a22721547442af47d53b748aba5704b47b3ffef1
[firefly-linux-kernel-4.4.55.git] / kernel / rcu / tree_plugin.h
1 /*
2  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, you can access it online at
18  * http://www.gnu.org/licenses/gpl-2.0.html.
19  *
20  * Copyright Red Hat, 2009
21  * Copyright IBM Corporation, 2009
22  *
23  * Author: Ingo Molnar <mingo@elte.hu>
24  *         Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25  */
26
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
32
33 #ifdef CONFIG_RCU_BOOST
34
35 #include "../locking/rtmutex_common.h"
36
37 /*
38  * Control variables for per-CPU and per-rcu_node kthreads.  These
39  * handle all flavors of RCU.
40  */
41 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
42 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
43 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
44 DEFINE_PER_CPU(char, rcu_cpu_has_work);
45
46 #endif /* #ifdef CONFIG_RCU_BOOST */
47
48 #ifdef CONFIG_RCU_NOCB_CPU
49 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
50 static bool have_rcu_nocb_mask;     /* Was rcu_nocb_mask allocated? */
51 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
52 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
53
54 /*
55  * Check the RCU kernel configuration parameters and print informative
56  * messages about anything out of the ordinary.  If you like #ifdef, you
57  * will love this function.
58  */
59 static void __init rcu_bootup_announce_oddness(void)
60 {
61 #ifdef CONFIG_RCU_TRACE
62         pr_info("\tRCU debugfs-based tracing is enabled.\n");
63 #endif
64 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
65         pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
66                CONFIG_RCU_FANOUT);
67 #endif
68 #ifdef CONFIG_RCU_FANOUT_EXACT
69         pr_info("\tHierarchical RCU autobalancing is disabled.\n");
70 #endif
71 #ifdef CONFIG_RCU_FAST_NO_HZ
72         pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
73 #endif
74 #ifdef CONFIG_PROVE_RCU
75         pr_info("\tRCU lockdep checking is enabled.\n");
76 #endif
77 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
78         pr_info("\tRCU torture testing starts during boot.\n");
79 #endif
80 #if defined(CONFIG_RCU_CPU_STALL_INFO)
81         pr_info("\tAdditional per-CPU info printed with stalls.\n");
82 #endif
83 #if NUM_RCU_LVL_4 != 0
84         pr_info("\tFour-level hierarchy is enabled.\n");
85 #endif
86         if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
87                 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
88         if (nr_cpu_ids != NR_CPUS)
89                 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
90 #ifdef CONFIG_RCU_BOOST
91         pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
92 #endif
93 }
94
95 #ifdef CONFIG_PREEMPT_RCU
96
97 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
98 static struct rcu_state *rcu_state_p = &rcu_preempt_state;
99
100 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
101 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
102                                bool wake);
103
104 /*
105  * Tell them what RCU they are running.
106  */
107 static void __init rcu_bootup_announce(void)
108 {
109         pr_info("Preemptible hierarchical RCU implementation.\n");
110         rcu_bootup_announce_oddness();
111 }
112
113 /*
114  * Record a preemptible-RCU quiescent state for the specified CPU.  Note
115  * that this just means that the task currently running on the CPU is
116  * not in a quiescent state.  There might be any number of tasks blocked
117  * while in an RCU read-side critical section.
118  *
119  * As with the other rcu_*_qs() functions, callers to this function
120  * must disable preemption.
121  */
122 static void rcu_preempt_qs(void)
123 {
124         if (!__this_cpu_read(rcu_preempt_data.passed_quiesce)) {
125                 trace_rcu_grace_period(TPS("rcu_preempt"),
126                                        __this_cpu_read(rcu_preempt_data.gpnum),
127                                        TPS("cpuqs"));
128                 __this_cpu_write(rcu_preempt_data.passed_quiesce, 1);
129                 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
130                 current->rcu_read_unlock_special.b.need_qs = false;
131         }
132 }
133
134 /*
135  * We have entered the scheduler, and the current task might soon be
136  * context-switched away from.  If this task is in an RCU read-side
137  * critical section, we will no longer be able to rely on the CPU to
138  * record that fact, so we enqueue the task on the blkd_tasks list.
139  * The task will dequeue itself when it exits the outermost enclosing
140  * RCU read-side critical section.  Therefore, the current grace period
141  * cannot be permitted to complete until the blkd_tasks list entries
142  * predating the current grace period drain, in other words, until
143  * rnp->gp_tasks becomes NULL.
144  *
145  * Caller must disable preemption.
146  */
147 static void rcu_preempt_note_context_switch(void)
148 {
149         struct task_struct *t = current;
150         unsigned long flags;
151         struct rcu_data *rdp;
152         struct rcu_node *rnp;
153
154         if (t->rcu_read_lock_nesting > 0 &&
155             !t->rcu_read_unlock_special.b.blocked) {
156
157                 /* Possibly blocking in an RCU read-side critical section. */
158                 rdp = this_cpu_ptr(rcu_preempt_state.rda);
159                 rnp = rdp->mynode;
160                 raw_spin_lock_irqsave(&rnp->lock, flags);
161                 smp_mb__after_unlock_lock();
162                 t->rcu_read_unlock_special.b.blocked = true;
163                 t->rcu_blocked_node = rnp;
164
165                 /*
166                  * If this CPU has already checked in, then this task
167                  * will hold up the next grace period rather than the
168                  * current grace period.  Queue the task accordingly.
169                  * If the task is queued for the current grace period
170                  * (i.e., this CPU has not yet passed through a quiescent
171                  * state for the current grace period), then as long
172                  * as that task remains queued, the current grace period
173                  * cannot end.  Note that there is some uncertainty as
174                  * to exactly when the current grace period started.
175                  * We take a conservative approach, which can result
176                  * in unnecessarily waiting on tasks that started very
177                  * slightly after the current grace period began.  C'est
178                  * la vie!!!
179                  *
180                  * But first, note that the current CPU must still be
181                  * on line!
182                  */
183                 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
184                 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
185                 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
186                         list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
187                         rnp->gp_tasks = &t->rcu_node_entry;
188 #ifdef CONFIG_RCU_BOOST
189                         if (rnp->boost_tasks != NULL)
190                                 rnp->boost_tasks = rnp->gp_tasks;
191 #endif /* #ifdef CONFIG_RCU_BOOST */
192                 } else {
193                         list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
194                         if (rnp->qsmask & rdp->grpmask)
195                                 rnp->gp_tasks = &t->rcu_node_entry;
196                 }
197                 trace_rcu_preempt_task(rdp->rsp->name,
198                                        t->pid,
199                                        (rnp->qsmask & rdp->grpmask)
200                                        ? rnp->gpnum
201                                        : rnp->gpnum + 1);
202                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
203         } else if (t->rcu_read_lock_nesting < 0 &&
204                    t->rcu_read_unlock_special.s) {
205
206                 /*
207                  * Complete exit from RCU read-side critical section on
208                  * behalf of preempted instance of __rcu_read_unlock().
209                  */
210                 rcu_read_unlock_special(t);
211         }
212
213         /*
214          * Either we were not in an RCU read-side critical section to
215          * begin with, or we have now recorded that critical section
216          * globally.  Either way, we can now note a quiescent state
217          * for this CPU.  Again, if we were in an RCU read-side critical
218          * section, and if that critical section was blocking the current
219          * grace period, then the fact that the task has been enqueued
220          * means that we continue to block the current grace period.
221          */
222         rcu_preempt_qs();
223 }
224
225 /*
226  * Check for preempted RCU readers blocking the current grace period
227  * for the specified rcu_node structure.  If the caller needs a reliable
228  * answer, it must hold the rcu_node's ->lock.
229  */
230 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
231 {
232         return rnp->gp_tasks != NULL;
233 }
234
235 /*
236  * Record a quiescent state for all tasks that were previously queued
237  * on the specified rcu_node structure and that were blocking the current
238  * RCU grace period.  The caller must hold the specified rnp->lock with
239  * irqs disabled, and this lock is released upon return, but irqs remain
240  * disabled.
241  */
242 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
243         __releases(rnp->lock)
244 {
245         unsigned long mask;
246         struct rcu_node *rnp_p;
247
248         if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
249                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
250                 return;  /* Still need more quiescent states! */
251         }
252
253         rnp_p = rnp->parent;
254         if (rnp_p == NULL) {
255                 /*
256                  * Either there is only one rcu_node in the tree,
257                  * or tasks were kicked up to root rcu_node due to
258                  * CPUs going offline.
259                  */
260                 rcu_report_qs_rsp(&rcu_preempt_state, flags);
261                 return;
262         }
263
264         /* Report up the rest of the hierarchy. */
265         mask = rnp->grpmask;
266         raw_spin_unlock(&rnp->lock);    /* irqs remain disabled. */
267         raw_spin_lock(&rnp_p->lock);    /* irqs already disabled. */
268         smp_mb__after_unlock_lock();
269         rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
270 }
271
272 /*
273  * Advance a ->blkd_tasks-list pointer to the next entry, instead
274  * returning NULL if at the end of the list.
275  */
276 static struct list_head *rcu_next_node_entry(struct task_struct *t,
277                                              struct rcu_node *rnp)
278 {
279         struct list_head *np;
280
281         np = t->rcu_node_entry.next;
282         if (np == &rnp->blkd_tasks)
283                 np = NULL;
284         return np;
285 }
286
287 /*
288  * Return true if the specified rcu_node structure has tasks that were
289  * preempted within an RCU read-side critical section.
290  */
291 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
292 {
293         return !list_empty(&rnp->blkd_tasks);
294 }
295
296 /*
297  * Handle special cases during rcu_read_unlock(), such as needing to
298  * notify RCU core processing or task having blocked during the RCU
299  * read-side critical section.
300  */
301 void rcu_read_unlock_special(struct task_struct *t)
302 {
303         bool empty;
304         bool empty_exp;
305         bool empty_norm;
306         bool empty_exp_now;
307         unsigned long flags;
308         struct list_head *np;
309 #ifdef CONFIG_RCU_BOOST
310         bool drop_boost_mutex = false;
311 #endif /* #ifdef CONFIG_RCU_BOOST */
312         struct rcu_node *rnp;
313         union rcu_special special;
314
315         /* NMI handlers cannot block and cannot safely manipulate state. */
316         if (in_nmi())
317                 return;
318
319         local_irq_save(flags);
320
321         /*
322          * If RCU core is waiting for this CPU to exit critical section,
323          * let it know that we have done so.  Because irqs are disabled,
324          * t->rcu_read_unlock_special cannot change.
325          */
326         special = t->rcu_read_unlock_special;
327         if (special.b.need_qs) {
328                 rcu_preempt_qs();
329                 t->rcu_read_unlock_special.b.need_qs = false;
330                 if (!t->rcu_read_unlock_special.s) {
331                         local_irq_restore(flags);
332                         return;
333                 }
334         }
335
336         /* Hardware IRQ handlers cannot block, complain if they get here. */
337         if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
338                 local_irq_restore(flags);
339                 return;
340         }
341
342         /* Clean up if blocked during RCU read-side critical section. */
343         if (special.b.blocked) {
344                 t->rcu_read_unlock_special.b.blocked = false;
345
346                 /*
347                  * Remove this task from the list it blocked on.  The
348                  * task can migrate while we acquire the lock, but at
349                  * most one time.  So at most two passes through loop.
350                  */
351                 for (;;) {
352                         rnp = t->rcu_blocked_node;
353                         raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
354                         smp_mb__after_unlock_lock();
355                         if (rnp == t->rcu_blocked_node)
356                                 break;
357                         raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
358                 }
359                 empty = !rcu_preempt_has_tasks(rnp);
360                 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
361                 empty_exp = !rcu_preempted_readers_exp(rnp);
362                 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
363                 np = rcu_next_node_entry(t, rnp);
364                 list_del_init(&t->rcu_node_entry);
365                 t->rcu_blocked_node = NULL;
366                 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
367                                                 rnp->gpnum, t->pid);
368                 if (&t->rcu_node_entry == rnp->gp_tasks)
369                         rnp->gp_tasks = np;
370                 if (&t->rcu_node_entry == rnp->exp_tasks)
371                         rnp->exp_tasks = np;
372 #ifdef CONFIG_RCU_BOOST
373                 if (&t->rcu_node_entry == rnp->boost_tasks)
374                         rnp->boost_tasks = np;
375                 /* Snapshot ->boost_mtx ownership with rcu_node lock held. */
376                 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
377 #endif /* #ifdef CONFIG_RCU_BOOST */
378
379                 /*
380                  * If this was the last task on the list, go see if we
381                  * need to propagate ->qsmaskinit bit clearing up the
382                  * rcu_node tree.
383                  */
384                 if (!empty && !rcu_preempt_has_tasks(rnp))
385                         rcu_cleanup_dead_rnp(rnp);
386
387                 /*
388                  * If this was the last task on the current list, and if
389                  * we aren't waiting on any CPUs, report the quiescent state.
390                  * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
391                  * so we must take a snapshot of the expedited state.
392                  */
393                 empty_exp_now = !rcu_preempted_readers_exp(rnp);
394                 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
395                         trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
396                                                          rnp->gpnum,
397                                                          0, rnp->qsmask,
398                                                          rnp->level,
399                                                          rnp->grplo,
400                                                          rnp->grphi,
401                                                          !!rnp->gp_tasks);
402                         rcu_report_unblock_qs_rnp(rnp, flags);
403                 } else {
404                         raw_spin_unlock_irqrestore(&rnp->lock, flags);
405                 }
406
407 #ifdef CONFIG_RCU_BOOST
408                 /* Unboost if we were boosted. */
409                 if (drop_boost_mutex)
410                         rt_mutex_unlock(&rnp->boost_mtx);
411 #endif /* #ifdef CONFIG_RCU_BOOST */
412
413                 /*
414                  * If this was the last task on the expedited lists,
415                  * then we need to report up the rcu_node hierarchy.
416                  */
417                 if (!empty_exp && empty_exp_now)
418                         rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
419         } else {
420                 local_irq_restore(flags);
421         }
422 }
423
424 /*
425  * Dump detailed information for all tasks blocking the current RCU
426  * grace period on the specified rcu_node structure.
427  */
428 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
429 {
430         unsigned long flags;
431         struct task_struct *t;
432
433         raw_spin_lock_irqsave(&rnp->lock, flags);
434         if (!rcu_preempt_blocked_readers_cgp(rnp)) {
435                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
436                 return;
437         }
438         t = list_entry(rnp->gp_tasks,
439                        struct task_struct, rcu_node_entry);
440         list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
441                 sched_show_task(t);
442         raw_spin_unlock_irqrestore(&rnp->lock, flags);
443 }
444
445 /*
446  * Dump detailed information for all tasks blocking the current RCU
447  * grace period.
448  */
449 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
450 {
451         struct rcu_node *rnp = rcu_get_root(rsp);
452
453         rcu_print_detail_task_stall_rnp(rnp);
454         rcu_for_each_leaf_node(rsp, rnp)
455                 rcu_print_detail_task_stall_rnp(rnp);
456 }
457
458 #ifdef CONFIG_RCU_CPU_STALL_INFO
459
460 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
461 {
462         pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
463                rnp->level, rnp->grplo, rnp->grphi);
464 }
465
466 static void rcu_print_task_stall_end(void)
467 {
468         pr_cont("\n");
469 }
470
471 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
472
473 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
474 {
475 }
476
477 static void rcu_print_task_stall_end(void)
478 {
479 }
480
481 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
482
483 /*
484  * Scan the current list of tasks blocked within RCU read-side critical
485  * sections, printing out the tid of each.
486  */
487 static int rcu_print_task_stall(struct rcu_node *rnp)
488 {
489         struct task_struct *t;
490         int ndetected = 0;
491
492         if (!rcu_preempt_blocked_readers_cgp(rnp))
493                 return 0;
494         rcu_print_task_stall_begin(rnp);
495         t = list_entry(rnp->gp_tasks,
496                        struct task_struct, rcu_node_entry);
497         list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
498                 pr_cont(" P%d", t->pid);
499                 ndetected++;
500         }
501         rcu_print_task_stall_end();
502         return ndetected;
503 }
504
505 /*
506  * Check that the list of blocked tasks for the newly completed grace
507  * period is in fact empty.  It is a serious bug to complete a grace
508  * period that still has RCU readers blocked!  This function must be
509  * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
510  * must be held by the caller.
511  *
512  * Also, if there are blocked tasks on the list, they automatically
513  * block the newly created grace period, so set up ->gp_tasks accordingly.
514  */
515 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
516 {
517         WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
518         if (rcu_preempt_has_tasks(rnp))
519                 rnp->gp_tasks = rnp->blkd_tasks.next;
520         WARN_ON_ONCE(rnp->qsmask);
521 }
522
523 /*
524  * Check for a quiescent state from the current CPU.  When a task blocks,
525  * the task is recorded in the corresponding CPU's rcu_node structure,
526  * which is checked elsewhere.
527  *
528  * Caller must disable hard irqs.
529  */
530 static void rcu_preempt_check_callbacks(void)
531 {
532         struct task_struct *t = current;
533
534         if (t->rcu_read_lock_nesting == 0) {
535                 rcu_preempt_qs();
536                 return;
537         }
538         if (t->rcu_read_lock_nesting > 0 &&
539             __this_cpu_read(rcu_preempt_data.qs_pending) &&
540             !__this_cpu_read(rcu_preempt_data.passed_quiesce))
541                 t->rcu_read_unlock_special.b.need_qs = true;
542 }
543
544 #ifdef CONFIG_RCU_BOOST
545
546 static void rcu_preempt_do_callbacks(void)
547 {
548         rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
549 }
550
551 #endif /* #ifdef CONFIG_RCU_BOOST */
552
553 /*
554  * Queue a preemptible-RCU callback for invocation after a grace period.
555  */
556 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
557 {
558         __call_rcu(head, func, &rcu_preempt_state, -1, 0);
559 }
560 EXPORT_SYMBOL_GPL(call_rcu);
561
562 /**
563  * synchronize_rcu - wait until a grace period has elapsed.
564  *
565  * Control will return to the caller some time after a full grace
566  * period has elapsed, in other words after all currently executing RCU
567  * read-side critical sections have completed.  Note, however, that
568  * upon return from synchronize_rcu(), the caller might well be executing
569  * concurrently with new RCU read-side critical sections that began while
570  * synchronize_rcu() was waiting.  RCU read-side critical sections are
571  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
572  *
573  * See the description of synchronize_sched() for more detailed information
574  * on memory ordering guarantees.
575  */
576 void synchronize_rcu(void)
577 {
578         rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
579                            !lock_is_held(&rcu_lock_map) &&
580                            !lock_is_held(&rcu_sched_lock_map),
581                            "Illegal synchronize_rcu() in RCU read-side critical section");
582         if (!rcu_scheduler_active)
583                 return;
584         if (rcu_expedited)
585                 synchronize_rcu_expedited();
586         else
587                 wait_rcu_gp(call_rcu);
588 }
589 EXPORT_SYMBOL_GPL(synchronize_rcu);
590
591 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
592 static unsigned long sync_rcu_preempt_exp_count;
593 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
594
595 /*
596  * Return non-zero if there are any tasks in RCU read-side critical
597  * sections blocking the current preemptible-RCU expedited grace period.
598  * If there is no preemptible-RCU expedited grace period currently in
599  * progress, returns zero unconditionally.
600  */
601 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
602 {
603         return rnp->exp_tasks != NULL;
604 }
605
606 /*
607  * return non-zero if there is no RCU expedited grace period in progress
608  * for the specified rcu_node structure, in other words, if all CPUs and
609  * tasks covered by the specified rcu_node structure have done their bit
610  * for the current expedited grace period.  Works only for preemptible
611  * RCU -- other RCU implementation use other means.
612  *
613  * Caller must hold sync_rcu_preempt_exp_mutex.
614  */
615 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
616 {
617         return !rcu_preempted_readers_exp(rnp) &&
618                ACCESS_ONCE(rnp->expmask) == 0;
619 }
620
621 /*
622  * Report the exit from RCU read-side critical section for the last task
623  * that queued itself during or before the current expedited preemptible-RCU
624  * grace period.  This event is reported either to the rcu_node structure on
625  * which the task was queued or to one of that rcu_node structure's ancestors,
626  * recursively up the tree.  (Calm down, calm down, we do the recursion
627  * iteratively!)
628  *
629  * Caller must hold sync_rcu_preempt_exp_mutex.
630  */
631 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
632                                bool wake)
633 {
634         unsigned long flags;
635         unsigned long mask;
636
637         raw_spin_lock_irqsave(&rnp->lock, flags);
638         smp_mb__after_unlock_lock();
639         for (;;) {
640                 if (!sync_rcu_preempt_exp_done(rnp)) {
641                         raw_spin_unlock_irqrestore(&rnp->lock, flags);
642                         break;
643                 }
644                 if (rnp->parent == NULL) {
645                         raw_spin_unlock_irqrestore(&rnp->lock, flags);
646                         if (wake) {
647                                 smp_mb(); /* EGP done before wake_up(). */
648                                 wake_up(&sync_rcu_preempt_exp_wq);
649                         }
650                         break;
651                 }
652                 mask = rnp->grpmask;
653                 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
654                 rnp = rnp->parent;
655                 raw_spin_lock(&rnp->lock); /* irqs already disabled */
656                 smp_mb__after_unlock_lock();
657                 rnp->expmask &= ~mask;
658         }
659 }
660
661 /*
662  * Snapshot the tasks blocking the newly started preemptible-RCU expedited
663  * grace period for the specified rcu_node structure, phase 1.  If there
664  * are such tasks, set the ->expmask bits up the rcu_node tree and also
665  * set the ->expmask bits on the leaf rcu_node structures to tell phase 2
666  * that work is needed here.
667  *
668  * Caller must hold sync_rcu_preempt_exp_mutex.
669  */
670 static void
671 sync_rcu_preempt_exp_init1(struct rcu_state *rsp, struct rcu_node *rnp)
672 {
673         unsigned long flags;
674         unsigned long mask;
675         struct rcu_node *rnp_up;
676
677         raw_spin_lock_irqsave(&rnp->lock, flags);
678         smp_mb__after_unlock_lock();
679         WARN_ON_ONCE(rnp->expmask);
680         WARN_ON_ONCE(rnp->exp_tasks);
681         if (!rcu_preempt_has_tasks(rnp)) {
682                 /* No blocked tasks, nothing to do. */
683                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
684                 return;
685         }
686         /* Call for Phase 2 and propagate ->expmask bits up the tree. */
687         rnp->expmask = 1;
688         rnp_up = rnp;
689         while (rnp_up->parent) {
690                 mask = rnp_up->grpmask;
691                 rnp_up = rnp_up->parent;
692                 if (rnp_up->expmask & mask)
693                         break;
694                 raw_spin_lock(&rnp_up->lock); /* irqs already off */
695                 smp_mb__after_unlock_lock();
696                 rnp_up->expmask |= mask;
697                 raw_spin_unlock(&rnp_up->lock); /* irqs still off */
698         }
699         raw_spin_unlock_irqrestore(&rnp->lock, flags);
700 }
701
702 /*
703  * Snapshot the tasks blocking the newly started preemptible-RCU expedited
704  * grace period for the specified rcu_node structure, phase 2.  If the
705  * leaf rcu_node structure has its ->expmask field set, check for tasks.
706  * If there are some, clear ->expmask and set ->exp_tasks accordingly,
707  * then initiate RCU priority boosting.  Otherwise, clear ->expmask and
708  * invoke rcu_report_exp_rnp() to clear out the upper-level ->expmask bits,
709  * enabling rcu_read_unlock_special() to do the bit-clearing.
710  *
711  * Caller must hold sync_rcu_preempt_exp_mutex.
712  */
713 static void
714 sync_rcu_preempt_exp_init2(struct rcu_state *rsp, struct rcu_node *rnp)
715 {
716         unsigned long flags;
717
718         raw_spin_lock_irqsave(&rnp->lock, flags);
719         smp_mb__after_unlock_lock();
720         if (!rnp->expmask) {
721                 /* Phase 1 didn't do anything, so Phase 2 doesn't either. */
722                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
723                 return;
724         }
725
726         /* Phase 1 is over. */
727         rnp->expmask = 0;
728
729         /*
730          * If there are still blocked tasks, set up ->exp_tasks so that
731          * rcu_read_unlock_special() will wake us and then boost them.
732          */
733         if (rcu_preempt_has_tasks(rnp)) {
734                 rnp->exp_tasks = rnp->blkd_tasks.next;
735                 rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
736                 return;
737         }
738
739         /* No longer any blocked tasks, so undo bit setting. */
740         raw_spin_unlock_irqrestore(&rnp->lock, flags);
741         rcu_report_exp_rnp(rsp, rnp, false);
742 }
743
744 /**
745  * synchronize_rcu_expedited - Brute-force RCU grace period
746  *
747  * Wait for an RCU-preempt grace period, but expedite it.  The basic
748  * idea is to invoke synchronize_sched_expedited() to push all the tasks to
749  * the ->blkd_tasks lists and wait for this list to drain.  This consumes
750  * significant time on all CPUs and is unfriendly to real-time workloads,
751  * so is thus not recommended for any sort of common-case code.
752  * In fact, if you are using synchronize_rcu_expedited() in a loop,
753  * please restructure your code to batch your updates, and then Use a
754  * single synchronize_rcu() instead.
755  */
756 void synchronize_rcu_expedited(void)
757 {
758         struct rcu_node *rnp;
759         struct rcu_state *rsp = &rcu_preempt_state;
760         unsigned long snap;
761         int trycount = 0;
762
763         smp_mb(); /* Caller's modifications seen first by other CPUs. */
764         snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
765         smp_mb(); /* Above access cannot bleed into critical section. */
766
767         /*
768          * Block CPU-hotplug operations.  This means that any CPU-hotplug
769          * operation that finds an rcu_node structure with tasks in the
770          * process of being boosted will know that all tasks blocking
771          * this expedited grace period will already be in the process of
772          * being boosted.  This simplifies the process of moving tasks
773          * from leaf to root rcu_node structures.
774          */
775         if (!try_get_online_cpus()) {
776                 /* CPU-hotplug operation in flight, fall back to normal GP. */
777                 wait_rcu_gp(call_rcu);
778                 return;
779         }
780
781         /*
782          * Acquire lock, falling back to synchronize_rcu() if too many
783          * lock-acquisition failures.  Of course, if someone does the
784          * expedited grace period for us, just leave.
785          */
786         while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
787                 if (ULONG_CMP_LT(snap,
788                     ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
789                         put_online_cpus();
790                         goto mb_ret; /* Others did our work for us. */
791                 }
792                 if (trycount++ < 10) {
793                         udelay(trycount * num_online_cpus());
794                 } else {
795                         put_online_cpus();
796                         wait_rcu_gp(call_rcu);
797                         return;
798                 }
799         }
800         if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
801                 put_online_cpus();
802                 goto unlock_mb_ret; /* Others did our work for us. */
803         }
804
805         /* force all RCU readers onto ->blkd_tasks lists. */
806         synchronize_sched_expedited();
807
808         /*
809          * Snapshot current state of ->blkd_tasks lists into ->expmask.
810          * Phase 1 sets bits and phase 2 permits rcu_read_unlock_special()
811          * to start clearing them.  Doing this in one phase leads to
812          * strange races between setting and clearing bits, so just say "no"!
813          */
814         rcu_for_each_leaf_node(rsp, rnp)
815                 sync_rcu_preempt_exp_init1(rsp, rnp);
816         rcu_for_each_leaf_node(rsp, rnp)
817                 sync_rcu_preempt_exp_init2(rsp, rnp);
818
819         put_online_cpus();
820
821         /* Wait for snapshotted ->blkd_tasks lists to drain. */
822         rnp = rcu_get_root(rsp);
823         wait_event(sync_rcu_preempt_exp_wq,
824                    sync_rcu_preempt_exp_done(rnp));
825
826         /* Clean up and exit. */
827         smp_mb(); /* ensure expedited GP seen before counter increment. */
828         ACCESS_ONCE(sync_rcu_preempt_exp_count) =
829                                         sync_rcu_preempt_exp_count + 1;
830 unlock_mb_ret:
831         mutex_unlock(&sync_rcu_preempt_exp_mutex);
832 mb_ret:
833         smp_mb(); /* ensure subsequent action seen after grace period. */
834 }
835 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
836
837 /**
838  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
839  *
840  * Note that this primitive does not necessarily wait for an RCU grace period
841  * to complete.  For example, if there are no RCU callbacks queued anywhere
842  * in the system, then rcu_barrier() is within its rights to return
843  * immediately, without waiting for anything, much less an RCU grace period.
844  */
845 void rcu_barrier(void)
846 {
847         _rcu_barrier(&rcu_preempt_state);
848 }
849 EXPORT_SYMBOL_GPL(rcu_barrier);
850
851 /*
852  * Initialize preemptible RCU's state structures.
853  */
854 static void __init __rcu_init_preempt(void)
855 {
856         rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
857 }
858
859 /*
860  * Check for a task exiting while in a preemptible-RCU read-side
861  * critical section, clean up if so.  No need to issue warnings,
862  * as debug_check_no_locks_held() already does this if lockdep
863  * is enabled.
864  */
865 void exit_rcu(void)
866 {
867         struct task_struct *t = current;
868
869         if (likely(list_empty(&current->rcu_node_entry)))
870                 return;
871         t->rcu_read_lock_nesting = 1;
872         barrier();
873         t->rcu_read_unlock_special.b.blocked = true;
874         __rcu_read_unlock();
875 }
876
877 #else /* #ifdef CONFIG_PREEMPT_RCU */
878
879 static struct rcu_state *rcu_state_p = &rcu_sched_state;
880
881 /*
882  * Tell them what RCU they are running.
883  */
884 static void __init rcu_bootup_announce(void)
885 {
886         pr_info("Hierarchical RCU implementation.\n");
887         rcu_bootup_announce_oddness();
888 }
889
890 /*
891  * Because preemptible RCU does not exist, we never have to check for
892  * CPUs being in quiescent states.
893  */
894 static void rcu_preempt_note_context_switch(void)
895 {
896 }
897
898 /*
899  * Because preemptible RCU does not exist, there are never any preempted
900  * RCU readers.
901  */
902 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
903 {
904         return 0;
905 }
906
907 #ifdef CONFIG_HOTPLUG_CPU
908
909 /*
910  * Because there is no preemptible RCU, there can be no readers blocked.
911  */
912 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
913 {
914         return false;
915 }
916
917 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
918
919 /*
920  * Because preemptible RCU does not exist, we never have to check for
921  * tasks blocked within RCU read-side critical sections.
922  */
923 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
924 {
925 }
926
927 /*
928  * Because preemptible RCU does not exist, we never have to check for
929  * tasks blocked within RCU read-side critical sections.
930  */
931 static int rcu_print_task_stall(struct rcu_node *rnp)
932 {
933         return 0;
934 }
935
936 /*
937  * Because there is no preemptible RCU, there can be no readers blocked,
938  * so there is no need to check for blocked tasks.  So check only for
939  * bogus qsmask values.
940  */
941 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
942 {
943         WARN_ON_ONCE(rnp->qsmask);
944 }
945
946 /*
947  * Because preemptible RCU does not exist, it never has any callbacks
948  * to check.
949  */
950 static void rcu_preempt_check_callbacks(void)
951 {
952 }
953
954 /*
955  * Wait for an rcu-preempt grace period, but make it happen quickly.
956  * But because preemptible RCU does not exist, map to rcu-sched.
957  */
958 void synchronize_rcu_expedited(void)
959 {
960         synchronize_sched_expedited();
961 }
962 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
963
964 /*
965  * Because preemptible RCU does not exist, rcu_barrier() is just
966  * another name for rcu_barrier_sched().
967  */
968 void rcu_barrier(void)
969 {
970         rcu_barrier_sched();
971 }
972 EXPORT_SYMBOL_GPL(rcu_barrier);
973
974 /*
975  * Because preemptible RCU does not exist, it need not be initialized.
976  */
977 static void __init __rcu_init_preempt(void)
978 {
979 }
980
981 /*
982  * Because preemptible RCU does not exist, tasks cannot possibly exit
983  * while in preemptible RCU read-side critical sections.
984  */
985 void exit_rcu(void)
986 {
987 }
988
989 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
990
991 #ifdef CONFIG_RCU_BOOST
992
993 #include "../locking/rtmutex_common.h"
994
995 #ifdef CONFIG_RCU_TRACE
996
997 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
998 {
999         if (!rcu_preempt_has_tasks(rnp))
1000                 rnp->n_balk_blkd_tasks++;
1001         else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1002                 rnp->n_balk_exp_gp_tasks++;
1003         else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1004                 rnp->n_balk_boost_tasks++;
1005         else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1006                 rnp->n_balk_notblocked++;
1007         else if (rnp->gp_tasks != NULL &&
1008                  ULONG_CMP_LT(jiffies, rnp->boost_time))
1009                 rnp->n_balk_notyet++;
1010         else
1011                 rnp->n_balk_nos++;
1012 }
1013
1014 #else /* #ifdef CONFIG_RCU_TRACE */
1015
1016 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1017 {
1018 }
1019
1020 #endif /* #else #ifdef CONFIG_RCU_TRACE */
1021
1022 static void rcu_wake_cond(struct task_struct *t, int status)
1023 {
1024         /*
1025          * If the thread is yielding, only wake it when this
1026          * is invoked from idle
1027          */
1028         if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1029                 wake_up_process(t);
1030 }
1031
1032 /*
1033  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1034  * or ->boost_tasks, advancing the pointer to the next task in the
1035  * ->blkd_tasks list.
1036  *
1037  * Note that irqs must be enabled: boosting the task can block.
1038  * Returns 1 if there are more tasks needing to be boosted.
1039  */
1040 static int rcu_boost(struct rcu_node *rnp)
1041 {
1042         unsigned long flags;
1043         struct task_struct *t;
1044         struct list_head *tb;
1045
1046         if (ACCESS_ONCE(rnp->exp_tasks) == NULL &&
1047             ACCESS_ONCE(rnp->boost_tasks) == NULL)
1048                 return 0;  /* Nothing left to boost. */
1049
1050         raw_spin_lock_irqsave(&rnp->lock, flags);
1051         smp_mb__after_unlock_lock();
1052
1053         /*
1054          * Recheck under the lock: all tasks in need of boosting
1055          * might exit their RCU read-side critical sections on their own.
1056          */
1057         if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1058                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1059                 return 0;
1060         }
1061
1062         /*
1063          * Preferentially boost tasks blocking expedited grace periods.
1064          * This cannot starve the normal grace periods because a second
1065          * expedited grace period must boost all blocked tasks, including
1066          * those blocking the pre-existing normal grace period.
1067          */
1068         if (rnp->exp_tasks != NULL) {
1069                 tb = rnp->exp_tasks;
1070                 rnp->n_exp_boosts++;
1071         } else {
1072                 tb = rnp->boost_tasks;
1073                 rnp->n_normal_boosts++;
1074         }
1075         rnp->n_tasks_boosted++;
1076
1077         /*
1078          * We boost task t by manufacturing an rt_mutex that appears to
1079          * be held by task t.  We leave a pointer to that rt_mutex where
1080          * task t can find it, and task t will release the mutex when it
1081          * exits its outermost RCU read-side critical section.  Then
1082          * simply acquiring this artificial rt_mutex will boost task
1083          * t's priority.  (Thanks to tglx for suggesting this approach!)
1084          *
1085          * Note that task t must acquire rnp->lock to remove itself from
1086          * the ->blkd_tasks list, which it will do from exit() if from
1087          * nowhere else.  We therefore are guaranteed that task t will
1088          * stay around at least until we drop rnp->lock.  Note that
1089          * rnp->lock also resolves races between our priority boosting
1090          * and task t's exiting its outermost RCU read-side critical
1091          * section.
1092          */
1093         t = container_of(tb, struct task_struct, rcu_node_entry);
1094         rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1095         raw_spin_unlock_irqrestore(&rnp->lock, flags);
1096         /* Lock only for side effect: boosts task t's priority. */
1097         rt_mutex_lock(&rnp->boost_mtx);
1098         rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1099
1100         return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1101                ACCESS_ONCE(rnp->boost_tasks) != NULL;
1102 }
1103
1104 /*
1105  * Priority-boosting kthread.  One per leaf rcu_node and one for the
1106  * root rcu_node.
1107  */
1108 static int rcu_boost_kthread(void *arg)
1109 {
1110         struct rcu_node *rnp = (struct rcu_node *)arg;
1111         int spincnt = 0;
1112         int more2boost;
1113
1114         trace_rcu_utilization(TPS("Start boost kthread@init"));
1115         for (;;) {
1116                 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1117                 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1118                 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1119                 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1120                 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1121                 more2boost = rcu_boost(rnp);
1122                 if (more2boost)
1123                         spincnt++;
1124                 else
1125                         spincnt = 0;
1126                 if (spincnt > 10) {
1127                         rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1128                         trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1129                         schedule_timeout_interruptible(2);
1130                         trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1131                         spincnt = 0;
1132                 }
1133         }
1134         /* NOTREACHED */
1135         trace_rcu_utilization(TPS("End boost kthread@notreached"));
1136         return 0;
1137 }
1138
1139 /*
1140  * Check to see if it is time to start boosting RCU readers that are
1141  * blocking the current grace period, and, if so, tell the per-rcu_node
1142  * kthread to start boosting them.  If there is an expedited grace
1143  * period in progress, it is always time to boost.
1144  *
1145  * The caller must hold rnp->lock, which this function releases.
1146  * The ->boost_kthread_task is immortal, so we don't need to worry
1147  * about it going away.
1148  */
1149 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1150         __releases(rnp->lock)
1151 {
1152         struct task_struct *t;
1153
1154         if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1155                 rnp->n_balk_exp_gp_tasks++;
1156                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1157                 return;
1158         }
1159         if (rnp->exp_tasks != NULL ||
1160             (rnp->gp_tasks != NULL &&
1161              rnp->boost_tasks == NULL &&
1162              rnp->qsmask == 0 &&
1163              ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1164                 if (rnp->exp_tasks == NULL)
1165                         rnp->boost_tasks = rnp->gp_tasks;
1166                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1167                 t = rnp->boost_kthread_task;
1168                 if (t)
1169                         rcu_wake_cond(t, rnp->boost_kthread_status);
1170         } else {
1171                 rcu_initiate_boost_trace(rnp);
1172                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1173         }
1174 }
1175
1176 /*
1177  * Wake up the per-CPU kthread to invoke RCU callbacks.
1178  */
1179 static void invoke_rcu_callbacks_kthread(void)
1180 {
1181         unsigned long flags;
1182
1183         local_irq_save(flags);
1184         __this_cpu_write(rcu_cpu_has_work, 1);
1185         if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1186             current != __this_cpu_read(rcu_cpu_kthread_task)) {
1187                 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1188                               __this_cpu_read(rcu_cpu_kthread_status));
1189         }
1190         local_irq_restore(flags);
1191 }
1192
1193 /*
1194  * Is the current CPU running the RCU-callbacks kthread?
1195  * Caller must have preemption disabled.
1196  */
1197 static bool rcu_is_callbacks_kthread(void)
1198 {
1199         return __this_cpu_read(rcu_cpu_kthread_task) == current;
1200 }
1201
1202 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1203
1204 /*
1205  * Do priority-boost accounting for the start of a new grace period.
1206  */
1207 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1208 {
1209         rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1210 }
1211
1212 /*
1213  * Create an RCU-boost kthread for the specified node if one does not
1214  * already exist.  We only create this kthread for preemptible RCU.
1215  * Returns zero if all is well, a negated errno otherwise.
1216  */
1217 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1218                                                  struct rcu_node *rnp)
1219 {
1220         int rnp_index = rnp - &rsp->node[0];
1221         unsigned long flags;
1222         struct sched_param sp;
1223         struct task_struct *t;
1224
1225         if (&rcu_preempt_state != rsp)
1226                 return 0;
1227
1228         if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1229                 return 0;
1230
1231         rsp->boost = 1;
1232         if (rnp->boost_kthread_task != NULL)
1233                 return 0;
1234         t = kthread_create(rcu_boost_kthread, (void *)rnp,
1235                            "rcub/%d", rnp_index);
1236         if (IS_ERR(t))
1237                 return PTR_ERR(t);
1238         raw_spin_lock_irqsave(&rnp->lock, flags);
1239         smp_mb__after_unlock_lock();
1240         rnp->boost_kthread_task = t;
1241         raw_spin_unlock_irqrestore(&rnp->lock, flags);
1242         sp.sched_priority = kthread_prio;
1243         sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1244         wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1245         return 0;
1246 }
1247
1248 static void rcu_kthread_do_work(void)
1249 {
1250         rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1251         rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1252         rcu_preempt_do_callbacks();
1253 }
1254
1255 static void rcu_cpu_kthread_setup(unsigned int cpu)
1256 {
1257         struct sched_param sp;
1258
1259         sp.sched_priority = kthread_prio;
1260         sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1261 }
1262
1263 static void rcu_cpu_kthread_park(unsigned int cpu)
1264 {
1265         per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1266 }
1267
1268 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1269 {
1270         return __this_cpu_read(rcu_cpu_has_work);
1271 }
1272
1273 /*
1274  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1275  * RCU softirq used in flavors and configurations of RCU that do not
1276  * support RCU priority boosting.
1277  */
1278 static void rcu_cpu_kthread(unsigned int cpu)
1279 {
1280         unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1281         char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1282         int spincnt;
1283
1284         for (spincnt = 0; spincnt < 10; spincnt++) {
1285                 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1286                 local_bh_disable();
1287                 *statusp = RCU_KTHREAD_RUNNING;
1288                 this_cpu_inc(rcu_cpu_kthread_loops);
1289                 local_irq_disable();
1290                 work = *workp;
1291                 *workp = 0;
1292                 local_irq_enable();
1293                 if (work)
1294                         rcu_kthread_do_work();
1295                 local_bh_enable();
1296                 if (*workp == 0) {
1297                         trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1298                         *statusp = RCU_KTHREAD_WAITING;
1299                         return;
1300                 }
1301         }
1302         *statusp = RCU_KTHREAD_YIELDING;
1303         trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1304         schedule_timeout_interruptible(2);
1305         trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1306         *statusp = RCU_KTHREAD_WAITING;
1307 }
1308
1309 /*
1310  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1311  * served by the rcu_node in question.  The CPU hotplug lock is still
1312  * held, so the value of rnp->qsmaskinit will be stable.
1313  *
1314  * We don't include outgoingcpu in the affinity set, use -1 if there is
1315  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1316  * this function allows the kthread to execute on any CPU.
1317  */
1318 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1319 {
1320         struct task_struct *t = rnp->boost_kthread_task;
1321         unsigned long mask = rnp->qsmaskinit;
1322         cpumask_var_t cm;
1323         int cpu;
1324
1325         if (!t)
1326                 return;
1327         if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1328                 return;
1329         for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1330                 if ((mask & 0x1) && cpu != outgoingcpu)
1331                         cpumask_set_cpu(cpu, cm);
1332         if (cpumask_weight(cm) == 0)
1333                 cpumask_setall(cm);
1334         set_cpus_allowed_ptr(t, cm);
1335         free_cpumask_var(cm);
1336 }
1337
1338 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1339         .store                  = &rcu_cpu_kthread_task,
1340         .thread_should_run      = rcu_cpu_kthread_should_run,
1341         .thread_fn              = rcu_cpu_kthread,
1342         .thread_comm            = "rcuc/%u",
1343         .setup                  = rcu_cpu_kthread_setup,
1344         .park                   = rcu_cpu_kthread_park,
1345 };
1346
1347 /*
1348  * Spawn boost kthreads -- called as soon as the scheduler is running.
1349  */
1350 static void __init rcu_spawn_boost_kthreads(void)
1351 {
1352         struct rcu_node *rnp;
1353         int cpu;
1354
1355         for_each_possible_cpu(cpu)
1356                 per_cpu(rcu_cpu_has_work, cpu) = 0;
1357         BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1358         rcu_for_each_leaf_node(rcu_state_p, rnp)
1359                 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1360 }
1361
1362 static void rcu_prepare_kthreads(int cpu)
1363 {
1364         struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1365         struct rcu_node *rnp = rdp->mynode;
1366
1367         /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1368         if (rcu_scheduler_fully_active)
1369                 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1370 }
1371
1372 #else /* #ifdef CONFIG_RCU_BOOST */
1373
1374 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1375         __releases(rnp->lock)
1376 {
1377         raw_spin_unlock_irqrestore(&rnp->lock, flags);
1378 }
1379
1380 static void invoke_rcu_callbacks_kthread(void)
1381 {
1382         WARN_ON_ONCE(1);
1383 }
1384
1385 static bool rcu_is_callbacks_kthread(void)
1386 {
1387         return false;
1388 }
1389
1390 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1391 {
1392 }
1393
1394 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1395 {
1396 }
1397
1398 static void __init rcu_spawn_boost_kthreads(void)
1399 {
1400 }
1401
1402 static void rcu_prepare_kthreads(int cpu)
1403 {
1404 }
1405
1406 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1407
1408 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1409
1410 /*
1411  * Check to see if any future RCU-related work will need to be done
1412  * by the current CPU, even if none need be done immediately, returning
1413  * 1 if so.  This function is part of the RCU implementation; it is -not-
1414  * an exported member of the RCU API.
1415  *
1416  * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1417  * any flavor of RCU.
1418  */
1419 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1420 int rcu_needs_cpu(unsigned long *delta_jiffies)
1421 {
1422         *delta_jiffies = ULONG_MAX;
1423         return rcu_cpu_has_callbacks(NULL);
1424 }
1425 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1426
1427 /*
1428  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1429  * after it.
1430  */
1431 static void rcu_cleanup_after_idle(void)
1432 {
1433 }
1434
1435 /*
1436  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1437  * is nothing.
1438  */
1439 static void rcu_prepare_for_idle(void)
1440 {
1441 }
1442
1443 /*
1444  * Don't bother keeping a running count of the number of RCU callbacks
1445  * posted because CONFIG_RCU_FAST_NO_HZ=n.
1446  */
1447 static void rcu_idle_count_callbacks_posted(void)
1448 {
1449 }
1450
1451 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1452
1453 /*
1454  * This code is invoked when a CPU goes idle, at which point we want
1455  * to have the CPU do everything required for RCU so that it can enter
1456  * the energy-efficient dyntick-idle mode.  This is handled by a
1457  * state machine implemented by rcu_prepare_for_idle() below.
1458  *
1459  * The following three proprocessor symbols control this state machine:
1460  *
1461  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1462  *      to sleep in dyntick-idle mode with RCU callbacks pending.  This
1463  *      is sized to be roughly one RCU grace period.  Those energy-efficiency
1464  *      benchmarkers who might otherwise be tempted to set this to a large
1465  *      number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1466  *      system.  And if you are -that- concerned about energy efficiency,
1467  *      just power the system down and be done with it!
1468  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1469  *      permitted to sleep in dyntick-idle mode with only lazy RCU
1470  *      callbacks pending.  Setting this too high can OOM your system.
1471  *
1472  * The values below work well in practice.  If future workloads require
1473  * adjustment, they can be converted into kernel config parameters, though
1474  * making the state machine smarter might be a better option.
1475  */
1476 #define RCU_IDLE_GP_DELAY 4             /* Roughly one grace period. */
1477 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1478
1479 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1480 module_param(rcu_idle_gp_delay, int, 0644);
1481 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1482 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1483
1484 extern int tick_nohz_active;
1485
1486 /*
1487  * Try to advance callbacks for all flavors of RCU on the current CPU, but
1488  * only if it has been awhile since the last time we did so.  Afterwards,
1489  * if there are any callbacks ready for immediate invocation, return true.
1490  */
1491 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1492 {
1493         bool cbs_ready = false;
1494         struct rcu_data *rdp;
1495         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1496         struct rcu_node *rnp;
1497         struct rcu_state *rsp;
1498
1499         /* Exit early if we advanced recently. */
1500         if (jiffies == rdtp->last_advance_all)
1501                 return false;
1502         rdtp->last_advance_all = jiffies;
1503
1504         for_each_rcu_flavor(rsp) {
1505                 rdp = this_cpu_ptr(rsp->rda);
1506                 rnp = rdp->mynode;
1507
1508                 /*
1509                  * Don't bother checking unless a grace period has
1510                  * completed since we last checked and there are
1511                  * callbacks not yet ready to invoke.
1512                  */
1513                 if ((rdp->completed != rnp->completed ||
1514                      unlikely(ACCESS_ONCE(rdp->gpwrap))) &&
1515                     rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1516                         note_gp_changes(rsp, rdp);
1517
1518                 if (cpu_has_callbacks_ready_to_invoke(rdp))
1519                         cbs_ready = true;
1520         }
1521         return cbs_ready;
1522 }
1523
1524 /*
1525  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1526  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1527  * caller to set the timeout based on whether or not there are non-lazy
1528  * callbacks.
1529  *
1530  * The caller must have disabled interrupts.
1531  */
1532 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1533 int rcu_needs_cpu(unsigned long *dj)
1534 {
1535         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1536
1537         /* Snapshot to detect later posting of non-lazy callback. */
1538         rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1539
1540         /* If no callbacks, RCU doesn't need the CPU. */
1541         if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1542                 *dj = ULONG_MAX;
1543                 return 0;
1544         }
1545
1546         /* Attempt to advance callbacks. */
1547         if (rcu_try_advance_all_cbs()) {
1548                 /* Some ready to invoke, so initiate later invocation. */
1549                 invoke_rcu_core();
1550                 return 1;
1551         }
1552         rdtp->last_accelerate = jiffies;
1553
1554         /* Request timer delay depending on laziness, and round. */
1555         if (!rdtp->all_lazy) {
1556                 *dj = round_up(rcu_idle_gp_delay + jiffies,
1557                                rcu_idle_gp_delay) - jiffies;
1558         } else {
1559                 *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1560         }
1561         return 0;
1562 }
1563 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1564
1565 /*
1566  * Prepare a CPU for idle from an RCU perspective.  The first major task
1567  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1568  * The second major task is to check to see if a non-lazy callback has
1569  * arrived at a CPU that previously had only lazy callbacks.  The third
1570  * major task is to accelerate (that is, assign grace-period numbers to)
1571  * any recently arrived callbacks.
1572  *
1573  * The caller must have disabled interrupts.
1574  */
1575 static void rcu_prepare_for_idle(void)
1576 {
1577 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1578         bool needwake;
1579         struct rcu_data *rdp;
1580         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1581         struct rcu_node *rnp;
1582         struct rcu_state *rsp;
1583         int tne;
1584
1585         /* Handle nohz enablement switches conservatively. */
1586         tne = ACCESS_ONCE(tick_nohz_active);
1587         if (tne != rdtp->tick_nohz_enabled_snap) {
1588                 if (rcu_cpu_has_callbacks(NULL))
1589                         invoke_rcu_core(); /* force nohz to see update. */
1590                 rdtp->tick_nohz_enabled_snap = tne;
1591                 return;
1592         }
1593         if (!tne)
1594                 return;
1595
1596         /* If this is a no-CBs CPU, no callbacks, just return. */
1597         if (rcu_is_nocb_cpu(smp_processor_id()))
1598                 return;
1599
1600         /*
1601          * If a non-lazy callback arrived at a CPU having only lazy
1602          * callbacks, invoke RCU core for the side-effect of recalculating
1603          * idle duration on re-entry to idle.
1604          */
1605         if (rdtp->all_lazy &&
1606             rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1607                 rdtp->all_lazy = false;
1608                 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1609                 invoke_rcu_core();
1610                 return;
1611         }
1612
1613         /*
1614          * If we have not yet accelerated this jiffy, accelerate all
1615          * callbacks on this CPU.
1616          */
1617         if (rdtp->last_accelerate == jiffies)
1618                 return;
1619         rdtp->last_accelerate = jiffies;
1620         for_each_rcu_flavor(rsp) {
1621                 rdp = this_cpu_ptr(rsp->rda);
1622                 if (!*rdp->nxttail[RCU_DONE_TAIL])
1623                         continue;
1624                 rnp = rdp->mynode;
1625                 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1626                 smp_mb__after_unlock_lock();
1627                 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1628                 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1629                 if (needwake)
1630                         rcu_gp_kthread_wake(rsp);
1631         }
1632 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1633 }
1634
1635 /*
1636  * Clean up for exit from idle.  Attempt to advance callbacks based on
1637  * any grace periods that elapsed while the CPU was idle, and if any
1638  * callbacks are now ready to invoke, initiate invocation.
1639  */
1640 static void rcu_cleanup_after_idle(void)
1641 {
1642 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1643         if (rcu_is_nocb_cpu(smp_processor_id()))
1644                 return;
1645         if (rcu_try_advance_all_cbs())
1646                 invoke_rcu_core();
1647 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1648 }
1649
1650 /*
1651  * Keep a running count of the number of non-lazy callbacks posted
1652  * on this CPU.  This running counter (which is never decremented) allows
1653  * rcu_prepare_for_idle() to detect when something out of the idle loop
1654  * posts a callback, even if an equal number of callbacks are invoked.
1655  * Of course, callbacks should only be posted from within a trace event
1656  * designed to be called from idle or from within RCU_NONIDLE().
1657  */
1658 static void rcu_idle_count_callbacks_posted(void)
1659 {
1660         __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1661 }
1662
1663 /*
1664  * Data for flushing lazy RCU callbacks at OOM time.
1665  */
1666 static atomic_t oom_callback_count;
1667 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1668
1669 /*
1670  * RCU OOM callback -- decrement the outstanding count and deliver the
1671  * wake-up if we are the last one.
1672  */
1673 static void rcu_oom_callback(struct rcu_head *rhp)
1674 {
1675         if (atomic_dec_and_test(&oom_callback_count))
1676                 wake_up(&oom_callback_wq);
1677 }
1678
1679 /*
1680  * Post an rcu_oom_notify callback on the current CPU if it has at
1681  * least one lazy callback.  This will unnecessarily post callbacks
1682  * to CPUs that already have a non-lazy callback at the end of their
1683  * callback list, but this is an infrequent operation, so accept some
1684  * extra overhead to keep things simple.
1685  */
1686 static void rcu_oom_notify_cpu(void *unused)
1687 {
1688         struct rcu_state *rsp;
1689         struct rcu_data *rdp;
1690
1691         for_each_rcu_flavor(rsp) {
1692                 rdp = raw_cpu_ptr(rsp->rda);
1693                 if (rdp->qlen_lazy != 0) {
1694                         atomic_inc(&oom_callback_count);
1695                         rsp->call(&rdp->oom_head, rcu_oom_callback);
1696                 }
1697         }
1698 }
1699
1700 /*
1701  * If low on memory, ensure that each CPU has a non-lazy callback.
1702  * This will wake up CPUs that have only lazy callbacks, in turn
1703  * ensuring that they free up the corresponding memory in a timely manner.
1704  * Because an uncertain amount of memory will be freed in some uncertain
1705  * timeframe, we do not claim to have freed anything.
1706  */
1707 static int rcu_oom_notify(struct notifier_block *self,
1708                           unsigned long notused, void *nfreed)
1709 {
1710         int cpu;
1711
1712         /* Wait for callbacks from earlier instance to complete. */
1713         wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1714         smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1715
1716         /*
1717          * Prevent premature wakeup: ensure that all increments happen
1718          * before there is a chance of the counter reaching zero.
1719          */
1720         atomic_set(&oom_callback_count, 1);
1721
1722         get_online_cpus();
1723         for_each_online_cpu(cpu) {
1724                 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1725                 cond_resched_rcu_qs();
1726         }
1727         put_online_cpus();
1728
1729         /* Unconditionally decrement: no need to wake ourselves up. */
1730         atomic_dec(&oom_callback_count);
1731
1732         return NOTIFY_OK;
1733 }
1734
1735 static struct notifier_block rcu_oom_nb = {
1736         .notifier_call = rcu_oom_notify
1737 };
1738
1739 static int __init rcu_register_oom_notifier(void)
1740 {
1741         register_oom_notifier(&rcu_oom_nb);
1742         return 0;
1743 }
1744 early_initcall(rcu_register_oom_notifier);
1745
1746 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1747
1748 #ifdef CONFIG_RCU_CPU_STALL_INFO
1749
1750 #ifdef CONFIG_RCU_FAST_NO_HZ
1751
1752 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1753 {
1754         struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1755         unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1756
1757         sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1758                 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1759                 ulong2long(nlpd),
1760                 rdtp->all_lazy ? 'L' : '.',
1761                 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1762 }
1763
1764 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1765
1766 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1767 {
1768         *cp = '\0';
1769 }
1770
1771 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1772
1773 /* Initiate the stall-info list. */
1774 static void print_cpu_stall_info_begin(void)
1775 {
1776         pr_cont("\n");
1777 }
1778
1779 /*
1780  * Print out diagnostic information for the specified stalled CPU.
1781  *
1782  * If the specified CPU is aware of the current RCU grace period
1783  * (flavor specified by rsp), then print the number of scheduling
1784  * clock interrupts the CPU has taken during the time that it has
1785  * been aware.  Otherwise, print the number of RCU grace periods
1786  * that this CPU is ignorant of, for example, "1" if the CPU was
1787  * aware of the previous grace period.
1788  *
1789  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1790  */
1791 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1792 {
1793         char fast_no_hz[72];
1794         struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1795         struct rcu_dynticks *rdtp = rdp->dynticks;
1796         char *ticks_title;
1797         unsigned long ticks_value;
1798
1799         if (rsp->gpnum == rdp->gpnum) {
1800                 ticks_title = "ticks this GP";
1801                 ticks_value = rdp->ticks_this_gp;
1802         } else {
1803                 ticks_title = "GPs behind";
1804                 ticks_value = rsp->gpnum - rdp->gpnum;
1805         }
1806         print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1807         pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1808                cpu, ticks_value, ticks_title,
1809                atomic_read(&rdtp->dynticks) & 0xfff,
1810                rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1811                rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1812                ACCESS_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1813                fast_no_hz);
1814 }
1815
1816 /* Terminate the stall-info list. */
1817 static void print_cpu_stall_info_end(void)
1818 {
1819         pr_err("\t");
1820 }
1821
1822 /* Zero ->ticks_this_gp for all flavors of RCU. */
1823 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1824 {
1825         rdp->ticks_this_gp = 0;
1826         rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1827 }
1828
1829 /* Increment ->ticks_this_gp for all flavors of RCU. */
1830 static void increment_cpu_stall_ticks(void)
1831 {
1832         struct rcu_state *rsp;
1833
1834         for_each_rcu_flavor(rsp)
1835                 raw_cpu_inc(rsp->rda->ticks_this_gp);
1836 }
1837
1838 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1839
1840 static void print_cpu_stall_info_begin(void)
1841 {
1842         pr_cont(" {");
1843 }
1844
1845 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1846 {
1847         pr_cont(" %d", cpu);
1848 }
1849
1850 static void print_cpu_stall_info_end(void)
1851 {
1852         pr_cont("} ");
1853 }
1854
1855 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1856 {
1857 }
1858
1859 static void increment_cpu_stall_ticks(void)
1860 {
1861 }
1862
1863 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
1864
1865 #ifdef CONFIG_RCU_NOCB_CPU
1866
1867 /*
1868  * Offload callback processing from the boot-time-specified set of CPUs
1869  * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1870  * kthread created that pulls the callbacks from the corresponding CPU,
1871  * waits for a grace period to elapse, and invokes the callbacks.
1872  * The no-CBs CPUs do a wake_up() on their kthread when they insert
1873  * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1874  * has been specified, in which case each kthread actively polls its
1875  * CPU.  (Which isn't so great for energy efficiency, but which does
1876  * reduce RCU's overhead on that CPU.)
1877  *
1878  * This is intended to be used in conjunction with Frederic Weisbecker's
1879  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1880  * running CPU-bound user-mode computations.
1881  *
1882  * Offloading of callback processing could also in theory be used as
1883  * an energy-efficiency measure because CPUs with no RCU callbacks
1884  * queued are more aggressive about entering dyntick-idle mode.
1885  */
1886
1887
1888 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1889 static int __init rcu_nocb_setup(char *str)
1890 {
1891         alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1892         have_rcu_nocb_mask = true;
1893         cpulist_parse(str, rcu_nocb_mask);
1894         return 1;
1895 }
1896 __setup("rcu_nocbs=", rcu_nocb_setup);
1897
1898 static int __init parse_rcu_nocb_poll(char *arg)
1899 {
1900         rcu_nocb_poll = 1;
1901         return 0;
1902 }
1903 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1904
1905 /*
1906  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1907  * grace period.
1908  */
1909 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1910 {
1911         wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
1912 }
1913
1914 /*
1915  * Set the root rcu_node structure's ->need_future_gp field
1916  * based on the sum of those of all rcu_node structures.  This does
1917  * double-count the root rcu_node structure's requests, but this
1918  * is necessary to handle the possibility of a rcu_nocb_kthread()
1919  * having awakened during the time that the rcu_node structures
1920  * were being updated for the end of the previous grace period.
1921  */
1922 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1923 {
1924         rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1925 }
1926
1927 static void rcu_init_one_nocb(struct rcu_node *rnp)
1928 {
1929         init_waitqueue_head(&rnp->nocb_gp_wq[0]);
1930         init_waitqueue_head(&rnp->nocb_gp_wq[1]);
1931 }
1932
1933 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1934 /* Is the specified CPU a no-CBs CPU? */
1935 bool rcu_is_nocb_cpu(int cpu)
1936 {
1937         if (have_rcu_nocb_mask)
1938                 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1939         return false;
1940 }
1941 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1942
1943 /*
1944  * Kick the leader kthread for this NOCB group.
1945  */
1946 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1947 {
1948         struct rcu_data *rdp_leader = rdp->nocb_leader;
1949
1950         if (!ACCESS_ONCE(rdp_leader->nocb_kthread))
1951                 return;
1952         if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1953                 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
1954                 ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false;
1955                 wake_up(&rdp_leader->nocb_wq);
1956         }
1957 }
1958
1959 /*
1960  * Does the specified CPU need an RCU callback for the specified flavor
1961  * of rcu_barrier()?
1962  */
1963 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1964 {
1965         struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1966         unsigned long ret;
1967 #ifdef CONFIG_PROVE_RCU
1968         struct rcu_head *rhp;
1969 #endif /* #ifdef CONFIG_PROVE_RCU */
1970
1971         /*
1972          * Check count of all no-CBs callbacks awaiting invocation.
1973          * There needs to be a barrier before this function is called,
1974          * but associated with a prior determination that no more
1975          * callbacks would be posted.  In the worst case, the first
1976          * barrier in _rcu_barrier() suffices (but the caller cannot
1977          * necessarily rely on this, not a substitute for the caller
1978          * getting the concurrency design right!).  There must also be
1979          * a barrier between the following load an posting of a callback
1980          * (if a callback is in fact needed).  This is associated with an
1981          * atomic_inc() in the caller.
1982          */
1983         ret = atomic_long_read(&rdp->nocb_q_count);
1984
1985 #ifdef CONFIG_PROVE_RCU
1986         rhp = ACCESS_ONCE(rdp->nocb_head);
1987         if (!rhp)
1988                 rhp = ACCESS_ONCE(rdp->nocb_gp_head);
1989         if (!rhp)
1990                 rhp = ACCESS_ONCE(rdp->nocb_follower_head);
1991
1992         /* Having no rcuo kthread but CBs after scheduler starts is bad! */
1993         if (!ACCESS_ONCE(rdp->nocb_kthread) && rhp) {
1994                 /* RCU callback enqueued before CPU first came online??? */
1995                 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1996                        cpu, rhp->func);
1997                 WARN_ON_ONCE(1);
1998         }
1999 #endif /* #ifdef CONFIG_PROVE_RCU */
2000
2001         return !!ret;
2002 }
2003
2004 /*
2005  * Enqueue the specified string of rcu_head structures onto the specified
2006  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
2007  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
2008  * counts are supplied by rhcount and rhcount_lazy.
2009  *
2010  * If warranted, also wake up the kthread servicing this CPUs queues.
2011  */
2012 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
2013                                     struct rcu_head *rhp,
2014                                     struct rcu_head **rhtp,
2015                                     int rhcount, int rhcount_lazy,
2016                                     unsigned long flags)
2017 {
2018         int len;
2019         struct rcu_head **old_rhpp;
2020         struct task_struct *t;
2021
2022         /* Enqueue the callback on the nocb list and update counts. */
2023         atomic_long_add(rhcount, &rdp->nocb_q_count);
2024         /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
2025         old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2026         ACCESS_ONCE(*old_rhpp) = rhp;
2027         atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2028         smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
2029
2030         /* If we are not being polled and there is a kthread, awaken it ... */
2031         t = ACCESS_ONCE(rdp->nocb_kthread);
2032         if (rcu_nocb_poll || !t) {
2033                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2034                                     TPS("WakeNotPoll"));
2035                 return;
2036         }
2037         len = atomic_long_read(&rdp->nocb_q_count);
2038         if (old_rhpp == &rdp->nocb_head) {
2039                 if (!irqs_disabled_flags(flags)) {
2040                         /* ... if queue was empty ... */
2041                         wake_nocb_leader(rdp, false);
2042                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2043                                             TPS("WakeEmpty"));
2044                 } else {
2045                         rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
2046                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2047                                             TPS("WakeEmptyIsDeferred"));
2048                 }
2049                 rdp->qlen_last_fqs_check = 0;
2050         } else if (len > rdp->qlen_last_fqs_check + qhimark) {
2051                 /* ... or if many callbacks queued. */
2052                 if (!irqs_disabled_flags(flags)) {
2053                         wake_nocb_leader(rdp, true);
2054                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2055                                             TPS("WakeOvf"));
2056                 } else {
2057                         rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
2058                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2059                                             TPS("WakeOvfIsDeferred"));
2060                 }
2061                 rdp->qlen_last_fqs_check = LONG_MAX / 2;
2062         } else {
2063                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
2064         }
2065         return;
2066 }
2067
2068 /*
2069  * This is a helper for __call_rcu(), which invokes this when the normal
2070  * callback queue is inoperable.  If this is not a no-CBs CPU, this
2071  * function returns failure back to __call_rcu(), which can complain
2072  * appropriately.
2073  *
2074  * Otherwise, this function queues the callback where the corresponding
2075  * "rcuo" kthread can find it.
2076  */
2077 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2078                             bool lazy, unsigned long flags)
2079 {
2080
2081         if (!rcu_is_nocb_cpu(rdp->cpu))
2082                 return false;
2083         __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2084         if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2085                 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2086                                          (unsigned long)rhp->func,
2087                                          -atomic_long_read(&rdp->nocb_q_count_lazy),
2088                                          -atomic_long_read(&rdp->nocb_q_count));
2089         else
2090                 trace_rcu_callback(rdp->rsp->name, rhp,
2091                                    -atomic_long_read(&rdp->nocb_q_count_lazy),
2092                                    -atomic_long_read(&rdp->nocb_q_count));
2093
2094         /*
2095          * If called from an extended quiescent state with interrupts
2096          * disabled, invoke the RCU core in order to allow the idle-entry
2097          * deferred-wakeup check to function.
2098          */
2099         if (irqs_disabled_flags(flags) &&
2100             !rcu_is_watching() &&
2101             cpu_online(smp_processor_id()))
2102                 invoke_rcu_core();
2103
2104         return true;
2105 }
2106
2107 /*
2108  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2109  * not a no-CBs CPU.
2110  */
2111 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2112                                                      struct rcu_data *rdp,
2113                                                      unsigned long flags)
2114 {
2115         long ql = rsp->qlen;
2116         long qll = rsp->qlen_lazy;
2117
2118         /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2119         if (!rcu_is_nocb_cpu(smp_processor_id()))
2120                 return false;
2121         rsp->qlen = 0;
2122         rsp->qlen_lazy = 0;
2123
2124         /* First, enqueue the donelist, if any.  This preserves CB ordering. */
2125         if (rsp->orphan_donelist != NULL) {
2126                 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2127                                         rsp->orphan_donetail, ql, qll, flags);
2128                 ql = qll = 0;
2129                 rsp->orphan_donelist = NULL;
2130                 rsp->orphan_donetail = &rsp->orphan_donelist;
2131         }
2132         if (rsp->orphan_nxtlist != NULL) {
2133                 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2134                                         rsp->orphan_nxttail, ql, qll, flags);
2135                 ql = qll = 0;
2136                 rsp->orphan_nxtlist = NULL;
2137                 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2138         }
2139         return true;
2140 }
2141
2142 /*
2143  * If necessary, kick off a new grace period, and either way wait
2144  * for a subsequent grace period to complete.
2145  */
2146 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2147 {
2148         unsigned long c;
2149         bool d;
2150         unsigned long flags;
2151         bool needwake;
2152         struct rcu_node *rnp = rdp->mynode;
2153
2154         raw_spin_lock_irqsave(&rnp->lock, flags);
2155         smp_mb__after_unlock_lock();
2156         needwake = rcu_start_future_gp(rnp, rdp, &c);
2157         raw_spin_unlock_irqrestore(&rnp->lock, flags);
2158         if (needwake)
2159                 rcu_gp_kthread_wake(rdp->rsp);
2160
2161         /*
2162          * Wait for the grace period.  Do so interruptibly to avoid messing
2163          * up the load average.
2164          */
2165         trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2166         for (;;) {
2167                 wait_event_interruptible(
2168                         rnp->nocb_gp_wq[c & 0x1],
2169                         (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2170                 if (likely(d))
2171                         break;
2172                 WARN_ON(signal_pending(current));
2173                 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2174         }
2175         trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2176         smp_mb(); /* Ensure that CB invocation happens after GP end. */
2177 }
2178
2179 /*
2180  * Leaders come here to wait for additional callbacks to show up.
2181  * This function does not return until callbacks appear.
2182  */
2183 static void nocb_leader_wait(struct rcu_data *my_rdp)
2184 {
2185         bool firsttime = true;
2186         bool gotcbs;
2187         struct rcu_data *rdp;
2188         struct rcu_head **tail;
2189
2190 wait_again:
2191
2192         /* Wait for callbacks to appear. */
2193         if (!rcu_nocb_poll) {
2194                 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2195                 wait_event_interruptible(my_rdp->nocb_wq,
2196                                 !ACCESS_ONCE(my_rdp->nocb_leader_sleep));
2197                 /* Memory barrier handled by smp_mb() calls below and repoll. */
2198         } else if (firsttime) {
2199                 firsttime = false; /* Don't drown trace log with "Poll"! */
2200                 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2201         }
2202
2203         /*
2204          * Each pass through the following loop checks a follower for CBs.
2205          * We are our own first follower.  Any CBs found are moved to
2206          * nocb_gp_head, where they await a grace period.
2207          */
2208         gotcbs = false;
2209         for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2210                 rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head);
2211                 if (!rdp->nocb_gp_head)
2212                         continue;  /* No CBs here, try next follower. */
2213
2214                 /* Move callbacks to wait-for-GP list, which is empty. */
2215                 ACCESS_ONCE(rdp->nocb_head) = NULL;
2216                 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2217                 gotcbs = true;
2218         }
2219
2220         /*
2221          * If there were no callbacks, sleep a bit, rescan after a
2222          * memory barrier, and go retry.
2223          */
2224         if (unlikely(!gotcbs)) {
2225                 if (!rcu_nocb_poll)
2226                         trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2227                                             "WokeEmpty");
2228                 WARN_ON(signal_pending(current));
2229                 schedule_timeout_interruptible(1);
2230
2231                 /* Rescan in case we were a victim of memory ordering. */
2232                 my_rdp->nocb_leader_sleep = true;
2233                 smp_mb();  /* Ensure _sleep true before scan. */
2234                 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2235                         if (ACCESS_ONCE(rdp->nocb_head)) {
2236                                 /* Found CB, so short-circuit next wait. */
2237                                 my_rdp->nocb_leader_sleep = false;
2238                                 break;
2239                         }
2240                 goto wait_again;
2241         }
2242
2243         /* Wait for one grace period. */
2244         rcu_nocb_wait_gp(my_rdp);
2245
2246         /*
2247          * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2248          * We set it now, but recheck for new callbacks while
2249          * traversing our follower list.
2250          */
2251         my_rdp->nocb_leader_sleep = true;
2252         smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2253
2254         /* Each pass through the following loop wakes a follower, if needed. */
2255         for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2256                 if (ACCESS_ONCE(rdp->nocb_head))
2257                         my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2258                 if (!rdp->nocb_gp_head)
2259                         continue; /* No CBs, so no need to wake follower. */
2260
2261                 /* Append callbacks to follower's "done" list. */
2262                 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2263                 *tail = rdp->nocb_gp_head;
2264                 smp_mb__after_atomic(); /* Store *tail before wakeup. */
2265                 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2266                         /*
2267                          * List was empty, wake up the follower.
2268                          * Memory barriers supplied by atomic_long_add().
2269                          */
2270                         wake_up(&rdp->nocb_wq);
2271                 }
2272         }
2273
2274         /* If we (the leader) don't have CBs, go wait some more. */
2275         if (!my_rdp->nocb_follower_head)
2276                 goto wait_again;
2277 }
2278
2279 /*
2280  * Followers come here to wait for additional callbacks to show up.
2281  * This function does not return until callbacks appear.
2282  */
2283 static void nocb_follower_wait(struct rcu_data *rdp)
2284 {
2285         bool firsttime = true;
2286
2287         for (;;) {
2288                 if (!rcu_nocb_poll) {
2289                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2290                                             "FollowerSleep");
2291                         wait_event_interruptible(rdp->nocb_wq,
2292                                                  ACCESS_ONCE(rdp->nocb_follower_head));
2293                 } else if (firsttime) {
2294                         /* Don't drown trace log with "Poll"! */
2295                         firsttime = false;
2296                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2297                 }
2298                 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2299                         /* ^^^ Ensure CB invocation follows _head test. */
2300                         return;
2301                 }
2302                 if (!rcu_nocb_poll)
2303                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2304                                             "WokeEmpty");
2305                 WARN_ON(signal_pending(current));
2306                 schedule_timeout_interruptible(1);
2307         }
2308 }
2309
2310 /*
2311  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2312  * callbacks queued by the corresponding no-CBs CPU, however, there is
2313  * an optional leader-follower relationship so that the grace-period
2314  * kthreads don't have to do quite so many wakeups.
2315  */
2316 static int rcu_nocb_kthread(void *arg)
2317 {
2318         int c, cl;
2319         struct rcu_head *list;
2320         struct rcu_head *next;
2321         struct rcu_head **tail;
2322         struct rcu_data *rdp = arg;
2323
2324         /* Each pass through this loop invokes one batch of callbacks */
2325         for (;;) {
2326                 /* Wait for callbacks. */
2327                 if (rdp->nocb_leader == rdp)
2328                         nocb_leader_wait(rdp);
2329                 else
2330                         nocb_follower_wait(rdp);
2331
2332                 /* Pull the ready-to-invoke callbacks onto local list. */
2333                 list = ACCESS_ONCE(rdp->nocb_follower_head);
2334                 BUG_ON(!list);
2335                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2336                 ACCESS_ONCE(rdp->nocb_follower_head) = NULL;
2337                 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2338
2339                 /* Each pass through the following loop invokes a callback. */
2340                 trace_rcu_batch_start(rdp->rsp->name,
2341                                       atomic_long_read(&rdp->nocb_q_count_lazy),
2342                                       atomic_long_read(&rdp->nocb_q_count), -1);
2343                 c = cl = 0;
2344                 while (list) {
2345                         next = list->next;
2346                         /* Wait for enqueuing to complete, if needed. */
2347                         while (next == NULL && &list->next != tail) {
2348                                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2349                                                     TPS("WaitQueue"));
2350                                 schedule_timeout_interruptible(1);
2351                                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2352                                                     TPS("WokeQueue"));
2353                                 next = list->next;
2354                         }
2355                         debug_rcu_head_unqueue(list);
2356                         local_bh_disable();
2357                         if (__rcu_reclaim(rdp->rsp->name, list))
2358                                 cl++;
2359                         c++;
2360                         local_bh_enable();
2361                         list = next;
2362                 }
2363                 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2364                 smp_mb__before_atomic();  /* _add after CB invocation. */
2365                 atomic_long_add(-c, &rdp->nocb_q_count);
2366                 atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2367                 rdp->n_nocbs_invoked += c;
2368         }
2369         return 0;
2370 }
2371
2372 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2373 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2374 {
2375         return ACCESS_ONCE(rdp->nocb_defer_wakeup);
2376 }
2377
2378 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2379 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2380 {
2381         int ndw;
2382
2383         if (!rcu_nocb_need_deferred_wakeup(rdp))
2384                 return;
2385         ndw = ACCESS_ONCE(rdp->nocb_defer_wakeup);
2386         ACCESS_ONCE(rdp->nocb_defer_wakeup) = RCU_NOGP_WAKE_NOT;
2387         wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2388         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2389 }
2390
2391 void __init rcu_init_nohz(void)
2392 {
2393         int cpu;
2394         bool need_rcu_nocb_mask = true;
2395         struct rcu_state *rsp;
2396
2397 #ifdef CONFIG_RCU_NOCB_CPU_NONE
2398         need_rcu_nocb_mask = false;
2399 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2400
2401 #if defined(CONFIG_NO_HZ_FULL)
2402         if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2403                 need_rcu_nocb_mask = true;
2404 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2405
2406         if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2407                 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2408                         pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2409                         return;
2410                 }
2411                 have_rcu_nocb_mask = true;
2412         }
2413         if (!have_rcu_nocb_mask)
2414                 return;
2415
2416 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
2417         pr_info("\tOffload RCU callbacks from CPU 0\n");
2418         cpumask_set_cpu(0, rcu_nocb_mask);
2419 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2420 #ifdef CONFIG_RCU_NOCB_CPU_ALL
2421         pr_info("\tOffload RCU callbacks from all CPUs\n");
2422         cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2423 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2424 #if defined(CONFIG_NO_HZ_FULL)
2425         if (tick_nohz_full_running)
2426                 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2427 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2428
2429         if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2430                 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2431                 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2432                             rcu_nocb_mask);
2433         }
2434         pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2435                 cpumask_pr_args(rcu_nocb_mask));
2436         if (rcu_nocb_poll)
2437                 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2438
2439         for_each_rcu_flavor(rsp) {
2440                 for_each_cpu(cpu, rcu_nocb_mask) {
2441                         struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2442
2443                         /*
2444                          * If there are early callbacks, they will need
2445                          * to be moved to the nocb lists.
2446                          */
2447                         WARN_ON_ONCE(rdp->nxttail[RCU_NEXT_TAIL] !=
2448                                      &rdp->nxtlist &&
2449                                      rdp->nxttail[RCU_NEXT_TAIL] != NULL);
2450                         init_nocb_callback_list(rdp);
2451                 }
2452                 rcu_organize_nocb_kthreads(rsp);
2453         }
2454 }
2455
2456 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2457 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2458 {
2459         rdp->nocb_tail = &rdp->nocb_head;
2460         init_waitqueue_head(&rdp->nocb_wq);
2461         rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2462 }
2463
2464 /*
2465  * If the specified CPU is a no-CBs CPU that does not already have its
2466  * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2467  * brought online out of order, this can require re-organizing the
2468  * leader-follower relationships.
2469  */
2470 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2471 {
2472         struct rcu_data *rdp;
2473         struct rcu_data *rdp_last;
2474         struct rcu_data *rdp_old_leader;
2475         struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2476         struct task_struct *t;
2477
2478         /*
2479          * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2480          * then nothing to do.
2481          */
2482         if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2483                 return;
2484
2485         /* If we didn't spawn the leader first, reorganize! */
2486         rdp_old_leader = rdp_spawn->nocb_leader;
2487         if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2488                 rdp_last = NULL;
2489                 rdp = rdp_old_leader;
2490                 do {
2491                         rdp->nocb_leader = rdp_spawn;
2492                         if (rdp_last && rdp != rdp_spawn)
2493                                 rdp_last->nocb_next_follower = rdp;
2494                         if (rdp == rdp_spawn) {
2495                                 rdp = rdp->nocb_next_follower;
2496                         } else {
2497                                 rdp_last = rdp;
2498                                 rdp = rdp->nocb_next_follower;
2499                                 rdp_last->nocb_next_follower = NULL;
2500                         }
2501                 } while (rdp);
2502                 rdp_spawn->nocb_next_follower = rdp_old_leader;
2503         }
2504
2505         /* Spawn the kthread for this CPU and RCU flavor. */
2506         t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2507                         "rcuo%c/%d", rsp->abbr, cpu);
2508         BUG_ON(IS_ERR(t));
2509         ACCESS_ONCE(rdp_spawn->nocb_kthread) = t;
2510 }
2511
2512 /*
2513  * If the specified CPU is a no-CBs CPU that does not already have its
2514  * rcuo kthreads, spawn them.
2515  */
2516 static void rcu_spawn_all_nocb_kthreads(int cpu)
2517 {
2518         struct rcu_state *rsp;
2519
2520         if (rcu_scheduler_fully_active)
2521                 for_each_rcu_flavor(rsp)
2522                         rcu_spawn_one_nocb_kthread(rsp, cpu);
2523 }
2524
2525 /*
2526  * Once the scheduler is running, spawn rcuo kthreads for all online
2527  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2528  * non-boot CPUs come online -- if this changes, we will need to add
2529  * some mutual exclusion.
2530  */
2531 static void __init rcu_spawn_nocb_kthreads(void)
2532 {
2533         int cpu;
2534
2535         for_each_online_cpu(cpu)
2536                 rcu_spawn_all_nocb_kthreads(cpu);
2537 }
2538
2539 /* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2540 static int rcu_nocb_leader_stride = -1;
2541 module_param(rcu_nocb_leader_stride, int, 0444);
2542
2543 /*
2544  * Initialize leader-follower relationships for all no-CBs CPU.
2545  */
2546 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2547 {
2548         int cpu;
2549         int ls = rcu_nocb_leader_stride;
2550         int nl = 0;  /* Next leader. */
2551         struct rcu_data *rdp;
2552         struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2553         struct rcu_data *rdp_prev = NULL;
2554
2555         if (!have_rcu_nocb_mask)
2556                 return;
2557         if (ls == -1) {
2558                 ls = int_sqrt(nr_cpu_ids);
2559                 rcu_nocb_leader_stride = ls;
2560         }
2561
2562         /*
2563          * Each pass through this loop sets up one rcu_data structure and
2564          * spawns one rcu_nocb_kthread().
2565          */
2566         for_each_cpu(cpu, rcu_nocb_mask) {
2567                 rdp = per_cpu_ptr(rsp->rda, cpu);
2568                 if (rdp->cpu >= nl) {
2569                         /* New leader, set up for followers & next leader. */
2570                         nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2571                         rdp->nocb_leader = rdp;
2572                         rdp_leader = rdp;
2573                 } else {
2574                         /* Another follower, link to previous leader. */
2575                         rdp->nocb_leader = rdp_leader;
2576                         rdp_prev->nocb_next_follower = rdp;
2577                 }
2578                 rdp_prev = rdp;
2579         }
2580 }
2581
2582 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2583 static bool init_nocb_callback_list(struct rcu_data *rdp)
2584 {
2585         if (!rcu_is_nocb_cpu(rdp->cpu))
2586                 return false;
2587
2588         rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2589         return true;
2590 }
2591
2592 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2593
2594 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2595 {
2596         WARN_ON_ONCE(1); /* Should be dead code. */
2597         return false;
2598 }
2599
2600 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2601 {
2602 }
2603
2604 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2605 {
2606 }
2607
2608 static void rcu_init_one_nocb(struct rcu_node *rnp)
2609 {
2610 }
2611
2612 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2613                             bool lazy, unsigned long flags)
2614 {
2615         return false;
2616 }
2617
2618 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2619                                                      struct rcu_data *rdp,
2620                                                      unsigned long flags)
2621 {
2622         return false;
2623 }
2624
2625 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2626 {
2627 }
2628
2629 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2630 {
2631         return false;
2632 }
2633
2634 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2635 {
2636 }
2637
2638 static void rcu_spawn_all_nocb_kthreads(int cpu)
2639 {
2640 }
2641
2642 static void __init rcu_spawn_nocb_kthreads(void)
2643 {
2644 }
2645
2646 static bool init_nocb_callback_list(struct rcu_data *rdp)
2647 {
2648         return false;
2649 }
2650
2651 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2652
2653 /*
2654  * An adaptive-ticks CPU can potentially execute in kernel mode for an
2655  * arbitrarily long period of time with the scheduling-clock tick turned
2656  * off.  RCU will be paying attention to this CPU because it is in the
2657  * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2658  * machine because the scheduling-clock tick has been disabled.  Therefore,
2659  * if an adaptive-ticks CPU is failing to respond to the current grace
2660  * period and has not be idle from an RCU perspective, kick it.
2661  */
2662 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2663 {
2664 #ifdef CONFIG_NO_HZ_FULL
2665         if (tick_nohz_full_cpu(cpu))
2666                 smp_send_reschedule(cpu);
2667 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2668 }
2669
2670
2671 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2672
2673 static int full_sysidle_state;          /* Current system-idle state. */
2674 #define RCU_SYSIDLE_NOT         0       /* Some CPU is not idle. */
2675 #define RCU_SYSIDLE_SHORT       1       /* All CPUs idle for brief period. */
2676 #define RCU_SYSIDLE_LONG        2       /* All CPUs idle for long enough. */
2677 #define RCU_SYSIDLE_FULL        3       /* All CPUs idle, ready for sysidle. */
2678 #define RCU_SYSIDLE_FULL_NOTED  4       /* Actually entered sysidle state. */
2679
2680 /*
2681  * Invoked to note exit from irq or task transition to idle.  Note that
2682  * usermode execution does -not- count as idle here!  After all, we want
2683  * to detect full-system idle states, not RCU quiescent states and grace
2684  * periods.  The caller must have disabled interrupts.
2685  */
2686 static void rcu_sysidle_enter(int irq)
2687 {
2688         unsigned long j;
2689         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2690
2691         /* If there are no nohz_full= CPUs, no need to track this. */
2692         if (!tick_nohz_full_enabled())
2693                 return;
2694
2695         /* Adjust nesting, check for fully idle. */
2696         if (irq) {
2697                 rdtp->dynticks_idle_nesting--;
2698                 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2699                 if (rdtp->dynticks_idle_nesting != 0)
2700                         return;  /* Still not fully idle. */
2701         } else {
2702                 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2703                     DYNTICK_TASK_NEST_VALUE) {
2704                         rdtp->dynticks_idle_nesting = 0;
2705                 } else {
2706                         rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2707                         WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2708                         return;  /* Still not fully idle. */
2709                 }
2710         }
2711
2712         /* Record start of fully idle period. */
2713         j = jiffies;
2714         ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
2715         smp_mb__before_atomic();
2716         atomic_inc(&rdtp->dynticks_idle);
2717         smp_mb__after_atomic();
2718         WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2719 }
2720
2721 /*
2722  * Unconditionally force exit from full system-idle state.  This is
2723  * invoked when a normal CPU exits idle, but must be called separately
2724  * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2725  * is that the timekeeping CPU is permitted to take scheduling-clock
2726  * interrupts while the system is in system-idle state, and of course
2727  * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2728  * interrupt from any other type of interrupt.
2729  */
2730 void rcu_sysidle_force_exit(void)
2731 {
2732         int oldstate = ACCESS_ONCE(full_sysidle_state);
2733         int newoldstate;
2734
2735         /*
2736          * Each pass through the following loop attempts to exit full
2737          * system-idle state.  If contention proves to be a problem,
2738          * a trylock-based contention tree could be used here.
2739          */
2740         while (oldstate > RCU_SYSIDLE_SHORT) {
2741                 newoldstate = cmpxchg(&full_sysidle_state,
2742                                       oldstate, RCU_SYSIDLE_NOT);
2743                 if (oldstate == newoldstate &&
2744                     oldstate == RCU_SYSIDLE_FULL_NOTED) {
2745                         rcu_kick_nohz_cpu(tick_do_timer_cpu);
2746                         return; /* We cleared it, done! */
2747                 }
2748                 oldstate = newoldstate;
2749         }
2750         smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2751 }
2752
2753 /*
2754  * Invoked to note entry to irq or task transition from idle.  Note that
2755  * usermode execution does -not- count as idle here!  The caller must
2756  * have disabled interrupts.
2757  */
2758 static void rcu_sysidle_exit(int irq)
2759 {
2760         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2761
2762         /* If there are no nohz_full= CPUs, no need to track this. */
2763         if (!tick_nohz_full_enabled())
2764                 return;
2765
2766         /* Adjust nesting, check for already non-idle. */
2767         if (irq) {
2768                 rdtp->dynticks_idle_nesting++;
2769                 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2770                 if (rdtp->dynticks_idle_nesting != 1)
2771                         return; /* Already non-idle. */
2772         } else {
2773                 /*
2774                  * Allow for irq misnesting.  Yes, it really is possible
2775                  * to enter an irq handler then never leave it, and maybe
2776                  * also vice versa.  Handle both possibilities.
2777                  */
2778                 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2779                         rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2780                         WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2781                         return; /* Already non-idle. */
2782                 } else {
2783                         rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2784                 }
2785         }
2786
2787         /* Record end of idle period. */
2788         smp_mb__before_atomic();
2789         atomic_inc(&rdtp->dynticks_idle);
2790         smp_mb__after_atomic();
2791         WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2792
2793         /*
2794          * If we are the timekeeping CPU, we are permitted to be non-idle
2795          * during a system-idle state.  This must be the case, because
2796          * the timekeeping CPU has to take scheduling-clock interrupts
2797          * during the time that the system is transitioning to full
2798          * system-idle state.  This means that the timekeeping CPU must
2799          * invoke rcu_sysidle_force_exit() directly if it does anything
2800          * more than take a scheduling-clock interrupt.
2801          */
2802         if (smp_processor_id() == tick_do_timer_cpu)
2803                 return;
2804
2805         /* Update system-idle state: We are clearly no longer fully idle! */
2806         rcu_sysidle_force_exit();
2807 }
2808
2809 /*
2810  * Check to see if the current CPU is idle.  Note that usermode execution
2811  * does not count as idle.  The caller must have disabled interrupts.
2812  */
2813 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2814                                   unsigned long *maxj)
2815 {
2816         int cur;
2817         unsigned long j;
2818         struct rcu_dynticks *rdtp = rdp->dynticks;
2819
2820         /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2821         if (!tick_nohz_full_enabled())
2822                 return;
2823
2824         /*
2825          * If some other CPU has already reported non-idle, if this is
2826          * not the flavor of RCU that tracks sysidle state, or if this
2827          * is an offline or the timekeeping CPU, nothing to do.
2828          */
2829         if (!*isidle || rdp->rsp != rcu_state_p ||
2830             cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2831                 return;
2832         if (rcu_gp_in_progress(rdp->rsp))
2833                 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2834
2835         /* Pick up current idle and NMI-nesting counter and check. */
2836         cur = atomic_read(&rdtp->dynticks_idle);
2837         if (cur & 0x1) {
2838                 *isidle = false; /* We are not idle! */
2839                 return;
2840         }
2841         smp_mb(); /* Read counters before timestamps. */
2842
2843         /* Pick up timestamps. */
2844         j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2845         /* If this CPU entered idle more recently, update maxj timestamp. */
2846         if (ULONG_CMP_LT(*maxj, j))
2847                 *maxj = j;
2848 }
2849
2850 /*
2851  * Is this the flavor of RCU that is handling full-system idle?
2852  */
2853 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2854 {
2855         return rsp == rcu_state_p;
2856 }
2857
2858 /*
2859  * Return a delay in jiffies based on the number of CPUs, rcu_node
2860  * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2861  * systems more time to transition to full-idle state in order to
2862  * avoid the cache thrashing that otherwise occur on the state variable.
2863  * Really small systems (less than a couple of tens of CPUs) should
2864  * instead use a single global atomically incremented counter, and later
2865  * versions of this will automatically reconfigure themselves accordingly.
2866  */
2867 static unsigned long rcu_sysidle_delay(void)
2868 {
2869         if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2870                 return 0;
2871         return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2872 }
2873
2874 /*
2875  * Advance the full-system-idle state.  This is invoked when all of
2876  * the non-timekeeping CPUs are idle.
2877  */
2878 static void rcu_sysidle(unsigned long j)
2879 {
2880         /* Check the current state. */
2881         switch (ACCESS_ONCE(full_sysidle_state)) {
2882         case RCU_SYSIDLE_NOT:
2883
2884                 /* First time all are idle, so note a short idle period. */
2885                 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2886                 break;
2887
2888         case RCU_SYSIDLE_SHORT:
2889
2890                 /*
2891                  * Idle for a bit, time to advance to next state?
2892                  * cmpxchg failure means race with non-idle, let them win.
2893                  */
2894                 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2895                         (void)cmpxchg(&full_sysidle_state,
2896                                       RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2897                 break;
2898
2899         case RCU_SYSIDLE_LONG:
2900
2901                 /*
2902                  * Do an additional check pass before advancing to full.
2903                  * cmpxchg failure means race with non-idle, let them win.
2904                  */
2905                 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2906                         (void)cmpxchg(&full_sysidle_state,
2907                                       RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2908                 break;
2909
2910         default:
2911                 break;
2912         }
2913 }
2914
2915 /*
2916  * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2917  * back to the beginning.
2918  */
2919 static void rcu_sysidle_cancel(void)
2920 {
2921         smp_mb();
2922         if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2923                 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
2924 }
2925
2926 /*
2927  * Update the sysidle state based on the results of a force-quiescent-state
2928  * scan of the CPUs' dyntick-idle state.
2929  */
2930 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2931                                unsigned long maxj, bool gpkt)
2932 {
2933         if (rsp != rcu_state_p)
2934                 return;  /* Wrong flavor, ignore. */
2935         if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2936                 return;  /* Running state machine from timekeeping CPU. */
2937         if (isidle)
2938                 rcu_sysidle(maxj);    /* More idle! */
2939         else
2940                 rcu_sysidle_cancel(); /* Idle is over. */
2941 }
2942
2943 /*
2944  * Wrapper for rcu_sysidle_report() when called from the grace-period
2945  * kthread's context.
2946  */
2947 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2948                                   unsigned long maxj)
2949 {
2950         /* If there are no nohz_full= CPUs, no need to track this. */
2951         if (!tick_nohz_full_enabled())
2952                 return;
2953
2954         rcu_sysidle_report(rsp, isidle, maxj, true);
2955 }
2956
2957 /* Callback and function for forcing an RCU grace period. */
2958 struct rcu_sysidle_head {
2959         struct rcu_head rh;
2960         int inuse;
2961 };
2962
2963 static void rcu_sysidle_cb(struct rcu_head *rhp)
2964 {
2965         struct rcu_sysidle_head *rshp;
2966
2967         /*
2968          * The following memory barrier is needed to replace the
2969          * memory barriers that would normally be in the memory
2970          * allocator.
2971          */
2972         smp_mb();  /* grace period precedes setting inuse. */
2973
2974         rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2975         ACCESS_ONCE(rshp->inuse) = 0;
2976 }
2977
2978 /*
2979  * Check to see if the system is fully idle, other than the timekeeping CPU.
2980  * The caller must have disabled interrupts.  This is not intended to be
2981  * called unless tick_nohz_full_enabled().
2982  */
2983 bool rcu_sys_is_idle(void)
2984 {
2985         static struct rcu_sysidle_head rsh;
2986         int rss = ACCESS_ONCE(full_sysidle_state);
2987
2988         if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2989                 return false;
2990
2991         /* Handle small-system case by doing a full scan of CPUs. */
2992         if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2993                 int oldrss = rss - 1;
2994
2995                 /*
2996                  * One pass to advance to each state up to _FULL.
2997                  * Give up if any pass fails to advance the state.
2998                  */
2999                 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
3000                         int cpu;
3001                         bool isidle = true;
3002                         unsigned long maxj = jiffies - ULONG_MAX / 4;
3003                         struct rcu_data *rdp;
3004
3005                         /* Scan all the CPUs looking for nonidle CPUs. */
3006                         for_each_possible_cpu(cpu) {
3007                                 rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3008                                 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
3009                                 if (!isidle)
3010                                         break;
3011                         }
3012                         rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
3013                         oldrss = rss;
3014                         rss = ACCESS_ONCE(full_sysidle_state);
3015                 }
3016         }
3017
3018         /* If this is the first observation of an idle period, record it. */
3019         if (rss == RCU_SYSIDLE_FULL) {
3020                 rss = cmpxchg(&full_sysidle_state,
3021                               RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
3022                 return rss == RCU_SYSIDLE_FULL;
3023         }
3024
3025         smp_mb(); /* ensure rss load happens before later caller actions. */
3026
3027         /* If already fully idle, tell the caller (in case of races). */
3028         if (rss == RCU_SYSIDLE_FULL_NOTED)
3029                 return true;
3030
3031         /*
3032          * If we aren't there yet, and a grace period is not in flight,
3033          * initiate a grace period.  Either way, tell the caller that
3034          * we are not there yet.  We use an xchg() rather than an assignment
3035          * to make up for the memory barriers that would otherwise be
3036          * provided by the memory allocator.
3037          */
3038         if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
3039             !rcu_gp_in_progress(rcu_state_p) &&
3040             !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
3041                 call_rcu(&rsh.rh, rcu_sysidle_cb);
3042         return false;
3043 }
3044
3045 /*
3046  * Initialize dynticks sysidle state for CPUs coming online.
3047  */
3048 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3049 {
3050         rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
3051 }
3052
3053 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3054
3055 static void rcu_sysidle_enter(int irq)
3056 {
3057 }
3058
3059 static void rcu_sysidle_exit(int irq)
3060 {
3061 }
3062
3063 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
3064                                   unsigned long *maxj)
3065 {
3066 }
3067
3068 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
3069 {
3070         return false;
3071 }
3072
3073 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
3074                                   unsigned long maxj)
3075 {
3076 }
3077
3078 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3079 {
3080 }
3081
3082 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3083
3084 /*
3085  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3086  * grace-period kthread will do force_quiescent_state() processing?
3087  * The idea is to avoid waking up RCU core processing on such a
3088  * CPU unless the grace period has extended for too long.
3089  *
3090  * This code relies on the fact that all NO_HZ_FULL CPUs are also
3091  * CONFIG_RCU_NOCB_CPU CPUs.
3092  */
3093 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3094 {
3095 #ifdef CONFIG_NO_HZ_FULL
3096         if (tick_nohz_full_cpu(smp_processor_id()) &&
3097             (!rcu_gp_in_progress(rsp) ||
3098              ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
3099                 return 1;
3100 #endif /* #ifdef CONFIG_NO_HZ_FULL */
3101         return 0;
3102 }
3103
3104 /*
3105  * Bind the grace-period kthread for the sysidle flavor of RCU to the
3106  * timekeeping CPU.
3107  */
3108 static void rcu_bind_gp_kthread(void)
3109 {
3110         int __maybe_unused cpu;
3111
3112         if (!tick_nohz_full_enabled())
3113                 return;
3114 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3115         cpu = tick_do_timer_cpu;
3116         if (cpu >= 0 && cpu < nr_cpu_ids && raw_smp_processor_id() != cpu)
3117                 set_cpus_allowed_ptr(current, cpumask_of(cpu));
3118 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3119         if (!is_housekeeping_cpu(raw_smp_processor_id()))
3120                 housekeeping_affine(current);
3121 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3122 }
3123
3124 /* Record the current task on dyntick-idle entry. */
3125 static void rcu_dynticks_task_enter(void)
3126 {
3127 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3128         ACCESS_ONCE(current->rcu_tasks_idle_cpu) = smp_processor_id();
3129 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3130 }
3131
3132 /* Record no current task on dyntick-idle exit. */
3133 static void rcu_dynticks_task_exit(void)
3134 {
3135 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3136         ACCESS_ONCE(current->rcu_tasks_idle_cpu) = -1;
3137 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3138 }