rcu: Don't spawn rcub kthreads on root rcu_node structure
[firefly-linux-kernel-4.4.55.git] / kernel / rcu / tree_plugin.h
1 /*
2  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, you can access it online at
18  * http://www.gnu.org/licenses/gpl-2.0.html.
19  *
20  * Copyright Red Hat, 2009
21  * Copyright IBM Corporation, 2009
22  *
23  * Author: Ingo Molnar <mingo@elte.hu>
24  *         Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25  */
26
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
32
33 #ifdef CONFIG_RCU_BOOST
34
35 #include "../locking/rtmutex_common.h"
36
37 /* rcuc/rcub kthread realtime priority */
38 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
39 module_param(kthread_prio, int, 0644);
40
41 /*
42  * Control variables for per-CPU and per-rcu_node kthreads.  These
43  * handle all flavors of RCU.
44  */
45 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
46 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
47 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
48 DEFINE_PER_CPU(char, rcu_cpu_has_work);
49
50 #endif /* #ifdef CONFIG_RCU_BOOST */
51
52 #ifdef CONFIG_RCU_NOCB_CPU
53 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
54 static bool have_rcu_nocb_mask;     /* Was rcu_nocb_mask allocated? */
55 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
56 static char __initdata nocb_buf[NR_CPUS * 5];
57 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
58
59 /*
60  * Check the RCU kernel configuration parameters and print informative
61  * messages about anything out of the ordinary.  If you like #ifdef, you
62  * will love this function.
63  */
64 static void __init rcu_bootup_announce_oddness(void)
65 {
66 #ifdef CONFIG_RCU_TRACE
67         pr_info("\tRCU debugfs-based tracing is enabled.\n");
68 #endif
69 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
70         pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
71                CONFIG_RCU_FANOUT);
72 #endif
73 #ifdef CONFIG_RCU_FANOUT_EXACT
74         pr_info("\tHierarchical RCU autobalancing is disabled.\n");
75 #endif
76 #ifdef CONFIG_RCU_FAST_NO_HZ
77         pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
78 #endif
79 #ifdef CONFIG_PROVE_RCU
80         pr_info("\tRCU lockdep checking is enabled.\n");
81 #endif
82 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
83         pr_info("\tRCU torture testing starts during boot.\n");
84 #endif
85 #if defined(CONFIG_RCU_CPU_STALL_INFO)
86         pr_info("\tAdditional per-CPU info printed with stalls.\n");
87 #endif
88 #if NUM_RCU_LVL_4 != 0
89         pr_info("\tFour-level hierarchy is enabled.\n");
90 #endif
91         if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
92                 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
93         if (nr_cpu_ids != NR_CPUS)
94                 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
95 #ifdef CONFIG_RCU_BOOST
96         pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
97 #endif
98 }
99
100 #ifdef CONFIG_PREEMPT_RCU
101
102 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
103 static struct rcu_state *rcu_state_p = &rcu_preempt_state;
104
105 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
106 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
107                                bool wake);
108
109 /*
110  * Tell them what RCU they are running.
111  */
112 static void __init rcu_bootup_announce(void)
113 {
114         pr_info("Preemptible hierarchical RCU implementation.\n");
115         rcu_bootup_announce_oddness();
116 }
117
118 /*
119  * Return the number of RCU-preempt batches processed thus far
120  * for debug and statistics.
121  */
122 static long rcu_batches_completed_preempt(void)
123 {
124         return rcu_preempt_state.completed;
125 }
126 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
127
128 /*
129  * Return the number of RCU batches processed thus far for debug & stats.
130  */
131 long rcu_batches_completed(void)
132 {
133         return rcu_batches_completed_preempt();
134 }
135 EXPORT_SYMBOL_GPL(rcu_batches_completed);
136
137 /*
138  * Record a preemptible-RCU quiescent state for the specified CPU.  Note
139  * that this just means that the task currently running on the CPU is
140  * not in a quiescent state.  There might be any number of tasks blocked
141  * while in an RCU read-side critical section.
142  *
143  * As with the other rcu_*_qs() functions, callers to this function
144  * must disable preemption.
145  */
146 static void rcu_preempt_qs(void)
147 {
148         if (!__this_cpu_read(rcu_preempt_data.passed_quiesce)) {
149                 trace_rcu_grace_period(TPS("rcu_preempt"),
150                                        __this_cpu_read(rcu_preempt_data.gpnum),
151                                        TPS("cpuqs"));
152                 __this_cpu_write(rcu_preempt_data.passed_quiesce, 1);
153                 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
154                 current->rcu_read_unlock_special.b.need_qs = false;
155         }
156 }
157
158 /*
159  * We have entered the scheduler, and the current task might soon be
160  * context-switched away from.  If this task is in an RCU read-side
161  * critical section, we will no longer be able to rely on the CPU to
162  * record that fact, so we enqueue the task on the blkd_tasks list.
163  * The task will dequeue itself when it exits the outermost enclosing
164  * RCU read-side critical section.  Therefore, the current grace period
165  * cannot be permitted to complete until the blkd_tasks list entries
166  * predating the current grace period drain, in other words, until
167  * rnp->gp_tasks becomes NULL.
168  *
169  * Caller must disable preemption.
170  */
171 static void rcu_preempt_note_context_switch(void)
172 {
173         struct task_struct *t = current;
174         unsigned long flags;
175         struct rcu_data *rdp;
176         struct rcu_node *rnp;
177
178         if (t->rcu_read_lock_nesting > 0 &&
179             !t->rcu_read_unlock_special.b.blocked) {
180
181                 /* Possibly blocking in an RCU read-side critical section. */
182                 rdp = this_cpu_ptr(rcu_preempt_state.rda);
183                 rnp = rdp->mynode;
184                 raw_spin_lock_irqsave(&rnp->lock, flags);
185                 smp_mb__after_unlock_lock();
186                 t->rcu_read_unlock_special.b.blocked = true;
187                 t->rcu_blocked_node = rnp;
188
189                 /*
190                  * If this CPU has already checked in, then this task
191                  * will hold up the next grace period rather than the
192                  * current grace period.  Queue the task accordingly.
193                  * If the task is queued for the current grace period
194                  * (i.e., this CPU has not yet passed through a quiescent
195                  * state for the current grace period), then as long
196                  * as that task remains queued, the current grace period
197                  * cannot end.  Note that there is some uncertainty as
198                  * to exactly when the current grace period started.
199                  * We take a conservative approach, which can result
200                  * in unnecessarily waiting on tasks that started very
201                  * slightly after the current grace period began.  C'est
202                  * la vie!!!
203                  *
204                  * But first, note that the current CPU must still be
205                  * on line!
206                  */
207                 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
208                 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
209                 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
210                         list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
211                         rnp->gp_tasks = &t->rcu_node_entry;
212 #ifdef CONFIG_RCU_BOOST
213                         if (rnp->boost_tasks != NULL)
214                                 rnp->boost_tasks = rnp->gp_tasks;
215 #endif /* #ifdef CONFIG_RCU_BOOST */
216                 } else {
217                         list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
218                         if (rnp->qsmask & rdp->grpmask)
219                                 rnp->gp_tasks = &t->rcu_node_entry;
220                 }
221                 trace_rcu_preempt_task(rdp->rsp->name,
222                                        t->pid,
223                                        (rnp->qsmask & rdp->grpmask)
224                                        ? rnp->gpnum
225                                        : rnp->gpnum + 1);
226                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
227         } else if (t->rcu_read_lock_nesting < 0 &&
228                    t->rcu_read_unlock_special.s) {
229
230                 /*
231                  * Complete exit from RCU read-side critical section on
232                  * behalf of preempted instance of __rcu_read_unlock().
233                  */
234                 rcu_read_unlock_special(t);
235         }
236
237         /*
238          * Either we were not in an RCU read-side critical section to
239          * begin with, or we have now recorded that critical section
240          * globally.  Either way, we can now note a quiescent state
241          * for this CPU.  Again, if we were in an RCU read-side critical
242          * section, and if that critical section was blocking the current
243          * grace period, then the fact that the task has been enqueued
244          * means that we continue to block the current grace period.
245          */
246         rcu_preempt_qs();
247 }
248
249 /*
250  * Check for preempted RCU readers blocking the current grace period
251  * for the specified rcu_node structure.  If the caller needs a reliable
252  * answer, it must hold the rcu_node's ->lock.
253  */
254 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
255 {
256         return rnp->gp_tasks != NULL;
257 }
258
259 /*
260  * Record a quiescent state for all tasks that were previously queued
261  * on the specified rcu_node structure and that were blocking the current
262  * RCU grace period.  The caller must hold the specified rnp->lock with
263  * irqs disabled, and this lock is released upon return, but irqs remain
264  * disabled.
265  */
266 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
267         __releases(rnp->lock)
268 {
269         unsigned long mask;
270         struct rcu_node *rnp_p;
271
272         if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
273                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
274                 return;  /* Still need more quiescent states! */
275         }
276
277         rnp_p = rnp->parent;
278         if (rnp_p == NULL) {
279                 /*
280                  * Either there is only one rcu_node in the tree,
281                  * or tasks were kicked up to root rcu_node due to
282                  * CPUs going offline.
283                  */
284                 rcu_report_qs_rsp(&rcu_preempt_state, flags);
285                 return;
286         }
287
288         /* Report up the rest of the hierarchy. */
289         mask = rnp->grpmask;
290         raw_spin_unlock(&rnp->lock);    /* irqs remain disabled. */
291         raw_spin_lock(&rnp_p->lock);    /* irqs already disabled. */
292         smp_mb__after_unlock_lock();
293         rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
294 }
295
296 /*
297  * Advance a ->blkd_tasks-list pointer to the next entry, instead
298  * returning NULL if at the end of the list.
299  */
300 static struct list_head *rcu_next_node_entry(struct task_struct *t,
301                                              struct rcu_node *rnp)
302 {
303         struct list_head *np;
304
305         np = t->rcu_node_entry.next;
306         if (np == &rnp->blkd_tasks)
307                 np = NULL;
308         return np;
309 }
310
311 /*
312  * Return true if the specified rcu_node structure has tasks that were
313  * preempted within an RCU read-side critical section.
314  */
315 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
316 {
317         return !list_empty(&rnp->blkd_tasks);
318 }
319
320 /*
321  * Handle special cases during rcu_read_unlock(), such as needing to
322  * notify RCU core processing or task having blocked during the RCU
323  * read-side critical section.
324  */
325 void rcu_read_unlock_special(struct task_struct *t)
326 {
327         bool empty;
328         bool empty_exp;
329         bool empty_norm;
330         bool empty_exp_now;
331         unsigned long flags;
332         struct list_head *np;
333 #ifdef CONFIG_RCU_BOOST
334         bool drop_boost_mutex = false;
335 #endif /* #ifdef CONFIG_RCU_BOOST */
336         struct rcu_node *rnp;
337         union rcu_special special;
338
339         /* NMI handlers cannot block and cannot safely manipulate state. */
340         if (in_nmi())
341                 return;
342
343         local_irq_save(flags);
344
345         /*
346          * If RCU core is waiting for this CPU to exit critical section,
347          * let it know that we have done so.  Because irqs are disabled,
348          * t->rcu_read_unlock_special cannot change.
349          */
350         special = t->rcu_read_unlock_special;
351         if (special.b.need_qs) {
352                 rcu_preempt_qs();
353                 if (!t->rcu_read_unlock_special.s) {
354                         local_irq_restore(flags);
355                         return;
356                 }
357         }
358
359         /* Hardware IRQ handlers cannot block, complain if they get here. */
360         if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
361                 local_irq_restore(flags);
362                 return;
363         }
364
365         /* Clean up if blocked during RCU read-side critical section. */
366         if (special.b.blocked) {
367                 t->rcu_read_unlock_special.b.blocked = false;
368
369                 /*
370                  * Remove this task from the list it blocked on.  The
371                  * task can migrate while we acquire the lock, but at
372                  * most one time.  So at most two passes through loop.
373                  */
374                 for (;;) {
375                         rnp = t->rcu_blocked_node;
376                         raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
377                         smp_mb__after_unlock_lock();
378                         if (rnp == t->rcu_blocked_node)
379                                 break;
380                         raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
381                 }
382                 empty = !rcu_preempt_has_tasks(rnp);
383                 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
384                 empty_exp = !rcu_preempted_readers_exp(rnp);
385                 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
386                 np = rcu_next_node_entry(t, rnp);
387                 list_del_init(&t->rcu_node_entry);
388                 t->rcu_blocked_node = NULL;
389                 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
390                                                 rnp->gpnum, t->pid);
391                 if (&t->rcu_node_entry == rnp->gp_tasks)
392                         rnp->gp_tasks = np;
393                 if (&t->rcu_node_entry == rnp->exp_tasks)
394                         rnp->exp_tasks = np;
395 #ifdef CONFIG_RCU_BOOST
396                 if (&t->rcu_node_entry == rnp->boost_tasks)
397                         rnp->boost_tasks = np;
398                 /* Snapshot ->boost_mtx ownership with rcu_node lock held. */
399                 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
400 #endif /* #ifdef CONFIG_RCU_BOOST */
401
402                 /*
403                  * If this was the last task on the list, go see if we
404                  * need to propagate ->qsmaskinit bit clearing up the
405                  * rcu_node tree.
406                  */
407                 if (!empty && !rcu_preempt_has_tasks(rnp))
408                         rcu_cleanup_dead_rnp(rnp);
409
410                 /*
411                  * If this was the last task on the current list, and if
412                  * we aren't waiting on any CPUs, report the quiescent state.
413                  * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
414                  * so we must take a snapshot of the expedited state.
415                  */
416                 empty_exp_now = !rcu_preempted_readers_exp(rnp);
417                 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
418                         trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
419                                                          rnp->gpnum,
420                                                          0, rnp->qsmask,
421                                                          rnp->level,
422                                                          rnp->grplo,
423                                                          rnp->grphi,
424                                                          !!rnp->gp_tasks);
425                         rcu_report_unblock_qs_rnp(rnp, flags);
426                 } else {
427                         raw_spin_unlock_irqrestore(&rnp->lock, flags);
428                 }
429
430 #ifdef CONFIG_RCU_BOOST
431                 /* Unboost if we were boosted. */
432                 if (drop_boost_mutex) {
433                         rt_mutex_unlock(&rnp->boost_mtx);
434                         complete(&rnp->boost_completion);
435                 }
436 #endif /* #ifdef CONFIG_RCU_BOOST */
437
438                 /*
439                  * If this was the last task on the expedited lists,
440                  * then we need to report up the rcu_node hierarchy.
441                  */
442                 if (!empty_exp && empty_exp_now)
443                         rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
444         } else {
445                 local_irq_restore(flags);
446         }
447 }
448
449 /*
450  * Dump detailed information for all tasks blocking the current RCU
451  * grace period on the specified rcu_node structure.
452  */
453 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
454 {
455         unsigned long flags;
456         struct task_struct *t;
457
458         raw_spin_lock_irqsave(&rnp->lock, flags);
459         if (!rcu_preempt_blocked_readers_cgp(rnp)) {
460                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
461                 return;
462         }
463         t = list_entry(rnp->gp_tasks,
464                        struct task_struct, rcu_node_entry);
465         list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
466                 sched_show_task(t);
467         raw_spin_unlock_irqrestore(&rnp->lock, flags);
468 }
469
470 /*
471  * Dump detailed information for all tasks blocking the current RCU
472  * grace period.
473  */
474 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
475 {
476         struct rcu_node *rnp = rcu_get_root(rsp);
477
478         rcu_print_detail_task_stall_rnp(rnp);
479         rcu_for_each_leaf_node(rsp, rnp)
480                 rcu_print_detail_task_stall_rnp(rnp);
481 }
482
483 #ifdef CONFIG_RCU_CPU_STALL_INFO
484
485 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
486 {
487         pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
488                rnp->level, rnp->grplo, rnp->grphi);
489 }
490
491 static void rcu_print_task_stall_end(void)
492 {
493         pr_cont("\n");
494 }
495
496 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
497
498 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
499 {
500 }
501
502 static void rcu_print_task_stall_end(void)
503 {
504 }
505
506 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
507
508 /*
509  * Scan the current list of tasks blocked within RCU read-side critical
510  * sections, printing out the tid of each.
511  */
512 static int rcu_print_task_stall(struct rcu_node *rnp)
513 {
514         struct task_struct *t;
515         int ndetected = 0;
516
517         if (!rcu_preempt_blocked_readers_cgp(rnp))
518                 return 0;
519         rcu_print_task_stall_begin(rnp);
520         t = list_entry(rnp->gp_tasks,
521                        struct task_struct, rcu_node_entry);
522         list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
523                 pr_cont(" P%d", t->pid);
524                 ndetected++;
525         }
526         rcu_print_task_stall_end();
527         return ndetected;
528 }
529
530 /*
531  * Check that the list of blocked tasks for the newly completed grace
532  * period is in fact empty.  It is a serious bug to complete a grace
533  * period that still has RCU readers blocked!  This function must be
534  * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
535  * must be held by the caller.
536  *
537  * Also, if there are blocked tasks on the list, they automatically
538  * block the newly created grace period, so set up ->gp_tasks accordingly.
539  */
540 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
541 {
542         WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
543         if (rcu_preempt_has_tasks(rnp))
544                 rnp->gp_tasks = rnp->blkd_tasks.next;
545         WARN_ON_ONCE(rnp->qsmask);
546 }
547
548 #ifdef CONFIG_HOTPLUG_CPU
549
550 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
551
552 /*
553  * Check for a quiescent state from the current CPU.  When a task blocks,
554  * the task is recorded in the corresponding CPU's rcu_node structure,
555  * which is checked elsewhere.
556  *
557  * Caller must disable hard irqs.
558  */
559 static void rcu_preempt_check_callbacks(void)
560 {
561         struct task_struct *t = current;
562
563         if (t->rcu_read_lock_nesting == 0) {
564                 rcu_preempt_qs();
565                 return;
566         }
567         if (t->rcu_read_lock_nesting > 0 &&
568             __this_cpu_read(rcu_preempt_data.qs_pending) &&
569             !__this_cpu_read(rcu_preempt_data.passed_quiesce))
570                 t->rcu_read_unlock_special.b.need_qs = true;
571 }
572
573 #ifdef CONFIG_RCU_BOOST
574
575 static void rcu_preempt_do_callbacks(void)
576 {
577         rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
578 }
579
580 #endif /* #ifdef CONFIG_RCU_BOOST */
581
582 /*
583  * Queue a preemptible-RCU callback for invocation after a grace period.
584  */
585 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
586 {
587         __call_rcu(head, func, &rcu_preempt_state, -1, 0);
588 }
589 EXPORT_SYMBOL_GPL(call_rcu);
590
591 /**
592  * synchronize_rcu - wait until a grace period has elapsed.
593  *
594  * Control will return to the caller some time after a full grace
595  * period has elapsed, in other words after all currently executing RCU
596  * read-side critical sections have completed.  Note, however, that
597  * upon return from synchronize_rcu(), the caller might well be executing
598  * concurrently with new RCU read-side critical sections that began while
599  * synchronize_rcu() was waiting.  RCU read-side critical sections are
600  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
601  *
602  * See the description of synchronize_sched() for more detailed information
603  * on memory ordering guarantees.
604  */
605 void synchronize_rcu(void)
606 {
607         rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
608                            !lock_is_held(&rcu_lock_map) &&
609                            !lock_is_held(&rcu_sched_lock_map),
610                            "Illegal synchronize_rcu() in RCU read-side critical section");
611         if (!rcu_scheduler_active)
612                 return;
613         if (rcu_expedited)
614                 synchronize_rcu_expedited();
615         else
616                 wait_rcu_gp(call_rcu);
617 }
618 EXPORT_SYMBOL_GPL(synchronize_rcu);
619
620 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
621 static unsigned long sync_rcu_preempt_exp_count;
622 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
623
624 /*
625  * Return non-zero if there are any tasks in RCU read-side critical
626  * sections blocking the current preemptible-RCU expedited grace period.
627  * If there is no preemptible-RCU expedited grace period currently in
628  * progress, returns zero unconditionally.
629  */
630 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
631 {
632         return rnp->exp_tasks != NULL;
633 }
634
635 /*
636  * return non-zero if there is no RCU expedited grace period in progress
637  * for the specified rcu_node structure, in other words, if all CPUs and
638  * tasks covered by the specified rcu_node structure have done their bit
639  * for the current expedited grace period.  Works only for preemptible
640  * RCU -- other RCU implementation use other means.
641  *
642  * Caller must hold sync_rcu_preempt_exp_mutex.
643  */
644 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
645 {
646         return !rcu_preempted_readers_exp(rnp) &&
647                ACCESS_ONCE(rnp->expmask) == 0;
648 }
649
650 /*
651  * Report the exit from RCU read-side critical section for the last task
652  * that queued itself during or before the current expedited preemptible-RCU
653  * grace period.  This event is reported either to the rcu_node structure on
654  * which the task was queued or to one of that rcu_node structure's ancestors,
655  * recursively up the tree.  (Calm down, calm down, we do the recursion
656  * iteratively!)
657  *
658  * Most callers will set the "wake" flag, but the task initiating the
659  * expedited grace period need not wake itself.
660  *
661  * Caller must hold sync_rcu_preempt_exp_mutex.
662  */
663 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
664                                bool wake)
665 {
666         unsigned long flags;
667         unsigned long mask;
668
669         raw_spin_lock_irqsave(&rnp->lock, flags);
670         smp_mb__after_unlock_lock();
671         for (;;) {
672                 if (!sync_rcu_preempt_exp_done(rnp)) {
673                         raw_spin_unlock_irqrestore(&rnp->lock, flags);
674                         break;
675                 }
676                 if (rnp->parent == NULL) {
677                         raw_spin_unlock_irqrestore(&rnp->lock, flags);
678                         if (wake) {
679                                 smp_mb(); /* EGP done before wake_up(). */
680                                 wake_up(&sync_rcu_preempt_exp_wq);
681                         }
682                         break;
683                 }
684                 mask = rnp->grpmask;
685                 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
686                 rnp = rnp->parent;
687                 raw_spin_lock(&rnp->lock); /* irqs already disabled */
688                 smp_mb__after_unlock_lock();
689                 rnp->expmask &= ~mask;
690         }
691 }
692
693 /*
694  * Snapshot the tasks blocking the newly started preemptible-RCU expedited
695  * grace period for the specified rcu_node structure.  If there are no such
696  * tasks, report it up the rcu_node hierarchy.
697  *
698  * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
699  * CPU hotplug operations.
700  */
701 static void
702 sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
703 {
704         unsigned long flags;
705         int must_wait = 0;
706
707         raw_spin_lock_irqsave(&rnp->lock, flags);
708         smp_mb__after_unlock_lock();
709         if (!rcu_preempt_has_tasks(rnp)) {
710                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
711         } else {
712                 rnp->exp_tasks = rnp->blkd_tasks.next;
713                 rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
714                 must_wait = 1;
715         }
716         if (!must_wait)
717                 rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
718 }
719
720 /**
721  * synchronize_rcu_expedited - Brute-force RCU grace period
722  *
723  * Wait for an RCU-preempt grace period, but expedite it.  The basic
724  * idea is to invoke synchronize_sched_expedited() to push all the tasks to
725  * the ->blkd_tasks lists and wait for this list to drain.  This consumes
726  * significant time on all CPUs and is unfriendly to real-time workloads,
727  * so is thus not recommended for any sort of common-case code.
728  * In fact, if you are using synchronize_rcu_expedited() in a loop,
729  * please restructure your code to batch your updates, and then Use a
730  * single synchronize_rcu() instead.
731  */
732 void synchronize_rcu_expedited(void)
733 {
734         unsigned long flags;
735         struct rcu_node *rnp;
736         struct rcu_state *rsp = &rcu_preempt_state;
737         unsigned long snap;
738         int trycount = 0;
739
740         smp_mb(); /* Caller's modifications seen first by other CPUs. */
741         snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
742         smp_mb(); /* Above access cannot bleed into critical section. */
743
744         /*
745          * Block CPU-hotplug operations.  This means that any CPU-hotplug
746          * operation that finds an rcu_node structure with tasks in the
747          * process of being boosted will know that all tasks blocking
748          * this expedited grace period will already be in the process of
749          * being boosted.  This simplifies the process of moving tasks
750          * from leaf to root rcu_node structures.
751          */
752         if (!try_get_online_cpus()) {
753                 /* CPU-hotplug operation in flight, fall back to normal GP. */
754                 wait_rcu_gp(call_rcu);
755                 return;
756         }
757
758         /*
759          * Acquire lock, falling back to synchronize_rcu() if too many
760          * lock-acquisition failures.  Of course, if someone does the
761          * expedited grace period for us, just leave.
762          */
763         while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
764                 if (ULONG_CMP_LT(snap,
765                     ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
766                         put_online_cpus();
767                         goto mb_ret; /* Others did our work for us. */
768                 }
769                 if (trycount++ < 10) {
770                         udelay(trycount * num_online_cpus());
771                 } else {
772                         put_online_cpus();
773                         wait_rcu_gp(call_rcu);
774                         return;
775                 }
776         }
777         if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
778                 put_online_cpus();
779                 goto unlock_mb_ret; /* Others did our work for us. */
780         }
781
782         /* force all RCU readers onto ->blkd_tasks lists. */
783         synchronize_sched_expedited();
784
785         /* Initialize ->expmask for all non-leaf rcu_node structures. */
786         rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
787                 raw_spin_lock_irqsave(&rnp->lock, flags);
788                 smp_mb__after_unlock_lock();
789                 rnp->expmask = rnp->qsmaskinit;
790                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
791         }
792
793         /* Snapshot current state of ->blkd_tasks lists. */
794         rcu_for_each_leaf_node(rsp, rnp)
795                 sync_rcu_preempt_exp_init(rsp, rnp);
796         if (NUM_RCU_NODES > 1)
797                 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
798
799         put_online_cpus();
800
801         /* Wait for snapshotted ->blkd_tasks lists to drain. */
802         rnp = rcu_get_root(rsp);
803         wait_event(sync_rcu_preempt_exp_wq,
804                    sync_rcu_preempt_exp_done(rnp));
805
806         /* Clean up and exit. */
807         smp_mb(); /* ensure expedited GP seen before counter increment. */
808         ACCESS_ONCE(sync_rcu_preempt_exp_count) =
809                                         sync_rcu_preempt_exp_count + 1;
810 unlock_mb_ret:
811         mutex_unlock(&sync_rcu_preempt_exp_mutex);
812 mb_ret:
813         smp_mb(); /* ensure subsequent action seen after grace period. */
814 }
815 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
816
817 /**
818  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
819  *
820  * Note that this primitive does not necessarily wait for an RCU grace period
821  * to complete.  For example, if there are no RCU callbacks queued anywhere
822  * in the system, then rcu_barrier() is within its rights to return
823  * immediately, without waiting for anything, much less an RCU grace period.
824  */
825 void rcu_barrier(void)
826 {
827         _rcu_barrier(&rcu_preempt_state);
828 }
829 EXPORT_SYMBOL_GPL(rcu_barrier);
830
831 /*
832  * Initialize preemptible RCU's state structures.
833  */
834 static void __init __rcu_init_preempt(void)
835 {
836         rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
837 }
838
839 /*
840  * Check for a task exiting while in a preemptible-RCU read-side
841  * critical section, clean up if so.  No need to issue warnings,
842  * as debug_check_no_locks_held() already does this if lockdep
843  * is enabled.
844  */
845 void exit_rcu(void)
846 {
847         struct task_struct *t = current;
848
849         if (likely(list_empty(&current->rcu_node_entry)))
850                 return;
851         t->rcu_read_lock_nesting = 1;
852         barrier();
853         t->rcu_read_unlock_special.b.blocked = true;
854         __rcu_read_unlock();
855 }
856
857 #else /* #ifdef CONFIG_PREEMPT_RCU */
858
859 static struct rcu_state *rcu_state_p = &rcu_sched_state;
860
861 /*
862  * Tell them what RCU they are running.
863  */
864 static void __init rcu_bootup_announce(void)
865 {
866         pr_info("Hierarchical RCU implementation.\n");
867         rcu_bootup_announce_oddness();
868 }
869
870 /*
871  * Return the number of RCU batches processed thus far for debug & stats.
872  */
873 long rcu_batches_completed(void)
874 {
875         return rcu_batches_completed_sched();
876 }
877 EXPORT_SYMBOL_GPL(rcu_batches_completed);
878
879 /*
880  * Because preemptible RCU does not exist, we never have to check for
881  * CPUs being in quiescent states.
882  */
883 static void rcu_preempt_note_context_switch(void)
884 {
885 }
886
887 /*
888  * Because preemptible RCU does not exist, there are never any preempted
889  * RCU readers.
890  */
891 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
892 {
893         return 0;
894 }
895
896 #ifdef CONFIG_HOTPLUG_CPU
897
898 /*
899  * Because there is no preemptible RCU, there can be no readers blocked.
900  */
901 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
902 {
903         return false;
904 }
905
906 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
907
908 /*
909  * Because preemptible RCU does not exist, we never have to check for
910  * tasks blocked within RCU read-side critical sections.
911  */
912 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
913 {
914 }
915
916 /*
917  * Because preemptible RCU does not exist, we never have to check for
918  * tasks blocked within RCU read-side critical sections.
919  */
920 static int rcu_print_task_stall(struct rcu_node *rnp)
921 {
922         return 0;
923 }
924
925 /*
926  * Because there is no preemptible RCU, there can be no readers blocked,
927  * so there is no need to check for blocked tasks.  So check only for
928  * bogus qsmask values.
929  */
930 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
931 {
932         WARN_ON_ONCE(rnp->qsmask);
933 }
934
935 /*
936  * Because preemptible RCU does not exist, it never has any callbacks
937  * to check.
938  */
939 static void rcu_preempt_check_callbacks(void)
940 {
941 }
942
943 /*
944  * Wait for an rcu-preempt grace period, but make it happen quickly.
945  * But because preemptible RCU does not exist, map to rcu-sched.
946  */
947 void synchronize_rcu_expedited(void)
948 {
949         synchronize_sched_expedited();
950 }
951 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
952
953 /*
954  * Because preemptible RCU does not exist, rcu_barrier() is just
955  * another name for rcu_barrier_sched().
956  */
957 void rcu_barrier(void)
958 {
959         rcu_barrier_sched();
960 }
961 EXPORT_SYMBOL_GPL(rcu_barrier);
962
963 /*
964  * Because preemptible RCU does not exist, it need not be initialized.
965  */
966 static void __init __rcu_init_preempt(void)
967 {
968 }
969
970 /*
971  * Because preemptible RCU does not exist, tasks cannot possibly exit
972  * while in preemptible RCU read-side critical sections.
973  */
974 void exit_rcu(void)
975 {
976 }
977
978 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
979
980 #ifdef CONFIG_RCU_BOOST
981
982 #include "../locking/rtmutex_common.h"
983
984 #ifdef CONFIG_RCU_TRACE
985
986 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
987 {
988         if (!rcu_preempt_has_tasks(rnp))
989                 rnp->n_balk_blkd_tasks++;
990         else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
991                 rnp->n_balk_exp_gp_tasks++;
992         else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
993                 rnp->n_balk_boost_tasks++;
994         else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
995                 rnp->n_balk_notblocked++;
996         else if (rnp->gp_tasks != NULL &&
997                  ULONG_CMP_LT(jiffies, rnp->boost_time))
998                 rnp->n_balk_notyet++;
999         else
1000                 rnp->n_balk_nos++;
1001 }
1002
1003 #else /* #ifdef CONFIG_RCU_TRACE */
1004
1005 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1006 {
1007 }
1008
1009 #endif /* #else #ifdef CONFIG_RCU_TRACE */
1010
1011 static void rcu_wake_cond(struct task_struct *t, int status)
1012 {
1013         /*
1014          * If the thread is yielding, only wake it when this
1015          * is invoked from idle
1016          */
1017         if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1018                 wake_up_process(t);
1019 }
1020
1021 /*
1022  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1023  * or ->boost_tasks, advancing the pointer to the next task in the
1024  * ->blkd_tasks list.
1025  *
1026  * Note that irqs must be enabled: boosting the task can block.
1027  * Returns 1 if there are more tasks needing to be boosted.
1028  */
1029 static int rcu_boost(struct rcu_node *rnp)
1030 {
1031         unsigned long flags;
1032         struct task_struct *t;
1033         struct list_head *tb;
1034
1035         if (ACCESS_ONCE(rnp->exp_tasks) == NULL &&
1036             ACCESS_ONCE(rnp->boost_tasks) == NULL)
1037                 return 0;  /* Nothing left to boost. */
1038
1039         raw_spin_lock_irqsave(&rnp->lock, flags);
1040         smp_mb__after_unlock_lock();
1041
1042         /*
1043          * Recheck under the lock: all tasks in need of boosting
1044          * might exit their RCU read-side critical sections on their own.
1045          */
1046         if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1047                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1048                 return 0;
1049         }
1050
1051         /*
1052          * Preferentially boost tasks blocking expedited grace periods.
1053          * This cannot starve the normal grace periods because a second
1054          * expedited grace period must boost all blocked tasks, including
1055          * those blocking the pre-existing normal grace period.
1056          */
1057         if (rnp->exp_tasks != NULL) {
1058                 tb = rnp->exp_tasks;
1059                 rnp->n_exp_boosts++;
1060         } else {
1061                 tb = rnp->boost_tasks;
1062                 rnp->n_normal_boosts++;
1063         }
1064         rnp->n_tasks_boosted++;
1065
1066         /*
1067          * We boost task t by manufacturing an rt_mutex that appears to
1068          * be held by task t.  We leave a pointer to that rt_mutex where
1069          * task t can find it, and task t will release the mutex when it
1070          * exits its outermost RCU read-side critical section.  Then
1071          * simply acquiring this artificial rt_mutex will boost task
1072          * t's priority.  (Thanks to tglx for suggesting this approach!)
1073          *
1074          * Note that task t must acquire rnp->lock to remove itself from
1075          * the ->blkd_tasks list, which it will do from exit() if from
1076          * nowhere else.  We therefore are guaranteed that task t will
1077          * stay around at least until we drop rnp->lock.  Note that
1078          * rnp->lock also resolves races between our priority boosting
1079          * and task t's exiting its outermost RCU read-side critical
1080          * section.
1081          */
1082         t = container_of(tb, struct task_struct, rcu_node_entry);
1083         rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1084         init_completion(&rnp->boost_completion);
1085         raw_spin_unlock_irqrestore(&rnp->lock, flags);
1086         /* Lock only for side effect: boosts task t's priority. */
1087         rt_mutex_lock(&rnp->boost_mtx);
1088         rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1089
1090         /* Wait for boostee to be done w/boost_mtx before reinitializing. */
1091         wait_for_completion(&rnp->boost_completion);
1092
1093         return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1094                ACCESS_ONCE(rnp->boost_tasks) != NULL;
1095 }
1096
1097 /*
1098  * Priority-boosting kthread.  One per leaf rcu_node and one for the
1099  * root rcu_node.
1100  */
1101 static int rcu_boost_kthread(void *arg)
1102 {
1103         struct rcu_node *rnp = (struct rcu_node *)arg;
1104         int spincnt = 0;
1105         int more2boost;
1106
1107         trace_rcu_utilization(TPS("Start boost kthread@init"));
1108         for (;;) {
1109                 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1110                 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1111                 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1112                 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1113                 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1114                 more2boost = rcu_boost(rnp);
1115                 if (more2boost)
1116                         spincnt++;
1117                 else
1118                         spincnt = 0;
1119                 if (spincnt > 10) {
1120                         rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1121                         trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1122                         schedule_timeout_interruptible(2);
1123                         trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1124                         spincnt = 0;
1125                 }
1126         }
1127         /* NOTREACHED */
1128         trace_rcu_utilization(TPS("End boost kthread@notreached"));
1129         return 0;
1130 }
1131
1132 /*
1133  * Check to see if it is time to start boosting RCU readers that are
1134  * blocking the current grace period, and, if so, tell the per-rcu_node
1135  * kthread to start boosting them.  If there is an expedited grace
1136  * period in progress, it is always time to boost.
1137  *
1138  * The caller must hold rnp->lock, which this function releases.
1139  * The ->boost_kthread_task is immortal, so we don't need to worry
1140  * about it going away.
1141  */
1142 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1143         __releases(rnp->lock)
1144 {
1145         struct task_struct *t;
1146
1147         if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1148                 rnp->n_balk_exp_gp_tasks++;
1149                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1150                 return;
1151         }
1152         if (rnp->exp_tasks != NULL ||
1153             (rnp->gp_tasks != NULL &&
1154              rnp->boost_tasks == NULL &&
1155              rnp->qsmask == 0 &&
1156              ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1157                 if (rnp->exp_tasks == NULL)
1158                         rnp->boost_tasks = rnp->gp_tasks;
1159                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1160                 t = rnp->boost_kthread_task;
1161                 if (t)
1162                         rcu_wake_cond(t, rnp->boost_kthread_status);
1163         } else {
1164                 rcu_initiate_boost_trace(rnp);
1165                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1166         }
1167 }
1168
1169 /*
1170  * Wake up the per-CPU kthread to invoke RCU callbacks.
1171  */
1172 static void invoke_rcu_callbacks_kthread(void)
1173 {
1174         unsigned long flags;
1175
1176         local_irq_save(flags);
1177         __this_cpu_write(rcu_cpu_has_work, 1);
1178         if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1179             current != __this_cpu_read(rcu_cpu_kthread_task)) {
1180                 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1181                               __this_cpu_read(rcu_cpu_kthread_status));
1182         }
1183         local_irq_restore(flags);
1184 }
1185
1186 /*
1187  * Is the current CPU running the RCU-callbacks kthread?
1188  * Caller must have preemption disabled.
1189  */
1190 static bool rcu_is_callbacks_kthread(void)
1191 {
1192         return __this_cpu_read(rcu_cpu_kthread_task) == current;
1193 }
1194
1195 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1196
1197 /*
1198  * Do priority-boost accounting for the start of a new grace period.
1199  */
1200 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1201 {
1202         rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1203 }
1204
1205 /*
1206  * Create an RCU-boost kthread for the specified node if one does not
1207  * already exist.  We only create this kthread for preemptible RCU.
1208  * Returns zero if all is well, a negated errno otherwise.
1209  */
1210 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1211                                                  struct rcu_node *rnp)
1212 {
1213         int rnp_index = rnp - &rsp->node[0];
1214         unsigned long flags;
1215         struct sched_param sp;
1216         struct task_struct *t;
1217
1218         if (&rcu_preempt_state != rsp)
1219                 return 0;
1220
1221         if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1222                 return 0;
1223
1224         rsp->boost = 1;
1225         if (rnp->boost_kthread_task != NULL)
1226                 return 0;
1227         t = kthread_create(rcu_boost_kthread, (void *)rnp,
1228                            "rcub/%d", rnp_index);
1229         if (IS_ERR(t))
1230                 return PTR_ERR(t);
1231         raw_spin_lock_irqsave(&rnp->lock, flags);
1232         smp_mb__after_unlock_lock();
1233         rnp->boost_kthread_task = t;
1234         raw_spin_unlock_irqrestore(&rnp->lock, flags);
1235         sp.sched_priority = kthread_prio;
1236         sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1237         wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1238         return 0;
1239 }
1240
1241 static void rcu_kthread_do_work(void)
1242 {
1243         rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1244         rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1245         rcu_preempt_do_callbacks();
1246 }
1247
1248 static void rcu_cpu_kthread_setup(unsigned int cpu)
1249 {
1250         struct sched_param sp;
1251
1252         sp.sched_priority = kthread_prio;
1253         sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1254 }
1255
1256 static void rcu_cpu_kthread_park(unsigned int cpu)
1257 {
1258         per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1259 }
1260
1261 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1262 {
1263         return __this_cpu_read(rcu_cpu_has_work);
1264 }
1265
1266 /*
1267  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1268  * RCU softirq used in flavors and configurations of RCU that do not
1269  * support RCU priority boosting.
1270  */
1271 static void rcu_cpu_kthread(unsigned int cpu)
1272 {
1273         unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1274         char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1275         int spincnt;
1276
1277         for (spincnt = 0; spincnt < 10; spincnt++) {
1278                 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1279                 local_bh_disable();
1280                 *statusp = RCU_KTHREAD_RUNNING;
1281                 this_cpu_inc(rcu_cpu_kthread_loops);
1282                 local_irq_disable();
1283                 work = *workp;
1284                 *workp = 0;
1285                 local_irq_enable();
1286                 if (work)
1287                         rcu_kthread_do_work();
1288                 local_bh_enable();
1289                 if (*workp == 0) {
1290                         trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1291                         *statusp = RCU_KTHREAD_WAITING;
1292                         return;
1293                 }
1294         }
1295         *statusp = RCU_KTHREAD_YIELDING;
1296         trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1297         schedule_timeout_interruptible(2);
1298         trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1299         *statusp = RCU_KTHREAD_WAITING;
1300 }
1301
1302 /*
1303  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1304  * served by the rcu_node in question.  The CPU hotplug lock is still
1305  * held, so the value of rnp->qsmaskinit will be stable.
1306  *
1307  * We don't include outgoingcpu in the affinity set, use -1 if there is
1308  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1309  * this function allows the kthread to execute on any CPU.
1310  */
1311 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1312 {
1313         struct task_struct *t = rnp->boost_kthread_task;
1314         unsigned long mask = rnp->qsmaskinit;
1315         cpumask_var_t cm;
1316         int cpu;
1317
1318         if (!t)
1319                 return;
1320         if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1321                 return;
1322         for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1323                 if ((mask & 0x1) && cpu != outgoingcpu)
1324                         cpumask_set_cpu(cpu, cm);
1325         if (cpumask_weight(cm) == 0) {
1326                 cpumask_setall(cm);
1327                 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1328                         cpumask_clear_cpu(cpu, cm);
1329                 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1330         }
1331         set_cpus_allowed_ptr(t, cm);
1332         free_cpumask_var(cm);
1333 }
1334
1335 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1336         .store                  = &rcu_cpu_kthread_task,
1337         .thread_should_run      = rcu_cpu_kthread_should_run,
1338         .thread_fn              = rcu_cpu_kthread,
1339         .thread_comm            = "rcuc/%u",
1340         .setup                  = rcu_cpu_kthread_setup,
1341         .park                   = rcu_cpu_kthread_park,
1342 };
1343
1344 /*
1345  * Spawn boost kthreads -- called as soon as the scheduler is running.
1346  */
1347 static void __init rcu_spawn_boost_kthreads(void)
1348 {
1349         struct rcu_node *rnp;
1350         int cpu;
1351
1352         for_each_possible_cpu(cpu)
1353                 per_cpu(rcu_cpu_has_work, cpu) = 0;
1354         BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1355         rcu_for_each_leaf_node(rcu_state_p, rnp)
1356                 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1357 }
1358
1359 static void rcu_prepare_kthreads(int cpu)
1360 {
1361         struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1362         struct rcu_node *rnp = rdp->mynode;
1363
1364         /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1365         if (rcu_scheduler_fully_active)
1366                 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1367 }
1368
1369 #else /* #ifdef CONFIG_RCU_BOOST */
1370
1371 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1372         __releases(rnp->lock)
1373 {
1374         raw_spin_unlock_irqrestore(&rnp->lock, flags);
1375 }
1376
1377 static void invoke_rcu_callbacks_kthread(void)
1378 {
1379         WARN_ON_ONCE(1);
1380 }
1381
1382 static bool rcu_is_callbacks_kthread(void)
1383 {
1384         return false;
1385 }
1386
1387 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1388 {
1389 }
1390
1391 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1392 {
1393 }
1394
1395 static void __init rcu_spawn_boost_kthreads(void)
1396 {
1397 }
1398
1399 static void rcu_prepare_kthreads(int cpu)
1400 {
1401 }
1402
1403 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1404
1405 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1406
1407 /*
1408  * Check to see if any future RCU-related work will need to be done
1409  * by the current CPU, even if none need be done immediately, returning
1410  * 1 if so.  This function is part of the RCU implementation; it is -not-
1411  * an exported member of the RCU API.
1412  *
1413  * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1414  * any flavor of RCU.
1415  */
1416 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1417 int rcu_needs_cpu(unsigned long *delta_jiffies)
1418 {
1419         *delta_jiffies = ULONG_MAX;
1420         return rcu_cpu_has_callbacks(NULL);
1421 }
1422 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1423
1424 /*
1425  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1426  * after it.
1427  */
1428 static void rcu_cleanup_after_idle(void)
1429 {
1430 }
1431
1432 /*
1433  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1434  * is nothing.
1435  */
1436 static void rcu_prepare_for_idle(void)
1437 {
1438 }
1439
1440 /*
1441  * Don't bother keeping a running count of the number of RCU callbacks
1442  * posted because CONFIG_RCU_FAST_NO_HZ=n.
1443  */
1444 static void rcu_idle_count_callbacks_posted(void)
1445 {
1446 }
1447
1448 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1449
1450 /*
1451  * This code is invoked when a CPU goes idle, at which point we want
1452  * to have the CPU do everything required for RCU so that it can enter
1453  * the energy-efficient dyntick-idle mode.  This is handled by a
1454  * state machine implemented by rcu_prepare_for_idle() below.
1455  *
1456  * The following three proprocessor symbols control this state machine:
1457  *
1458  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1459  *      to sleep in dyntick-idle mode with RCU callbacks pending.  This
1460  *      is sized to be roughly one RCU grace period.  Those energy-efficiency
1461  *      benchmarkers who might otherwise be tempted to set this to a large
1462  *      number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1463  *      system.  And if you are -that- concerned about energy efficiency,
1464  *      just power the system down and be done with it!
1465  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1466  *      permitted to sleep in dyntick-idle mode with only lazy RCU
1467  *      callbacks pending.  Setting this too high can OOM your system.
1468  *
1469  * The values below work well in practice.  If future workloads require
1470  * adjustment, they can be converted into kernel config parameters, though
1471  * making the state machine smarter might be a better option.
1472  */
1473 #define RCU_IDLE_GP_DELAY 4             /* Roughly one grace period. */
1474 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1475
1476 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1477 module_param(rcu_idle_gp_delay, int, 0644);
1478 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1479 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1480
1481 extern int tick_nohz_active;
1482
1483 /*
1484  * Try to advance callbacks for all flavors of RCU on the current CPU, but
1485  * only if it has been awhile since the last time we did so.  Afterwards,
1486  * if there are any callbacks ready for immediate invocation, return true.
1487  */
1488 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1489 {
1490         bool cbs_ready = false;
1491         struct rcu_data *rdp;
1492         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1493         struct rcu_node *rnp;
1494         struct rcu_state *rsp;
1495
1496         /* Exit early if we advanced recently. */
1497         if (jiffies == rdtp->last_advance_all)
1498                 return false;
1499         rdtp->last_advance_all = jiffies;
1500
1501         for_each_rcu_flavor(rsp) {
1502                 rdp = this_cpu_ptr(rsp->rda);
1503                 rnp = rdp->mynode;
1504
1505                 /*
1506                  * Don't bother checking unless a grace period has
1507                  * completed since we last checked and there are
1508                  * callbacks not yet ready to invoke.
1509                  */
1510                 if (rdp->completed != rnp->completed &&
1511                     rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1512                         note_gp_changes(rsp, rdp);
1513
1514                 if (cpu_has_callbacks_ready_to_invoke(rdp))
1515                         cbs_ready = true;
1516         }
1517         return cbs_ready;
1518 }
1519
1520 /*
1521  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1522  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1523  * caller to set the timeout based on whether or not there are non-lazy
1524  * callbacks.
1525  *
1526  * The caller must have disabled interrupts.
1527  */
1528 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1529 int rcu_needs_cpu(unsigned long *dj)
1530 {
1531         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1532
1533         /* Snapshot to detect later posting of non-lazy callback. */
1534         rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1535
1536         /* If no callbacks, RCU doesn't need the CPU. */
1537         if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1538                 *dj = ULONG_MAX;
1539                 return 0;
1540         }
1541
1542         /* Attempt to advance callbacks. */
1543         if (rcu_try_advance_all_cbs()) {
1544                 /* Some ready to invoke, so initiate later invocation. */
1545                 invoke_rcu_core();
1546                 return 1;
1547         }
1548         rdtp->last_accelerate = jiffies;
1549
1550         /* Request timer delay depending on laziness, and round. */
1551         if (!rdtp->all_lazy) {
1552                 *dj = round_up(rcu_idle_gp_delay + jiffies,
1553                                rcu_idle_gp_delay) - jiffies;
1554         } else {
1555                 *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1556         }
1557         return 0;
1558 }
1559 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1560
1561 /*
1562  * Prepare a CPU for idle from an RCU perspective.  The first major task
1563  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1564  * The second major task is to check to see if a non-lazy callback has
1565  * arrived at a CPU that previously had only lazy callbacks.  The third
1566  * major task is to accelerate (that is, assign grace-period numbers to)
1567  * any recently arrived callbacks.
1568  *
1569  * The caller must have disabled interrupts.
1570  */
1571 static void rcu_prepare_for_idle(void)
1572 {
1573 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1574         bool needwake;
1575         struct rcu_data *rdp;
1576         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1577         struct rcu_node *rnp;
1578         struct rcu_state *rsp;
1579         int tne;
1580
1581         /* Handle nohz enablement switches conservatively. */
1582         tne = ACCESS_ONCE(tick_nohz_active);
1583         if (tne != rdtp->tick_nohz_enabled_snap) {
1584                 if (rcu_cpu_has_callbacks(NULL))
1585                         invoke_rcu_core(); /* force nohz to see update. */
1586                 rdtp->tick_nohz_enabled_snap = tne;
1587                 return;
1588         }
1589         if (!tne)
1590                 return;
1591
1592         /* If this is a no-CBs CPU, no callbacks, just return. */
1593         if (rcu_is_nocb_cpu(smp_processor_id()))
1594                 return;
1595
1596         /*
1597          * If a non-lazy callback arrived at a CPU having only lazy
1598          * callbacks, invoke RCU core for the side-effect of recalculating
1599          * idle duration on re-entry to idle.
1600          */
1601         if (rdtp->all_lazy &&
1602             rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1603                 rdtp->all_lazy = false;
1604                 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1605                 invoke_rcu_core();
1606                 return;
1607         }
1608
1609         /*
1610          * If we have not yet accelerated this jiffy, accelerate all
1611          * callbacks on this CPU.
1612          */
1613         if (rdtp->last_accelerate == jiffies)
1614                 return;
1615         rdtp->last_accelerate = jiffies;
1616         for_each_rcu_flavor(rsp) {
1617                 rdp = this_cpu_ptr(rsp->rda);
1618                 if (!*rdp->nxttail[RCU_DONE_TAIL])
1619                         continue;
1620                 rnp = rdp->mynode;
1621                 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1622                 smp_mb__after_unlock_lock();
1623                 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1624                 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1625                 if (needwake)
1626                         rcu_gp_kthread_wake(rsp);
1627         }
1628 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1629 }
1630
1631 /*
1632  * Clean up for exit from idle.  Attempt to advance callbacks based on
1633  * any grace periods that elapsed while the CPU was idle, and if any
1634  * callbacks are now ready to invoke, initiate invocation.
1635  */
1636 static void rcu_cleanup_after_idle(void)
1637 {
1638 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1639         if (rcu_is_nocb_cpu(smp_processor_id()))
1640                 return;
1641         if (rcu_try_advance_all_cbs())
1642                 invoke_rcu_core();
1643 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1644 }
1645
1646 /*
1647  * Keep a running count of the number of non-lazy callbacks posted
1648  * on this CPU.  This running counter (which is never decremented) allows
1649  * rcu_prepare_for_idle() to detect when something out of the idle loop
1650  * posts a callback, even if an equal number of callbacks are invoked.
1651  * Of course, callbacks should only be posted from within a trace event
1652  * designed to be called from idle or from within RCU_NONIDLE().
1653  */
1654 static void rcu_idle_count_callbacks_posted(void)
1655 {
1656         __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1657 }
1658
1659 /*
1660  * Data for flushing lazy RCU callbacks at OOM time.
1661  */
1662 static atomic_t oom_callback_count;
1663 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1664
1665 /*
1666  * RCU OOM callback -- decrement the outstanding count and deliver the
1667  * wake-up if we are the last one.
1668  */
1669 static void rcu_oom_callback(struct rcu_head *rhp)
1670 {
1671         if (atomic_dec_and_test(&oom_callback_count))
1672                 wake_up(&oom_callback_wq);
1673 }
1674
1675 /*
1676  * Post an rcu_oom_notify callback on the current CPU if it has at
1677  * least one lazy callback.  This will unnecessarily post callbacks
1678  * to CPUs that already have a non-lazy callback at the end of their
1679  * callback list, but this is an infrequent operation, so accept some
1680  * extra overhead to keep things simple.
1681  */
1682 static void rcu_oom_notify_cpu(void *unused)
1683 {
1684         struct rcu_state *rsp;
1685         struct rcu_data *rdp;
1686
1687         for_each_rcu_flavor(rsp) {
1688                 rdp = raw_cpu_ptr(rsp->rda);
1689                 if (rdp->qlen_lazy != 0) {
1690                         atomic_inc(&oom_callback_count);
1691                         rsp->call(&rdp->oom_head, rcu_oom_callback);
1692                 }
1693         }
1694 }
1695
1696 /*
1697  * If low on memory, ensure that each CPU has a non-lazy callback.
1698  * This will wake up CPUs that have only lazy callbacks, in turn
1699  * ensuring that they free up the corresponding memory in a timely manner.
1700  * Because an uncertain amount of memory will be freed in some uncertain
1701  * timeframe, we do not claim to have freed anything.
1702  */
1703 static int rcu_oom_notify(struct notifier_block *self,
1704                           unsigned long notused, void *nfreed)
1705 {
1706         int cpu;
1707
1708         /* Wait for callbacks from earlier instance to complete. */
1709         wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1710         smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1711
1712         /*
1713          * Prevent premature wakeup: ensure that all increments happen
1714          * before there is a chance of the counter reaching zero.
1715          */
1716         atomic_set(&oom_callback_count, 1);
1717
1718         get_online_cpus();
1719         for_each_online_cpu(cpu) {
1720                 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1721                 cond_resched_rcu_qs();
1722         }
1723         put_online_cpus();
1724
1725         /* Unconditionally decrement: no need to wake ourselves up. */
1726         atomic_dec(&oom_callback_count);
1727
1728         return NOTIFY_OK;
1729 }
1730
1731 static struct notifier_block rcu_oom_nb = {
1732         .notifier_call = rcu_oom_notify
1733 };
1734
1735 static int __init rcu_register_oom_notifier(void)
1736 {
1737         register_oom_notifier(&rcu_oom_nb);
1738         return 0;
1739 }
1740 early_initcall(rcu_register_oom_notifier);
1741
1742 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1743
1744 #ifdef CONFIG_RCU_CPU_STALL_INFO
1745
1746 #ifdef CONFIG_RCU_FAST_NO_HZ
1747
1748 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1749 {
1750         struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1751         unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1752
1753         sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1754                 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1755                 ulong2long(nlpd),
1756                 rdtp->all_lazy ? 'L' : '.',
1757                 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1758 }
1759
1760 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1761
1762 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1763 {
1764         *cp = '\0';
1765 }
1766
1767 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1768
1769 /* Initiate the stall-info list. */
1770 static void print_cpu_stall_info_begin(void)
1771 {
1772         pr_cont("\n");
1773 }
1774
1775 /*
1776  * Print out diagnostic information for the specified stalled CPU.
1777  *
1778  * If the specified CPU is aware of the current RCU grace period
1779  * (flavor specified by rsp), then print the number of scheduling
1780  * clock interrupts the CPU has taken during the time that it has
1781  * been aware.  Otherwise, print the number of RCU grace periods
1782  * that this CPU is ignorant of, for example, "1" if the CPU was
1783  * aware of the previous grace period.
1784  *
1785  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1786  */
1787 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1788 {
1789         char fast_no_hz[72];
1790         struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1791         struct rcu_dynticks *rdtp = rdp->dynticks;
1792         char *ticks_title;
1793         unsigned long ticks_value;
1794
1795         if (rsp->gpnum == rdp->gpnum) {
1796                 ticks_title = "ticks this GP";
1797                 ticks_value = rdp->ticks_this_gp;
1798         } else {
1799                 ticks_title = "GPs behind";
1800                 ticks_value = rsp->gpnum - rdp->gpnum;
1801         }
1802         print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1803         pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
1804                cpu, ticks_value, ticks_title,
1805                atomic_read(&rdtp->dynticks) & 0xfff,
1806                rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1807                rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1808                fast_no_hz);
1809 }
1810
1811 /* Terminate the stall-info list. */
1812 static void print_cpu_stall_info_end(void)
1813 {
1814         pr_err("\t");
1815 }
1816
1817 /* Zero ->ticks_this_gp for all flavors of RCU. */
1818 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1819 {
1820         rdp->ticks_this_gp = 0;
1821         rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1822 }
1823
1824 /* Increment ->ticks_this_gp for all flavors of RCU. */
1825 static void increment_cpu_stall_ticks(void)
1826 {
1827         struct rcu_state *rsp;
1828
1829         for_each_rcu_flavor(rsp)
1830                 raw_cpu_inc(rsp->rda->ticks_this_gp);
1831 }
1832
1833 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1834
1835 static void print_cpu_stall_info_begin(void)
1836 {
1837         pr_cont(" {");
1838 }
1839
1840 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1841 {
1842         pr_cont(" %d", cpu);
1843 }
1844
1845 static void print_cpu_stall_info_end(void)
1846 {
1847         pr_cont("} ");
1848 }
1849
1850 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1851 {
1852 }
1853
1854 static void increment_cpu_stall_ticks(void)
1855 {
1856 }
1857
1858 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
1859
1860 #ifdef CONFIG_RCU_NOCB_CPU
1861
1862 /*
1863  * Offload callback processing from the boot-time-specified set of CPUs
1864  * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1865  * kthread created that pulls the callbacks from the corresponding CPU,
1866  * waits for a grace period to elapse, and invokes the callbacks.
1867  * The no-CBs CPUs do a wake_up() on their kthread when they insert
1868  * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1869  * has been specified, in which case each kthread actively polls its
1870  * CPU.  (Which isn't so great for energy efficiency, but which does
1871  * reduce RCU's overhead on that CPU.)
1872  *
1873  * This is intended to be used in conjunction with Frederic Weisbecker's
1874  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1875  * running CPU-bound user-mode computations.
1876  *
1877  * Offloading of callback processing could also in theory be used as
1878  * an energy-efficiency measure because CPUs with no RCU callbacks
1879  * queued are more aggressive about entering dyntick-idle mode.
1880  */
1881
1882
1883 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1884 static int __init rcu_nocb_setup(char *str)
1885 {
1886         alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1887         have_rcu_nocb_mask = true;
1888         cpulist_parse(str, rcu_nocb_mask);
1889         return 1;
1890 }
1891 __setup("rcu_nocbs=", rcu_nocb_setup);
1892
1893 static int __init parse_rcu_nocb_poll(char *arg)
1894 {
1895         rcu_nocb_poll = 1;
1896         return 0;
1897 }
1898 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1899
1900 /*
1901  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1902  * grace period.
1903  */
1904 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1905 {
1906         wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
1907 }
1908
1909 /*
1910  * Set the root rcu_node structure's ->need_future_gp field
1911  * based on the sum of those of all rcu_node structures.  This does
1912  * double-count the root rcu_node structure's requests, but this
1913  * is necessary to handle the possibility of a rcu_nocb_kthread()
1914  * having awakened during the time that the rcu_node structures
1915  * were being updated for the end of the previous grace period.
1916  */
1917 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1918 {
1919         rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1920 }
1921
1922 static void rcu_init_one_nocb(struct rcu_node *rnp)
1923 {
1924         init_waitqueue_head(&rnp->nocb_gp_wq[0]);
1925         init_waitqueue_head(&rnp->nocb_gp_wq[1]);
1926 }
1927
1928 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1929 /* Is the specified CPU a no-CBs CPU? */
1930 bool rcu_is_nocb_cpu(int cpu)
1931 {
1932         if (have_rcu_nocb_mask)
1933                 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1934         return false;
1935 }
1936 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1937
1938 /*
1939  * Kick the leader kthread for this NOCB group.
1940  */
1941 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1942 {
1943         struct rcu_data *rdp_leader = rdp->nocb_leader;
1944
1945         if (!ACCESS_ONCE(rdp_leader->nocb_kthread))
1946                 return;
1947         if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1948                 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
1949                 ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false;
1950                 wake_up(&rdp_leader->nocb_wq);
1951         }
1952 }
1953
1954 /*
1955  * Does the specified CPU need an RCU callback for the specified flavor
1956  * of rcu_barrier()?
1957  */
1958 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1959 {
1960         struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1961         struct rcu_head *rhp;
1962
1963         /* No-CBs CPUs might have callbacks on any of three lists. */
1964         rhp = ACCESS_ONCE(rdp->nocb_head);
1965         if (!rhp)
1966                 rhp = ACCESS_ONCE(rdp->nocb_gp_head);
1967         if (!rhp)
1968                 rhp = ACCESS_ONCE(rdp->nocb_follower_head);
1969
1970         /* Having no rcuo kthread but CBs after scheduler starts is bad! */
1971         if (!ACCESS_ONCE(rdp->nocb_kthread) && rhp) {
1972                 /* RCU callback enqueued before CPU first came online??? */
1973                 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1974                        cpu, rhp->func);
1975                 WARN_ON_ONCE(1);
1976         }
1977
1978         return !!rhp;
1979 }
1980
1981 /*
1982  * Enqueue the specified string of rcu_head structures onto the specified
1983  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
1984  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
1985  * counts are supplied by rhcount and rhcount_lazy.
1986  *
1987  * If warranted, also wake up the kthread servicing this CPUs queues.
1988  */
1989 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1990                                     struct rcu_head *rhp,
1991                                     struct rcu_head **rhtp,
1992                                     int rhcount, int rhcount_lazy,
1993                                     unsigned long flags)
1994 {
1995         int len;
1996         struct rcu_head **old_rhpp;
1997         struct task_struct *t;
1998
1999         /* Enqueue the callback on the nocb list and update counts. */
2000         old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2001         ACCESS_ONCE(*old_rhpp) = rhp;
2002         atomic_long_add(rhcount, &rdp->nocb_q_count);
2003         atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2004         smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
2005
2006         /* If we are not being polled and there is a kthread, awaken it ... */
2007         t = ACCESS_ONCE(rdp->nocb_kthread);
2008         if (rcu_nocb_poll || !t) {
2009                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2010                                     TPS("WakeNotPoll"));
2011                 return;
2012         }
2013         len = atomic_long_read(&rdp->nocb_q_count);
2014         if (old_rhpp == &rdp->nocb_head) {
2015                 if (!irqs_disabled_flags(flags)) {
2016                         /* ... if queue was empty ... */
2017                         wake_nocb_leader(rdp, false);
2018                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2019                                             TPS("WakeEmpty"));
2020                 } else {
2021                         rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
2022                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2023                                             TPS("WakeEmptyIsDeferred"));
2024                 }
2025                 rdp->qlen_last_fqs_check = 0;
2026         } else if (len > rdp->qlen_last_fqs_check + qhimark) {
2027                 /* ... or if many callbacks queued. */
2028                 if (!irqs_disabled_flags(flags)) {
2029                         wake_nocb_leader(rdp, true);
2030                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2031                                             TPS("WakeOvf"));
2032                 } else {
2033                         rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
2034                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2035                                             TPS("WakeOvfIsDeferred"));
2036                 }
2037                 rdp->qlen_last_fqs_check = LONG_MAX / 2;
2038         } else {
2039                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
2040         }
2041         return;
2042 }
2043
2044 /*
2045  * This is a helper for __call_rcu(), which invokes this when the normal
2046  * callback queue is inoperable.  If this is not a no-CBs CPU, this
2047  * function returns failure back to __call_rcu(), which can complain
2048  * appropriately.
2049  *
2050  * Otherwise, this function queues the callback where the corresponding
2051  * "rcuo" kthread can find it.
2052  */
2053 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2054                             bool lazy, unsigned long flags)
2055 {
2056
2057         if (!rcu_is_nocb_cpu(rdp->cpu))
2058                 return false;
2059         __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2060         if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2061                 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2062                                          (unsigned long)rhp->func,
2063                                          -atomic_long_read(&rdp->nocb_q_count_lazy),
2064                                          -atomic_long_read(&rdp->nocb_q_count));
2065         else
2066                 trace_rcu_callback(rdp->rsp->name, rhp,
2067                                    -atomic_long_read(&rdp->nocb_q_count_lazy),
2068                                    -atomic_long_read(&rdp->nocb_q_count));
2069
2070         /*
2071          * If called from an extended quiescent state with interrupts
2072          * disabled, invoke the RCU core in order to allow the idle-entry
2073          * deferred-wakeup check to function.
2074          */
2075         if (irqs_disabled_flags(flags) &&
2076             !rcu_is_watching() &&
2077             cpu_online(smp_processor_id()))
2078                 invoke_rcu_core();
2079
2080         return true;
2081 }
2082
2083 /*
2084  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2085  * not a no-CBs CPU.
2086  */
2087 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2088                                                      struct rcu_data *rdp,
2089                                                      unsigned long flags)
2090 {
2091         long ql = rsp->qlen;
2092         long qll = rsp->qlen_lazy;
2093
2094         /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2095         if (!rcu_is_nocb_cpu(smp_processor_id()))
2096                 return false;
2097         rsp->qlen = 0;
2098         rsp->qlen_lazy = 0;
2099
2100         /* First, enqueue the donelist, if any.  This preserves CB ordering. */
2101         if (rsp->orphan_donelist != NULL) {
2102                 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2103                                         rsp->orphan_donetail, ql, qll, flags);
2104                 ql = qll = 0;
2105                 rsp->orphan_donelist = NULL;
2106                 rsp->orphan_donetail = &rsp->orphan_donelist;
2107         }
2108         if (rsp->orphan_nxtlist != NULL) {
2109                 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2110                                         rsp->orphan_nxttail, ql, qll, flags);
2111                 ql = qll = 0;
2112                 rsp->orphan_nxtlist = NULL;
2113                 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2114         }
2115         return true;
2116 }
2117
2118 /*
2119  * If necessary, kick off a new grace period, and either way wait
2120  * for a subsequent grace period to complete.
2121  */
2122 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2123 {
2124         unsigned long c;
2125         bool d;
2126         unsigned long flags;
2127         bool needwake;
2128         struct rcu_node *rnp = rdp->mynode;
2129
2130         raw_spin_lock_irqsave(&rnp->lock, flags);
2131         smp_mb__after_unlock_lock();
2132         needwake = rcu_start_future_gp(rnp, rdp, &c);
2133         raw_spin_unlock_irqrestore(&rnp->lock, flags);
2134         if (needwake)
2135                 rcu_gp_kthread_wake(rdp->rsp);
2136
2137         /*
2138          * Wait for the grace period.  Do so interruptibly to avoid messing
2139          * up the load average.
2140          */
2141         trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2142         for (;;) {
2143                 wait_event_interruptible(
2144                         rnp->nocb_gp_wq[c & 0x1],
2145                         (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2146                 if (likely(d))
2147                         break;
2148                 WARN_ON(signal_pending(current));
2149                 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2150         }
2151         trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2152         smp_mb(); /* Ensure that CB invocation happens after GP end. */
2153 }
2154
2155 /*
2156  * Leaders come here to wait for additional callbacks to show up.
2157  * This function does not return until callbacks appear.
2158  */
2159 static void nocb_leader_wait(struct rcu_data *my_rdp)
2160 {
2161         bool firsttime = true;
2162         bool gotcbs;
2163         struct rcu_data *rdp;
2164         struct rcu_head **tail;
2165
2166 wait_again:
2167
2168         /* Wait for callbacks to appear. */
2169         if (!rcu_nocb_poll) {
2170                 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2171                 wait_event_interruptible(my_rdp->nocb_wq,
2172                                 !ACCESS_ONCE(my_rdp->nocb_leader_sleep));
2173                 /* Memory barrier handled by smp_mb() calls below and repoll. */
2174         } else if (firsttime) {
2175                 firsttime = false; /* Don't drown trace log with "Poll"! */
2176                 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2177         }
2178
2179         /*
2180          * Each pass through the following loop checks a follower for CBs.
2181          * We are our own first follower.  Any CBs found are moved to
2182          * nocb_gp_head, where they await a grace period.
2183          */
2184         gotcbs = false;
2185         for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2186                 rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head);
2187                 if (!rdp->nocb_gp_head)
2188                         continue;  /* No CBs here, try next follower. */
2189
2190                 /* Move callbacks to wait-for-GP list, which is empty. */
2191                 ACCESS_ONCE(rdp->nocb_head) = NULL;
2192                 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2193                 rdp->nocb_gp_count = atomic_long_xchg(&rdp->nocb_q_count, 0);
2194                 rdp->nocb_gp_count_lazy =
2195                         atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
2196                 gotcbs = true;
2197         }
2198
2199         /*
2200          * If there were no callbacks, sleep a bit, rescan after a
2201          * memory barrier, and go retry.
2202          */
2203         if (unlikely(!gotcbs)) {
2204                 if (!rcu_nocb_poll)
2205                         trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2206                                             "WokeEmpty");
2207                 WARN_ON(signal_pending(current));
2208                 schedule_timeout_interruptible(1);
2209
2210                 /* Rescan in case we were a victim of memory ordering. */
2211                 my_rdp->nocb_leader_sleep = true;
2212                 smp_mb();  /* Ensure _sleep true before scan. */
2213                 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2214                         if (ACCESS_ONCE(rdp->nocb_head)) {
2215                                 /* Found CB, so short-circuit next wait. */
2216                                 my_rdp->nocb_leader_sleep = false;
2217                                 break;
2218                         }
2219                 goto wait_again;
2220         }
2221
2222         /* Wait for one grace period. */
2223         rcu_nocb_wait_gp(my_rdp);
2224
2225         /*
2226          * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2227          * We set it now, but recheck for new callbacks while
2228          * traversing our follower list.
2229          */
2230         my_rdp->nocb_leader_sleep = true;
2231         smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2232
2233         /* Each pass through the following loop wakes a follower, if needed. */
2234         for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2235                 if (ACCESS_ONCE(rdp->nocb_head))
2236                         my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2237                 if (!rdp->nocb_gp_head)
2238                         continue; /* No CBs, so no need to wake follower. */
2239
2240                 /* Append callbacks to follower's "done" list. */
2241                 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2242                 *tail = rdp->nocb_gp_head;
2243                 atomic_long_add(rdp->nocb_gp_count, &rdp->nocb_follower_count);
2244                 atomic_long_add(rdp->nocb_gp_count_lazy,
2245                                 &rdp->nocb_follower_count_lazy);
2246                 smp_mb__after_atomic(); /* Store *tail before wakeup. */
2247                 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2248                         /*
2249                          * List was empty, wake up the follower.
2250                          * Memory barriers supplied by atomic_long_add().
2251                          */
2252                         wake_up(&rdp->nocb_wq);
2253                 }
2254         }
2255
2256         /* If we (the leader) don't have CBs, go wait some more. */
2257         if (!my_rdp->nocb_follower_head)
2258                 goto wait_again;
2259 }
2260
2261 /*
2262  * Followers come here to wait for additional callbacks to show up.
2263  * This function does not return until callbacks appear.
2264  */
2265 static void nocb_follower_wait(struct rcu_data *rdp)
2266 {
2267         bool firsttime = true;
2268
2269         for (;;) {
2270                 if (!rcu_nocb_poll) {
2271                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2272                                             "FollowerSleep");
2273                         wait_event_interruptible(rdp->nocb_wq,
2274                                                  ACCESS_ONCE(rdp->nocb_follower_head));
2275                 } else if (firsttime) {
2276                         /* Don't drown trace log with "Poll"! */
2277                         firsttime = false;
2278                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2279                 }
2280                 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2281                         /* ^^^ Ensure CB invocation follows _head test. */
2282                         return;
2283                 }
2284                 if (!rcu_nocb_poll)
2285                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2286                                             "WokeEmpty");
2287                 WARN_ON(signal_pending(current));
2288                 schedule_timeout_interruptible(1);
2289         }
2290 }
2291
2292 /*
2293  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2294  * callbacks queued by the corresponding no-CBs CPU, however, there is
2295  * an optional leader-follower relationship so that the grace-period
2296  * kthreads don't have to do quite so many wakeups.
2297  */
2298 static int rcu_nocb_kthread(void *arg)
2299 {
2300         int c, cl;
2301         struct rcu_head *list;
2302         struct rcu_head *next;
2303         struct rcu_head **tail;
2304         struct rcu_data *rdp = arg;
2305
2306         /* Each pass through this loop invokes one batch of callbacks */
2307         for (;;) {
2308                 /* Wait for callbacks. */
2309                 if (rdp->nocb_leader == rdp)
2310                         nocb_leader_wait(rdp);
2311                 else
2312                         nocb_follower_wait(rdp);
2313
2314                 /* Pull the ready-to-invoke callbacks onto local list. */
2315                 list = ACCESS_ONCE(rdp->nocb_follower_head);
2316                 BUG_ON(!list);
2317                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2318                 ACCESS_ONCE(rdp->nocb_follower_head) = NULL;
2319                 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2320                 c = atomic_long_xchg(&rdp->nocb_follower_count, 0);
2321                 cl = atomic_long_xchg(&rdp->nocb_follower_count_lazy, 0);
2322                 rdp->nocb_p_count += c;
2323                 rdp->nocb_p_count_lazy += cl;
2324
2325                 /* Each pass through the following loop invokes a callback. */
2326                 trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
2327                 c = cl = 0;
2328                 while (list) {
2329                         next = list->next;
2330                         /* Wait for enqueuing to complete, if needed. */
2331                         while (next == NULL && &list->next != tail) {
2332                                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2333                                                     TPS("WaitQueue"));
2334                                 schedule_timeout_interruptible(1);
2335                                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2336                                                     TPS("WokeQueue"));
2337                                 next = list->next;
2338                         }
2339                         debug_rcu_head_unqueue(list);
2340                         local_bh_disable();
2341                         if (__rcu_reclaim(rdp->rsp->name, list))
2342                                 cl++;
2343                         c++;
2344                         local_bh_enable();
2345                         list = next;
2346                 }
2347                 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2348                 ACCESS_ONCE(rdp->nocb_p_count) = rdp->nocb_p_count - c;
2349                 ACCESS_ONCE(rdp->nocb_p_count_lazy) =
2350                                                 rdp->nocb_p_count_lazy - cl;
2351                 rdp->n_nocbs_invoked += c;
2352         }
2353         return 0;
2354 }
2355
2356 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2357 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2358 {
2359         return ACCESS_ONCE(rdp->nocb_defer_wakeup);
2360 }
2361
2362 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2363 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2364 {
2365         int ndw;
2366
2367         if (!rcu_nocb_need_deferred_wakeup(rdp))
2368                 return;
2369         ndw = ACCESS_ONCE(rdp->nocb_defer_wakeup);
2370         ACCESS_ONCE(rdp->nocb_defer_wakeup) = RCU_NOGP_WAKE_NOT;
2371         wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2372         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2373 }
2374
2375 void __init rcu_init_nohz(void)
2376 {
2377         int cpu;
2378         bool need_rcu_nocb_mask = true;
2379         struct rcu_state *rsp;
2380
2381 #ifdef CONFIG_RCU_NOCB_CPU_NONE
2382         need_rcu_nocb_mask = false;
2383 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2384
2385 #if defined(CONFIG_NO_HZ_FULL)
2386         if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2387                 need_rcu_nocb_mask = true;
2388 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2389
2390         if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2391                 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2392                         pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2393                         return;
2394                 }
2395                 have_rcu_nocb_mask = true;
2396         }
2397         if (!have_rcu_nocb_mask)
2398                 return;
2399
2400 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
2401         pr_info("\tOffload RCU callbacks from CPU 0\n");
2402         cpumask_set_cpu(0, rcu_nocb_mask);
2403 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2404 #ifdef CONFIG_RCU_NOCB_CPU_ALL
2405         pr_info("\tOffload RCU callbacks from all CPUs\n");
2406         cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2407 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2408 #if defined(CONFIG_NO_HZ_FULL)
2409         if (tick_nohz_full_running)
2410                 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2411 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2412
2413         if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2414                 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2415                 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2416                             rcu_nocb_mask);
2417         }
2418         cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
2419         pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
2420         if (rcu_nocb_poll)
2421                 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2422
2423         for_each_rcu_flavor(rsp) {
2424                 for_each_cpu(cpu, rcu_nocb_mask) {
2425                         struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2426
2427                         /*
2428                          * If there are early callbacks, they will need
2429                          * to be moved to the nocb lists.
2430                          */
2431                         WARN_ON_ONCE(rdp->nxttail[RCU_NEXT_TAIL] !=
2432                                      &rdp->nxtlist &&
2433                                      rdp->nxttail[RCU_NEXT_TAIL] != NULL);
2434                         init_nocb_callback_list(rdp);
2435                 }
2436                 rcu_organize_nocb_kthreads(rsp);
2437         }
2438 }
2439
2440 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2441 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2442 {
2443         rdp->nocb_tail = &rdp->nocb_head;
2444         init_waitqueue_head(&rdp->nocb_wq);
2445         rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2446 }
2447
2448 /*
2449  * If the specified CPU is a no-CBs CPU that does not already have its
2450  * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2451  * brought online out of order, this can require re-organizing the
2452  * leader-follower relationships.
2453  */
2454 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2455 {
2456         struct rcu_data *rdp;
2457         struct rcu_data *rdp_last;
2458         struct rcu_data *rdp_old_leader;
2459         struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2460         struct task_struct *t;
2461
2462         /*
2463          * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2464          * then nothing to do.
2465          */
2466         if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2467                 return;
2468
2469         /* If we didn't spawn the leader first, reorganize! */
2470         rdp_old_leader = rdp_spawn->nocb_leader;
2471         if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2472                 rdp_last = NULL;
2473                 rdp = rdp_old_leader;
2474                 do {
2475                         rdp->nocb_leader = rdp_spawn;
2476                         if (rdp_last && rdp != rdp_spawn)
2477                                 rdp_last->nocb_next_follower = rdp;
2478                         if (rdp == rdp_spawn) {
2479                                 rdp = rdp->nocb_next_follower;
2480                         } else {
2481                                 rdp_last = rdp;
2482                                 rdp = rdp->nocb_next_follower;
2483                                 rdp_last->nocb_next_follower = NULL;
2484                         }
2485                 } while (rdp);
2486                 rdp_spawn->nocb_next_follower = rdp_old_leader;
2487         }
2488
2489         /* Spawn the kthread for this CPU and RCU flavor. */
2490         t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2491                         "rcuo%c/%d", rsp->abbr, cpu);
2492         BUG_ON(IS_ERR(t));
2493         ACCESS_ONCE(rdp_spawn->nocb_kthread) = t;
2494 }
2495
2496 /*
2497  * If the specified CPU is a no-CBs CPU that does not already have its
2498  * rcuo kthreads, spawn them.
2499  */
2500 static void rcu_spawn_all_nocb_kthreads(int cpu)
2501 {
2502         struct rcu_state *rsp;
2503
2504         if (rcu_scheduler_fully_active)
2505                 for_each_rcu_flavor(rsp)
2506                         rcu_spawn_one_nocb_kthread(rsp, cpu);
2507 }
2508
2509 /*
2510  * Once the scheduler is running, spawn rcuo kthreads for all online
2511  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2512  * non-boot CPUs come online -- if this changes, we will need to add
2513  * some mutual exclusion.
2514  */
2515 static void __init rcu_spawn_nocb_kthreads(void)
2516 {
2517         int cpu;
2518
2519         for_each_online_cpu(cpu)
2520                 rcu_spawn_all_nocb_kthreads(cpu);
2521 }
2522
2523 /* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2524 static int rcu_nocb_leader_stride = -1;
2525 module_param(rcu_nocb_leader_stride, int, 0444);
2526
2527 /*
2528  * Initialize leader-follower relationships for all no-CBs CPU.
2529  */
2530 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2531 {
2532         int cpu;
2533         int ls = rcu_nocb_leader_stride;
2534         int nl = 0;  /* Next leader. */
2535         struct rcu_data *rdp;
2536         struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2537         struct rcu_data *rdp_prev = NULL;
2538
2539         if (!have_rcu_nocb_mask)
2540                 return;
2541         if (ls == -1) {
2542                 ls = int_sqrt(nr_cpu_ids);
2543                 rcu_nocb_leader_stride = ls;
2544         }
2545
2546         /*
2547          * Each pass through this loop sets up one rcu_data structure and
2548          * spawns one rcu_nocb_kthread().
2549          */
2550         for_each_cpu(cpu, rcu_nocb_mask) {
2551                 rdp = per_cpu_ptr(rsp->rda, cpu);
2552                 if (rdp->cpu >= nl) {
2553                         /* New leader, set up for followers & next leader. */
2554                         nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2555                         rdp->nocb_leader = rdp;
2556                         rdp_leader = rdp;
2557                 } else {
2558                         /* Another follower, link to previous leader. */
2559                         rdp->nocb_leader = rdp_leader;
2560                         rdp_prev->nocb_next_follower = rdp;
2561                 }
2562                 rdp_prev = rdp;
2563         }
2564 }
2565
2566 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2567 static bool init_nocb_callback_list(struct rcu_data *rdp)
2568 {
2569         if (!rcu_is_nocb_cpu(rdp->cpu))
2570                 return false;
2571
2572         rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2573         return true;
2574 }
2575
2576 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2577
2578 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2579 {
2580         WARN_ON_ONCE(1); /* Should be dead code. */
2581         return false;
2582 }
2583
2584 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2585 {
2586 }
2587
2588 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2589 {
2590 }
2591
2592 static void rcu_init_one_nocb(struct rcu_node *rnp)
2593 {
2594 }
2595
2596 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2597                             bool lazy, unsigned long flags)
2598 {
2599         return false;
2600 }
2601
2602 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2603                                                      struct rcu_data *rdp,
2604                                                      unsigned long flags)
2605 {
2606         return false;
2607 }
2608
2609 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2610 {
2611 }
2612
2613 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2614 {
2615         return false;
2616 }
2617
2618 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2619 {
2620 }
2621
2622 static void rcu_spawn_all_nocb_kthreads(int cpu)
2623 {
2624 }
2625
2626 static void __init rcu_spawn_nocb_kthreads(void)
2627 {
2628 }
2629
2630 static bool init_nocb_callback_list(struct rcu_data *rdp)
2631 {
2632         return false;
2633 }
2634
2635 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2636
2637 /*
2638  * An adaptive-ticks CPU can potentially execute in kernel mode for an
2639  * arbitrarily long period of time with the scheduling-clock tick turned
2640  * off.  RCU will be paying attention to this CPU because it is in the
2641  * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2642  * machine because the scheduling-clock tick has been disabled.  Therefore,
2643  * if an adaptive-ticks CPU is failing to respond to the current grace
2644  * period and has not be idle from an RCU perspective, kick it.
2645  */
2646 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2647 {
2648 #ifdef CONFIG_NO_HZ_FULL
2649         if (tick_nohz_full_cpu(cpu))
2650                 smp_send_reschedule(cpu);
2651 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2652 }
2653
2654
2655 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2656
2657 static int full_sysidle_state;          /* Current system-idle state. */
2658 #define RCU_SYSIDLE_NOT         0       /* Some CPU is not idle. */
2659 #define RCU_SYSIDLE_SHORT       1       /* All CPUs idle for brief period. */
2660 #define RCU_SYSIDLE_LONG        2       /* All CPUs idle for long enough. */
2661 #define RCU_SYSIDLE_FULL        3       /* All CPUs idle, ready for sysidle. */
2662 #define RCU_SYSIDLE_FULL_NOTED  4       /* Actually entered sysidle state. */
2663
2664 /*
2665  * Invoked to note exit from irq or task transition to idle.  Note that
2666  * usermode execution does -not- count as idle here!  After all, we want
2667  * to detect full-system idle states, not RCU quiescent states and grace
2668  * periods.  The caller must have disabled interrupts.
2669  */
2670 static void rcu_sysidle_enter(int irq)
2671 {
2672         unsigned long j;
2673         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2674
2675         /* If there are no nohz_full= CPUs, no need to track this. */
2676         if (!tick_nohz_full_enabled())
2677                 return;
2678
2679         /* Adjust nesting, check for fully idle. */
2680         if (irq) {
2681                 rdtp->dynticks_idle_nesting--;
2682                 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2683                 if (rdtp->dynticks_idle_nesting != 0)
2684                         return;  /* Still not fully idle. */
2685         } else {
2686                 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2687                     DYNTICK_TASK_NEST_VALUE) {
2688                         rdtp->dynticks_idle_nesting = 0;
2689                 } else {
2690                         rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2691                         WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2692                         return;  /* Still not fully idle. */
2693                 }
2694         }
2695
2696         /* Record start of fully idle period. */
2697         j = jiffies;
2698         ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
2699         smp_mb__before_atomic();
2700         atomic_inc(&rdtp->dynticks_idle);
2701         smp_mb__after_atomic();
2702         WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2703 }
2704
2705 /*
2706  * Unconditionally force exit from full system-idle state.  This is
2707  * invoked when a normal CPU exits idle, but must be called separately
2708  * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2709  * is that the timekeeping CPU is permitted to take scheduling-clock
2710  * interrupts while the system is in system-idle state, and of course
2711  * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2712  * interrupt from any other type of interrupt.
2713  */
2714 void rcu_sysidle_force_exit(void)
2715 {
2716         int oldstate = ACCESS_ONCE(full_sysidle_state);
2717         int newoldstate;
2718
2719         /*
2720          * Each pass through the following loop attempts to exit full
2721          * system-idle state.  If contention proves to be a problem,
2722          * a trylock-based contention tree could be used here.
2723          */
2724         while (oldstate > RCU_SYSIDLE_SHORT) {
2725                 newoldstate = cmpxchg(&full_sysidle_state,
2726                                       oldstate, RCU_SYSIDLE_NOT);
2727                 if (oldstate == newoldstate &&
2728                     oldstate == RCU_SYSIDLE_FULL_NOTED) {
2729                         rcu_kick_nohz_cpu(tick_do_timer_cpu);
2730                         return; /* We cleared it, done! */
2731                 }
2732                 oldstate = newoldstate;
2733         }
2734         smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2735 }
2736
2737 /*
2738  * Invoked to note entry to irq or task transition from idle.  Note that
2739  * usermode execution does -not- count as idle here!  The caller must
2740  * have disabled interrupts.
2741  */
2742 static void rcu_sysidle_exit(int irq)
2743 {
2744         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2745
2746         /* If there are no nohz_full= CPUs, no need to track this. */
2747         if (!tick_nohz_full_enabled())
2748                 return;
2749
2750         /* Adjust nesting, check for already non-idle. */
2751         if (irq) {
2752                 rdtp->dynticks_idle_nesting++;
2753                 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2754                 if (rdtp->dynticks_idle_nesting != 1)
2755                         return; /* Already non-idle. */
2756         } else {
2757                 /*
2758                  * Allow for irq misnesting.  Yes, it really is possible
2759                  * to enter an irq handler then never leave it, and maybe
2760                  * also vice versa.  Handle both possibilities.
2761                  */
2762                 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2763                         rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2764                         WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2765                         return; /* Already non-idle. */
2766                 } else {
2767                         rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2768                 }
2769         }
2770
2771         /* Record end of idle period. */
2772         smp_mb__before_atomic();
2773         atomic_inc(&rdtp->dynticks_idle);
2774         smp_mb__after_atomic();
2775         WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2776
2777         /*
2778          * If we are the timekeeping CPU, we are permitted to be non-idle
2779          * during a system-idle state.  This must be the case, because
2780          * the timekeeping CPU has to take scheduling-clock interrupts
2781          * during the time that the system is transitioning to full
2782          * system-idle state.  This means that the timekeeping CPU must
2783          * invoke rcu_sysidle_force_exit() directly if it does anything
2784          * more than take a scheduling-clock interrupt.
2785          */
2786         if (smp_processor_id() == tick_do_timer_cpu)
2787                 return;
2788
2789         /* Update system-idle state: We are clearly no longer fully idle! */
2790         rcu_sysidle_force_exit();
2791 }
2792
2793 /*
2794  * Check to see if the current CPU is idle.  Note that usermode execution
2795  * does not count as idle.  The caller must have disabled interrupts.
2796  */
2797 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2798                                   unsigned long *maxj)
2799 {
2800         int cur;
2801         unsigned long j;
2802         struct rcu_dynticks *rdtp = rdp->dynticks;
2803
2804         /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2805         if (!tick_nohz_full_enabled())
2806                 return;
2807
2808         /*
2809          * If some other CPU has already reported non-idle, if this is
2810          * not the flavor of RCU that tracks sysidle state, or if this
2811          * is an offline or the timekeeping CPU, nothing to do.
2812          */
2813         if (!*isidle || rdp->rsp != rcu_state_p ||
2814             cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2815                 return;
2816         if (rcu_gp_in_progress(rdp->rsp))
2817                 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2818
2819         /* Pick up current idle and NMI-nesting counter and check. */
2820         cur = atomic_read(&rdtp->dynticks_idle);
2821         if (cur & 0x1) {
2822                 *isidle = false; /* We are not idle! */
2823                 return;
2824         }
2825         smp_mb(); /* Read counters before timestamps. */
2826
2827         /* Pick up timestamps. */
2828         j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2829         /* If this CPU entered idle more recently, update maxj timestamp. */
2830         if (ULONG_CMP_LT(*maxj, j))
2831                 *maxj = j;
2832 }
2833
2834 /*
2835  * Is this the flavor of RCU that is handling full-system idle?
2836  */
2837 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2838 {
2839         return rsp == rcu_state_p;
2840 }
2841
2842 /*
2843  * Return a delay in jiffies based on the number of CPUs, rcu_node
2844  * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2845  * systems more time to transition to full-idle state in order to
2846  * avoid the cache thrashing that otherwise occur on the state variable.
2847  * Really small systems (less than a couple of tens of CPUs) should
2848  * instead use a single global atomically incremented counter, and later
2849  * versions of this will automatically reconfigure themselves accordingly.
2850  */
2851 static unsigned long rcu_sysidle_delay(void)
2852 {
2853         if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2854                 return 0;
2855         return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2856 }
2857
2858 /*
2859  * Advance the full-system-idle state.  This is invoked when all of
2860  * the non-timekeeping CPUs are idle.
2861  */
2862 static void rcu_sysidle(unsigned long j)
2863 {
2864         /* Check the current state. */
2865         switch (ACCESS_ONCE(full_sysidle_state)) {
2866         case RCU_SYSIDLE_NOT:
2867
2868                 /* First time all are idle, so note a short idle period. */
2869                 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2870                 break;
2871
2872         case RCU_SYSIDLE_SHORT:
2873
2874                 /*
2875                  * Idle for a bit, time to advance to next state?
2876                  * cmpxchg failure means race with non-idle, let them win.
2877                  */
2878                 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2879                         (void)cmpxchg(&full_sysidle_state,
2880                                       RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2881                 break;
2882
2883         case RCU_SYSIDLE_LONG:
2884
2885                 /*
2886                  * Do an additional check pass before advancing to full.
2887                  * cmpxchg failure means race with non-idle, let them win.
2888                  */
2889                 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2890                         (void)cmpxchg(&full_sysidle_state,
2891                                       RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2892                 break;
2893
2894         default:
2895                 break;
2896         }
2897 }
2898
2899 /*
2900  * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2901  * back to the beginning.
2902  */
2903 static void rcu_sysidle_cancel(void)
2904 {
2905         smp_mb();
2906         if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2907                 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
2908 }
2909
2910 /*
2911  * Update the sysidle state based on the results of a force-quiescent-state
2912  * scan of the CPUs' dyntick-idle state.
2913  */
2914 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2915                                unsigned long maxj, bool gpkt)
2916 {
2917         if (rsp != rcu_state_p)
2918                 return;  /* Wrong flavor, ignore. */
2919         if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2920                 return;  /* Running state machine from timekeeping CPU. */
2921         if (isidle)
2922                 rcu_sysidle(maxj);    /* More idle! */
2923         else
2924                 rcu_sysidle_cancel(); /* Idle is over. */
2925 }
2926
2927 /*
2928  * Wrapper for rcu_sysidle_report() when called from the grace-period
2929  * kthread's context.
2930  */
2931 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2932                                   unsigned long maxj)
2933 {
2934         /* If there are no nohz_full= CPUs, no need to track this. */
2935         if (!tick_nohz_full_enabled())
2936                 return;
2937
2938         rcu_sysidle_report(rsp, isidle, maxj, true);
2939 }
2940
2941 /* Callback and function for forcing an RCU grace period. */
2942 struct rcu_sysidle_head {
2943         struct rcu_head rh;
2944         int inuse;
2945 };
2946
2947 static void rcu_sysidle_cb(struct rcu_head *rhp)
2948 {
2949         struct rcu_sysidle_head *rshp;
2950
2951         /*
2952          * The following memory barrier is needed to replace the
2953          * memory barriers that would normally be in the memory
2954          * allocator.
2955          */
2956         smp_mb();  /* grace period precedes setting inuse. */
2957
2958         rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2959         ACCESS_ONCE(rshp->inuse) = 0;
2960 }
2961
2962 /*
2963  * Check to see if the system is fully idle, other than the timekeeping CPU.
2964  * The caller must have disabled interrupts.  This is not intended to be
2965  * called unless tick_nohz_full_enabled().
2966  */
2967 bool rcu_sys_is_idle(void)
2968 {
2969         static struct rcu_sysidle_head rsh;
2970         int rss = ACCESS_ONCE(full_sysidle_state);
2971
2972         if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2973                 return false;
2974
2975         /* Handle small-system case by doing a full scan of CPUs. */
2976         if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2977                 int oldrss = rss - 1;
2978
2979                 /*
2980                  * One pass to advance to each state up to _FULL.
2981                  * Give up if any pass fails to advance the state.
2982                  */
2983                 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2984                         int cpu;
2985                         bool isidle = true;
2986                         unsigned long maxj = jiffies - ULONG_MAX / 4;
2987                         struct rcu_data *rdp;
2988
2989                         /* Scan all the CPUs looking for nonidle CPUs. */
2990                         for_each_possible_cpu(cpu) {
2991                                 rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2992                                 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2993                                 if (!isidle)
2994                                         break;
2995                         }
2996                         rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2997                         oldrss = rss;
2998                         rss = ACCESS_ONCE(full_sysidle_state);
2999                 }
3000         }
3001
3002         /* If this is the first observation of an idle period, record it. */
3003         if (rss == RCU_SYSIDLE_FULL) {
3004                 rss = cmpxchg(&full_sysidle_state,
3005                               RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
3006                 return rss == RCU_SYSIDLE_FULL;
3007         }
3008
3009         smp_mb(); /* ensure rss load happens before later caller actions. */
3010
3011         /* If already fully idle, tell the caller (in case of races). */
3012         if (rss == RCU_SYSIDLE_FULL_NOTED)
3013                 return true;
3014
3015         /*
3016          * If we aren't there yet, and a grace period is not in flight,
3017          * initiate a grace period.  Either way, tell the caller that
3018          * we are not there yet.  We use an xchg() rather than an assignment
3019          * to make up for the memory barriers that would otherwise be
3020          * provided by the memory allocator.
3021          */
3022         if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
3023             !rcu_gp_in_progress(rcu_state_p) &&
3024             !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
3025                 call_rcu(&rsh.rh, rcu_sysidle_cb);
3026         return false;
3027 }
3028
3029 /*
3030  * Initialize dynticks sysidle state for CPUs coming online.
3031  */
3032 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3033 {
3034         rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
3035 }
3036
3037 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3038
3039 static void rcu_sysidle_enter(int irq)
3040 {
3041 }
3042
3043 static void rcu_sysidle_exit(int irq)
3044 {
3045 }
3046
3047 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
3048                                   unsigned long *maxj)
3049 {
3050 }
3051
3052 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
3053 {
3054         return false;
3055 }
3056
3057 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
3058                                   unsigned long maxj)
3059 {
3060 }
3061
3062 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3063 {
3064 }
3065
3066 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3067
3068 /*
3069  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3070  * grace-period kthread will do force_quiescent_state() processing?
3071  * The idea is to avoid waking up RCU core processing on such a
3072  * CPU unless the grace period has extended for too long.
3073  *
3074  * This code relies on the fact that all NO_HZ_FULL CPUs are also
3075  * CONFIG_RCU_NOCB_CPU CPUs.
3076  */
3077 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3078 {
3079 #ifdef CONFIG_NO_HZ_FULL
3080         if (tick_nohz_full_cpu(smp_processor_id()) &&
3081             (!rcu_gp_in_progress(rsp) ||
3082              ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
3083                 return 1;
3084 #endif /* #ifdef CONFIG_NO_HZ_FULL */
3085         return 0;
3086 }
3087
3088 /*
3089  * Bind the grace-period kthread for the sysidle flavor of RCU to the
3090  * timekeeping CPU.
3091  */
3092 static void rcu_bind_gp_kthread(void)
3093 {
3094         int __maybe_unused cpu;
3095
3096         if (!tick_nohz_full_enabled())
3097                 return;
3098 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3099         cpu = tick_do_timer_cpu;
3100         if (cpu >= 0 && cpu < nr_cpu_ids && raw_smp_processor_id() != cpu)
3101                 set_cpus_allowed_ptr(current, cpumask_of(cpu));
3102 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3103         if (!is_housekeeping_cpu(raw_smp_processor_id()))
3104                 housekeeping_affine(current);
3105 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3106 }
3107
3108 /* Record the current task on dyntick-idle entry. */
3109 static void rcu_dynticks_task_enter(void)
3110 {
3111 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3112         ACCESS_ONCE(current->rcu_tasks_idle_cpu) = smp_processor_id();
3113 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3114 }
3115
3116 /* Record no current task on dyntick-idle exit. */
3117 static void rcu_dynticks_task_exit(void)
3118 {
3119 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3120         ACCESS_ONCE(current->rcu_tasks_idle_cpu) = -1;
3121 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3122 }