file, &event->waitq, wait);
2467
2468         return events;
2469 }
2470
2471 static void perf_event_reset(struct perf_event *event)
2472 {
2473         (void)perf_event_read(event);
2474         local64_set(&event->count, 0);
2475         perf_event_update_userpage(event);
2476 }
2477
2478 /*
2479  * Holding the top-level event's child_mutex means that any
2480  * descendant process that has inherited this event will block
2481  * in sync_child_event if it goes to exit, thus satisfying the
2482  * task existence requirements of perf_event_enable/disable.
2483  */
2484 static void perf_event_for_each_child(struct perf_event *event,
2485                                         void (*func)(struct perf_event *))
2486 {
2487         struct perf_event *child;
2488
2489         WARN_ON_ONCE(event->ctx->parent_ctx);
2490         mutex_lock(&event->child_mutex);
2491         func(event);
2492         list_for_each_entry(child, &event->child_list, child_list)
2493                 func(child);
2494         mutex_unlock(&event->child_mutex);
2495 }
2496
2497 static void perf_event_for_each(struct perf_event *event,
2498                                   void (*func)(struct perf_event *))
2499 {
2500         struct perf_event_context *ctx = event->ctx;
2501         struct perf_event *sibling;
2502
2503         WARN_ON_ONCE(ctx->parent_ctx);
2504         mutex_lock(&ctx->mutex);
2505         event = event->group_leader;
2506
2507         perf_event_for_each_child(event, func);
2508         func(event);
2509         list_for_each_entry(sibling, &event->sibling_list, group_entry)
2510                 perf_event_for_each_child(event, func);
2511         mutex_unlock(&ctx->mutex);
2512 }
2513
2514 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2515 {
2516         struct perf_event_context *ctx = event->ctx;
2517         unsigned long size;
2518         int ret = 0;
2519         u64 value;
2520
2521         if (!event->attr.sample_period)
2522                 return -EINVAL;
2523
2524         size = copy_from_user(&value, arg, sizeof(value));
2525         if (size != sizeof(value))
2526                 return -EFAULT;
2527
2528         if (!value)
2529                 return -EINVAL;
2530
2531         raw_spin_lock_irq(&ctx->lock);
2532         if (event->attr.freq) {
2533                 if (value > sysctl_perf_event_sample_rate) {
2534                         ret = -EINVAL;
2535                         goto unlock;
2536                 }
2537
2538                 event->attr.sample_freq = value;
2539         } else {
2540                 event->attr.sample_period = value;
2541                 event->hw.sample_period = value;
2542         }
2543 unlock:
2544         raw_spin_unlock_irq(&ctx->lock);
2545
2546         return ret;
2547 }
2548
2549 static const struct file_operations perf_fops;
2550
2551 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2552 {
2553         struct file *file;
2554
2555         file = fget_light(fd, fput_needed);
2556         if (!file)
2557                 return ERR_PTR(-EBADF);
2558
2559         if (file->f_op != &perf_fops) {
2560                 fput_light(file, *fput_needed);
2561                 *fput_needed = 0;
2562                 return ERR_PTR(-EBADF);
2563         }
2564
2565         return file->private_data;
2566 }
2567
2568 static int perf_event_set_output(struct perf_event *event,
2569                                  struct perf_event *output_event);
2570 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2571
2572 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2573 {
2574         struct perf_event *event = file->private_data;
2575         void (*func)(struct perf_event *);
2576         u32 flags = arg;
2577
2578         switch (cmd) {
2579         case PERF_EVENT_IOC_ENABLE:
2580                 func = perf_event_enable;
2581                 break;
2582         case PERF_EVENT_IOC_DISABLE:
2583                 func = perf_event_disable;
2584                 break;
2585         case PERF_EVENT_IOC_RESET:
2586                 func = perf_event_reset;
2587                 break;
2588
2589         case PERF_EVENT_IOC_REFRESH:
2590                 return perf_event_refresh(event, arg);
2591
2592         case PERF_EVENT_IOC_PERIOD:
2593                 return perf_event_period(event, (u64 __user *)arg);
2594
2595         case PERF_EVENT_IOC_SET_OUTPUT:
2596         {
2597                 struct perf_event *output_event = NULL;
2598                 int fput_needed = 0;
2599                 int ret;
2600
2601                 if (arg != -1) {
2602                         output_event = perf_fget_light(arg, &fput_needed);
2603                         if (IS_ERR(output_event))
2604                                 return PTR_ERR(output_event);
2605                 }
2606
2607                 ret = perf_event_set_output(event, output_event);
2608                 if (output_event)
2609                         fput_light(output_event->filp, fput_needed);
2610
2611                 return ret;
2612         }
2613
2614         case PERF_EVENT_IOC_SET_FILTER:
2615                 return perf_event_set_filter(event, (void __user *)arg);
2616
2617         default:
2618                 return -ENOTTY;
2619         }
2620
2621         if (flags & PERF_IOC_FLAG_GROUP)
2622                 perf_event_for_each(event, func);
2623         else
2624                 perf_event_for_each_child(event, func);
2625
2626         return 0;
2627 }
2628
2629 int perf_event_task_enable(void)
2630 {
2631         struct perf_event *event;
2632
2633         mutex_lock(&current->perf_event_mutex);
2634         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2635                 perf_event_for_each_child(event, perf_event_enable);
2636         mutex_unlock(&current->perf_event_mutex);
2637
2638         return 0;
2639 }
2640
2641 int perf_event_task_disable(void)
2642 {
2643         struct perf_event *event;
2644
2645         mutex_lock(&current->perf_event_mutex);
2646         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2647                 perf_event_for_each_child(event, perf_event_disable);
2648         mutex_unlock(&current->perf_event_mutex);
2649
2650         return 0;
2651 }
2652
2653 #ifndef PERF_EVENT_INDEX_OFFSET
2654 # define PERF_EVENT_INDEX_OFFSET 0
2655 #endif
2656
2657 static int perf_event_index(struct perf_event *event)
2658 {
2659         if (event->hw.state & PERF_HES_STOPPED)
2660                 return 0;
2661
2662         if (event->state != PERF_EVENT_STATE_ACTIVE)
2663                 return 0;
2664
2665         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2666 }
2667
2668 /*
2669  * Callers need to ensure there can be no nesting of this function, otherwise
2670  * the seqlock logic goes bad. We can not serialize this because the arch
2671  * code calls this from NMI context.
2672  */
2673 void perf_event_update_userpage(struct perf_event *event)
2674 {
2675         struct perf_event_mmap_page *userpg;
2676         struct perf_buffer *buffer;
2677
2678         rcu_read_lock();
2679         buffer = rcu_dereference(event->buffer);
2680         if (!buffer)
2681                 goto unlock;
2682
2683         userpg = buffer->user_page;
2684
2685         /*
2686          * Disable preemption so as to not let the corresponding user-space
2687          * spin too long if we get preempted.
2688          */
2689         preempt_disable();
2690         ++userpg->lock;
2691         barrier();
2692         userpg->index = perf_event_index(event);
2693         userpg->offset = perf_event_count(event);
2694         if (event->state == PERF_EVENT_STATE_ACTIVE)
2695                 userpg->offset -= local64_read(&event->hw.prev_count);
2696
2697         userpg->time_enabled = event->total_time_enabled +
2698                         atomic64_read(&event->child_total_time_enabled);
2699
2700         userpg->time_running = event->total_time_running +
2701                         atomic64_read(&event->child_total_time_running);
2702
2703         barrier();
2704         ++userpg->lock;
2705         preempt_enable();
2706 unlock:
2707         rcu_read_unlock();
2708 }
2709
2710 static unsigned long perf_data_size(struct perf_buffer *buffer);
2711
2712 static void
2713 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2714 {
2715         long max_size = perf_data_size(buffer);
2716
2717         if (watermark)
2718                 buffer->watermark = min(max_size, watermark);
2719
2720         if (!buffer->watermark)
2721                 buffer->watermark = max_size / 2;
2722
2723         if (flags & PERF_BUFFER_WRITABLE)
2724                 buffer->writable = 1;
2725
2726         atomic_set(&buffer->refcount, 1);
2727 }
2728
2729 #ifndef CONFIG_PERF_USE_VMALLOC
2730
2731 /*
2732  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2733  */
2734
2735 static struct page *
2736 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2737 {
2738         if (pgoff > buffer->nr_pages)
2739                 return NULL;
2740
2741         if (pgoff == 0)
2742                 return virt_to_page(buffer->user_page);
2743
2744         return virt_to_page(buffer->data_pages[pgoff - 1]);
2745 }
2746
2747 static void *perf_mmap_alloc_page(int cpu)
2748 {
2749         struct page *page;
2750         int node;
2751
2752         node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2753         page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2754         if (!page)
2755                 return NULL;
2756
2757         return page_address(page);
2758 }
2759
2760 static struct perf_buffer *
2761 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2762 {
2763         struct perf_buffer *buffer;
2764         unsigned long size;
2765         int i;
2766
2767         size = sizeof(struct perf_buffer);
2768         size += nr_pages * sizeof(void *);
2769
2770         buffer = kzalloc(size, GFP_KERNEL);
2771         if (!buffer)
2772                 goto fail;
2773
2774         buffer->user_page = perf_mmap_alloc_page(cpu);
2775         if (!buffer->user_page)
2776                 goto fail_user_page;
2777
2778         for (i = 0; i < nr_pages; i++) {
2779                 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2780                 if (!buffer->data_pages[i])
2781                         goto fail_data_pages;
2782         }
2783
2784         buffer->nr_pages = nr_pages;
2785
2786         perf_buffer_init(buffer, watermark, flags);
2787
2788         return buffer;
2789
2790 fail_data_pages:
2791         for (i--; i >= 0; i--)
2792                 free_page((unsigned long)buffer->data_pages[i]);
2793
2794         free_page((unsigned long)buffer->user_page);
2795
2796 fail_user_page:
2797         kfree(buffer);
2798
2799 fail:
2800         return NULL;
2801 }
2802
2803 static void perf_mmap_free_page(unsigned long addr)
2804 {
2805         struct page *page = virt_to_page((void *)addr);
2806
2807         page->mapping = NULL;
2808         __free_page(page);
2809 }
2810
2811 static void perf_buffer_free(struct perf_buffer *buffer)
2812 {
2813         int i;
2814
2815         perf_mmap_free_page((unsigned long)buffer->user_page);
2816         for (i = 0; i < buffer->nr_pages; i++)
2817                 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2818         kfree(buffer);
2819 }
2820
2821 static inline int page_order(struct perf_buffer *buffer)
2822 {
2823         return 0;
2824 }
2825
2826 #else
2827
2828 /*
2829  * Back perf_mmap() with vmalloc memory.
2830  *
2831  * Required for architectures that have d-cache aliasing issues.
2832  */
2833
2834 static inline int page_order(struct perf_buffer *buffer)
2835 {
2836         return buffer->page_order;
2837 }
2838
2839 static struct page *
2840 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2841 {
2842         if (pgoff > (1UL << page_order(buffer)))
2843                 return NULL;
2844
2845         return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2846 }
2847
2848 static void perf_mmap_unmark_page(void *addr)
2849 {
2850         struct page *page = vmalloc_to_page(addr);
2851
2852         page->mapping = NULL;
2853 }
2854
2855 static void perf_buffer_free_work(struct work_struct *work)
2856 {
2857         struct perf_buffer *buffer;
2858         void *base;
2859         int i, nr;
2860
2861         buffer = container_of(work, struct perf_buffer, work);
2862         nr = 1 << page_order(buffer);
2863
2864         base = buffer->user_page;
2865         for (i = 0; i < nr + 1; i++)
2866                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2867
2868         vfree(base);
2869         kfree(buffer);
2870 }
2871
2872 static void perf_buffer_free(struct perf_buffer *buffer)
2873 {
2874         schedule_work(&buffer->work);
2875 }
2876
2877 static struct perf_buffer *
2878 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2879 {
2880         struct perf_buffer *buffer;
2881         unsigned long size;
2882         void *all_buf;
2883
2884         size = sizeof(struct perf_buffer);
2885         size += sizeof(void *);
2886
2887         buffer = kzalloc(size, GFP_KERNEL);
2888         if (!buffer)
2889                 goto fail;
2890
2891         INIT_WORK(&buffer->work, perf_buffer_free_work);
2892
2893         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2894         if (!all_buf)
2895                 goto fail_all_buf;
2896
2897         buffer->user_page = all_buf;
2898         buffer->data_pages[0] = all_buf + PAGE_SIZE;
2899         buffer->page_order = ilog2(nr_pages);
2900         buffer->nr_pages = 1;
2901
2902         perf_buffer_init(buffer, watermark, flags);
2903
2904         return buffer;
2905
2906 fail_all_buf:
2907         kfree(buffer);
2908
2909 fail:
2910         return NULL;
2911 }
2912
2913 #endif
2914
2915 static unsigned long perf_data_size(struct perf_buffer *buffer)
2916 {
2917         return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2918 }
2919
2920 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2921 {
2922         struct perf_event *event = vma->vm_file->private_data;
2923         struct perf_buffer *buffer;
2924         int ret = VM_FAULT_SIGBUS;
2925
2926         if (vmf->flags & FAULT_FLAG_MKWRITE) {
2927                 if (vmf->pgoff == 0)
2928                         ret = 0;
2929                 return ret;
2930         }
2931
2932         rcu_read_lock();
2933         buffer = rcu_dereference(event->buffer);
2934         if (!buffer)
2935                 goto unlock;
2936
2937         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2938                 goto unlock;
2939
2940         vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2941         if (!vmf->page)
2942                 goto unlock;
2943
2944         get_page(vmf->page);
2945         vmf->page->mapping = vma->vm_file->f_mapping;
2946         vmf->page->index   = vmf->pgoff;
2947
2948         ret = 0;
2949 unlock:
2950         rcu_read_unlock();
2951
2952         return ret;
2953 }
2954
2955 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2956 {
2957         struct perf_buffer *buffer;
2958
2959         buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2960         perf_buffer_free(buffer);
2961 }
2962
2963 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2964 {
2965         struct perf_buffer *buffer;
2966
2967         rcu_read_lock();
2968         buffer = rcu_dereference(event->buffer);
2969         if (buffer) {
2970                 if (!atomic_inc_not_zero(&buffer->refcount))
2971                         buffer = NULL;
2972         }
2973         rcu_read_unlock();
2974
2975         return buffer;
2976 }
2977
2978 static void perf_buffer_put(struct perf_buffer *buffer)
2979 {
2980         if (!atomic_dec_and_test(&buffer->refcount))
2981                 return;
2982
2983         call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2984 }
2985
2986 static void perf_mmap_open(struct vm_area_struct *vma)
2987 {
2988         struct perf_event *event = vma->vm_file->private_data;
2989
2990         atomic_inc(&event->mmap_count);
2991 }
2992
2993 static void perf_mmap_close(struct vm_area_struct *vma)
2994 {
2995         struct perf_event *event = vma->vm_file->private_data;
2996
2997         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2998                 unsigned long size = perf_data_size(event->buffer);
2999                 struct user_struct *user = event->mmap_user;
3000                 struct perf_buffer *buffer = event->buffer;
3001
3002                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3003                 vma->vm_mm->locked_vm -= event->mmap_locked;
3004                 rcu_assign_pointer(event->buffer, NULL);
3005                 mutex_unlock(&event->mmap_mutex);
3006
3007                 perf_buffer_put(buffer);
3008                 free_uid(user);
3009         }
3010 }
3011
3012 static const struct vm_operations_struct perf_mmap_vmops = {
3013         .open           = perf_mmap_open,
3014         .close          = perf_mmap_close,
3015         .fault          = perf_mmap_fault,
3016         .page_mkwrite   = perf_mmap_fault,
3017 };
3018
3019 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3020 {
3021         struct perf_event *event = file->private_data;
3022         unsigned long user_locked, user_lock_limit;
3023         struct user_struct *user = current_user();
3024         unsigned long locked, lock_limit;
3025         struct perf_buffer *buffer;
3026         unsigned long vma_size;
3027         unsigned long nr_pages;
3028         long user_extra, extra;
3029         int ret = 0, flags = 0;
3030
3031         /*
3032          * Don't allow mmap() of inherited per-task counters. This would
3033          * create a performance issue due to all children writing to the
3034          * same buffer.
3035          */
3036         if (event->cpu == -1 && event->attr.inherit)
3037                 return -EINVAL;
3038
3039         if (!(vma->vm_flags & VM_SHARED))
3040                 return -EINVAL;
3041
3042         vma_size = vma->vm_end - vma->vm_start;
3043         nr_pages = (vma_size / PAGE_SIZE) - 1;
3044
3045         /*
3046          * If we have buffer pages ensure they're a power-of-two number, so we
3047          * can do bitmasks instead of modulo.
3048          */
3049         if (nr_pages != 0 && !is_power_of_2(nr_pages))
3050                 return -EINVAL;
3051
3052         if (vma_size != PAGE_SIZE * (1 + nr_pages))
3053                 return -EINVAL;
3054
3055         if (vma->vm_pgoff != 0)
3056                 return -EINVAL;
3057
3058         WARN_ON_ONCE(event->ctx->parent_ctx);
3059         mutex_lock(&event->mmap_mutex);
3060         if (event->buffer) {
3061                 if (event->buffer->nr_pages == nr_pages)
3062                         atomic_inc(&event->buffer->refcount);
3063                 else
3064                         ret = -EINVAL;
3065                 goto unlock;
3066         }
3067
3068         user_extra = nr_pages + 1;
3069         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3070
3071         /*
3072          * Increase the limit linearly with more CPUs:
3073          */
3074         user_lock_limit *= num_online_cpus();
3075
3076         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3077
3078         extra = 0;
3079         if (user_locked > user_lock_limit)
3080                 extra = user_locked - user_lock_limit;
3081
3082         lock_limit = rlimit(RLIMIT_MEMLOCK);
3083         lock_limit >>= PAGE_SHIFT;
3084         locked = vma->vm_mm->locked_vm + extra;
3085
3086         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3087                 !capable(CAP_IPC_LOCK)) {
3088                 ret = -EPERM;
3089                 goto unlock;
3090         }
3091
3092         WARN_ON(event->buffer);
3093
3094         if (vma->vm_flags & VM_WRITE)
3095                 flags |= PERF_BUFFER_WRITABLE;
3096
3097         buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3098                                    event->cpu, flags);
3099         if (!buffer) {
3100                 ret = -ENOMEM;
3101                 goto unlock;
3102         }
3103         rcu_assign_pointer(event->buffer, buffer);
3104
3105         atomic_long_add(user_extra, &user->locked_vm);
3106         event->mmap_locked = extra;
3107         event->mmap_user = get_current_user();
3108         vma->vm_mm->locked_vm += event->mmap_locked;
3109
3110 unlock:
3111         if (!ret)
3112                 atomic_inc(&event->mmap_count);
3113         mutex_unlock(&event->mmap_mutex);
3114
3115         vma->vm_flags |= VM_RESERVED;
3116         vma->vm_ops = &perf_mmap_vmops;
3117
3118         return ret;
3119 }
3120
3121 static int perf_fasync(int fd, struct file *filp, int on)
3122 {
3123         struct inode *inode = filp->f_path.dentry->d_inode;
3124         struct perf_event *event = filp->private_data;
3125         int retval;
3126
3127         mutex_lock(&inode->i_mutex);
3128         retval = fasync_helper(fd, filp, on, &event->fasync);
3129         mutex_unlock(&inode->i_mutex);
3130
3131         if (retval < 0)
3132                 return retval;
3133
3134         return 0;
3135 }
3136
3137 static const struct file_operations perf_fops = {
3138         .llseek                 = no_llseek,
3139         .release                = perf_release,
3140         .read                   = perf_read,
3141         .poll                   = perf_poll,
3142         .unlocked_ioctl         = perf_ioctl,
3143         .compat_ioctl           = perf_ioctl,
3144         .mmap                   = perf_mmap,
3145         .fasync                 = perf_fasync,
3146 };
3147
3148 /*
3149  * Perf event wakeup
3150  *
3151  * If there's data, ensure we set the poll() state and publish everything
3152  * to user-space before waking everybody up.
3153  */
3154
3155 void perf_event_wakeup(struct perf_event *event)
3156 {
3157         wake_up_all(&event->waitq);
3158
3159         if (event->pending_kill) {
3160                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3161                 event->pending_kill = 0;
3162         }
3163 }
3164
3165 /*
3166  * Pending wakeups
3167  *
3168  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
3169  *
3170  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
3171  * single linked list and use cmpxchg() to add entries lockless.
3172  */
3173
3174 static void perf_pending_event(struct perf_pending_entry *entry)
3175 {
3176         struct perf_event *event = container_of(entry,
3177                         struct perf_event, pending);
3178
3179         if (event->pending_disable) {
3180                 event->pending_disable = 0;
3181                 __perf_event_disable(event);
3182         }
3183
3184         if (event->pending_wakeup) {
3185                 event->pending_wakeup = 0;
3186                 perf_event_wakeup(event);
3187         }
3188 }
3189
3190 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
3191
3192 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
3193         PENDING_TAIL,
3194 };
3195
3196 static void perf_pending_queue(struct perf_pending_entry *entry,
3197                                void (*func)(struct perf_pending_entry *))
3198 {
3199         struct perf_pending_entry **head;
3200
3201         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
3202                 return;
3203
3204         entry->func = func;
3205
3206         head = &get_cpu_var(perf_pending_head);
3207
3208         do {
3209                 entry->next = *head;
3210         } while (cmpxchg(head, entry->next, entry) != entry->next);
3211
3212         set_perf_event_pending();
3213
3214         put_cpu_var(perf_pending_head);
3215 }
3216
3217 static int __perf_pending_run(void)
3218 {
3219         struct perf_pending_entry *list;
3220         int nr = 0;
3221
3222         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
3223         while (list != PENDING_TAIL) {
3224                 void (*func)(struct perf_pending_entry *);
3225                 struct perf_pending_entry *entry = list;
3226
3227                 list = list->next;
3228
3229                 func = entry->func;
3230                 entry->next = NULL;
3231                 /*
3232                  * Ensure we observe the unqueue before we issue the wakeup,
3233                  * so that we won't be waiting forever.
3234                  * -- see perf_not_pending().
3235                  */
3236                 smp_wmb();
3237
3238                 func(entry);
3239                 nr++;
3240         }
3241
3242         return nr;
3243 }
3244
3245 static inline int perf_not_pending(struct perf_event *event)
3246 {
3247         /*
3248          * If we flush on whatever cpu we run, there is a chance we don't
3249          * need to wait.
3250          */
3251         get_cpu();
3252         __perf_pending_run();
3253         put_cpu();
3254
3255         /*
3256          * Ensure we see the proper queue state before going to sleep
3257          * so that we do not miss the wakeup. -- see perf_pending_handle()
3258          */
3259         smp_rmb();
3260         return event->pending.next == NULL;
3261 }
3262
3263 static void perf_pending_sync(struct perf_event *event)
3264 {
3265         wait_event(event->waitq, perf_not_pending(event));
3266 }
3267
3268 void perf_event_do_pending(void)
3269 {
3270         __perf_pending_run();
3271 }
3272
3273 /*
3274  * We assume there is only KVM supporting the callbacks.
3275  * Later on, we might change it to a list if there is
3276  * another virtualization implementation supporting the callbacks.
3277  */
3278 struct perf_guest_info_callbacks *perf_guest_cbs;
3279
3280 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3281 {
3282         perf_guest_cbs = cbs;
3283         return 0;
3284 }
3285 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3286
3287 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3288 {
3289         perf_guest_cbs = NULL;
3290         return 0;
3291 }
3292 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3293
3294 /*
3295  * Output
3296  */
3297 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3298                               unsigned long offset, unsigned long head)
3299 {
3300         unsigned long mask;
3301
3302         if (!buffer->writable)
3303                 return true;
3304
3305         mask = perf_data_size(buffer) - 1;
3306
3307         offset = (offset - tail) & mask;
3308         head   = (head   - tail) & mask;
3309
3310         if ((int)(head - offset) < 0)
3311                 return false;
3312
3313         return true;
3314 }
3315
3316 static void perf_output_wakeup(struct perf_output_handle *handle)
3317 {
3318         atomic_set(&handle->buffer->poll, POLL_IN);
3319
3320         if (handle->nmi) {
3321                 handle->event->pending_wakeup = 1;
3322                 perf_pending_queue(&handle->event->pending,
3323                                    perf_pending_event);
3324         } else
3325                 perf_event_wakeup(handle->event);
3326 }
3327
3328 /*
3329  * We need to ensure a later event_id doesn't publish a head when a former
3330  * event isn't done writing. However since we need to deal with NMIs we
3331  * cannot fully serialize things.
3332  *
3333  * We only publish the head (and generate a wakeup) when the outer-most
3334  * event completes.
3335  */
3336 static void perf_output_get_handle(struct perf_output_handle *handle)
3337 {
3338         struct perf_buffer *buffer = handle->buffer;
3339
3340         preempt_disable();
3341         local_inc(&buffer->nest);
3342         handle->wakeup = local_read(&buffer->wakeup);
3343 }
3344
3345 static void perf_output_put_handle(struct perf_output_handle *handle)
3346 {
3347         struct perf_buffer *buffer = handle->buffer;
3348         unsigned long head;
3349
3350 again:
3351         head = local_read(&buffer->head);
3352
3353         /*
3354          * IRQ/NMI can happen here, which means we can miss a head update.
3355          */
3356
3357         if (!local_dec_and_test(&buffer->nest))
3358                 goto out;
3359
3360         /*
3361          * Publish the known good head. Rely on the full barrier implied
3362          * by atomic_dec_and_test() order the buffer->head read and this
3363          * write.
3364          */
3365         buffer->user_page->data_head = head;
3366
3367         /*
3368          * Now check if we missed an update, rely on the (compiler)
3369          * barrier in atomic_dec_and_test() to re-read buffer->head.
3370          */
3371         if (unlikely(head != local_read(&buffer->head))) {
3372                 local_inc(&buffer->nest);
3373                 goto again;
3374         }
3375
3376         if (handle->wakeup != local_read(&buffer->wakeup))
3377                 perf_output_wakeup(handle);
3378
3379 out:
3380         preempt_enable();
3381 }
3382
3383 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3384                       const void *buf, unsigned int len)
3385 {
3386         do {
3387                 unsigned long size = min_t(unsigned long, handle->size, len);
3388
3389                 memcpy(handle->addr, buf, size);
3390
3391                 len -= size;
3392                 handle->addr += size;
3393                 buf += size;
3394                 handle->size -= size;
3395                 if (!handle->size) {
3396                         struct perf_buffer *buffer = handle->buffer;
3397
3398                         handle->page++;
3399                         handle->page &= buffer->nr_pages - 1;
3400                         handle->addr = buffer->data_pages[handle->page];
3401                         handle->size = PAGE_SIZE << page_order(buffer);
3402                 }
3403         } while (len);
3404 }
3405
3406 int perf_output_begin(struct perf_output_handle *handle,
3407                       struct perf_event *event, unsigned int size,
3408                       int nmi, int sample)
3409 {
3410         struct perf_buffer *buffer;
3411         unsigned long tail, offset, head;
3412         int have_lost;
3413         struct {
3414                 struct perf_event_header header;
3415                 u64                      id;
3416                 u64                      lost;
3417         } lost_event;
3418
3419         rcu_read_lock();
3420         /*
3421          * For inherited events we send all the output towards the parent.
3422          */
3423         if (event->parent)
3424                 event = event->parent;
3425
3426         buffer = rcu_dereference(event->buffer);
3427         if (!buffer)
3428                 goto out;
3429
3430         handle->buffer  = buffer;
3431         handle->event   = event;
3432         handle->nmi     = nmi;
3433         handle->sample  = sample;
3434
3435         if (!buffer->nr_pages)
3436                 goto out;
3437
3438         have_lost = local_read(&buffer->lost);
3439         if (have_lost)
3440                 size += sizeof(lost_event);
3441
3442         perf_output_get_handle(handle);
3443
3444         do {
3445                 /*
3446                  * Userspace could choose to issue a mb() before updating the
3447                  * tail pointer. So that all reads will be completed before the
3448                  * write is issued.
3449                  */
3450                 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3451                 smp_rmb();
3452                 offset = head = local_read(&buffer->head);
3453                 head += size;
3454                 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3455                         goto fail;
3456         } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3457
3458         if (head - local_read(&buffer->wakeup) > buffer->watermark)
3459                 local_add(buffer->watermark, &buffer->wakeup);
3460
3461         handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3462         handle->page &= buffer->nr_pages - 1;
3463         handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3464         handle->addr = buffer->data_pages[handle->page];
3465         handle->addr += handle->size;
3466         handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3467
3468         if (have_lost) {
3469                 lost_event.header.type = PERF_RECORD_LOST;
3470                 lost_event.header.misc = 0;
3471                 lost_event.header.size = sizeof(lost_event);
3472                 lost_event.id          = event->id;
3473                 lost_event.lost        = local_xchg(&buffer->lost, 0);
3474
3475                 perf_output_put(handle, lost_event);
3476         }
3477
3478         return 0;
3479
3480 fail:
3481         local_inc(&buffer->lost);
3482         perf_output_put_handle(handle);
3483 out:
3484         rcu_read_unlock();
3485
3486         return -ENOSPC;
3487 }
3488
3489 void perf_output_end(struct perf_output_handle *handle)
3490 {
3491         struct perf_event *event = handle->event;
3492         struct perf_buffer *buffer = handle->buffer;
3493
3494         int wakeup_events = event->attr.wakeup_events;
3495
3496         if (handle->sample && wakeup_events) {
3497                 int events = local_inc_return(&buffer->events);
3498                 if (events >= wakeup_events) {
3499                         local_sub(wakeup_events, &buffer->events);
3500                         local_inc(&buffer->wakeup);
3501                 }
3502         }
3503
3504         perf_output_put_handle(handle);
3505         rcu_read_unlock();
3506 }
3507
3508 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3509 {
3510         /*
3511          * only top level events have the pid namespace they were created in
3512          */
3513         if (event->parent)
3514                 event = event->parent;
3515
3516         return task_tgid_nr_ns(p, event->ns);
3517 }
3518
3519 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3520 {
3521         /*
3522          * only top level events have the pid namespace they were created in
3523          */
3524         if (event->parent)
3525                 event = event->parent;
3526
3527         return task_pid_nr_ns(p, event->ns);
3528 }
3529
3530 static void perf_output_read_one(struct perf_output_handle *handle,
3531                                  struct perf_event *event)
3532 {
3533         u64 read_format = event->attr.read_format;
3534         u64 values[4];
3535         int n = 0;
3536
3537         values[n++] = perf_event_count(event);
3538         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3539                 values[n++] = event->total_time_enabled +
3540                         atomic64_read(&event->child_total_time_enabled);
3541         }
3542         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3543                 values[n++] = event->total_time_running +
3544                         atomic64_read(&event->child_total_time_running);
3545         }
3546         if (read_format & PERF_FORMAT_ID)
3547                 values[n++] = primary_event_id(event);
3548
3549         perf_output_copy(handle, values, n * sizeof(u64));
3550 }
3551
3552 /*
3553  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3554  */
3555 static void perf_output_read_group(struct perf_output_handle *handle,
3556                             struct perf_event *event)
3557 {
3558         struct perf_event *leader = event->group_leader, *sub;
3559         u64 read_format = event->attr.read_format;
3560         u64 values[5];
3561         int n = 0;
3562
3563         values[n++] = 1 + leader->nr_siblings;
3564
3565         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3566                 values[n++] = leader->total_time_enabled;
3567
3568         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3569                 values[n++] = leader->total_time_running;
3570
3571         if (leader != event)
3572                 leader->pmu->read(leader);
3573
3574         values[n++] = perf_event_count(leader);
3575         if (read_format & PERF_FORMAT_ID)
3576                 values[n++] = primary_event_id(leader);
3577
3578         perf_output_copy(handle, values, n * sizeof(u64));
3579
3580         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3581                 n = 0;
3582
3583                 if (sub != event)
3584                         sub->pmu->read(sub);
3585
3586                 values[n++] = perf_event_count(sub);
3587                 if (read_format & PERF_FORMAT_ID)
3588                         values[n++] = primary_event_id(sub);
3589
3590                 perf_output_copy(handle, values, n * sizeof(u64));
3591         }
3592 }
3593
3594 static void perf_output_read(struct perf_output_handle *handle,
3595                              struct perf_event *event)
3596 {
3597         if (event->attr.read_format & PERF_FORMAT_GROUP)
3598                 perf_output_read_group(handle, event);
3599         else
3600                 perf_output_read_one(handle, event);
3601 }
3602
3603 void perf_output_sample(struct perf_output_handle *handle,
3604                         struct perf_event_header *header,
3605                         struct perf_sample_data *data,
3606                         struct perf_event *event)
3607 {
3608         u64 sample_type = data->type;
3609
3610         perf_output_put(handle, *header);
3611
3612         if (sample_type & PERF_SAMPLE_IP)
3613                 perf_output_put(handle, data->ip);
3614
3615         if (sample_type & PERF_SAMPLE_TID)
3616                 perf_output_put(handle, data->tid_entry);
3617
3618         if (sample_type & PERF_SAMPLE_TIME)
3619                 perf_output_put(handle, data->time);
3620
3621         if (sample_type & PERF_SAMPLE_ADDR)
3622                 perf_output_put(handle, data->addr);
3623
3624         if (sample_type & PERF_SAMPLE_ID)
3625                 perf_output_put(handle, data->id);
3626
3627         if (sample_type & PERF_SAMPLE_STREAM_ID)
3628                 perf_output_put(handle, data->stream_id);
3629
3630         if (sample_type & PERF_SAMPLE_CPU)
3631                 perf_output_put(handle, data->cpu_entry);
3632
3633         if (sample_type & PERF_SAMPLE_PERIOD)
3634                 perf_output_put(handle, data->period);
3635
3636         if (sample_type & PERF_SAMPLE_READ)
3637                 perf_output_read(handle, event);
3638
3639         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3640                 if (data->callchain) {
3641                         int size = 1;
3642
3643                         if (data->callchain)
3644                                 size += data->callchain->nr;
3645
3646                         size *= sizeof(u64);
3647
3648                         perf_output_copy(handle, data->callchain, size);
3649                 } else {
3650                         u64 nr = 0;
3651                         perf_output_put(handle, nr);
3652                 }
3653         }
3654
3655         if (sample_type & PERF_SAMPLE_RAW) {
3656                 if (data->raw) {
3657                         perf_output_put(handle, data->raw->size);
3658                         perf_output_copy(handle, data->raw->data,
3659                                          data->raw->size);
3660                 } else {
3661                         struct {
3662                                 u32     size;
3663                                 u32     data;
3664                         } raw = {
3665                                 .size = sizeof(u32),
3666                                 .data = 0,
3667                         };
3668                         perf_output_put(handle, raw);
3669                 }
3670         }
3671 }
3672
3673 void perf_prepare_sample(struct perf_event_header *header,
3674                          struct perf_sample_data *data,
3675                          struct perf_event *event,
3676                          struct pt_regs *regs)
3677 {
3678         u64 sample_type = event->attr.sample_type;
3679
3680         data->type = sample_type;
3681
3682         header->type = PERF_RECORD_SAMPLE;
3683         header->size = sizeof(*header);
3684
3685         header->misc = 0;
3686         header->misc |= perf_misc_flags(regs);
3687
3688         if (sample_type & PERF_SAMPLE_IP) {
3689                 data->ip = perf_instruction_pointer(regs);
3690
3691                 header->size += sizeof(data->ip);
3692         }
3693
3694         if (sample_type & PERF_SAMPLE_TID) {
3695                 /* namespace issues */
3696                 data->tid_entry.pid = perf_event_pid(event, current);
3697                 data->tid_entry.tid = perf_event_tid(event, current);
3698
3699                 header->size += sizeof(data->tid_entry);
3700         }
3701
3702         if (sample_type & PERF_SAMPLE_TIME) {
3703                 data->time = perf_clock();
3704
3705                 header->size += sizeof(data->time);
3706         }
3707
3708         if (sample_type & PERF_SAMPLE_ADDR)
3709                 header->size += sizeof(data->addr);
3710
3711         if (sample_type & PERF_SAMPLE_ID) {
3712                 data->id = primary_event_id(event);
3713
3714                 header->size += sizeof(data->id);
3715         }
3716
3717         if (sample_type & PERF_SAMPLE_STREAM_ID) {
3718                 data->stream_id = event->id;
3719
3720                 header->size += sizeof(data->stream_id);
3721         }
3722
3723         if (sample_type & PERF_SAMPLE_CPU) {
3724                 data->cpu_entry.cpu             = raw_smp_processor_id();
3725                 data->cpu_entry.reserved        = 0;
3726
3727                 header->size += sizeof(data->cpu_entry);
3728         }
3729
3730         if (sample_type & PERF_SAMPLE_PERIOD)
3731                 header->size += sizeof(data->period);
3732
3733         if (sample_type & PERF_SAMPLE_READ)
3734                 header->size += perf_event_read_size(event);
3735
3736         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3737                 int size = 1;
3738
3739                 data->callchain = perf_callchain(regs);
3740
3741                 if (data->callchain)
3742                         size += data->callchain->nr;
3743
3744                 header->size += size * sizeof(u64);
3745         }
3746
3747         if (sample_type & PERF_SAMPLE_RAW) {
3748                 int size = sizeof(u32);
3749
3750                 if (data->raw)
3751                         size += data->raw->size;
3752                 else
3753                         size += sizeof(u32);
3754
3755                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3756                 header->size += size;
3757         }
3758 }
3759
3760 static void perf_event_output(struct perf_event *event, int nmi,
3761                                 struct perf_sample_data *data,
3762                                 struct pt_regs *regs)
3763 {
3764         struct perf_output_handle handle;
3765         struct perf_event_header header;
3766
3767         /* protect the callchain buffers */
3768         rcu_read_lock();
3769
3770         perf_prepare_sample(&header, data, event, regs);
3771
3772         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3773                 goto exit;
3774
3775         perf_output_sample(&handle, &header, data, event);
3776
3777         perf_output_end(&handle);
3778
3779 exit:
3780         rcu_read_unlock();
3781 }
3782
3783 /*
3784  * read event_id
3785  */
3786
3787 struct perf_read_event {
3788         struct perf_event_header        header;
3789
3790         u32                             pid;
3791         u32                             tid;
3792 };
3793
3794 static void
3795 perf_event_read_event(struct perf_event *event,
3796                         struct task_struct *task)
3797 {
3798         struct perf_output_handle handle;
3799         struct perf_read_event read_event = {
3800                 .header = {
3801                         .type = PERF_RECORD_READ,
3802                         .misc = 0,
3803                         .size = sizeof(read_event) + perf_event_read_size(event),
3804                 },
3805                 .pid = perf_event_pid(event, task),
3806                 .tid = perf_event_tid(event, task),
3807         };
3808         int ret;
3809
3810         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3811         if (ret)
3812                 return;
3813
3814         perf_output_put(&handle, read_event);
3815         perf_output_read(&handle, event);
3816
3817         perf_output_end(&handle);
3818 }
3819
3820 /*
3821  * task tracking -- fork/exit
3822  *
3823  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3824  */
3825
3826 struct perf_task_event {
3827         struct task_struct              *task;
3828         struct perf_event_context       *task_ctx;
3829
3830         struct {
3831                 struct perf_event_header        header;
3832
3833                 u32                             pid;
3834                 u32                             ppid;
3835                 u32                             tid;
3836                 u32                             ptid;
3837                 u64                             time;
3838         } event_id;
3839 };
3840
3841 static void perf_event_task_output(struct perf_event *event,
3842                                      struct perf_task_event *task_event)
3843 {
3844         struct perf_output_handle handle;
3845         struct task_struct *task = task_event->task;
3846         int size, ret;
3847
3848         size  = task_event->event_id.header.size;
3849         ret = perf_output_begin(&handle, event, size, 0, 0);
3850
3851         if (ret)
3852                 return;
3853
3854         task_event->event_id.pid = perf_event_pid(event, task);
3855         task_event->event_id.ppid = perf_event_pid(event, current);
3856
3857         task_event->event_id.tid = perf_event_tid(event, task);
3858         task_event->event_id.ptid = perf_event_tid(event, current);
3859
3860         perf_output_put(&handle, task_event->event_id);
3861
3862         perf_output_end(&handle);
3863 }
3864
3865 static int perf_event_task_match(struct perf_event *event)
3866 {
3867         if (event->state < PERF_EVENT_STATE_INACTIVE)
3868                 return 0;
3869
3870         if (event->cpu != -1 && event->cpu != smp_processor_id())
3871                 return 0;
3872
3873         if (event->attr.comm || event->attr.mmap ||
3874             event->attr.mmap_data || event->attr.task)
3875                 return 1;
3876
3877         return 0;
3878 }
3879
3880 static void perf_event_task_ctx(struct perf_event_context *ctx,
3881                                   struct perf_task_event *task_event)
3882 {
3883         struct perf_event *event;
3884
3885         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3886                 if (perf_event_task_match(event))
3887                         perf_event_task_output(event, task_event);
3888         }
3889 }
3890
3891 static void perf_event_task_event(struct perf_task_event *task_event)
3892 {
3893         struct perf_cpu_context *cpuctx;
3894         struct perf_event_context *ctx;
3895         struct pmu *pmu;
3896         int ctxn;
3897
3898         rcu_read_lock();
3899         list_for_each_entry_rcu(pmu, &pmus, entry) {
3900                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3901                 perf_event_task_ctx(&cpuctx->ctx, task_event);
3902
3903                 ctx = task_event->task_ctx;
3904                 if (!ctx) {
3905                         ctxn = pmu->task_ctx_nr;
3906                         if (ctxn < 0)
3907                                 goto next;
3908                         ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3909                 }
3910                 if (ctx)
3911                         perf_event_task_ctx(ctx, task_event);
3912 next:
3913                 put_cpu_ptr(pmu->pmu_cpu_context);
3914         }
3915         rcu_read_unlock();
3916 }
3917
3918 static void perf_event_task(struct task_struct *task,
3919                               struct perf_event_context *task_ctx,
3920                               int new)
3921 {
3922         struct perf_task_event task_event;
3923
3924         if (!atomic_read(&nr_comm_events) &&
3925             !atomic_read(&nr_mmap_events) &&
3926             !atomic_read(&nr_task_events))
3927                 return;
3928
3929         task_event = (struct perf_task_event){
3930                 .task     = task,
3931                 .task_ctx = task_ctx,
3932                 .event_id    = {
3933                         .header = {
3934                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3935                                 .misc = 0,
3936                                 .size = sizeof(task_event.event_id),
3937                         },
3938                         /* .pid  */
3939                         /* .ppid */
3940                         /* .tid  */
3941                         /* .ptid */
3942                         .time = perf_clock(),
3943                 },
3944         };
3945
3946         perf_event_task_event(&task_event);
3947 }
3948
3949 void perf_event_fork(struct task_struct *task)
3950 {
3951         perf_event_task(task, NULL, 1);
3952 }
3953
3954 /*
3955  * comm tracking
3956  */
3957
3958 struct perf_comm_event {
3959         struct task_struct      *task;
3960         char                    *comm;
3961         int                     comm_size;
3962
3963         struct {
3964                 struct perf_event_header        header;
3965
3966                 u32                             pid;
3967                 u32                             tid;
3968         } event_id;
3969 };
3970
3971 static void perf_event_comm_output(struct perf_event *event,
3972                                      struct perf_comm_event *comm_event)
3973 {
3974         struct perf_output_handle handle;
3975         int size = comm_event->event_id.header.size;
3976         int ret = perf_output_begin(&handle, event, size, 0, 0);
3977
3978         if (ret)
3979                 return;
3980
3981         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3982         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3983
3984         perf_output_put(&handle, comm_event->event_id);
3985         perf_output_copy(&handle, comm_event->comm,
3986                                    comm_event->comm_size);
3987         perf_output_end(&handle);
3988 }
3989
3990 static int perf_event_comm_match(struct perf_event *event)
3991 {
3992         if (event->state < PERF_EVENT_STATE_INACTIVE)
3993                 return 0;
3994
3995         if (event->cpu != -1 && event->cpu != smp_processor_id())
3996                 return 0;
3997
3998         if (event->attr.comm)
3999                 return 1;
4000
4001         return 0;
4002 }
4003
4004 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4005                                   struct perf_comm_event *comm_event)
4006 {
4007         struct perf_event *event;
4008
4009         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4010                 if (perf_event_comm_match(event))
4011                         perf_event_comm_output(event, comm_event);
4012         }
4013 }
4014
4015 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4016 {
4017         struct perf_cpu_context *cpuctx;
4018         struct perf_event_context *ctx;
4019         char comm[TASK_COMM_LEN];
4020         unsigned int size;
4021         struct pmu *pmu;
4022         int ctxn;
4023
4024         memset(comm, 0, sizeof(comm));
4025         strlcpy(comm, comm_event->task->comm, sizeof(comm));
4026         size = ALIGN(strlen(comm)+1, sizeof(u64));
4027
4028         comm_event->comm = comm;
4029         comm_event->comm_size = size;
4030
4031         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4032
4033         rcu_read_lock();
4034         list_for_each_entry_rcu(pmu, &pmus, entry) {
4035                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4036                 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4037
4038                 ctxn = pmu->task_ctx_nr;
4039                 if (ctxn < 0)
4040                         goto next;
4041
4042                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4043                 if (ctx)
4044                         perf_event_comm_ctx(ctx, comm_event);
4045 next:
4046                 put_cpu_ptr(pmu->pmu_cpu_context);
4047         }
4048         rcu_read_unlock();
4049 }
4050
4051 void perf_event_comm(struct task_struct *task)
4052 {
4053         struct perf_comm_event comm_event;
4054         struct perf_event_context *ctx;
4055         int ctxn;
4056
4057         for_each_task_context_nr(ctxn) {
4058                 ctx = task->perf_event_ctxp[ctxn];
4059                 if (!ctx)
4060                         continue;
4061
4062                 perf_event_enable_on_exec(ctx);
4063         }
4064
4065         if (!atomic_read(&nr_comm_events))
4066                 return;
4067
4068         comm_event = (struct perf_comm_event){
4069                 .task   = task,
4070                 /* .comm      */
4071                 /* .comm_size */
4072                 .event_id  = {
4073                         .header = {
4074                                 .type = PERF_RECORD_COMM,
4075                                 .misc = 0,
4076                                 /* .size */
4077                         },
4078                         /* .pid */
4079                         /* .tid */
4080                 },
4081         };
4082
4083         perf_event_comm_event(&comm_event);
4084 }
4085
4086 /*
4087  * mmap tracking
4088  */
4089
4090 struct perf_mmap_event {
4091         struct vm_area_struct   *vma;
4092
4093         const char              *file_name;
4094         int                     file_size;
4095
4096         struct {
4097                 struct perf_event_header        header;
4098
4099                 u32                             pid;
4100                 u32                             tid;
4101                 u64                             start;
4102                 u64                             len;
4103                 u64                             pgoff;
4104         } event_id;
4105 };
4106
4107 static void perf_event_mmap_output(struct perf_event *event,
4108                                      struct perf_mmap_event *mmap_event)
4109 {
4110         struct perf_output_handle handle;
4111         int size = mmap_event->event_id.header.size;
4112         int ret = perf_output_begin(&handle, event, size, 0, 0);
4113
4114         if (ret)
4115                 return;
4116
4117         mmap_event->event_id.pid = perf_event_pid(event, current);
4118         mmap_event->event_id.tid = perf_event_tid(event, current);
4119
4120         perf_output_put(&handle, mmap_event->event_id);
4121         perf_output_copy(&handle, mmap_event->file_name,
4122                                    mmap_event->file_size);
4123         perf_output_end(&handle);
4124 }
4125
4126 static int perf_event_mmap_match(struct perf_event *event,
4127                                    struct perf_mmap_event *mmap_event,
4128                                    int executable)
4129 {
4130         if (event->state < PERF_EVENT_STATE_INACTIVE)
4131                 return 0;
4132
4133         if (event->cpu != -1 && event->cpu != smp_processor_id())
4134                 return 0;
4135
4136         if ((!executable && event->attr.mmap_data) ||
4137             (executable && event->attr.mmap))
4138                 return 1;
4139
4140         return 0;
4141 }
4142
4143 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4144                                   struct perf_mmap_event *mmap_event,
4145                                   int executable)
4146 {
4147         struct perf_event *event;
4148
4149         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4150                 if (perf_event_mmap_match(event, mmap_event, executable))
4151                         perf_event_mmap_output(event, mmap_event);
4152         }
4153 }
4154
4155 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4156 {
4157         struct perf_cpu_context *cpuctx;
4158         struct perf_event_context *ctx;
4159         struct vm_area_struct *vma = mmap_event->vma;
4160         struct file *file = vma->vm_file;
4161         unsigned int size;
4162         char tmp[16];
4163         char *buf = NULL;
4164         const char *name;
4165         struct pmu *pmu;
4166         int ctxn;
4167
4168         memset(tmp, 0, sizeof(tmp));
4169
4170         if (file) {
4171                 /*
4172                  * d_path works from the end of the buffer backwards, so we
4173                  * need to add enough zero bytes after the string to handle
4174                  * the 64bit alignment we do later.
4175                  */
4176                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4177                 if (!buf) {
4178                         name = strncpy(tmp, "//enomem", sizeof(tmp));
4179                         goto got_name;
4180                 }
4181                 name = d_path(&file->f_path, buf, PATH_MAX);
4182                 if (IS_ERR(name)) {
4183                         name = strncpy(tmp, "//toolong", sizeof(tmp));
4184                         goto got_name;
4185                 }
4186         } else {
4187                 if (arch_vma_name(mmap_event->vma)) {
4188                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4189                                        sizeof(tmp));
4190                         goto got_name;
4191                 }
4192
4193                 if (!vma->vm_mm) {
4194                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
4195                         goto got_name;
4196                 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4197                                 vma->vm_end >= vma->vm_mm->brk) {
4198                         name = strncpy(tmp, "[heap]", sizeof(tmp));
4199                         goto got_name;
4200                 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4201                                 vma->vm_end >= vma->vm_mm->start_stack) {
4202                         name = strncpy(tmp, "[stack]", sizeof(tmp));
4203                         goto got_name;
4204                 }
4205
4206                 name = strncpy(tmp, "//anon", sizeof(tmp));
4207                 goto got_name;
4208         }
4209
4210 got_name:
4211         size = ALIGN(strlen(name)+1, sizeof(u64));
4212
4213         mmap_event->file_name = name;
4214         mmap_event->file_size = size;
4215
4216         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4217
4218         rcu_read_lock();
4219         list_for_each_entry_rcu(pmu, &pmus, entry) {
4220                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4221                 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4222                                         vma->vm_flags & VM_EXEC);
4223
4224                 ctxn = pmu->task_ctx_nr;
4225                 if (ctxn < 0)
4226                         goto next;
4227
4228                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4229                 if (ctx) {
4230                         perf_event_mmap_ctx(ctx, mmap_event,
4231                                         vma->vm_flags & VM_EXEC);
4232                 }
4233 next:
4234                 put_cpu_ptr(pmu->pmu_cpu_context);
4235         }
4236         rcu_read_unlock();
4237
4238         kfree(buf);
4239 }
4240
4241 void perf_event_mmap(struct vm_area_struct *vma)
4242 {
4243         struct perf_mmap_event mmap_event;
4244
4245         if (!atomic_read(&nr_mmap_events))
4246                 return;
4247
4248         mmap_event = (struct perf_mmap_event){
4249                 .vma    = vma,
4250                 /* .file_name */
4251                 /* .file_size */
4252                 .event_id  = {
4253                         .header = {
4254                                 .type = PERF_RECORD_MMAP,
4255                                 .misc = PERF_RECORD_MISC_USER,
4256                                 /* .size */
4257                         },
4258                         /* .pid */
4259                         /* .tid */
4260                         .start  = vma->vm_start,
4261                         .len    = vma->vm_end - vma->vm_start,
4262                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4263                 },
4264         };
4265
4266         perf_event_mmap_event(&mmap_event);
4267 }
4268
4269 /*
4270  * IRQ throttle logging
4271  */
4272
4273 static void perf_log_throttle(struct perf_event *event, int enable)
4274 {
4275         struct perf_output_handle handle;
4276         int ret;
4277
4278         struct {
4279                 struct perf_event_header        header;
4280                 u64                             time;
4281                 u64                             id;
4282                 u64                             stream_id;
4283         } throttle_event = {
4284                 .header = {
4285                         .type = PERF_RECORD_THROTTLE,
4286                         .misc = 0,
4287                         .size = sizeof(throttle_event),
4288                 },
4289                 .time           = perf_clock(),
4290                 .id             = primary_event_id(event),
4291                 .stream_id      = event->id,
4292         };
4293
4294         if (enable)
4295                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4296
4297         ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4298         if (ret)
4299                 return;
4300
4301         perf_output_put(&handle, throttle_event);
4302         perf_output_end(&handle);
4303 }
4304
4305 /*
4306  * Generic event overflow handling, sampling.
4307  */
4308
4309 static int __perf_event_overflow(struct perf_event *event, int nmi,
4310                                    int throttle, struct perf_sample_data *data,
4311                                    struct pt_regs *regs)
4312 {
4313         int events = atomic_read(&event->event_limit);
4314         struct hw_perf_event *hwc = &event->hw;
4315         int ret = 0;
4316
4317         if (!throttle) {
4318                 hwc->interrupts++;
4319         } else {
4320                 if (hwc->interrupts != MAX_INTERRUPTS) {
4321                         hwc->interrupts++;
4322                         if (HZ * hwc->interrupts >
4323                                         (u64)sysctl_perf_event_sample_rate) {
4324                                 hwc->interrupts = MAX_INTERRUPTS;
4325                                 perf_log_throttle(event, 0);
4326                                 ret = 1;
4327                         }
4328                 } else {
4329                         /*
4330                          * Keep re-disabling events even though on the previous
4331                          * pass we disabled it - just in case we raced with a
4332                          * sched-in and the event got enabled again:
4333                          */
4334                         ret = 1;
4335                 }
4336         }
4337
4338         if (event->attr.freq) {
4339                 u64 now = perf_clock();
4340                 s64 delta = now - hwc->freq_time_stamp;
4341
4342                 hwc->freq_time_stamp = now;
4343
4344                 if (delta > 0 && delta < 2*TICK_NSEC)
4345                         perf_adjust_period(event, delta, hwc->last_period);
4346         }
4347
4348         /*
4349          * XXX event_limit might not quite work as expected on inherited
4350          * events
4351          */
4352
4353         event->pending_kill = POLL_IN;
4354         if (events && atomic_dec_and_test(&event->event_limit)) {
4355                 ret = 1;
4356                 event->pending_kill = POLL_HUP;
4357                 if (nmi) {
4358                         event->pending_disable = 1;
4359                         perf_pending_queue(&event->pending,
4360                                            perf_pending_event);
4361                 } else
4362                         perf_event_disable(event);
4363         }
4364
4365         if (event->overflow_handler)
4366                 event->overflow_handler(event, nmi, data, regs);
4367         else
4368                 perf_event_output(event, nmi, data, regs);
4369
4370         return ret;
4371 }
4372
4373 int perf_event_overflow(struct perf_event *event, int nmi,
4374                           struct perf_sample_data *data,
4375                           struct pt_regs *regs)
4376 {
4377         return __perf_event_overflow(event, nmi, 1, data, regs);
4378 }
4379
4380 /*
4381  * Generic software event infrastructure
4382  */
4383
4384 struct swevent_htable {
4385         struct swevent_hlist            *swevent_hlist;
4386         struct mutex                    hlist_mutex;
4387         int                             hlist_refcount;
4388
4389         /* Recursion avoidance in each contexts */
4390         int                             recursion[PERF_NR_CONTEXTS];
4391 };
4392
4393 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4394
4395 /*
4396  * We directly increment event->count and keep a second value in
4397  * event->hw.period_left to count intervals. This period event
4398  * is kept in the range [-sample_period, 0] so that we can use the
4399  * sign as trigger.
4400  */
4401
4402 static u64 perf_swevent_set_period(struct perf_event *event)
4403 {
4404         struct hw_perf_event *hwc = &event->hw;
4405         u64 period = hwc->last_period;
4406         u64 nr, offset;
4407         s64 old, val;
4408
4409         hwc->last_period = hwc->sample_period;
4410
4411 again:
4412         old = val = local64_read(&hwc->period_left);
4413         if (val < 0)
4414                 return 0;
4415
4416         nr = div64_u64(period + val, period);
4417         offset = nr * period;
4418         val -= offset;
4419         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4420                 goto again;
4421
4422         return nr;
4423 }
4424
4425 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4426                                     int nmi, struct perf_sample_data *data,
4427                                     struct pt_regs *regs)
4428 {
4429         struct hw_perf_event *hwc = &event->hw;
4430         int throttle = 0;
4431
4432         data->period = event->hw.last_period;
4433         if (!overflow)
4434                 overflow = perf_swevent_set_period(event);
4435
4436         if (hwc->interrupts == MAX_INTERRUPTS)
4437                 return;
4438
4439         for (; overflow; overflow--) {
4440                 if (__perf_event_overflow(event, nmi, throttle,
4441                                             data, regs)) {
4442                         /*
4443                          * We inhibit the overflow from happening when
4444                          * hwc->interrupts == MAX_INTERRUPTS.
4445                          */
4446                         break;
4447                 }
4448                 throttle = 1;
4449         }
4450 }
4451
4452 static void perf_swevent_event(struct perf_event *event, u64 nr,
4453                                int nmi, struct perf_sample_data *data,
4454                                struct pt_regs *regs)
4455 {
4456         struct hw_perf_event *hwc = &event->hw;
4457
4458         local64_add(nr, &event->count);
4459
4460         if (!regs)
4461                 return;
4462
4463         if (!hwc->sample_period)
4464                 return;
4465
4466         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4467                 return perf_swevent_overflow(event, 1, nmi, data, regs);
4468
4469         if (local64_add_negative(nr, &hwc->period_left))
4470                 return;
4471
4472         perf_swevent_overflow(event, 0, nmi, data, regs);
4473 }
4474
4475 static int perf_exclude_event(struct perf_event *event,
4476                               struct pt_regs *regs)
4477 {
4478         if (event->hw.state & PERF_HES_STOPPED)
4479                 return 0;
4480
4481         if (regs) {
4482                 if (event->attr.exclude_user && user_mode(regs))
4483                         return 1;
4484
4485                 if (event->attr.exclude_kernel && !user_mode(regs))
4486                         return 1;
4487         }
4488
4489         return 0;
4490 }
4491
4492 static int perf_swevent_match(struct perf_event *event,
4493                                 enum perf_type_id type,
4494                                 u32 event_id,
4495                                 struct perf_sample_data *data,
4496                                 struct pt_regs *regs)
4497 {
4498         if (event->attr.type != type)
4499                 return 0;
4500
4501         if (event->attr.config != event_id)
4502                 return 0;
4503
4504         if (perf_exclude_event(event, regs))
4505                 return 0;
4506
4507         return 1;
4508 }
4509
4510 static inline u64 swevent_hash(u64 type, u32 event_id)
4511 {
4512         u64 val = event_id | (type << 32);
4513
4514         return hash_64(val, SWEVENT_HLIST_BITS);
4515 }
4516
4517 static inline struct hlist_head *
4518 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4519 {
4520         u64 hash = swevent_hash(type, event_id);
4521
4522         return &hlist->heads[hash];
4523 }
4524
4525 /* For the read side: events when they trigger */
4526 static inline struct hlist_head *
4527 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4528 {
4529         struct swevent_hlist *hlist;
4530
4531         hlist = rcu_dereference(swhash->swevent_hlist);
4532         if (!hlist)
4533                 return NULL;
4534
4535         return __find_swevent_head(hlist, type, event_id);
4536 }
4537
4538 /* For the event head insertion and removal in the hlist */
4539 static inline struct hlist_head *
4540 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4541 {
4542         struct swevent_hlist *hlist;
4543         u32 event_id = event->attr.config;
4544         u64 type = event->attr.type;
4545
4546         /*
4547          * Event scheduling is always serialized against hlist allocation
4548          * and release. Which makes the protected version suitable here.
4549          * The context lock guarantees that.
4550          */
4551         hlist = rcu_dereference_protected(swhash->swevent_hlist,
4552                                           lockdep_is_held(&event->ctx->lock));
4553         if (!hlist)
4554                 return NULL;
4555
4556         return __find_swevent_head(hlist, type, event_id);
4557 }
4558
4559 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4560                                     u64 nr, int nmi,
4561                                     struct perf_sample_data *data,
4562                                     struct pt_regs *regs)
4563 {
4564         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4565         struct perf_event *event;
4566         struct hlist_node *node;
4567         struct hlist_head *head;
4568
4569         rcu_read_lock();
4570         head = find_swevent_head_rcu(swhash, type, event_id);
4571         if (!head)
4572                 goto end;
4573
4574         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4575                 if (perf_swevent_match(event, type, event_id, data, regs))
4576                         perf_swevent_event(event, nr, nmi, data, regs);
4577         }
4578 end:
4579         rcu_read_unlock();
4580 }
4581
4582 int perf_swevent_get_recursion_context(void)
4583 {
4584         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4585
4586         return get_recursion_context(swhash->recursion);
4587 }
4588 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4589
4590 void inline perf_swevent_put_recursion_context(int rctx)
4591 {
4592         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4593
4594         put_recursion_context(swhash->recursion, rctx);
4595 }
4596
4597 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4598                             struct pt_regs *regs, u64 addr)
4599 {
4600         struct perf_sample_data data;
4601         int rctx;
4602
4603         preempt_disable_notrace();
4604         rctx = perf_swevent_get_recursion_context();
4605         if (rctx < 0)
4606                 return;
4607
4608         perf_sample_data_init(&data, addr);
4609
4610         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4611
4612         perf_swevent_put_recursion_context(rctx);
4613         preempt_enable_notrace();
4614 }
4615
4616 static void perf_swevent_read(struct perf_event *event)
4617 {
4618 }
4619
4620 static int perf_swevent_add(struct perf_event *event, int flags)
4621 {
4622         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4623         struct hw_perf_event *hwc = &event->hw;
4624         struct hlist_head *head;
4625
4626         if (hwc->sample_period) {
4627                 hwc->last_period = hwc->sample_period;
4628                 perf_swevent_set_period(event);
4629         }
4630
4631         hwc->state = !(flags & PERF_EF_START);
4632
4633         head = find_swevent_head(swhash, event);
4634         if (WARN_ON_ONCE(!head))
4635                 return -EINVAL;
4636
4637         hlist_add_head_rcu(&event->hlist_entry, head);
4638
4639         return 0;
4640 }
4641
4642 static void perf_swevent_del(struct perf_event *event, int flags)
4643 {
4644         hlist_del_rcu(&event->hlist_entry);
4645 }
4646
4647 static void perf_swevent_start(struct perf_event *event, int flags)
4648 {
4649         event->hw.state = 0;
4650 }
4651
4652 static void perf_swevent_stop(struct perf_event *event, int flags)
4653 {
4654         event->hw.state = PERF_HES_STOPPED;
4655 }
4656
4657 /* Deref the hlist from the update side */
4658 static inline struct swevent_hlist *
4659 swevent_hlist_deref(struct swevent_htable *swhash)
4660 {
4661         return rcu_dereference_protected(swhash->swevent_hlist,
4662                                          lockdep_is_held(&swhash->hlist_mutex));
4663 }
4664
4665 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4666 {
4667         struct swevent_hlist *hlist;
4668
4669         hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4670         kfree(hlist);
4671 }
4672
4673 static void swevent_hlist_release(struct swevent_htable *swhash)
4674 {
4675         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4676
4677         if (!hlist)
4678                 return;
4679
4680         rcu_assign_pointer(swhash->swevent_hlist, NULL);
4681         call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4682 }
4683
4684 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4685 {
4686         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4687
4688         mutex_lock(&swhash->hlist_mutex);
4689
4690         if (!--swhash->hlist_refcount)
4691                 swevent_hlist_release(swhash);
4692
4693         mutex_unlock(&swhash->hlist_mutex);
4694 }
4695
4696 static void swevent_hlist_put(struct perf_event *event)
4697 {
4698         int cpu;
4699
4700         if (event->cpu != -1) {
4701                 swevent_hlist_put_cpu(event, event->cpu);
4702                 return;
4703         }
4704
4705         for_each_possible_cpu(cpu)
4706                 swevent_hlist_put_cpu(event, cpu);
4707 }
4708
4709 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4710 {
4711         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4712         int err = 0;
4713
4714         mutex_lock(&swhash->hlist_mutex);
4715
4716         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4717                 struct swevent_hlist *hlist;
4718
4719                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4720                 if (!hlist) {
4721                         err = -ENOMEM;
4722                         goto exit;
4723                 }
4724                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4725         }
4726         swhash->hlist_refcount++;
4727 exit:
4728         mutex_unlock(&swhash->hlist_mutex);
4729
4730         return err;
4731 }
4732
4733 static int swevent_hlist_get(struct perf_event *event)
4734 {
4735         int err;
4736         int cpu, failed_cpu;
4737
4738         if (event->cpu != -1)
4739                 return swevent_hlist_get_cpu(event, event->cpu);
4740
4741         get_online_cpus();
4742         for_each_possible_cpu(cpu) {
4743                 err = swevent_hlist_get_cpu(event, cpu);
4744                 if (err) {
4745                         failed_cpu = cpu;
4746                         goto fail;
4747                 }
4748         }
4749         put_online_cpus();
4750
4751         return 0;
4752 fail:
4753         for_each_possible_cpu(cpu) {
4754                 if (cpu == failed_cpu)
4755                         break;
4756                 swevent_hlist_put_cpu(event, cpu);
4757         }
4758
4759         put_online_cpus();
4760         return err;
4761 }
4762
4763 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4764
4765 static void sw_perf_event_destroy(struct perf_event *event)
4766 {
4767         u64 event_id = event->attr.config;
4768
4769         WARN_ON(event->parent);
4770
4771         atomic_dec(&perf_swevent_enabled[event_id]);
4772         swevent_hlist_put(event);
4773 }
4774
4775 static int perf_swevent_init(struct perf_event *event)
4776 {
4777         int event_id = event->attr.config;
4778
4779         if (event->attr.type != PERF_TYPE_SOFTWARE)
4780                 return -ENOENT;
4781
4782         switch (event_id) {
4783         case PERF_COUNT_SW_CPU_CLOCK:
4784         case PERF_COUNT_SW_TASK_CLOCK:
4785                 return -ENOENT;
4786
4787         default:
4788                 break;
4789         }
4790
4791         if (event_id > PERF_COUNT_SW_MAX)
4792                 return -ENOENT;
4793
4794         if (!event->parent) {
4795                 int err;
4796
4797                 err = swevent_hlist_get(event);
4798                 if (err)
4799                         return err;
4800
4801                 atomic_inc(&perf_swevent_enabled[event_id]);
4802                 event->destroy = sw_perf_event_destroy;
4803         }
4804
4805         return 0;
4806 }
4807
4808 static struct pmu perf_swevent = {
4809         .task_ctx_nr    = perf_sw_context,
4810
4811         .event_init     = perf_swevent_init,
4812         .add            = perf_swevent_add,
4813         .del            = perf_swevent_del,
4814         .start          = perf_swevent_start,
4815         .stop           = perf_swevent_stop,
4816         .read           = perf_swevent_read,
4817 };
4818
4819 #ifdef CONFIG_EVENT_TRACING
4820
4821 static int perf_tp_filter_match(struct perf_event *event,
4822                                 struct perf_sample_data *data)
4823 {
4824         void *record = data->raw->data;
4825
4826         if (likely(!event->filter) || filter_match_preds(event->filter, record))
4827                 return 1;
4828         return 0;
4829 }
4830
4831 static int perf_tp_event_match(struct perf_event *event,
4832                                 struct perf_sample_data *data,
4833                                 struct pt_regs *regs)
4834 {
4835         /*
4836          * All tracepoints are from kernel-space.
4837          */
4838         if (event->attr.exclude_kernel)
4839                 return 0;
4840
4841         if (!perf_tp_filter_match(event, data))
4842                 return 0;
4843
4844         return 1;
4845 }
4846
4847 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4848                    struct pt_regs *regs, struct hlist_head *head, int rctx)
4849 {
4850         struct perf_sample_data data;
4851         struct perf_event *event;
4852         struct hlist_node *node;
4853
4854         struct perf_raw_record raw = {
4855                 .size = entry_size,
4856                 .data = record,
4857         };
4858
4859         perf_sample_data_init(&data, addr);
4860         data.raw = &raw;
4861
4862         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4863                 if (perf_tp_event_match(event, &data, regs))
4864                         perf_swevent_event(event, count, 1, &data, regs);
4865         }
4866
4867         perf_swevent_put_recursion_context(rctx);
4868 }
4869 EXPORT_SYMBOL_GPL(perf_tp_event);
4870
4871 static void tp_perf_event_destroy(struct perf_event *event)
4872 {
4873         perf_trace_destroy(event);
4874 }
4875
4876 static int perf_tp_event_init(struct perf_event *event)
4877 {
4878         int err;
4879
4880         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4881                 return -ENOENT;
4882
4883         /*
4884          * Raw tracepoint data is a severe data leak, only allow root to
4885          * have these.
4886          */
4887         if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4888                         perf_paranoid_tracepoint_raw() &&
4889                         !capable(CAP_SYS_ADMIN))
4890                 return -EPERM;
4891
4892         err = perf_trace_init(event);
4893         if (err)
4894                 return err;
4895
4896         event->destroy = tp_perf_event_destroy;
4897
4898         return 0;
4899 }
4900
4901 static struct pmu perf_tracepoint = {
4902         .task_ctx_nr    = perf_sw_context,
4903
4904         .event_init     = perf_tp_event_init,
4905         .add            = perf_trace_add,
4906         .del            = perf_trace_del,
4907         .start          = perf_swevent_start,
4908         .stop           = perf_swevent_stop,
4909         .read           = perf_swevent_read,
4910 };
4911
4912 static inline void perf_tp_register(void)
4913 {
4914         perf_pmu_register(&perf_tracepoint);
4915 }
4916
4917 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4918 {
4919         char *filter_str;
4920         int ret;
4921
4922         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4923                 return -EINVAL;
4924
4925         filter_str = strndup_user(arg, PAGE_SIZE);
4926         if (IS_ERR(filter_str))
4927                 return PTR_ERR(filter_str);
4928
4929         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4930
4931         kfree(filter_str);
4932         return ret;
4933 }
4934
4935 static void perf_event_free_filter(struct perf_event *event)
4936 {
4937         ftrace_profile_free_filter(event);
4938 }
4939
4940 #else
4941
4942 static inline void perf_tp_register(void)
4943 {
4944 }
4945
4946 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4947 {
4948         return -ENOENT;
4949 }
4950
4951 static void perf_event_free_filter(struct perf_event *event)
4952 {
4953 }
4954
4955 #endif /* CONFIG_EVENT_TRACING */
4956
4957 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4958 void perf_bp_event(struct perf_event *bp, void *data)
4959 {
4960         struct perf_sample_data sample;
4961         struct pt_regs *regs = data;
4962
4963         perf_sample_data_init(&sample, bp->attr.bp_addr);
4964
4965         if (!bp->hw.state && !perf_exclude_event(bp, regs))
4966                 perf_swevent_event(bp, 1, 1, &sample, regs);
4967 }
4968 #endif
4969
4970 /*
4971  * hrtimer based swevent callback
4972  */
4973
4974 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4975 {
4976         enum hrtimer_restart ret = HRTIMER_RESTART;
4977         struct perf_sample_data data;
4978         struct pt_regs *regs;
4979         struct perf_event *event;
4980         u64 period;
4981
4982         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4983         event->pmu->read(event);
4984
4985         perf_sample_data_init(&data, 0);
4986         data.period = event->hw.last_period;
4987         regs = get_irq_regs();
4988
4989         if (regs && !perf_exclude_event(event, regs)) {
4990                 if (!(event->attr.exclude_idle && current->pid == 0))
4991                         if (perf_event_overflow(event, 0, &data, regs))
4992                                 ret = HRTIMER_NORESTART;
4993         }
4994
4995         period = max_t(u64, 10000, event->hw.sample_period);
4996         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4997
4998         return ret;
4999 }
5000
5001 static void perf_swevent_start_hrtimer(struct perf_event *event)
5002 {
5003         struct hw_perf_event *hwc = &event->hw;
5004
5005         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5006         hwc->hrtimer.function = perf_swevent_hrtimer;
5007         if (hwc->sample_period) {
5008                 s64 period = local64_read(&hwc->period_left);
5009
5010                 if (period) {
5011                         if (period < 0)
5012                                 period = 10000;
5013
5014                         local64_set(&hwc->period_left, 0);
5015                 } else {
5016                         period = max_t(u64, 10000, hwc->sample_period);
5017                 }
5018                 __hrtimer_start_range_ns(&hwc->hrtimer,
5019                                 ns_to_ktime(period), 0,
5020                                 HRTIMER_MODE_REL_PINNED, 0);
5021         }
5022 }
5023
5024 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5025 {
5026         struct hw_perf_event *hwc = &event->hw;
5027
5028         if (hwc->sample_period) {
5029                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5030                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5031
5032                 hrtimer_cancel(&hwc->hrtimer);
5033         }
5034 }
5035
5036 /*
5037  * Software event: cpu wall time clock
5038  */
5039
5040 static void cpu_clock_event_update(struct perf_event *event)
5041 {
5042         s64 prev;
5043         u64 now;
5044
5045         now = local_clock();
5046         prev = local64_xchg(&event->hw.prev_count, now);
5047         local64_add(now - prev, &event->count);
5048 }
5049
5050 static void cpu_clock_event_start(struct perf_event *event, int flags)
5051 {
5052         local64_set(&event->hw.prev_count, local_clock());
5053         perf_swevent_start_hrtimer(event);
5054 }
5055
5056 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5057 {
5058         perf_swevent_cancel_hrtimer(event);
5059         cpu_clock_event_update(event);
5060 }
5061
5062 static int cpu_clock_event_add(struct perf_event *event, int flags)
5063 {
5064         if (flags & PERF_EF_START)
5065                 cpu_clock_event_start(event, flags);
5066
5067         return 0;
5068 }
5069
5070 static void cpu_clock_event_del(struct perf_event *event, int flags)
5071 {
5072         cpu_clock_event_stop(event, flags);
5073 }
5074
5075 static void cpu_clock_event_read(struct perf_event *event)
5076 {
5077         cpu_clock_event_update(event);
5078 }
5079
5080 static int cpu_clock_event_init(struct perf_event *event)
5081 {
5082         if (event->attr.type != PERF_TYPE_SOFTWARE)
5083                 return -ENOENT;
5084
5085         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5086                 return -ENOENT;
5087
5088         return 0;
5089 }
5090
5091 static struct pmu perf_cpu_clock = {
5092         .task_ctx_nr    = perf_sw_context,
5093
5094         .event_init     = cpu_clock_event_init,
5095         .add            = cpu_clock_event_add,
5096         .del            = cpu_clock_event_del,
5097         .start          = cpu_clock_event_start,
5098         .stop           = cpu_clock_event_stop,
5099         .read           = cpu_clock_event_read,
5100 };
5101
5102 /*
5103  * Software event: task time clock
5104  */
5105
5106 static void task_clock_event_update(struct perf_event *event, u64 now)
5107 {
5108         u64 prev;
5109         s64 delta;
5110
5111         prev = local64_xchg(&event->hw.prev_count, now);
5112         delta = now - prev;
5113         local64_add(delta, &event->count);
5114 }
5115
5116 static void task_clock_event_start(struct perf_event *event, int flags)
5117 {
5118         local64_set(&event->hw.prev_count, event->ctx->time);
5119         perf_swevent_start_hrtimer(event);
5120 }
5121
5122 static void task_clock_event_stop(struct perf_event *event, int flags)
5123 {
5124         perf_swevent_cancel_hrtimer(event);
5125         task_clock_event_update(event, event->ctx->time);
5126 }
5127
5128 static int task_clock_event_add(struct perf_event *event, int flags)
5129 {
5130         if (flags & PERF_EF_START)
5131                 task_clock_event_start(event, flags);
5132
5133         return 0;
5134 }
5135
5136 static void task_clock_event_del(struct perf_event *event, int flags)
5137 {
5138         task_clock_event_stop(event, PERF_EF_UPDATE);
5139 }
5140
5141 static void task_clock_event_read(struct perf_event *event)
5142 {
5143         u64 time;
5144
5145         if (!in_nmi()) {
5146                 update_context_time(event->ctx);
5147                 time = event->ctx->time;
5148         } else {
5149                 u64 now = perf_clock();
5150                 u64 delta = now - event->ctx->timestamp;
5151                 time = event->ctx->time + delta;
5152         }
5153
5154         task_clock_event_update(event, time);
5155 }
5156
5157 static int task_clock_event_init(struct perf_event *event)
5158 {
5159         if (event->attr.type != PERF_TYPE_SOFTWARE)
5160                 return -ENOENT;
5161
5162         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5163                 return -ENOENT;
5164
5165         return 0;
5166 }
5167
5168 static struct pmu perf_task_clock = {
5169         .task_ctx_nr    = perf_sw_context,
5170
5171         .event_init     = task_clock_event_init,
5172         .add            = task_clock_event_add,
5173         .del            = task_clock_event_del,
5174         .start          = task_clock_event_start,
5175         .stop           = task_clock_event_stop,
5176         .read           = task_clock_event_read,
5177 };
5178
5179 static void perf_pmu_nop_void(struct pmu *pmu)
5180 {
5181 }
5182
5183 static int perf_pmu_nop_int(struct pmu *pmu)
5184 {
5185         return 0;
5186 }
5187
5188 static void perf_pmu_start_txn(struct pmu *pmu)
5189 {
5190         perf_pmu_disable(pmu);
5191 }
5192
5193 static int perf_pmu_commit_txn(struct pmu *pmu)
5194 {
5195         perf_pmu_enable(pmu);
5196         return 0;
5197 }
5198
5199 static void perf_pmu_cancel_txn(struct pmu *pmu)
5200 {
5201         perf_pmu_enable(pmu);
5202 }
5203
5204 /*
5205  * Ensures all contexts with the same task_ctx_nr have the same
5206  * pmu_cpu_context too.
5207  */
5208 static void *find_pmu_context(int ctxn)
5209 {
5210         struct pmu *pmu;
5211
5212         if (ctxn < 0)
5213                 return NULL;
5214
5215         list_for_each_entry(pmu, &pmus, entry) {
5216                 if (pmu->task_ctx_nr == ctxn)
5217                         return pmu->pmu_cpu_context;
5218         }
5219
5220         return NULL;
5221 }
5222
5223 static void free_pmu_context(void * __percpu cpu_context)
5224 {
5225         struct pmu *pmu;
5226
5227         mutex_lock(&pmus_lock);
5228         /*
5229          * Like a real lame refcount.
5230          */
5231         list_for_each_entry(pmu, &pmus, entry) {
5232                 if (pmu->pmu_cpu_context == cpu_context)
5233                         goto out;
5234         }
5235
5236         free_percpu(cpu_context);
5237 out:
5238         mutex_unlock(&pmus_lock);
5239 }
5240
5241 int perf_pmu_register(struct pmu *pmu)
5242 {
5243         int cpu, ret;
5244
5245         mutex_lock(&pmus_lock);
5246         ret = -ENOMEM;
5247         pmu->pmu_disable_count = alloc_percpu(int);
5248         if (!pmu->pmu_disable_count)
5249                 goto unlock;
5250
5251         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5252         if (pmu->pmu_cpu_context)
5253                 goto got_cpu_context;
5254
5255         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5256         if (!pmu->pmu_cpu_context)
5257                 goto free_pdc;
5258
5259         for_each_possible_cpu(cpu) {
5260                 struct perf_cpu_context *cpuctx;
5261
5262                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5263                 __perf_event_init_context(&cpuctx->ctx);
5264                 cpuctx->ctx.type = cpu_context;
5265                 cpuctx->ctx.pmu = pmu;
5266                 cpuctx->jiffies_interval = 1;
5267                 INIT_LIST_HEAD(&cpuctx->rotation_list);
5268         }
5269
5270 got_cpu_context:
5271         if (!pmu->start_txn) {
5272                 if (pmu->pmu_enable) {
5273                         /*
5274                          * If we have pmu_enable/pmu_disable calls, install
5275                          * transaction stubs that use that to try and batch
5276                          * hardware accesses.
5277                          */
5278                         pmu->start_txn  = perf_pmu_start_txn;
5279                         pmu->commit_txn = perf_pmu_commit_txn;
5280                         pmu->cancel_txn = perf_pmu_cancel_txn;
5281                 } else {
5282                         pmu->start_txn  = perf_pmu_nop_void;
5283                         pmu->commit_txn = perf_pmu_nop_int;
5284                         pmu->cancel_txn = perf_pmu_nop_void;
5285                 }
5286         }
5287
5288         if (!pmu->pmu_enable) {
5289                 pmu->pmu_enable  = perf_pmu_nop_void;
5290                 pmu->pmu_disable = perf_pmu_nop_void;
5291         }
5292
5293         list_add_rcu(&pmu->entry, &pmus);
5294         ret = 0;
5295 unlock:
5296         mutex_unlock(&pmus_lock);
5297
5298         return ret;
5299
5300 free_pdc:
5301         free_percpu(pmu->pmu_disable_count);
5302         goto unlock;
5303 }
5304
5305 void perf_pmu_unregister(struct pmu *pmu)
5306 {
5307         mutex_lock(&pmus_lock);
5308         list_del_rcu(&pmu->entry);
5309         mutex_unlock(&pmus_lock);
5310
5311         /*
5312          * We dereference the pmu list under both SRCU and regular RCU, so
5313          * synchronize against both of those.
5314          */
5315         synchronize_srcu(&pmus_srcu);
5316         synchronize_rcu();
5317
5318         free_percpu(pmu->pmu_disable_count);
5319         free_pmu_context(pmu->pmu_cpu_context);
5320 }
5321
5322 struct pmu *perf_init_event(struct perf_event *event)
5323 {
5324         struct pmu *pmu = NULL;
5325         int idx;
5326
5327         idx = srcu_read_lock(&pmus_srcu);
5328         list_for_each_entry_rcu(pmu, &pmus, entry) {
5329                 int ret = pmu->event_init(event);
5330                 if (!ret)
5331                         goto unlock;
5332
5333                 if (ret != -ENOENT) {
5334                         pmu = ERR_PTR(ret);
5335                         goto unlock;
5336                 }
5337         }
5338         pmu = ERR_PTR(-ENOENT);
5339 unlock:
5340         srcu_read_unlock(&pmus_srcu, idx);
5341
5342         return pmu;
5343 }
5344
5345 /*
5346  * Allocate and initialize a event structure
5347  */
5348 static struct perf_event *
5349 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5350                    struct perf_event *group_leader,
5351                    struct perf_event *parent_event,
5352                    perf_overflow_handler_t overflow_handler)
5353 {
5354         struct pmu *pmu;
5355         struct perf_event *event;
5356         struct hw_perf_event *hwc;
5357         long err;
5358
5359         event = kzalloc(sizeof(*event), GFP_KERNEL);
5360         if (!event)
5361                 return ERR_PTR(-ENOMEM);
5362
5363         /*
5364          * Single events are their own group leaders, with an
5365          * empty sibling list:
5366          */
5367         if (!group_leader)
5368                 group_leader = event;
5369
5370         mutex_init(&event->child_mutex);
5371         INIT_LIST_HEAD(&event->child_list);
5372
5373         INIT_LIST_HEAD(&event->group_entry);
5374         INIT_LIST_HEAD(&event->event_entry);
5375         INIT_LIST_HEAD(&event->sibling_list);
5376         init_waitqueue_head(&event->waitq);
5377
5378         mutex_init(&event->mmap_mutex);
5379
5380         event->cpu              = cpu;
5381         event->attr             = *attr;
5382         event->group_leader     = group_leader;
5383         event->pmu              = NULL;
5384         event->oncpu            = -1;
5385
5386         event->parent           = parent_event;
5387
5388         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
5389         event->id               = atomic64_inc_return(&perf_event_id);
5390
5391         event->state            = PERF_EVENT_STATE_INACTIVE;
5392
5393         if (!overflow_handler && parent_event)
5394                 overflow_handler = parent_event->overflow_handler;
5395         
5396         event->overflow_handler = overflow_handler;
5397
5398         if (attr->disabled)
5399                 event->state = PERF_EVENT_STATE_OFF;
5400
5401         pmu = NULL;
5402
5403         hwc = &event->hw;
5404         hwc->sample_period = attr->sample_period;
5405         if (attr->freq && attr->sample_freq)
5406                 hwc->sample_period = 1;
5407         hwc->last_period = hwc->sample_period;
5408
5409         local64_set(&hwc->period_left, hwc->sample_period);
5410
5411         /*
5412          * we currently do not support PERF_FORMAT_GROUP on inherited events
5413          */
5414         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5415                 goto done;
5416
5417         pmu = perf_init_event(event);
5418
5419 done:
5420         err = 0;
5421         if (!pmu)
5422                 err = -EINVAL;
5423         else if (IS_ERR(pmu))
5424                 err = PTR_ERR(pmu);
5425
5426         if (err) {
5427                 if (event->ns)
5428                         put_pid_ns(event->ns);
5429                 kfree(event);
5430                 return ERR_PTR(err);
5431         }
5432
5433         event->pmu = pmu;
5434
5435         if (!event->parent) {
5436                 atomic_inc(&nr_events);
5437                 if (event->attr.mmap || event->attr.mmap_data)
5438                         atomic_inc(&nr_mmap_events);
5439                 if (event->attr.comm)
5440                         atomic_inc(&nr_comm_events);
5441                 if (event->attr.task)
5442                         atomic_inc(&nr_task_events);
5443                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5444                         err = get_callchain_buffers();
5445                         if (err) {
5446                                 free_event(event);
5447                                 return ERR_PTR(err);
5448                         }
5449                 }
5450         }
5451
5452         return event;
5453 }
5454
5455 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5456                           struct perf_event_attr *attr)
5457 {
5458         u32 size;
5459         int ret;
5460
5461         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5462                 return -EFAULT;
5463
5464         /*
5465          * zero the full structure, so that a short copy will be nice.
5466          */
5467         memset(attr, 0, sizeof(*attr));
5468
5469         ret = get_user(size, &uattr->size);
5470         if (ret)
5471                 return ret;
5472
5473         if (size > PAGE_SIZE)   /* silly large */
5474                 goto err_size;
5475
5476         if (!size)              /* abi compat */
5477                 size = PERF_ATTR_SIZE_VER0;
5478
5479         if (size < PERF_ATTR_SIZE_VER0)
5480                 goto err_size;
5481
5482         /*
5483          * If we're handed a bigger struct than we know of,
5484          * ensure all the unknown bits are 0 - i.e. new
5485          * user-space does not rely on any kernel feature
5486          * extensions we dont know about yet.
5487          */
5488         if (size > sizeof(*attr)) {
5489                 unsigned char __user *addr;
5490                 unsigned char __user *end;
5491                 unsigned char val;
5492
5493                 addr = (void __user *)uattr + sizeof(*attr);
5494                 end  = (void __user *)uattr + size;
5495
5496                 for (; addr < end; addr++) {
5497                         ret = get_user(val, addr);
5498                         if (ret)
5499                                 return ret;
5500                         if (val)
5501                                 goto err_size;
5502                 }
5503                 size = sizeof(*attr);
5504         }
5505
5506         ret = copy_from_user(attr, uattr, size);
5507         if (ret)
5508                 return -EFAULT;
5509
5510         /*
5511          * If the type exists, the corresponding creation will verify
5512          * the attr->config.
5513          */
5514         if (attr->type >= PERF_TYPE_MAX)
5515                 return -EINVAL;
5516
5517         if (attr->__reserved_1)
5518                 return -EINVAL;
5519
5520         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5521                 return -EINVAL;
5522
5523         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5524                 return -EINVAL;
5525
5526 out:
5527         return ret;
5528
5529 err_size:
5530         put_user(sizeof(*attr), &uattr->size);
5531         ret = -E2BIG;
5532         goto out;
5533 }
5534
5535 static int
5536 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5537 {
5538         struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5539         int ret = -EINVAL;
5540
5541         if (!output_event)
5542                 goto set;
5543
5544         /* don't allow circular references */
5545         if (event == output_event)
5546                 goto out;
5547
5548         /*
5549          * Don't allow cross-cpu buffers
5550          */
5551         if (output_event->cpu != event->cpu)
5552                 goto out;
5553
5554         /*
5555          * If its not a per-cpu buffer, it must be the same task.
5556          */
5557         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5558                 goto out;
5559
5560 set:
5561         mutex_lock(&event->mmap_mutex);
5562         /* Can't redirect output if we've got an active mmap() */
5563         if (atomic_read(&event->mmap_count))
5564                 goto unlock;
5565
5566         if (output_event) {
5567                 /* get the buffer we want to redirect to */
5568                 buffer = perf_buffer_get(output_event);
5569                 if (!buffer)
5570                         goto unlock;
5571         }
5572
5573         old_buffer = event->buffer;
5574         rcu_assign_pointer(event->buffer, buffer);
5575         ret = 0;
5576 unlock:
5577         mutex_unlock(&event->mmap_mutex);
5578
5579         if (old_buffer)
5580                 perf_buffer_put(old_buffer);
5581 out:
5582         return ret;
5583 }
5584
5585 /**
5586  * sys_perf_event_open - open a performance event, associate it to a task/cpu
5587  *
5588  * @attr_uptr:  event_id type attributes for monitoring/sampling
5589  * @pid:                target pid
5590  * @cpu:                target cpu
5591  * @group_fd:           group leader event fd
5592  */
5593 SYSCALL_DEFINE5(perf_event_open,
5594                 struct perf_event_attr __user *, attr_uptr,
5595                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5596 {
5597         struct perf_event *group_leader = NULL, *output_event = NULL;
5598         struct perf_event *event, *sibling;
5599         struct perf_event_attr attr;
5600         struct perf_event_context *ctx;
5601         struct file *event_file = NULL;
5602         struct file *group_file = NULL;
5603         struct task_struct *task = NULL;
5604         struct pmu *pmu;
5605         int event_fd;
5606         int move_group = 0;
5607         int fput_needed = 0;
5608         int err;
5609
5610         /* for future expandability... */
5611         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5612                 return -EINVAL;
5613
5614         err = perf_copy_attr(attr_uptr, &attr);
5615         if (err)
5616                 return err;
5617
5618         if (!attr.exclude_kernel) {
5619                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5620                         return -EACCES;
5621         }
5622
5623         if (attr.freq) {
5624                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5625                         return -EINVAL;
5626         }
5627
5628         event_fd = get_unused_fd_flags(O_RDWR);
5629         if (event_fd < 0)
5630                 return event_fd;
5631
5632         if (group_fd != -1) {
5633                 group_leader = perf_fget_light(group_fd, &fput_needed);
5634                 if (IS_ERR(group_leader)) {
5635                         err = PTR_ERR(group_leader);
5636                         goto err_fd;
5637                 }
5638                 group_file = group_leader->filp;
5639                 if (flags & PERF_FLAG_FD_OUTPUT)
5640                         output_event = group_leader;
5641                 if (flags & PERF_FLAG_FD_NO_GROUP)
5642                         group_leader = NULL;
5643         }
5644
5645         event = perf_event_alloc(&attr, cpu, group_leader, NULL, NULL);
5646         if (IS_ERR(event)) {
5647                 err = PTR_ERR(event);
5648                 goto err_fd;
5649         }
5650
5651         /*
5652          * Special case software events and allow them to be part of
5653          * any hardware group.
5654          */
5655         pmu = event->pmu;
5656
5657         if (group_leader &&
5658             (is_software_event(event) != is_software_event(group_leader))) {
5659                 if (is_software_event(event)) {
5660                         /*
5661                          * If event and group_leader are not both a software
5662                          * event, and event is, then group leader is not.
5663                          *
5664                          * Allow the addition of software events to !software
5665                          * groups, this is safe because software events never
5666                          * fail to schedule.
5667                          */
5668                         pmu = group_leader->pmu;
5669                 } else if (is_software_event(group_leader) &&
5670                            (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
5671                         /*
5672                          * In case the group is a pure software group, and we
5673                          * try to add a hardware event, move the whole group to
5674                          * the hardware context.
5675                          */
5676                         move_group = 1;
5677                 }
5678         }
5679
5680         if (pid != -1) {
5681                 task = find_lively_task_by_vpid(pid);
5682                 if (IS_ERR(task)) {
5683                         err = PTR_ERR(task);
5684                         goto err_group_fd;
5685                 }
5686         }
5687
5688         /*
5689          * Get the target context (task or percpu):
5690          */
5691         ctx = find_get_context(pmu, task, cpu);
5692         if (IS_ERR(ctx)) {
5693                 err = PTR_ERR(ctx);
5694                 goto err_group_fd;
5695         }
5696
5697         /*
5698          * Look up the group leader (we will attach this event to it):
5699          */
5700         if (group_leader) {
5701                 err = -EINVAL;
5702
5703                 /*
5704                  * Do not allow a recursive hierarchy (this new sibling
5705                  * becoming part of another group-sibling):
5706                  */
5707                 if (group_leader->group_leader != group_leader)
5708                         goto err_context;
5709                 /*
5710                  * Do not allow to attach to a group in a different
5711                  * task or CPU context:
5712                  */
5713                 if (move_group) {
5714                         if (group_leader->ctx->type != ctx->type)
5715                                 goto err_context;
5716                 } else {
5717                         if (group_leader->ctx != ctx)
5718                                 goto err_context;
5719                 }
5720
5721                 /*
5722                  * Only a group leader can be exclusive or pinned
5723                  */
5724                 if (attr.exclusive || attr.pinned)
5725                         goto err_context;
5726         }
5727
5728         if (output_event) {
5729                 err = perf_event_set_output(event, output_event);
5730                 if (err)
5731                         goto err_context;
5732         }
5733
5734         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5735         if (IS_ERR(event_file)) {
5736                 err = PTR_ERR(event_file);
5737                 goto err_context;
5738         }
5739
5740         if (move_group) {
5741                 struct perf_event_context *gctx = group_leader->ctx;
5742
5743                 mutex_lock(&gctx->mutex);
5744                 perf_event_remove_from_context(group_leader);
5745                 list_for_each_entry(sibling, &group_leader->sibling_list,
5746                                     group_entry) {
5747                         perf_event_remove_from_context(sibling);
5748                         put_ctx(gctx);
5749                 }
5750                 mutex_unlock(&gctx->mutex);
5751                 put_ctx(gctx);
5752         }
5753
5754         event->filp = event_file;
5755         WARN_ON_ONCE(ctx->parent_ctx);
5756         mutex_lock(&ctx->mutex);
5757
5758         if (move_group) {
5759                 perf_install_in_context(ctx, group_leader, cpu);
5760                 get_ctx(ctx);
5761                 list_for_each_entry(sibling, &group_leader->sibling_list,
5762                                     group_entry) {
5763                         perf_install_in_context(ctx, sibling, cpu);
5764                         get_ctx(ctx);
5765                 }
5766         }
5767
5768         perf_install_in_context(ctx, event, cpu);
5769         ++ctx->generation;
5770         mutex_unlock(&ctx->mutex);
5771
5772         event->owner = current;
5773         get_task_struct(current);
5774         mutex_lock(&current->perf_event_mutex);
5775         list_add_tail(&event->owner_entry, &current->perf_event_list);
5776         mutex_unlock(&current->perf_event_mutex);
5777
5778         /*
5779          * Drop the reference on the group_event after placing the
5780          * new event on the sibling_list. This ensures destruction
5781          * of the group leader will find the pointer to itself in
5782          * perf_group_detach().
5783          */
5784         fput_light(group_file, fput_needed);
5785         fd_install(event_fd, event_file);
5786         return event_fd;
5787
5788 err_context:
5789         put_ctx(ctx);
5790 err_group_fd:
5791         fput_light(group_file, fput_needed);
5792         free_event(event);
5793 err_fd:
5794         put_unused_fd(event_fd);
5795         return err;
5796 }
5797
5798 /**
5799  * perf_event_create_kernel_counter
5800  *
5801  * @attr: attributes of the counter to create
5802  * @cpu: cpu in which the counter is bound
5803  * @task: task to profile (NULL for percpu)
5804  */
5805 struct perf_event *
5806 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5807                                  struct task_struct *task,
5808                                  perf_overflow_handler_t overflow_handler)
5809 {
5810         struct perf_event_context *ctx;
5811         struct perf_event *event;
5812         int err;
5813
5814         /*
5815          * Get the target context (task or percpu):
5816          */
5817
5818         event = perf_event_alloc(attr, cpu, NULL, NULL, overflow_handler);
5819         if (IS_ERR(event)) {
5820                 err = PTR_ERR(event);
5821                 goto err;
5822         }
5823
5824         ctx = find_get_context(event->pmu, task, cpu);
5825         if (IS_ERR(ctx)) {
5826                 err = PTR_ERR(ctx);
5827                 goto err_free;
5828         }
5829
5830         event->filp = NULL;
5831         WARN_ON_ONCE(ctx->parent_ctx);
5832         mutex_lock(&ctx->mutex);
5833         perf_install_in_context(ctx, event, cpu);
5834         ++ctx->generation;
5835         mutex_unlock(&ctx->mutex);
5836
5837         event->owner = current;
5838         get_task_struct(current);
5839         mutex_lock(&current->perf_event_mutex);
5840         list_add_tail(&event->owner_entry, &current->perf_event_list);
5841         mutex_unlock(&current->perf_event_mutex);
5842
5843         return event;
5844
5845 err_free:
5846         free_event(event);
5847 err:
5848         return ERR_PTR(err);
5849 }
5850 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5851
5852 static void sync_child_event(struct perf_event *child_event,
5853                                struct task_struct *child)
5854 {
5855         struct perf_event *parent_event = child_event->parent;
5856         u64 child_val;
5857
5858         if (child_event->attr.inherit_stat)
5859                 perf_event_read_event(child_event, child);
5860
5861         child_val = perf_event_count(child_event);
5862
5863         /*
5864          * Add back the child's count to the parent's count:
5865          */
5866         atomic64_add(child_val, &parent_event->child_count);
5867         atomic64_add(child_event->total_time_enabled,
5868                      &parent_event->child_total_time_enabled);
5869         atomic64_add(child_event->total_time_running,
5870                      &parent_event->child_total_time_running);
5871
5872         /*
5873          * Remove this event from the parent's list
5874          */
5875         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5876         mutex_lock(&parent_event->child_mutex);
5877         list_del_init(&child_event->child_list);
5878         mutex_unlock(&parent_event->child_mutex);
5879
5880         /*
5881          * Release the parent event, if this was the last
5882          * reference to it.
5883          */
5884         fput(parent_event->filp);
5885 }
5886
5887 static void
5888 __perf_event_exit_task(struct perf_event *child_event,
5889                          struct perf_event_context *child_ctx,
5890                          struct task_struct *child)
5891 {
5892         struct perf_event *parent_event;
5893
5894         perf_event_remove_from_context(child_event);
5895
5896         parent_event = child_event->parent;
5897         /*
5898          * It can happen that parent exits first, and has events
5899          * that are still around due to the child reference. These
5900          * events need to be zapped - but otherwise linger.
5901          */
5902         if (parent_event) {
5903                 sync_child_event(child_event, child);
5904                 free_event(child_event);
5905         }
5906 }
5907
5908 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5909 {
5910         struct perf_event *child_event, *tmp;
5911         struct perf_event_context *child_ctx;
5912         unsigned long flags;
5913
5914         if (likely(!child->perf_event_ctxp[ctxn])) {
5915                 perf_event_task(child, NULL, 0);
5916                 return;
5917         }
5918
5919         local_irq_save(flags);
5920         /*
5921          * We can't reschedule here because interrupts are disabled,
5922          * and either child is current or it is a task that can't be
5923          * scheduled, so we are now safe from rescheduling changing
5924          * our context.
5925          */
5926         child_ctx = child->perf_event_ctxp[ctxn];
5927         __perf_event_task_sched_out(child_ctx);
5928
5929         /*
5930          * Take the context lock here so that if find_get_context is
5931          * reading child->perf_event_ctxp, we wait until it has
5932          * incremented the context's refcount before we do put_ctx below.
5933          */
5934         raw_spin_lock(&child_ctx->lock);
5935         child->perf_event_ctxp[ctxn] = NULL;
5936         /*
5937          * If this context is a clone; unclone it so it can't get
5938          * swapped to another process while we're removing all
5939          * the events from it.
5940          */
5941         unclone_ctx(child_ctx);
5942         update_context_time(child_ctx);
5943         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5944
5945         /*
5946          * Report the task dead after unscheduling the events so that we
5947          * won't get any samples after PERF_RECORD_EXIT. We can however still
5948          * get a few PERF_RECORD_READ events.
5949          */
5950         perf_event_task(child, child_ctx, 0);
5951
5952         /*
5953          * We can recurse on the same lock type through:
5954          *
5955          *   __perf_event_exit_task()
5956          *     sync_child_event()
5957          *       fput(parent_event->filp)
5958          *         perf_release()
5959          *           mutex_lock(&ctx->mutex)
5960          *
5961          * But since its the parent context it won't be the same instance.
5962          */
5963         mutex_lock(&child_ctx->mutex);
5964
5965 again:
5966         list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5967                                  group_entry)
5968                 __perf_event_exit_task(child_event, child_ctx, child);
5969
5970         list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5971                                  group_entry)
5972                 __perf_event_exit_task(child_event, child_ctx, child);
5973
5974         /*
5975          * If the last event was a group event, it will have appended all
5976          * its siblings to the list, but we obtained 'tmp' before that which
5977          * will still point to the list head terminating the iteration.
5978          */
5979         if (!list_empty(&child_ctx->pinned_groups) ||
5980             !list_empty(&child_ctx->flexible_groups))
5981                 goto again;
5982
5983         mutex_unlock(&child_ctx->mutex);
5984
5985         put_ctx(child_ctx);
5986 }
5987
5988 /*
5989  * When a child task exits, feed back event values to parent events.
5990  */
5991 void perf_event_exit_task(struct task_struct *child)
5992 {
5993         int ctxn;
5994
5995         for_each_task_context_nr(ctxn)
5996                 perf_event_exit_task_context(child, ctxn);
5997 }
5998
5999 static void perf_free_event(struct perf_event *event,
6000                             struct perf_event_context *ctx)
6001 {
6002         struct perf_event *parent = event->parent;
6003
6004         if (WARN_ON_ONCE(!parent))
6005                 return;
6006
6007         mutex_lock(&parent->child_mutex);
6008         list_del_init(&event->child_list);
6009         mutex_unlock(&parent->child_mutex);
6010
6011         fput(parent->filp);
6012
6013         perf_group_detach(event);
6014         list_del_event(event, ctx);
6015         free_event(event);
6016 }
6017
6018 /*
6019  * free an unexposed, unused context as created by inheritance by
6020  * perf_event_init_task below, used by fork() in case of fail.
6021  */
6022 void perf_event_free_task(struct task_struct *task)
6023 {
6024         struct perf_event_context *ctx;
6025         struct perf_event *event, *tmp;
6026         int ctxn;
6027
6028         for_each_task_context_nr(ctxn) {
6029                 ctx = task->perf_event_ctxp[ctxn];
6030                 if (!ctx)
6031                         continue;
6032
6033                 mutex_lock(&ctx->mutex);
6034 again:
6035                 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6036                                 group_entry)
6037                         perf_free_event(event, ctx);
6038
6039                 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6040                                 group_entry)
6041                         perf_free_event(event, ctx);
6042
6043                 if (!list_empty(&ctx->pinned_groups) ||
6044                                 !list_empty(&ctx->flexible_groups))
6045                         goto again;
6046
6047                 mutex_unlock(&ctx->mutex);
6048
6049                 put_ctx(ctx);
6050         }
6051 }
6052
6053 void perf_event_delayed_put(struct task_struct *task)
6054 {
6055         int ctxn;
6056
6057         for_each_task_context_nr(ctxn)
6058                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6059 }
6060
6061 /*
6062  * inherit a event from parent task to child task:
6063  */
6064 static struct perf_event *
6065 inherit_event(struct perf_event *parent_event,
6066               struct task_struct *parent,
6067               struct perf_event_context *parent_ctx,
6068               struct task_struct *child,
6069               struct perf_event *group_leader,
6070               struct perf_event_context *child_ctx)
6071 {
6072         struct perf_event *child_event;
6073         unsigned long flags;
6074
6075         /*
6076          * Instead of creating recursive hierarchies of events,
6077          * we link inherited events back to the original parent,
6078          * which has a filp for sure, which we use as the reference
6079          * count:
6080          */
6081         if (parent_event->parent)
6082                 parent_event = parent_event->parent;
6083
6084         child_event = perf_event_alloc(&parent_event->attr,
6085                                            parent_event->cpu,
6086                                            group_leader, parent_event,
6087                                            NULL);
6088         if (IS_ERR(child_event))
6089                 return child_event;
6090         get_ctx(child_ctx);
6091
6092         /*
6093          * Make the child state follow the state of the parent event,
6094          * not its attr.disabled bit.  We hold the parent's mutex,
6095          * so we won't race with perf_event_{en, dis}able_family.
6096          */
6097         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6098                 child_event->state = PERF_EVENT_STATE_INACTIVE;
6099         else
6100                 child_event->state = PERF_EVENT_STATE_OFF;
6101
6102         if (parent_event->attr.freq) {
6103                 u64 sample_period = parent_event->hw.sample_period;
6104                 struct hw_perf_event *hwc = &child_event->hw;
6105
6106                 hwc->sample_period = sample_period;
6107                 hwc->last_period   = sample_period;
6108
6109                 local64_set(&hwc->period_left, sample_period);
6110         }
6111
6112         child_event->ctx = child_ctx;
6113         child_event->overflow_handler = parent_event->overflow_handler;
6114
6115         /*
6116          * Link it up in the child's context:
6117          */
6118         raw_spin_lock_irqsave(&child_ctx->lock, flags);
6119         add_event_to_ctx(child_event, child_ctx);
6120         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6121
6122         /*
6123          * Get a reference to the parent filp - we will fput it
6124          * when the child event exits. This is safe to do because
6125          * we are in the parent and we know that the filp still
6126          * exists and has a nonzero count:
6127          */
6128         atomic_long_inc(&parent_event->filp->f_count);
6129
6130         /*
6131          * Link this into the parent event's child list
6132          */
6133         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6134         mutex_lock(&parent_event->child_mutex);
6135         list_add_tail(&child_event->child_list, &parent_event->child_list);
6136         mutex_unlock(&parent_event->child_mutex);
6137
6138         return child_event;
6139 }
6140
6141 static int inherit_group(struct perf_event *parent_event,
6142               struct task_struct *parent,
6143               struct perf_event_context *parent_ctx,
6144               struct task_struct *child,
6145               struct perf_event_context *child_ctx)
6146 {
6147         struct perf_event *leader;
6148         struct perf_event *sub;
6149         struct perf_event *child_ctr;
6150
6151         leader = inherit_event(parent_event, parent, parent_ctx,
6152                                  child, NULL, child_ctx);
6153         if (IS_ERR(leader))
6154                 return PTR_ERR(leader);
6155         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6156                 child_ctr = inherit_event(sub, parent, parent_ctx,
6157                                             child, leader, child_ctx);
6158                 if (IS_ERR(child_ctr))
6159                         return PTR_ERR(child_ctr);
6160         }
6161         return 0;
6162 }
6163
6164 static int
6165 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6166                    struct perf_event_context *parent_ctx,
6167                    struct task_struct *child, int ctxn,
6168                    int *inherited_all)
6169 {
6170         int ret;
6171         struct perf_event_context *child_ctx;
6172
6173         if (!event->attr.inherit) {
6174                 *inherited_all = 0;
6175                 return 0;
6176         }
6177
6178         child_ctx = child->perf_event_ctxp[ctxn];
6179         if (!child_ctx) {
6180                 /*
6181                  * This is executed from the parent task context, so
6182                  * inherit events that have been marked for cloning.
6183                  * First allocate and initialize a context for the
6184                  * child.
6185                  */
6186
6187                 child_ctx = alloc_perf_context(event->pmu, child);
6188                 if (!child_ctx)
6189                         return -ENOMEM;
6190
6191                 child->perf_event_ctxp[ctxn] = child_ctx;
6192         }
6193
6194         ret = inherit_group(event, parent, parent_ctx,
6195                             child, child_ctx);
6196
6197         if (ret)
6198                 *inherited_all = 0;
6199
6200         return ret;
6201 }
6202
6203 /*
6204  * Initialize the perf_event context in task_struct
6205  */
6206 int perf_event_init_context(struct task_struct *child, int ctxn)
6207 {
6208         struct perf_event_context *child_ctx, *parent_ctx;
6209         struct perf_event_context *cloned_ctx;
6210         struct perf_event *event;
6211         struct task_struct *parent = current;
6212         int inherited_all = 1;
6213         int ret = 0;
6214
6215         child->perf_event_ctxp[ctxn] = NULL;
6216
6217         mutex_init(&child->perf_event_mutex);
6218         INIT_LIST_HEAD(&child->perf_event_list);
6219
6220         if (likely(!parent->perf_event_ctxp[ctxn]))
6221                 return 0;
6222
6223         /*
6224          * If the parent's context is a clone, pin it so it won't get
6225          * swapped under us.
6226          */
6227         parent_ctx = perf_pin_task_context(parent, ctxn);
6228
6229         /*
6230          * No need to check if parent_ctx != NULL here; since we saw
6231          * it non-NULL earlier, the only reason for it to become NULL
6232          * is if we exit, and since we're currently in the middle of
6233          * a fork we can't be exiting at the same time.
6234          */
6235
6236         /*
6237          * Lock the parent list. No need to lock the child - not PID
6238          * hashed yet and not running, so nobody can access it.
6239          */
6240         mutex_lock(&parent_ctx->mutex);
6241
6242         /*
6243          * We dont have to disable NMIs - we are only looking at
6244          * the list, not manipulating it:
6245          */
6246         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6247                 ret = inherit_task_group(event, parent, parent_ctx,
6248                                          child, ctxn, &inherited_all);
6249                 if (ret)
6250                         break;
6251         }
6252
6253         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6254                 ret = inherit_task_group(event, parent, parent_ctx,
6255                                          child, ctxn, &inherited_all);
6256                 if (ret)
6257                         break;
6258         }
6259
6260         child_ctx = child->perf_event_ctxp[ctxn];
6261
6262         if (child_ctx && inherited_all) {
6263                 /*
6264                  * Mark the child context as a clone of the parent
6265                  * context, or of whatever the parent is a clone of.
6266                  * Note that if the parent is a clone, it could get
6267                  * uncloned at any point, but that doesn't matter
6268                  * because the list of events and the generation
6269                  * count can't have changed since we took the mutex.
6270                  */
6271                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
6272                 if (cloned_ctx) {
6273                         child_ctx->parent_ctx = cloned_ctx;
6274                         child_ctx->parent_gen = parent_ctx->parent_gen;
6275                 } else {
6276                         child_ctx->parent_ctx = parent_ctx;
6277                         child_ctx->parent_gen = parent_ctx->generation;
6278                 }
6279                 get_ctx(child_ctx->parent_ctx);
6280         }
6281
6282         mutex_unlock(&parent_ctx->mutex);
6283
6284         perf_unpin_context(parent_ctx);
6285
6286         return ret;
6287 }
6288
6289 /*
6290  * Initialize the perf_event context in task_struct
6291  */
6292 int perf_event_init_task(struct task_struct *child)
6293 {
6294         int ctxn, ret;
6295
6296         for_each_task_context_nr(ctxn) {
6297                 ret = perf_event_init_context(child, ctxn);
6298                 if (ret)
6299                         return ret;
6300         }
6301
6302         return 0;
6303 }
6304
6305 static void __init perf_event_init_all_cpus(void)
6306 {
6307         struct swevent_htable *swhash;
6308         int cpu;
6309
6310         for_each_possible_cpu(cpu) {
6311                 swhash = &per_cpu(swevent_htable, cpu);
6312                 mutex_init(&swhash->hlist_mutex);
6313                 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6314         }
6315 }
6316
6317 static void __cpuinit perf_event_init_cpu(int cpu)
6318 {
6319         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6320
6321         mutex_lock(&swhash->hlist_mutex);
6322         if (swhash->hlist_refcount > 0) {
6323                 struct swevent_hlist *hlist;
6324
6325                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6326                 WARN_ON(!hlist);
6327                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6328         }
6329         mutex_unlock(&swhash->hlist_mutex);
6330 }
6331
6332 #ifdef CONFIG_HOTPLUG_CPU
6333 static void perf_pmu_rotate_stop(struct pmu *pmu)
6334 {
6335         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6336
6337         WARN_ON(!irqs_disabled());
6338
6339         list_del_init(&cpuctx->rotation_list);
6340 }
6341
6342 static void __perf_event_exit_context(void *__info)
6343 {
6344         struct perf_event_context *ctx = __info;
6345         struct perf_event *event, *tmp;
6346
6347         perf_pmu_rotate_stop(ctx->pmu);
6348
6349         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6350                 __perf_event_remove_from_context(event);
6351         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6352                 __perf_event_remove_from_context(event);
6353 }
6354
6355 static void perf_event_exit_cpu_context(int cpu)
6356 {
6357         struct perf_event_context *ctx;
6358         struct pmu *pmu;
6359         int idx;
6360
6361         idx = srcu_read_lock(&pmus_srcu);
6362         list_for_each_entry_rcu(pmu, &pmus, entry) {
6363                 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6364
6365                 mutex_lock(&ctx->mutex);
6366                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6367                 mutex_unlock(&ctx->mutex);
6368         }
6369         srcu_read_unlock(&pmus_srcu, idx);
6370 }
6371
6372 static void perf_event_exit_cpu(int cpu)
6373 {
6374         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6375
6376         mutex_lock(&swhash->hlist_mutex);
6377         swevent_hlist_release(swhash);
6378         mutex_unlock(&swhash->hlist_mutex);
6379
6380         perf_event_exit_cpu_context(cpu);
6381 }
6382 #else
6383 static inline void perf_event_exit_cpu(int cpu) { }
6384 #endif
6385
6386 static int __cpuinit
6387 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6388 {
6389         unsigned int cpu = (long)hcpu;
6390
6391         switch (action & ~CPU_TASKS_FROZEN) {
6392
6393         case CPU_UP_PREPARE:
6394         case CPU_DOWN_FAILED:
6395                 perf_event_init_cpu(cpu);
6396                 break;
6397
6398         case CPU_UP_CANCELED:
6399         case CPU_DOWN_PREPARE:
6400                 perf_event_exit_cpu(cpu);
6401                 break;
6402
6403         default:
6404                 break;
6405         }
6406
6407         return NOTIFY_OK;
6408 }
6409
6410 void __init perf_event_init(void)
6411 {
6412         perf_event_init_all_cpus();
6413         init_srcu_struct(&pmus_srcu);
6414         perf_pmu_register(&perf_swevent);
6415         perf_pmu_register(&perf_cpu_clock);
6416         perf_pmu_register(&perf_task_clock);
6417         perf_tp_register();
6418         perf_cpu_notifier(perf_cpu_notify);
6419 }