bcc6d9134d4701a83095c73795283c1d4f7ee998
[firefly-linux-kernel-4.4.55.git] / kernel / rcu / tree_plugin.h
1 /*
2  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, you can access it online at
18  * http://www.gnu.org/licenses/gpl-2.0.html.
19  *
20  * Copyright Red Hat, 2009
21  * Copyright IBM Corporation, 2009
22  *
23  * Author: Ingo Molnar <mingo@elte.hu>
24  *         Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25  */
26
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
32
33 #ifdef CONFIG_RCU_BOOST
34
35 #include "../locking/rtmutex_common.h"
36
37 /* rcuc/rcub kthread realtime priority */
38 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
39 module_param(kthread_prio, int, 0644);
40
41 /*
42  * Control variables for per-CPU and per-rcu_node kthreads.  These
43  * handle all flavors of RCU.
44  */
45 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
46 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
47 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
48 DEFINE_PER_CPU(char, rcu_cpu_has_work);
49
50 #endif /* #ifdef CONFIG_RCU_BOOST */
51
52 #ifdef CONFIG_RCU_NOCB_CPU
53 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
54 static bool have_rcu_nocb_mask;     /* Was rcu_nocb_mask allocated? */
55 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
56 static char __initdata nocb_buf[NR_CPUS * 5];
57 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
58
59 /*
60  * Check the RCU kernel configuration parameters and print informative
61  * messages about anything out of the ordinary.  If you like #ifdef, you
62  * will love this function.
63  */
64 static void __init rcu_bootup_announce_oddness(void)
65 {
66 #ifdef CONFIG_RCU_TRACE
67         pr_info("\tRCU debugfs-based tracing is enabled.\n");
68 #endif
69 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
70         pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
71                CONFIG_RCU_FANOUT);
72 #endif
73 #ifdef CONFIG_RCU_FANOUT_EXACT
74         pr_info("\tHierarchical RCU autobalancing is disabled.\n");
75 #endif
76 #ifdef CONFIG_RCU_FAST_NO_HZ
77         pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
78 #endif
79 #ifdef CONFIG_PROVE_RCU
80         pr_info("\tRCU lockdep checking is enabled.\n");
81 #endif
82 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
83         pr_info("\tRCU torture testing starts during boot.\n");
84 #endif
85 #if defined(CONFIG_RCU_CPU_STALL_INFO)
86         pr_info("\tAdditional per-CPU info printed with stalls.\n");
87 #endif
88 #if NUM_RCU_LVL_4 != 0
89         pr_info("\tFour-level hierarchy is enabled.\n");
90 #endif
91         if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
92                 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
93         if (nr_cpu_ids != NR_CPUS)
94                 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
95 #ifdef CONFIG_RCU_BOOST
96         pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
97 #endif
98 }
99
100 #ifdef CONFIG_PREEMPT_RCU
101
102 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
103 static struct rcu_state *rcu_state_p = &rcu_preempt_state;
104
105 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
106 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
107                                bool wake);
108
109 /*
110  * Tell them what RCU they are running.
111  */
112 static void __init rcu_bootup_announce(void)
113 {
114         pr_info("Preemptible hierarchical RCU implementation.\n");
115         rcu_bootup_announce_oddness();
116 }
117
118 /*
119  * Return the number of RCU-preempt batches processed thus far
120  * for debug and statistics.
121  */
122 static long rcu_batches_completed_preempt(void)
123 {
124         return rcu_preempt_state.completed;
125 }
126 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
127
128 /*
129  * Return the number of RCU batches processed thus far for debug & stats.
130  */
131 long rcu_batches_completed(void)
132 {
133         return rcu_batches_completed_preempt();
134 }
135 EXPORT_SYMBOL_GPL(rcu_batches_completed);
136
137 /*
138  * Record a preemptible-RCU quiescent state for the specified CPU.  Note
139  * that this just means that the task currently running on the CPU is
140  * not in a quiescent state.  There might be any number of tasks blocked
141  * while in an RCU read-side critical section.
142  *
143  * As with the other rcu_*_qs() functions, callers to this function
144  * must disable preemption.
145  */
146 static void rcu_preempt_qs(void)
147 {
148         if (!__this_cpu_read(rcu_preempt_data.passed_quiesce)) {
149                 trace_rcu_grace_period(TPS("rcu_preempt"),
150                                        __this_cpu_read(rcu_preempt_data.gpnum),
151                                        TPS("cpuqs"));
152                 __this_cpu_write(rcu_preempt_data.passed_quiesce, 1);
153                 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
154                 current->rcu_read_unlock_special.b.need_qs = false;
155         }
156 }
157
158 /*
159  * We have entered the scheduler, and the current task might soon be
160  * context-switched away from.  If this task is in an RCU read-side
161  * critical section, we will no longer be able to rely on the CPU to
162  * record that fact, so we enqueue the task on the blkd_tasks list.
163  * The task will dequeue itself when it exits the outermost enclosing
164  * RCU read-side critical section.  Therefore, the current grace period
165  * cannot be permitted to complete until the blkd_tasks list entries
166  * predating the current grace period drain, in other words, until
167  * rnp->gp_tasks becomes NULL.
168  *
169  * Caller must disable preemption.
170  */
171 static void rcu_preempt_note_context_switch(void)
172 {
173         struct task_struct *t = current;
174         unsigned long flags;
175         struct rcu_data *rdp;
176         struct rcu_node *rnp;
177
178         if (t->rcu_read_lock_nesting > 0 &&
179             !t->rcu_read_unlock_special.b.blocked) {
180
181                 /* Possibly blocking in an RCU read-side critical section. */
182                 rdp = this_cpu_ptr(rcu_preempt_state.rda);
183                 rnp = rdp->mynode;
184                 raw_spin_lock_irqsave(&rnp->lock, flags);
185                 smp_mb__after_unlock_lock();
186                 t->rcu_read_unlock_special.b.blocked = true;
187                 t->rcu_blocked_node = rnp;
188
189                 /*
190                  * If this CPU has already checked in, then this task
191                  * will hold up the next grace period rather than the
192                  * current grace period.  Queue the task accordingly.
193                  * If the task is queued for the current grace period
194                  * (i.e., this CPU has not yet passed through a quiescent
195                  * state for the current grace period), then as long
196                  * as that task remains queued, the current grace period
197                  * cannot end.  Note that there is some uncertainty as
198                  * to exactly when the current grace period started.
199                  * We take a conservative approach, which can result
200                  * in unnecessarily waiting on tasks that started very
201                  * slightly after the current grace period began.  C'est
202                  * la vie!!!
203                  *
204                  * But first, note that the current CPU must still be
205                  * on line!
206                  */
207                 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
208                 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
209                 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
210                         list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
211                         rnp->gp_tasks = &t->rcu_node_entry;
212 #ifdef CONFIG_RCU_BOOST
213                         if (rnp->boost_tasks != NULL)
214                                 rnp->boost_tasks = rnp->gp_tasks;
215 #endif /* #ifdef CONFIG_RCU_BOOST */
216                 } else {
217                         list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
218                         if (rnp->qsmask & rdp->grpmask)
219                                 rnp->gp_tasks = &t->rcu_node_entry;
220                 }
221                 trace_rcu_preempt_task(rdp->rsp->name,
222                                        t->pid,
223                                        (rnp->qsmask & rdp->grpmask)
224                                        ? rnp->gpnum
225                                        : rnp->gpnum + 1);
226                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
227         } else if (t->rcu_read_lock_nesting < 0 &&
228                    t->rcu_read_unlock_special.s) {
229
230                 /*
231                  * Complete exit from RCU read-side critical section on
232                  * behalf of preempted instance of __rcu_read_unlock().
233                  */
234                 rcu_read_unlock_special(t);
235         }
236
237         /*
238          * Either we were not in an RCU read-side critical section to
239          * begin with, or we have now recorded that critical section
240          * globally.  Either way, we can now note a quiescent state
241          * for this CPU.  Again, if we were in an RCU read-side critical
242          * section, and if that critical section was blocking the current
243          * grace period, then the fact that the task has been enqueued
244          * means that we continue to block the current grace period.
245          */
246         rcu_preempt_qs();
247 }
248
249 /*
250  * Check for preempted RCU readers blocking the current grace period
251  * for the specified rcu_node structure.  If the caller needs a reliable
252  * answer, it must hold the rcu_node's ->lock.
253  */
254 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
255 {
256         return rnp->gp_tasks != NULL;
257 }
258
259 /*
260  * Record a quiescent state for all tasks that were previously queued
261  * on the specified rcu_node structure and that were blocking the current
262  * RCU grace period.  The caller must hold the specified rnp->lock with
263  * irqs disabled, and this lock is released upon return, but irqs remain
264  * disabled.
265  */
266 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
267         __releases(rnp->lock)
268 {
269         unsigned long mask;
270         struct rcu_node *rnp_p;
271
272         if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
273                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
274                 return;  /* Still need more quiescent states! */
275         }
276
277         rnp_p = rnp->parent;
278         if (rnp_p == NULL) {
279                 /*
280                  * Either there is only one rcu_node in the tree,
281                  * or tasks were kicked up to root rcu_node due to
282                  * CPUs going offline.
283                  */
284                 rcu_report_qs_rsp(&rcu_preempt_state, flags);
285                 return;
286         }
287
288         /* Report up the rest of the hierarchy. */
289         mask = rnp->grpmask;
290         raw_spin_unlock(&rnp->lock);    /* irqs remain disabled. */
291         raw_spin_lock(&rnp_p->lock);    /* irqs already disabled. */
292         smp_mb__after_unlock_lock();
293         rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
294 }
295
296 /*
297  * Advance a ->blkd_tasks-list pointer to the next entry, instead
298  * returning NULL if at the end of the list.
299  */
300 static struct list_head *rcu_next_node_entry(struct task_struct *t,
301                                              struct rcu_node *rnp)
302 {
303         struct list_head *np;
304
305         np = t->rcu_node_entry.next;
306         if (np == &rnp->blkd_tasks)
307                 np = NULL;
308         return np;
309 }
310
311 /*
312  * Return true if the specified rcu_node structure has tasks that were
313  * preempted within an RCU read-side critical section.
314  */
315 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
316 {
317         return !list_empty(&rnp->blkd_tasks);
318 }
319
320 /*
321  * Handle special cases during rcu_read_unlock(), such as needing to
322  * notify RCU core processing or task having blocked during the RCU
323  * read-side critical section.
324  */
325 void rcu_read_unlock_special(struct task_struct *t)
326 {
327         bool empty;
328         bool empty_exp;
329         bool empty_norm;
330         bool empty_exp_now;
331         unsigned long flags;
332         struct list_head *np;
333 #ifdef CONFIG_RCU_BOOST
334         bool drop_boost_mutex = false;
335 #endif /* #ifdef CONFIG_RCU_BOOST */
336         struct rcu_node *rnp;
337         union rcu_special special;
338
339         /* NMI handlers cannot block and cannot safely manipulate state. */
340         if (in_nmi())
341                 return;
342
343         local_irq_save(flags);
344
345         /*
346          * If RCU core is waiting for this CPU to exit critical section,
347          * let it know that we have done so.  Because irqs are disabled,
348          * t->rcu_read_unlock_special cannot change.
349          */
350         special = t->rcu_read_unlock_special;
351         if (special.b.need_qs) {
352                 rcu_preempt_qs();
353                 if (!t->rcu_read_unlock_special.s) {
354                         local_irq_restore(flags);
355                         return;
356                 }
357         }
358
359         /* Hardware IRQ handlers cannot block, complain if they get here. */
360         if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
361                 local_irq_restore(flags);
362                 return;
363         }
364
365         /* Clean up if blocked during RCU read-side critical section. */
366         if (special.b.blocked) {
367                 t->rcu_read_unlock_special.b.blocked = false;
368
369                 /*
370                  * Remove this task from the list it blocked on.  The
371                  * task can migrate while we acquire the lock, but at
372                  * most one time.  So at most two passes through loop.
373                  */
374                 for (;;) {
375                         rnp = t->rcu_blocked_node;
376                         raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
377                         smp_mb__after_unlock_lock();
378                         if (rnp == t->rcu_blocked_node)
379                                 break;
380                         raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
381                 }
382                 empty = !rcu_preempt_has_tasks(rnp);
383                 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
384                 empty_exp = !rcu_preempted_readers_exp(rnp);
385                 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
386                 np = rcu_next_node_entry(t, rnp);
387                 list_del_init(&t->rcu_node_entry);
388                 t->rcu_blocked_node = NULL;
389                 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
390                                                 rnp->gpnum, t->pid);
391                 if (&t->rcu_node_entry == rnp->gp_tasks)
392                         rnp->gp_tasks = np;
393                 if (&t->rcu_node_entry == rnp->exp_tasks)
394                         rnp->exp_tasks = np;
395 #ifdef CONFIG_RCU_BOOST
396                 if (&t->rcu_node_entry == rnp->boost_tasks)
397                         rnp->boost_tasks = np;
398                 /* Snapshot ->boost_mtx ownership with rcu_node lock held. */
399                 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
400 #endif /* #ifdef CONFIG_RCU_BOOST */
401
402                 /*
403                  * If this was the last task on the list, go see if we
404                  * need to propagate ->qsmaskinit bit clearing up the
405                  * rcu_node tree.
406                  */
407                 if (!empty && !rcu_preempt_has_tasks(rnp))
408                         rcu_cleanup_dead_rnp(rnp);
409
410                 /*
411                  * If this was the last task on the current list, and if
412                  * we aren't waiting on any CPUs, report the quiescent state.
413                  * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
414                  * so we must take a snapshot of the expedited state.
415                  */
416                 empty_exp_now = !rcu_preempted_readers_exp(rnp);
417                 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
418                         trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
419                                                          rnp->gpnum,
420                                                          0, rnp->qsmask,
421                                                          rnp->level,
422                                                          rnp->grplo,
423                                                          rnp->grphi,
424                                                          !!rnp->gp_tasks);
425                         rcu_report_unblock_qs_rnp(rnp, flags);
426                 } else {
427                         raw_spin_unlock_irqrestore(&rnp->lock, flags);
428                 }
429
430 #ifdef CONFIG_RCU_BOOST
431                 /* Unboost if we were boosted. */
432                 if (drop_boost_mutex) {
433                         rt_mutex_unlock(&rnp->boost_mtx);
434                         complete(&rnp->boost_completion);
435                 }
436 #endif /* #ifdef CONFIG_RCU_BOOST */
437
438                 /*
439                  * If this was the last task on the expedited lists,
440                  * then we need to report up the rcu_node hierarchy.
441                  */
442                 if (!empty_exp && empty_exp_now)
443                         rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
444         } else {
445                 local_irq_restore(flags);
446         }
447 }
448
449 /*
450  * Dump detailed information for all tasks blocking the current RCU
451  * grace period on the specified rcu_node structure.
452  */
453 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
454 {
455         unsigned long flags;
456         struct task_struct *t;
457
458         raw_spin_lock_irqsave(&rnp->lock, flags);
459         if (!rcu_preempt_blocked_readers_cgp(rnp)) {
460                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
461                 return;
462         }
463         t = list_entry(rnp->gp_tasks,
464                        struct task_struct, rcu_node_entry);
465         list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
466                 sched_show_task(t);
467         raw_spin_unlock_irqrestore(&rnp->lock, flags);
468 }
469
470 /*
471  * Dump detailed information for all tasks blocking the current RCU
472  * grace period.
473  */
474 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
475 {
476         struct rcu_node *rnp = rcu_get_root(rsp);
477
478         rcu_print_detail_task_stall_rnp(rnp);
479         rcu_for_each_leaf_node(rsp, rnp)
480                 rcu_print_detail_task_stall_rnp(rnp);
481 }
482
483 #ifdef CONFIG_RCU_CPU_STALL_INFO
484
485 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
486 {
487         pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
488                rnp->level, rnp->grplo, rnp->grphi);
489 }
490
491 static void rcu_print_task_stall_end(void)
492 {
493         pr_cont("\n");
494 }
495
496 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
497
498 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
499 {
500 }
501
502 static void rcu_print_task_stall_end(void)
503 {
504 }
505
506 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
507
508 /*
509  * Scan the current list of tasks blocked within RCU read-side critical
510  * sections, printing out the tid of each.
511  */
512 static int rcu_print_task_stall(struct rcu_node *rnp)
513 {
514         struct task_struct *t;
515         int ndetected = 0;
516
517         if (!rcu_preempt_blocked_readers_cgp(rnp))
518                 return 0;
519         rcu_print_task_stall_begin(rnp);
520         t = list_entry(rnp->gp_tasks,
521                        struct task_struct, rcu_node_entry);
522         list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
523                 pr_cont(" P%d", t->pid);
524                 ndetected++;
525         }
526         rcu_print_task_stall_end();
527         return ndetected;
528 }
529
530 /*
531  * Check that the list of blocked tasks for the newly completed grace
532  * period is in fact empty.  It is a serious bug to complete a grace
533  * period that still has RCU readers blocked!  This function must be
534  * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
535  * must be held by the caller.
536  *
537  * Also, if there are blocked tasks on the list, they automatically
538  * block the newly created grace period, so set up ->gp_tasks accordingly.
539  */
540 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
541 {
542         WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
543         if (rcu_preempt_has_tasks(rnp))
544                 rnp->gp_tasks = rnp->blkd_tasks.next;
545         WARN_ON_ONCE(rnp->qsmask);
546 }
547
548 #ifdef CONFIG_HOTPLUG_CPU
549
550 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
551
552 /*
553  * Check for a quiescent state from the current CPU.  When a task blocks,
554  * the task is recorded in the corresponding CPU's rcu_node structure,
555  * which is checked elsewhere.
556  *
557  * Caller must disable hard irqs.
558  */
559 static void rcu_preempt_check_callbacks(void)
560 {
561         struct task_struct *t = current;
562
563         if (t->rcu_read_lock_nesting == 0) {
564                 rcu_preempt_qs();
565                 return;
566         }
567         if (t->rcu_read_lock_nesting > 0 &&
568             __this_cpu_read(rcu_preempt_data.qs_pending) &&
569             !__this_cpu_read(rcu_preempt_data.passed_quiesce))
570                 t->rcu_read_unlock_special.b.need_qs = true;
571 }
572
573 #ifdef CONFIG_RCU_BOOST
574
575 static void rcu_preempt_do_callbacks(void)
576 {
577         rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
578 }
579
580 #endif /* #ifdef CONFIG_RCU_BOOST */
581
582 /*
583  * Queue a preemptible-RCU callback for invocation after a grace period.
584  */
585 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
586 {
587         __call_rcu(head, func, &rcu_preempt_state, -1, 0);
588 }
589 EXPORT_SYMBOL_GPL(call_rcu);
590
591 /**
592  * synchronize_rcu - wait until a grace period has elapsed.
593  *
594  * Control will return to the caller some time after a full grace
595  * period has elapsed, in other words after all currently executing RCU
596  * read-side critical sections have completed.  Note, however, that
597  * upon return from synchronize_rcu(), the caller might well be executing
598  * concurrently with new RCU read-side critical sections that began while
599  * synchronize_rcu() was waiting.  RCU read-side critical sections are
600  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
601  *
602  * See the description of synchronize_sched() for more detailed information
603  * on memory ordering guarantees.
604  */
605 void synchronize_rcu(void)
606 {
607         rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
608                            !lock_is_held(&rcu_lock_map) &&
609                            !lock_is_held(&rcu_sched_lock_map),
610                            "Illegal synchronize_rcu() in RCU read-side critical section");
611         if (!rcu_scheduler_active)
612                 return;
613         if (rcu_expedited)
614                 synchronize_rcu_expedited();
615         else
616                 wait_rcu_gp(call_rcu);
617 }
618 EXPORT_SYMBOL_GPL(synchronize_rcu);
619
620 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
621 static unsigned long sync_rcu_preempt_exp_count;
622 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
623
624 /*
625  * Return non-zero if there are any tasks in RCU read-side critical
626  * sections blocking the current preemptible-RCU expedited grace period.
627  * If there is no preemptible-RCU expedited grace period currently in
628  * progress, returns zero unconditionally.
629  */
630 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
631 {
632         return rnp->exp_tasks != NULL;
633 }
634
635 /*
636  * return non-zero if there is no RCU expedited grace period in progress
637  * for the specified rcu_node structure, in other words, if all CPUs and
638  * tasks covered by the specified rcu_node structure have done their bit
639  * for the current expedited grace period.  Works only for preemptible
640  * RCU -- other RCU implementation use other means.
641  *
642  * Caller must hold sync_rcu_preempt_exp_mutex.
643  */
644 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
645 {
646         return !rcu_preempted_readers_exp(rnp) &&
647                ACCESS_ONCE(rnp->expmask) == 0;
648 }
649
650 /*
651  * Report the exit from RCU read-side critical section for the last task
652  * that queued itself during or before the current expedited preemptible-RCU
653  * grace period.  This event is reported either to the rcu_node structure on
654  * which the task was queued or to one of that rcu_node structure's ancestors,
655  * recursively up the tree.  (Calm down, calm down, we do the recursion
656  * iteratively!)
657  *
658  * Most callers will set the "wake" flag, but the task initiating the
659  * expedited grace period need not wake itself.
660  *
661  * Caller must hold sync_rcu_preempt_exp_mutex.
662  */
663 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
664                                bool wake)
665 {
666         unsigned long flags;
667         unsigned long mask;
668
669         raw_spin_lock_irqsave(&rnp->lock, flags);
670         smp_mb__after_unlock_lock();
671         for (;;) {
672                 if (!sync_rcu_preempt_exp_done(rnp)) {
673                         raw_spin_unlock_irqrestore(&rnp->lock, flags);
674                         break;
675                 }
676                 if (rnp->parent == NULL) {
677                         raw_spin_unlock_irqrestore(&rnp->lock, flags);
678                         if (wake) {
679                                 smp_mb(); /* EGP done before wake_up(). */
680                                 wake_up(&sync_rcu_preempt_exp_wq);
681                         }
682                         break;
683                 }
684                 mask = rnp->grpmask;
685                 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
686                 rnp = rnp->parent;
687                 raw_spin_lock(&rnp->lock); /* irqs already disabled */
688                 smp_mb__after_unlock_lock();
689                 rnp->expmask &= ~mask;
690         }
691 }
692
693 /*
694  * Snapshot the tasks blocking the newly started preemptible-RCU expedited
695  * grace period for the specified rcu_node structure.  If there are no such
696  * tasks, report it up the rcu_node hierarchy.
697  *
698  * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
699  * CPU hotplug operations.
700  */
701 static void
702 sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
703 {
704         unsigned long flags;
705         int must_wait = 0;
706
707         raw_spin_lock_irqsave(&rnp->lock, flags);
708         smp_mb__after_unlock_lock();
709         if (!rcu_preempt_has_tasks(rnp)) {
710                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
711         } else {
712                 rnp->exp_tasks = rnp->blkd_tasks.next;
713                 rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
714                 must_wait = 1;
715         }
716         if (!must_wait)
717                 rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
718 }
719
720 /**
721  * synchronize_rcu_expedited - Brute-force RCU grace period
722  *
723  * Wait for an RCU-preempt grace period, but expedite it.  The basic
724  * idea is to invoke synchronize_sched_expedited() to push all the tasks to
725  * the ->blkd_tasks lists and wait for this list to drain.  This consumes
726  * significant time on all CPUs and is unfriendly to real-time workloads,
727  * so is thus not recommended for any sort of common-case code.
728  * In fact, if you are using synchronize_rcu_expedited() in a loop,
729  * please restructure your code to batch your updates, and then Use a
730  * single synchronize_rcu() instead.
731  */
732 void synchronize_rcu_expedited(void)
733 {
734         unsigned long flags;
735         struct rcu_node *rnp;
736         struct rcu_state *rsp = &rcu_preempt_state;
737         unsigned long snap;
738         int trycount = 0;
739
740         smp_mb(); /* Caller's modifications seen first by other CPUs. */
741         snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
742         smp_mb(); /* Above access cannot bleed into critical section. */
743
744         /*
745          * Block CPU-hotplug operations.  This means that any CPU-hotplug
746          * operation that finds an rcu_node structure with tasks in the
747          * process of being boosted will know that all tasks blocking
748          * this expedited grace period will already be in the process of
749          * being boosted.  This simplifies the process of moving tasks
750          * from leaf to root rcu_node structures.
751          */
752         if (!try_get_online_cpus()) {
753                 /* CPU-hotplug operation in flight, fall back to normal GP. */
754                 wait_rcu_gp(call_rcu);
755                 return;
756         }
757
758         /*
759          * Acquire lock, falling back to synchronize_rcu() if too many
760          * lock-acquisition failures.  Of course, if someone does the
761          * expedited grace period for us, just leave.
762          */
763         while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
764                 if (ULONG_CMP_LT(snap,
765                     ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
766                         put_online_cpus();
767                         goto mb_ret; /* Others did our work for us. */
768                 }
769                 if (trycount++ < 10) {
770                         udelay(trycount * num_online_cpus());
771                 } else {
772                         put_online_cpus();
773                         wait_rcu_gp(call_rcu);
774                         return;
775                 }
776         }
777         if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
778                 put_online_cpus();
779                 goto unlock_mb_ret; /* Others did our work for us. */
780         }
781
782         /* force all RCU readers onto ->blkd_tasks lists. */
783         synchronize_sched_expedited();
784
785         /* Initialize ->expmask for all non-leaf rcu_node structures. */
786         rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
787                 raw_spin_lock_irqsave(&rnp->lock, flags);
788                 smp_mb__after_unlock_lock();
789                 rnp->expmask = rnp->qsmaskinit;
790                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
791         }
792
793         /* Snapshot current state of ->blkd_tasks lists. */
794         rcu_for_each_leaf_node(rsp, rnp)
795                 sync_rcu_preempt_exp_init(rsp, rnp);
796         if (NUM_RCU_NODES > 1)
797                 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
798
799         put_online_cpus();
800
801         /* Wait for snapshotted ->blkd_tasks lists to drain. */
802         rnp = rcu_get_root(rsp);
803         wait_event(sync_rcu_preempt_exp_wq,
804                    sync_rcu_preempt_exp_done(rnp));
805
806         /* Clean up and exit. */
807         smp_mb(); /* ensure expedited GP seen before counter increment. */
808         ACCESS_ONCE(sync_rcu_preempt_exp_count) =
809                                         sync_rcu_preempt_exp_count + 1;
810 unlock_mb_ret:
811         mutex_unlock(&sync_rcu_preempt_exp_mutex);
812 mb_ret:
813         smp_mb(); /* ensure subsequent action seen after grace period. */
814 }
815 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
816
817 /**
818  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
819  *
820  * Note that this primitive does not necessarily wait for an RCU grace period
821  * to complete.  For example, if there are no RCU callbacks queued anywhere
822  * in the system, then rcu_barrier() is within its rights to return
823  * immediately, without waiting for anything, much less an RCU grace period.
824  */
825 void rcu_barrier(void)
826 {
827         _rcu_barrier(&rcu_preempt_state);
828 }
829 EXPORT_SYMBOL_GPL(rcu_barrier);
830
831 /*
832  * Initialize preemptible RCU's state structures.
833  */
834 static void __init __rcu_init_preempt(void)
835 {
836         rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
837 }
838
839 /*
840  * Check for a task exiting while in a preemptible-RCU read-side
841  * critical section, clean up if so.  No need to issue warnings,
842  * as debug_check_no_locks_held() already does this if lockdep
843  * is enabled.
844  */
845 void exit_rcu(void)
846 {
847         struct task_struct *t = current;
848
849         if (likely(list_empty(&current->rcu_node_entry)))
850                 return;
851         t->rcu_read_lock_nesting = 1;
852         barrier();
853         t->rcu_read_unlock_special.b.blocked = true;
854         __rcu_read_unlock();
855 }
856
857 #else /* #ifdef CONFIG_PREEMPT_RCU */
858
859 static struct rcu_state *rcu_state_p = &rcu_sched_state;
860
861 /*
862  * Tell them what RCU they are running.
863  */
864 static void __init rcu_bootup_announce(void)
865 {
866         pr_info("Hierarchical RCU implementation.\n");
867         rcu_bootup_announce_oddness();
868 }
869
870 /*
871  * Return the number of RCU batches processed thus far for debug & stats.
872  */
873 long rcu_batches_completed(void)
874 {
875         return rcu_batches_completed_sched();
876 }
877 EXPORT_SYMBOL_GPL(rcu_batches_completed);
878
879 /*
880  * Because preemptible RCU does not exist, we never have to check for
881  * CPUs being in quiescent states.
882  */
883 static void rcu_preempt_note_context_switch(void)
884 {
885 }
886
887 /*
888  * Because preemptible RCU does not exist, there are never any preempted
889  * RCU readers.
890  */
891 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
892 {
893         return 0;
894 }
895
896 #ifdef CONFIG_HOTPLUG_CPU
897
898 /*
899  * Because there is no preemptible RCU, there can be no readers blocked.
900  */
901 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
902 {
903         return false;
904 }
905
906 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
907
908 /*
909  * Because preemptible RCU does not exist, we never have to check for
910  * tasks blocked within RCU read-side critical sections.
911  */
912 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
913 {
914 }
915
916 /*
917  * Because preemptible RCU does not exist, we never have to check for
918  * tasks blocked within RCU read-side critical sections.
919  */
920 static int rcu_print_task_stall(struct rcu_node *rnp)
921 {
922         return 0;
923 }
924
925 /*
926  * Because there is no preemptible RCU, there can be no readers blocked,
927  * so there is no need to check for blocked tasks.  So check only for
928  * bogus qsmask values.
929  */
930 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
931 {
932         WARN_ON_ONCE(rnp->qsmask);
933 }
934
935 /*
936  * Because preemptible RCU does not exist, it never has any callbacks
937  * to check.
938  */
939 static void rcu_preempt_check_callbacks(void)
940 {
941 }
942
943 /*
944  * Wait for an rcu-preempt grace period, but make it happen quickly.
945  * But because preemptible RCU does not exist, map to rcu-sched.
946  */
947 void synchronize_rcu_expedited(void)
948 {
949         synchronize_sched_expedited();
950 }
951 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
952
953 /*
954  * Because preemptible RCU does not exist, rcu_barrier() is just
955  * another name for rcu_barrier_sched().
956  */
957 void rcu_barrier(void)
958 {
959         rcu_barrier_sched();
960 }
961 EXPORT_SYMBOL_GPL(rcu_barrier);
962
963 /*
964  * Because preemptible RCU does not exist, it need not be initialized.
965  */
966 static void __init __rcu_init_preempt(void)
967 {
968 }
969
970 /*
971  * Because preemptible RCU does not exist, tasks cannot possibly exit
972  * while in preemptible RCU read-side critical sections.
973  */
974 void exit_rcu(void)
975 {
976 }
977
978 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
979
980 #ifdef CONFIG_RCU_BOOST
981
982 #include "../locking/rtmutex_common.h"
983
984 #ifdef CONFIG_RCU_TRACE
985
986 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
987 {
988         if (!rcu_preempt_has_tasks(rnp))
989                 rnp->n_balk_blkd_tasks++;
990         else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
991                 rnp->n_balk_exp_gp_tasks++;
992         else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
993                 rnp->n_balk_boost_tasks++;
994         else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
995                 rnp->n_balk_notblocked++;
996         else if (rnp->gp_tasks != NULL &&
997                  ULONG_CMP_LT(jiffies, rnp->boost_time))
998                 rnp->n_balk_notyet++;
999         else
1000                 rnp->n_balk_nos++;
1001 }
1002
1003 #else /* #ifdef CONFIG_RCU_TRACE */
1004
1005 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1006 {
1007 }
1008
1009 #endif /* #else #ifdef CONFIG_RCU_TRACE */
1010
1011 static void rcu_wake_cond(struct task_struct *t, int status)
1012 {
1013         /*
1014          * If the thread is yielding, only wake it when this
1015          * is invoked from idle
1016          */
1017         if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1018                 wake_up_process(t);
1019 }
1020
1021 /*
1022  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1023  * or ->boost_tasks, advancing the pointer to the next task in the
1024  * ->blkd_tasks list.
1025  *
1026  * Note that irqs must be enabled: boosting the task can block.
1027  * Returns 1 if there are more tasks needing to be boosted.
1028  */
1029 static int rcu_boost(struct rcu_node *rnp)
1030 {
1031         unsigned long flags;
1032         struct task_struct *t;
1033         struct list_head *tb;
1034
1035         if (ACCESS_ONCE(rnp->exp_tasks) == NULL &&
1036             ACCESS_ONCE(rnp->boost_tasks) == NULL)
1037                 return 0;  /* Nothing left to boost. */
1038
1039         raw_spin_lock_irqsave(&rnp->lock, flags);
1040         smp_mb__after_unlock_lock();
1041
1042         /*
1043          * Recheck under the lock: all tasks in need of boosting
1044          * might exit their RCU read-side critical sections on their own.
1045          */
1046         if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1047                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1048                 return 0;
1049         }
1050
1051         /*
1052          * Preferentially boost tasks blocking expedited grace periods.
1053          * This cannot starve the normal grace periods because a second
1054          * expedited grace period must boost all blocked tasks, including
1055          * those blocking the pre-existing normal grace period.
1056          */
1057         if (rnp->exp_tasks != NULL) {
1058                 tb = rnp->exp_tasks;
1059                 rnp->n_exp_boosts++;
1060         } else {
1061                 tb = rnp->boost_tasks;
1062                 rnp->n_normal_boosts++;
1063         }
1064         rnp->n_tasks_boosted++;
1065
1066         /*
1067          * We boost task t by manufacturing an rt_mutex that appears to
1068          * be held by task t.  We leave a pointer to that rt_mutex where
1069          * task t can find it, and task t will release the mutex when it
1070          * exits its outermost RCU read-side critical section.  Then
1071          * simply acquiring this artificial rt_mutex will boost task
1072          * t's priority.  (Thanks to tglx for suggesting this approach!)
1073          *
1074          * Note that task t must acquire rnp->lock to remove itself from
1075          * the ->blkd_tasks list, which it will do from exit() if from
1076          * nowhere else.  We therefore are guaranteed that task t will
1077          * stay around at least until we drop rnp->lock.  Note that
1078          * rnp->lock also resolves races between our priority boosting
1079          * and task t's exiting its outermost RCU read-side critical
1080          * section.
1081          */
1082         t = container_of(tb, struct task_struct, rcu_node_entry);
1083         rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1084         init_completion(&rnp->boost_completion);
1085         raw_spin_unlock_irqrestore(&rnp->lock, flags);
1086         /* Lock only for side effect: boosts task t's priority. */
1087         rt_mutex_lock(&rnp->boost_mtx);
1088         rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1089
1090         /* Wait for boostee to be done w/boost_mtx before reinitializing. */
1091         wait_for_completion(&rnp->boost_completion);
1092
1093         return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1094                ACCESS_ONCE(rnp->boost_tasks) != NULL;
1095 }
1096
1097 /*
1098  * Priority-boosting kthread.  One per leaf rcu_node and one for the
1099  * root rcu_node.
1100  */
1101 static int rcu_boost_kthread(void *arg)
1102 {
1103         struct rcu_node *rnp = (struct rcu_node *)arg;
1104         int spincnt = 0;
1105         int more2boost;
1106
1107         trace_rcu_utilization(TPS("Start boost kthread@init"));
1108         for (;;) {
1109                 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1110                 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1111                 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1112                 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1113                 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1114                 more2boost = rcu_boost(rnp);
1115                 if (more2boost)
1116                         spincnt++;
1117                 else
1118                         spincnt = 0;
1119                 if (spincnt > 10) {
1120                         rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1121                         trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1122                         schedule_timeout_interruptible(2);
1123                         trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1124                         spincnt = 0;
1125                 }
1126         }
1127         /* NOTREACHED */
1128         trace_rcu_utilization(TPS("End boost kthread@notreached"));
1129         return 0;
1130 }
1131
1132 /*
1133  * Check to see if it is time to start boosting RCU readers that are
1134  * blocking the current grace period, and, if so, tell the per-rcu_node
1135  * kthread to start boosting them.  If there is an expedited grace
1136  * period in progress, it is always time to boost.
1137  *
1138  * The caller must hold rnp->lock, which this function releases.
1139  * The ->boost_kthread_task is immortal, so we don't need to worry
1140  * about it going away.
1141  */
1142 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1143         __releases(rnp->lock)
1144 {
1145         struct task_struct *t;
1146
1147         if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1148                 rnp->n_balk_exp_gp_tasks++;
1149                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1150                 return;
1151         }
1152         if (rnp->exp_tasks != NULL ||
1153             (rnp->gp_tasks != NULL &&
1154              rnp->boost_tasks == NULL &&
1155              rnp->qsmask == 0 &&
1156              ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1157                 if (rnp->exp_tasks == NULL)
1158                         rnp->boost_tasks = rnp->gp_tasks;
1159                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1160                 t = rnp->boost_kthread_task;
1161                 if (t)
1162                         rcu_wake_cond(t, rnp->boost_kthread_status);
1163         } else {
1164                 rcu_initiate_boost_trace(rnp);
1165                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1166         }
1167 }
1168
1169 /*
1170  * Wake up the per-CPU kthread to invoke RCU callbacks.
1171  */
1172 static void invoke_rcu_callbacks_kthread(void)
1173 {
1174         unsigned long flags;
1175
1176         local_irq_save(flags);
1177         __this_cpu_write(rcu_cpu_has_work, 1);
1178         if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1179             current != __this_cpu_read(rcu_cpu_kthread_task)) {
1180                 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1181                               __this_cpu_read(rcu_cpu_kthread_status));
1182         }
1183         local_irq_restore(flags);
1184 }
1185
1186 /*
1187  * Is the current CPU running the RCU-callbacks kthread?
1188  * Caller must have preemption disabled.
1189  */
1190 static bool rcu_is_callbacks_kthread(void)
1191 {
1192         return __this_cpu_read(rcu_cpu_kthread_task) == current;
1193 }
1194
1195 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1196
1197 /*
1198  * Do priority-boost accounting for the start of a new grace period.
1199  */
1200 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1201 {
1202         rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1203 }
1204
1205 /*
1206  * Create an RCU-boost kthread for the specified node if one does not
1207  * already exist.  We only create this kthread for preemptible RCU.
1208  * Returns zero if all is well, a negated errno otherwise.
1209  */
1210 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1211                                                  struct rcu_node *rnp)
1212 {
1213         int rnp_index = rnp - &rsp->node[0];
1214         unsigned long flags;
1215         struct sched_param sp;
1216         struct task_struct *t;
1217
1218         if (&rcu_preempt_state != rsp)
1219                 return 0;
1220
1221         if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1222                 return 0;
1223
1224         rsp->boost = 1;
1225         if (rnp->boost_kthread_task != NULL)
1226                 return 0;
1227         t = kthread_create(rcu_boost_kthread, (void *)rnp,
1228                            "rcub/%d", rnp_index);
1229         if (IS_ERR(t))
1230                 return PTR_ERR(t);
1231         raw_spin_lock_irqsave(&rnp->lock, flags);
1232         smp_mb__after_unlock_lock();
1233         rnp->boost_kthread_task = t;
1234         raw_spin_unlock_irqrestore(&rnp->lock, flags);
1235         sp.sched_priority = kthread_prio;
1236         sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1237         wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1238         return 0;
1239 }
1240
1241 static void rcu_kthread_do_work(void)
1242 {
1243         rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1244         rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1245         rcu_preempt_do_callbacks();
1246 }
1247
1248 static void rcu_cpu_kthread_setup(unsigned int cpu)
1249 {
1250         struct sched_param sp;
1251
1252         sp.sched_priority = kthread_prio;
1253         sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1254 }
1255
1256 static void rcu_cpu_kthread_park(unsigned int cpu)
1257 {
1258         per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1259 }
1260
1261 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1262 {
1263         return __this_cpu_read(rcu_cpu_has_work);
1264 }
1265
1266 /*
1267  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1268  * RCU softirq used in flavors and configurations of RCU that do not
1269  * support RCU priority boosting.
1270  */
1271 static void rcu_cpu_kthread(unsigned int cpu)
1272 {
1273         unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1274         char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1275         int spincnt;
1276
1277         for (spincnt = 0; spincnt < 10; spincnt++) {
1278                 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1279                 local_bh_disable();
1280                 *statusp = RCU_KTHREAD_RUNNING;
1281                 this_cpu_inc(rcu_cpu_kthread_loops);
1282                 local_irq_disable();
1283                 work = *workp;
1284                 *workp = 0;
1285                 local_irq_enable();
1286                 if (work)
1287                         rcu_kthread_do_work();
1288                 local_bh_enable();
1289                 if (*workp == 0) {
1290                         trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1291                         *statusp = RCU_KTHREAD_WAITING;
1292                         return;
1293                 }
1294         }
1295         *statusp = RCU_KTHREAD_YIELDING;
1296         trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1297         schedule_timeout_interruptible(2);
1298         trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1299         *statusp = RCU_KTHREAD_WAITING;
1300 }
1301
1302 /*
1303  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1304  * served by the rcu_node in question.  The CPU hotplug lock is still
1305  * held, so the value of rnp->qsmaskinit will be stable.
1306  *
1307  * We don't include outgoingcpu in the affinity set, use -1 if there is
1308  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1309  * this function allows the kthread to execute on any CPU.
1310  */
1311 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1312 {
1313         struct task_struct *t = rnp->boost_kthread_task;
1314         unsigned long mask = rnp->qsmaskinit;
1315         cpumask_var_t cm;
1316         int cpu;
1317
1318         if (!t)
1319                 return;
1320         if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1321                 return;
1322         for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1323                 if ((mask & 0x1) && cpu != outgoingcpu)
1324                         cpumask_set_cpu(cpu, cm);
1325         if (cpumask_weight(cm) == 0) {
1326                 cpumask_setall(cm);
1327                 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1328                         cpumask_clear_cpu(cpu, cm);
1329                 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1330         }
1331         set_cpus_allowed_ptr(t, cm);
1332         free_cpumask_var(cm);
1333 }
1334
1335 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1336         .store                  = &rcu_cpu_kthread_task,
1337         .thread_should_run      = rcu_cpu_kthread_should_run,
1338         .thread_fn              = rcu_cpu_kthread,
1339         .thread_comm            = "rcuc/%u",
1340         .setup                  = rcu_cpu_kthread_setup,
1341         .park                   = rcu_cpu_kthread_park,
1342 };
1343
1344 /*
1345  * Spawn boost kthreads -- called as soon as the scheduler is running.
1346  */
1347 static void __init rcu_spawn_boost_kthreads(void)
1348 {
1349         struct rcu_node *rnp;
1350         int cpu;
1351
1352         for_each_possible_cpu(cpu)
1353                 per_cpu(rcu_cpu_has_work, cpu) = 0;
1354         BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1355         rnp = rcu_get_root(rcu_state_p);
1356         (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1357         if (NUM_RCU_NODES > 1) {
1358                 rcu_for_each_leaf_node(rcu_state_p, rnp)
1359                         (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1360         }
1361 }
1362
1363 static void rcu_prepare_kthreads(int cpu)
1364 {
1365         struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1366         struct rcu_node *rnp = rdp->mynode;
1367
1368         /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1369         if (rcu_scheduler_fully_active)
1370                 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1371 }
1372
1373 #else /* #ifdef CONFIG_RCU_BOOST */
1374
1375 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1376         __releases(rnp->lock)
1377 {
1378         raw_spin_unlock_irqrestore(&rnp->lock, flags);
1379 }
1380
1381 static void invoke_rcu_callbacks_kthread(void)
1382 {
1383         WARN_ON_ONCE(1);
1384 }
1385
1386 static bool rcu_is_callbacks_kthread(void)
1387 {
1388         return false;
1389 }
1390
1391 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1392 {
1393 }
1394
1395 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1396 {
1397 }
1398
1399 static void __init rcu_spawn_boost_kthreads(void)
1400 {
1401 }
1402
1403 static void rcu_prepare_kthreads(int cpu)
1404 {
1405 }
1406
1407 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1408
1409 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1410
1411 /*
1412  * Check to see if any future RCU-related work will need to be done
1413  * by the current CPU, even if none need be done immediately, returning
1414  * 1 if so.  This function is part of the RCU implementation; it is -not-
1415  * an exported member of the RCU API.
1416  *
1417  * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1418  * any flavor of RCU.
1419  */
1420 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1421 int rcu_needs_cpu(unsigned long *delta_jiffies)
1422 {
1423         *delta_jiffies = ULONG_MAX;
1424         return rcu_cpu_has_callbacks(NULL);
1425 }
1426 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1427
1428 /*
1429  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1430  * after it.
1431  */
1432 static void rcu_cleanup_after_idle(void)
1433 {
1434 }
1435
1436 /*
1437  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1438  * is nothing.
1439  */
1440 static void rcu_prepare_for_idle(void)
1441 {
1442 }
1443
1444 /*
1445  * Don't bother keeping a running count of the number of RCU callbacks
1446  * posted because CONFIG_RCU_FAST_NO_HZ=n.
1447  */
1448 static void rcu_idle_count_callbacks_posted(void)
1449 {
1450 }
1451
1452 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1453
1454 /*
1455  * This code is invoked when a CPU goes idle, at which point we want
1456  * to have the CPU do everything required for RCU so that it can enter
1457  * the energy-efficient dyntick-idle mode.  This is handled by a
1458  * state machine implemented by rcu_prepare_for_idle() below.
1459  *
1460  * The following three proprocessor symbols control this state machine:
1461  *
1462  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1463  *      to sleep in dyntick-idle mode with RCU callbacks pending.  This
1464  *      is sized to be roughly one RCU grace period.  Those energy-efficiency
1465  *      benchmarkers who might otherwise be tempted to set this to a large
1466  *      number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1467  *      system.  And if you are -that- concerned about energy efficiency,
1468  *      just power the system down and be done with it!
1469  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1470  *      permitted to sleep in dyntick-idle mode with only lazy RCU
1471  *      callbacks pending.  Setting this too high can OOM your system.
1472  *
1473  * The values below work well in practice.  If future workloads require
1474  * adjustment, they can be converted into kernel config parameters, though
1475  * making the state machine smarter might be a better option.
1476  */
1477 #define RCU_IDLE_GP_DELAY 4             /* Roughly one grace period. */
1478 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1479
1480 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1481 module_param(rcu_idle_gp_delay, int, 0644);
1482 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1483 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1484
1485 extern int tick_nohz_active;
1486
1487 /*
1488  * Try to advance callbacks for all flavors of RCU on the current CPU, but
1489  * only if it has been awhile since the last time we did so.  Afterwards,
1490  * if there are any callbacks ready for immediate invocation, return true.
1491  */
1492 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1493 {
1494         bool cbs_ready = false;
1495         struct rcu_data *rdp;
1496         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1497         struct rcu_node *rnp;
1498         struct rcu_state *rsp;
1499
1500         /* Exit early if we advanced recently. */
1501         if (jiffies == rdtp->last_advance_all)
1502                 return false;
1503         rdtp->last_advance_all = jiffies;
1504
1505         for_each_rcu_flavor(rsp) {
1506                 rdp = this_cpu_ptr(rsp->rda);
1507                 rnp = rdp->mynode;
1508
1509                 /*
1510                  * Don't bother checking unless a grace period has
1511                  * completed since we last checked and there are
1512                  * callbacks not yet ready to invoke.
1513                  */
1514                 if (rdp->completed != rnp->completed &&
1515                     rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1516                         note_gp_changes(rsp, rdp);
1517
1518                 if (cpu_has_callbacks_ready_to_invoke(rdp))
1519                         cbs_ready = true;
1520         }
1521         return cbs_ready;
1522 }
1523
1524 /*
1525  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1526  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1527  * caller to set the timeout based on whether or not there are non-lazy
1528  * callbacks.
1529  *
1530  * The caller must have disabled interrupts.
1531  */
1532 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1533 int rcu_needs_cpu(unsigned long *dj)
1534 {
1535         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1536
1537         /* Snapshot to detect later posting of non-lazy callback. */
1538         rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1539
1540         /* If no callbacks, RCU doesn't need the CPU. */
1541         if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1542                 *dj = ULONG_MAX;
1543                 return 0;
1544         }
1545
1546         /* Attempt to advance callbacks. */
1547         if (rcu_try_advance_all_cbs()) {
1548                 /* Some ready to invoke, so initiate later invocation. */
1549                 invoke_rcu_core();
1550                 return 1;
1551         }
1552         rdtp->last_accelerate = jiffies;
1553
1554         /* Request timer delay depending on laziness, and round. */
1555         if (!rdtp->all_lazy) {
1556                 *dj = round_up(rcu_idle_gp_delay + jiffies,
1557                                rcu_idle_gp_delay) - jiffies;
1558         } else {
1559                 *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1560         }
1561         return 0;
1562 }
1563 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1564
1565 /*
1566  * Prepare a CPU for idle from an RCU perspective.  The first major task
1567  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1568  * The second major task is to check to see if a non-lazy callback has
1569  * arrived at a CPU that previously had only lazy callbacks.  The third
1570  * major task is to accelerate (that is, assign grace-period numbers to)
1571  * any recently arrived callbacks.
1572  *
1573  * The caller must have disabled interrupts.
1574  */
1575 static void rcu_prepare_for_idle(void)
1576 {
1577 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1578         bool needwake;
1579         struct rcu_data *rdp;
1580         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1581         struct rcu_node *rnp;
1582         struct rcu_state *rsp;
1583         int tne;
1584
1585         /* Handle nohz enablement switches conservatively. */
1586         tne = ACCESS_ONCE(tick_nohz_active);
1587         if (tne != rdtp->tick_nohz_enabled_snap) {
1588                 if (rcu_cpu_has_callbacks(NULL))
1589                         invoke_rcu_core(); /* force nohz to see update. */
1590                 rdtp->tick_nohz_enabled_snap = tne;
1591                 return;
1592         }
1593         if (!tne)
1594                 return;
1595
1596         /* If this is a no-CBs CPU, no callbacks, just return. */
1597         if (rcu_is_nocb_cpu(smp_processor_id()))
1598                 return;
1599
1600         /*
1601          * If a non-lazy callback arrived at a CPU having only lazy
1602          * callbacks, invoke RCU core for the side-effect of recalculating
1603          * idle duration on re-entry to idle.
1604          */
1605         if (rdtp->all_lazy &&
1606             rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1607                 rdtp->all_lazy = false;
1608                 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1609                 invoke_rcu_core();
1610                 return;
1611         }
1612
1613         /*
1614          * If we have not yet accelerated this jiffy, accelerate all
1615          * callbacks on this CPU.
1616          */
1617         if (rdtp->last_accelerate == jiffies)
1618                 return;
1619         rdtp->last_accelerate = jiffies;
1620         for_each_rcu_flavor(rsp) {
1621                 rdp = this_cpu_ptr(rsp->rda);
1622                 if (!*rdp->nxttail[RCU_DONE_TAIL])
1623                         continue;
1624                 rnp = rdp->mynode;
1625                 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1626                 smp_mb__after_unlock_lock();
1627                 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1628                 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1629                 if (needwake)
1630                         rcu_gp_kthread_wake(rsp);
1631         }
1632 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1633 }
1634
1635 /*
1636  * Clean up for exit from idle.  Attempt to advance callbacks based on
1637  * any grace periods that elapsed while the CPU was idle, and if any
1638  * callbacks are now ready to invoke, initiate invocation.
1639  */
1640 static void rcu_cleanup_after_idle(void)
1641 {
1642 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1643         if (rcu_is_nocb_cpu(smp_processor_id()))
1644                 return;
1645         if (rcu_try_advance_all_cbs())
1646                 invoke_rcu_core();
1647 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1648 }
1649
1650 /*
1651  * Keep a running count of the number of non-lazy callbacks posted
1652  * on this CPU.  This running counter (which is never decremented) allows
1653  * rcu_prepare_for_idle() to detect when something out of the idle loop
1654  * posts a callback, even if an equal number of callbacks are invoked.
1655  * Of course, callbacks should only be posted from within a trace event
1656  * designed to be called from idle or from within RCU_NONIDLE().
1657  */
1658 static void rcu_idle_count_callbacks_posted(void)
1659 {
1660         __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1661 }
1662
1663 /*
1664  * Data for flushing lazy RCU callbacks at OOM time.
1665  */
1666 static atomic_t oom_callback_count;
1667 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1668
1669 /*
1670  * RCU OOM callback -- decrement the outstanding count and deliver the
1671  * wake-up if we are the last one.
1672  */
1673 static void rcu_oom_callback(struct rcu_head *rhp)
1674 {
1675         if (atomic_dec_and_test(&oom_callback_count))
1676                 wake_up(&oom_callback_wq);
1677 }
1678
1679 /*
1680  * Post an rcu_oom_notify callback on the current CPU if it has at
1681  * least one lazy callback.  This will unnecessarily post callbacks
1682  * to CPUs that already have a non-lazy callback at the end of their
1683  * callback list, but this is an infrequent operation, so accept some
1684  * extra overhead to keep things simple.
1685  */
1686 static void rcu_oom_notify_cpu(void *unused)
1687 {
1688         struct rcu_state *rsp;
1689         struct rcu_data *rdp;
1690
1691         for_each_rcu_flavor(rsp) {
1692                 rdp = raw_cpu_ptr(rsp->rda);
1693                 if (rdp->qlen_lazy != 0) {
1694                         atomic_inc(&oom_callback_count);
1695                         rsp->call(&rdp->oom_head, rcu_oom_callback);
1696                 }
1697         }
1698 }
1699
1700 /*
1701  * If low on memory, ensure that each CPU has a non-lazy callback.
1702  * This will wake up CPUs that have only lazy callbacks, in turn
1703  * ensuring that they free up the corresponding memory in a timely manner.
1704  * Because an uncertain amount of memory will be freed in some uncertain
1705  * timeframe, we do not claim to have freed anything.
1706  */
1707 static int rcu_oom_notify(struct notifier_block *self,
1708                           unsigned long notused, void *nfreed)
1709 {
1710         int cpu;
1711
1712         /* Wait for callbacks from earlier instance to complete. */
1713         wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1714         smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1715
1716         /*
1717          * Prevent premature wakeup: ensure that all increments happen
1718          * before there is a chance of the counter reaching zero.
1719          */
1720         atomic_set(&oom_callback_count, 1);
1721
1722         get_online_cpus();
1723         for_each_online_cpu(cpu) {
1724                 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1725                 cond_resched_rcu_qs();
1726         }
1727         put_online_cpus();
1728
1729         /* Unconditionally decrement: no need to wake ourselves up. */
1730         atomic_dec(&oom_callback_count);
1731
1732         return NOTIFY_OK;
1733 }
1734
1735 static struct notifier_block rcu_oom_nb = {
1736         .notifier_call = rcu_oom_notify
1737 };
1738
1739 static int __init rcu_register_oom_notifier(void)
1740 {
1741         register_oom_notifier(&rcu_oom_nb);
1742         return 0;
1743 }
1744 early_initcall(rcu_register_oom_notifier);
1745
1746 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1747
1748 #ifdef CONFIG_RCU_CPU_STALL_INFO
1749
1750 #ifdef CONFIG_RCU_FAST_NO_HZ
1751
1752 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1753 {
1754         struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1755         unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1756
1757         sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1758                 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1759                 ulong2long(nlpd),
1760                 rdtp->all_lazy ? 'L' : '.',
1761                 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1762 }
1763
1764 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1765
1766 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1767 {
1768         *cp = '\0';
1769 }
1770
1771 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1772
1773 /* Initiate the stall-info list. */
1774 static void print_cpu_stall_info_begin(void)
1775 {
1776         pr_cont("\n");
1777 }
1778
1779 /*
1780  * Print out diagnostic information for the specified stalled CPU.
1781  *
1782  * If the specified CPU is aware of the current RCU grace period
1783  * (flavor specified by rsp), then print the number of scheduling
1784  * clock interrupts the CPU has taken during the time that it has
1785  * been aware.  Otherwise, print the number of RCU grace periods
1786  * that this CPU is ignorant of, for example, "1" if the CPU was
1787  * aware of the previous grace period.
1788  *
1789  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1790  */
1791 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1792 {
1793         char fast_no_hz[72];
1794         struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1795         struct rcu_dynticks *rdtp = rdp->dynticks;
1796         char *ticks_title;
1797         unsigned long ticks_value;
1798
1799         if (rsp->gpnum == rdp->gpnum) {
1800                 ticks_title = "ticks this GP";
1801                 ticks_value = rdp->ticks_this_gp;
1802         } else {
1803                 ticks_title = "GPs behind";
1804                 ticks_value = rsp->gpnum - rdp->gpnum;
1805         }
1806         print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1807         pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
1808                cpu, ticks_value, ticks_title,
1809                atomic_read(&rdtp->dynticks) & 0xfff,
1810                rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1811                rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1812                fast_no_hz);
1813 }
1814
1815 /* Terminate the stall-info list. */
1816 static void print_cpu_stall_info_end(void)
1817 {
1818         pr_err("\t");
1819 }
1820
1821 /* Zero ->ticks_this_gp for all flavors of RCU. */
1822 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1823 {
1824         rdp->ticks_this_gp = 0;
1825         rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1826 }
1827
1828 /* Increment ->ticks_this_gp for all flavors of RCU. */
1829 static void increment_cpu_stall_ticks(void)
1830 {
1831         struct rcu_state *rsp;
1832
1833         for_each_rcu_flavor(rsp)
1834                 raw_cpu_inc(rsp->rda->ticks_this_gp);
1835 }
1836
1837 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1838
1839 static void print_cpu_stall_info_begin(void)
1840 {
1841         pr_cont(" {");
1842 }
1843
1844 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1845 {
1846         pr_cont(" %d", cpu);
1847 }
1848
1849 static void print_cpu_stall_info_end(void)
1850 {
1851         pr_cont("} ");
1852 }
1853
1854 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1855 {
1856 }
1857
1858 static void increment_cpu_stall_ticks(void)
1859 {
1860 }
1861
1862 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
1863
1864 #ifdef CONFIG_RCU_NOCB_CPU
1865
1866 /*
1867  * Offload callback processing from the boot-time-specified set of CPUs
1868  * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1869  * kthread created that pulls the callbacks from the corresponding CPU,
1870  * waits for a grace period to elapse, and invokes the callbacks.
1871  * The no-CBs CPUs do a wake_up() on their kthread when they insert
1872  * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1873  * has been specified, in which case each kthread actively polls its
1874  * CPU.  (Which isn't so great for energy efficiency, but which does
1875  * reduce RCU's overhead on that CPU.)
1876  *
1877  * This is intended to be used in conjunction with Frederic Weisbecker's
1878  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1879  * running CPU-bound user-mode computations.
1880  *
1881  * Offloading of callback processing could also in theory be used as
1882  * an energy-efficiency measure because CPUs with no RCU callbacks
1883  * queued are more aggressive about entering dyntick-idle mode.
1884  */
1885
1886
1887 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1888 static int __init rcu_nocb_setup(char *str)
1889 {
1890         alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1891         have_rcu_nocb_mask = true;
1892         cpulist_parse(str, rcu_nocb_mask);
1893         return 1;
1894 }
1895 __setup("rcu_nocbs=", rcu_nocb_setup);
1896
1897 static int __init parse_rcu_nocb_poll(char *arg)
1898 {
1899         rcu_nocb_poll = 1;
1900         return 0;
1901 }
1902 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1903
1904 /*
1905  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1906  * grace period.
1907  */
1908 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1909 {
1910         wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
1911 }
1912
1913 /*
1914  * Set the root rcu_node structure's ->need_future_gp field
1915  * based on the sum of those of all rcu_node structures.  This does
1916  * double-count the root rcu_node structure's requests, but this
1917  * is necessary to handle the possibility of a rcu_nocb_kthread()
1918  * having awakened during the time that the rcu_node structures
1919  * were being updated for the end of the previous grace period.
1920  */
1921 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1922 {
1923         rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1924 }
1925
1926 static void rcu_init_one_nocb(struct rcu_node *rnp)
1927 {
1928         init_waitqueue_head(&rnp->nocb_gp_wq[0]);
1929         init_waitqueue_head(&rnp->nocb_gp_wq[1]);
1930 }
1931
1932 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1933 /* Is the specified CPU a no-CBs CPU? */
1934 bool rcu_is_nocb_cpu(int cpu)
1935 {
1936         if (have_rcu_nocb_mask)
1937                 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1938         return false;
1939 }
1940 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1941
1942 /*
1943  * Kick the leader kthread for this NOCB group.
1944  */
1945 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1946 {
1947         struct rcu_data *rdp_leader = rdp->nocb_leader;
1948
1949         if (!ACCESS_ONCE(rdp_leader->nocb_kthread))
1950                 return;
1951         if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1952                 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
1953                 ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false;
1954                 wake_up(&rdp_leader->nocb_wq);
1955         }
1956 }
1957
1958 /*
1959  * Does the specified CPU need an RCU callback for the specified flavor
1960  * of rcu_barrier()?
1961  */
1962 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1963 {
1964         struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1965         struct rcu_head *rhp;
1966
1967         /* No-CBs CPUs might have callbacks on any of three lists. */
1968         rhp = ACCESS_ONCE(rdp->nocb_head);
1969         if (!rhp)
1970                 rhp = ACCESS_ONCE(rdp->nocb_gp_head);
1971         if (!rhp)
1972                 rhp = ACCESS_ONCE(rdp->nocb_follower_head);
1973
1974         /* Having no rcuo kthread but CBs after scheduler starts is bad! */
1975         if (!ACCESS_ONCE(rdp->nocb_kthread) && rhp) {
1976                 /* RCU callback enqueued before CPU first came online??? */
1977                 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1978                        cpu, rhp->func);
1979                 WARN_ON_ONCE(1);
1980         }
1981
1982         return !!rhp;
1983 }
1984
1985 /*
1986  * Enqueue the specified string of rcu_head structures onto the specified
1987  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
1988  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
1989  * counts are supplied by rhcount and rhcount_lazy.
1990  *
1991  * If warranted, also wake up the kthread servicing this CPUs queues.
1992  */
1993 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1994                                     struct rcu_head *rhp,
1995                                     struct rcu_head **rhtp,
1996                                     int rhcount, int rhcount_lazy,
1997                                     unsigned long flags)
1998 {
1999         int len;
2000         struct rcu_head **old_rhpp;
2001         struct task_struct *t;
2002
2003         /* Enqueue the callback on the nocb list and update counts. */
2004         old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2005         ACCESS_ONCE(*old_rhpp) = rhp;
2006         atomic_long_add(rhcount, &rdp->nocb_q_count);
2007         atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2008         smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
2009
2010         /* If we are not being polled and there is a kthread, awaken it ... */
2011         t = ACCESS_ONCE(rdp->nocb_kthread);
2012         if (rcu_nocb_poll || !t) {
2013                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2014                                     TPS("WakeNotPoll"));
2015                 return;
2016         }
2017         len = atomic_long_read(&rdp->nocb_q_count);
2018         if (old_rhpp == &rdp->nocb_head) {
2019                 if (!irqs_disabled_flags(flags)) {
2020                         /* ... if queue was empty ... */
2021                         wake_nocb_leader(rdp, false);
2022                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2023                                             TPS("WakeEmpty"));
2024                 } else {
2025                         rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
2026                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2027                                             TPS("WakeEmptyIsDeferred"));
2028                 }
2029                 rdp->qlen_last_fqs_check = 0;
2030         } else if (len > rdp->qlen_last_fqs_check + qhimark) {
2031                 /* ... or if many callbacks queued. */
2032                 if (!irqs_disabled_flags(flags)) {
2033                         wake_nocb_leader(rdp, true);
2034                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2035                                             TPS("WakeOvf"));
2036                 } else {
2037                         rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
2038                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2039                                             TPS("WakeOvfIsDeferred"));
2040                 }
2041                 rdp->qlen_last_fqs_check = LONG_MAX / 2;
2042         } else {
2043                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
2044         }
2045         return;
2046 }
2047
2048 /*
2049  * This is a helper for __call_rcu(), which invokes this when the normal
2050  * callback queue is inoperable.  If this is not a no-CBs CPU, this
2051  * function returns failure back to __call_rcu(), which can complain
2052  * appropriately.
2053  *
2054  * Otherwise, this function queues the callback where the corresponding
2055  * "rcuo" kthread can find it.
2056  */
2057 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2058                             bool lazy, unsigned long flags)
2059 {
2060
2061         if (!rcu_is_nocb_cpu(rdp->cpu))
2062                 return false;
2063         __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2064         if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2065                 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2066                                          (unsigned long)rhp->func,
2067                                          -atomic_long_read(&rdp->nocb_q_count_lazy),
2068                                          -atomic_long_read(&rdp->nocb_q_count));
2069         else
2070                 trace_rcu_callback(rdp->rsp->name, rhp,
2071                                    -atomic_long_read(&rdp->nocb_q_count_lazy),
2072                                    -atomic_long_read(&rdp->nocb_q_count));
2073
2074         /*
2075          * If called from an extended quiescent state with interrupts
2076          * disabled, invoke the RCU core in order to allow the idle-entry
2077          * deferred-wakeup check to function.
2078          */
2079         if (irqs_disabled_flags(flags) &&
2080             !rcu_is_watching() &&
2081             cpu_online(smp_processor_id()))
2082                 invoke_rcu_core();
2083
2084         return true;
2085 }
2086
2087 /*
2088  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2089  * not a no-CBs CPU.
2090  */
2091 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2092                                                      struct rcu_data *rdp,
2093                                                      unsigned long flags)
2094 {
2095         long ql = rsp->qlen;
2096         long qll = rsp->qlen_lazy;
2097
2098         /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2099         if (!rcu_is_nocb_cpu(smp_processor_id()))
2100                 return false;
2101         rsp->qlen = 0;
2102         rsp->qlen_lazy = 0;
2103
2104         /* First, enqueue the donelist, if any.  This preserves CB ordering. */
2105         if (rsp->orphan_donelist != NULL) {
2106                 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2107                                         rsp->orphan_donetail, ql, qll, flags);
2108                 ql = qll = 0;
2109                 rsp->orphan_donelist = NULL;
2110                 rsp->orphan_donetail = &rsp->orphan_donelist;
2111         }
2112         if (rsp->orphan_nxtlist != NULL) {
2113                 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2114                                         rsp->orphan_nxttail, ql, qll, flags);
2115                 ql = qll = 0;
2116                 rsp->orphan_nxtlist = NULL;
2117                 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2118         }
2119         return true;
2120 }
2121
2122 /*
2123  * If necessary, kick off a new grace period, and either way wait
2124  * for a subsequent grace period to complete.
2125  */
2126 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2127 {
2128         unsigned long c;
2129         bool d;
2130         unsigned long flags;
2131         bool needwake;
2132         struct rcu_node *rnp = rdp->mynode;
2133
2134         raw_spin_lock_irqsave(&rnp->lock, flags);
2135         smp_mb__after_unlock_lock();
2136         needwake = rcu_start_future_gp(rnp, rdp, &c);
2137         raw_spin_unlock_irqrestore(&rnp->lock, flags);
2138         if (needwake)
2139                 rcu_gp_kthread_wake(rdp->rsp);
2140
2141         /*
2142          * Wait for the grace period.  Do so interruptibly to avoid messing
2143          * up the load average.
2144          */
2145         trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2146         for (;;) {
2147                 wait_event_interruptible(
2148                         rnp->nocb_gp_wq[c & 0x1],
2149                         (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2150                 if (likely(d))
2151                         break;
2152                 WARN_ON(signal_pending(current));
2153                 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2154         }
2155         trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2156         smp_mb(); /* Ensure that CB invocation happens after GP end. */
2157 }
2158
2159 /*
2160  * Leaders come here to wait for additional callbacks to show up.
2161  * This function does not return until callbacks appear.
2162  */
2163 static void nocb_leader_wait(struct rcu_data *my_rdp)
2164 {
2165         bool firsttime = true;
2166         bool gotcbs;
2167         struct rcu_data *rdp;
2168         struct rcu_head **tail;
2169
2170 wait_again:
2171
2172         /* Wait for callbacks to appear. */
2173         if (!rcu_nocb_poll) {
2174                 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2175                 wait_event_interruptible(my_rdp->nocb_wq,
2176                                 !ACCESS_ONCE(my_rdp->nocb_leader_sleep));
2177                 /* Memory barrier handled by smp_mb() calls below and repoll. */
2178         } else if (firsttime) {
2179                 firsttime = false; /* Don't drown trace log with "Poll"! */
2180                 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2181         }
2182
2183         /*
2184          * Each pass through the following loop checks a follower for CBs.
2185          * We are our own first follower.  Any CBs found are moved to
2186          * nocb_gp_head, where they await a grace period.
2187          */
2188         gotcbs = false;
2189         for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2190                 rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head);
2191                 if (!rdp->nocb_gp_head)
2192                         continue;  /* No CBs here, try next follower. */
2193
2194                 /* Move callbacks to wait-for-GP list, which is empty. */
2195                 ACCESS_ONCE(rdp->nocb_head) = NULL;
2196                 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2197                 rdp->nocb_gp_count = atomic_long_xchg(&rdp->nocb_q_count, 0);
2198                 rdp->nocb_gp_count_lazy =
2199                         atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
2200                 gotcbs = true;
2201         }
2202
2203         /*
2204          * If there were no callbacks, sleep a bit, rescan after a
2205          * memory barrier, and go retry.
2206          */
2207         if (unlikely(!gotcbs)) {
2208                 if (!rcu_nocb_poll)
2209                         trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2210                                             "WokeEmpty");
2211                 WARN_ON(signal_pending(current));
2212                 schedule_timeout_interruptible(1);
2213
2214                 /* Rescan in case we were a victim of memory ordering. */
2215                 my_rdp->nocb_leader_sleep = true;
2216                 smp_mb();  /* Ensure _sleep true before scan. */
2217                 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2218                         if (ACCESS_ONCE(rdp->nocb_head)) {
2219                                 /* Found CB, so short-circuit next wait. */
2220                                 my_rdp->nocb_leader_sleep = false;
2221                                 break;
2222                         }
2223                 goto wait_again;
2224         }
2225
2226         /* Wait for one grace period. */
2227         rcu_nocb_wait_gp(my_rdp);
2228
2229         /*
2230          * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2231          * We set it now, but recheck for new callbacks while
2232          * traversing our follower list.
2233          */
2234         my_rdp->nocb_leader_sleep = true;
2235         smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2236
2237         /* Each pass through the following loop wakes a follower, if needed. */
2238         for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2239                 if (ACCESS_ONCE(rdp->nocb_head))
2240                         my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2241                 if (!rdp->nocb_gp_head)
2242                         continue; /* No CBs, so no need to wake follower. */
2243
2244                 /* Append callbacks to follower's "done" list. */
2245                 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2246                 *tail = rdp->nocb_gp_head;
2247                 atomic_long_add(rdp->nocb_gp_count, &rdp->nocb_follower_count);
2248                 atomic_long_add(rdp->nocb_gp_count_lazy,
2249                                 &rdp->nocb_follower_count_lazy);
2250                 smp_mb__after_atomic(); /* Store *tail before wakeup. */
2251                 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2252                         /*
2253                          * List was empty, wake up the follower.
2254                          * Memory barriers supplied by atomic_long_add().
2255                          */
2256                         wake_up(&rdp->nocb_wq);
2257                 }
2258         }
2259
2260         /* If we (the leader) don't have CBs, go wait some more. */
2261         if (!my_rdp->nocb_follower_head)
2262                 goto wait_again;
2263 }
2264
2265 /*
2266  * Followers come here to wait for additional callbacks to show up.
2267  * This function does not return until callbacks appear.
2268  */
2269 static void nocb_follower_wait(struct rcu_data *rdp)
2270 {
2271         bool firsttime = true;
2272
2273         for (;;) {
2274                 if (!rcu_nocb_poll) {
2275                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2276                                             "FollowerSleep");
2277                         wait_event_interruptible(rdp->nocb_wq,
2278                                                  ACCESS_ONCE(rdp->nocb_follower_head));
2279                 } else if (firsttime) {
2280                         /* Don't drown trace log with "Poll"! */
2281                         firsttime = false;
2282                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2283                 }
2284                 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2285                         /* ^^^ Ensure CB invocation follows _head test. */
2286                         return;
2287                 }
2288                 if (!rcu_nocb_poll)
2289                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2290                                             "WokeEmpty");
2291                 WARN_ON(signal_pending(current));
2292                 schedule_timeout_interruptible(1);
2293         }
2294 }
2295
2296 /*
2297  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2298  * callbacks queued by the corresponding no-CBs CPU, however, there is
2299  * an optional leader-follower relationship so that the grace-period
2300  * kthreads don't have to do quite so many wakeups.
2301  */
2302 static int rcu_nocb_kthread(void *arg)
2303 {
2304         int c, cl;
2305         struct rcu_head *list;
2306         struct rcu_head *next;
2307         struct rcu_head **tail;
2308         struct rcu_data *rdp = arg;
2309
2310         /* Each pass through this loop invokes one batch of callbacks */
2311         for (;;) {
2312                 /* Wait for callbacks. */
2313                 if (rdp->nocb_leader == rdp)
2314                         nocb_leader_wait(rdp);
2315                 else
2316                         nocb_follower_wait(rdp);
2317
2318                 /* Pull the ready-to-invoke callbacks onto local list. */
2319                 list = ACCESS_ONCE(rdp->nocb_follower_head);
2320                 BUG_ON(!list);
2321                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2322                 ACCESS_ONCE(rdp->nocb_follower_head) = NULL;
2323                 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2324                 c = atomic_long_xchg(&rdp->nocb_follower_count, 0);
2325                 cl = atomic_long_xchg(&rdp->nocb_follower_count_lazy, 0);
2326                 rdp->nocb_p_count += c;
2327                 rdp->nocb_p_count_lazy += cl;
2328
2329                 /* Each pass through the following loop invokes a callback. */
2330                 trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
2331                 c = cl = 0;
2332                 while (list) {
2333                         next = list->next;
2334                         /* Wait for enqueuing to complete, if needed. */
2335                         while (next == NULL && &list->next != tail) {
2336                                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2337                                                     TPS("WaitQueue"));
2338                                 schedule_timeout_interruptible(1);
2339                                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2340                                                     TPS("WokeQueue"));
2341                                 next = list->next;
2342                         }
2343                         debug_rcu_head_unqueue(list);
2344                         local_bh_disable();
2345                         if (__rcu_reclaim(rdp->rsp->name, list))
2346                                 cl++;
2347                         c++;
2348                         local_bh_enable();
2349                         list = next;
2350                 }
2351                 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2352                 ACCESS_ONCE(rdp->nocb_p_count) = rdp->nocb_p_count - c;
2353                 ACCESS_ONCE(rdp->nocb_p_count_lazy) =
2354                                                 rdp->nocb_p_count_lazy - cl;
2355                 rdp->n_nocbs_invoked += c;
2356         }
2357         return 0;
2358 }
2359
2360 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2361 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2362 {
2363         return ACCESS_ONCE(rdp->nocb_defer_wakeup);
2364 }
2365
2366 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2367 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2368 {
2369         int ndw;
2370
2371         if (!rcu_nocb_need_deferred_wakeup(rdp))
2372                 return;
2373         ndw = ACCESS_ONCE(rdp->nocb_defer_wakeup);
2374         ACCESS_ONCE(rdp->nocb_defer_wakeup) = RCU_NOGP_WAKE_NOT;
2375         wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2376         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2377 }
2378
2379 void __init rcu_init_nohz(void)
2380 {
2381         int cpu;
2382         bool need_rcu_nocb_mask = true;
2383         struct rcu_state *rsp;
2384
2385 #ifdef CONFIG_RCU_NOCB_CPU_NONE
2386         need_rcu_nocb_mask = false;
2387 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2388
2389 #if defined(CONFIG_NO_HZ_FULL)
2390         if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2391                 need_rcu_nocb_mask = true;
2392 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2393
2394         if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2395                 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2396                         pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2397                         return;
2398                 }
2399                 have_rcu_nocb_mask = true;
2400         }
2401         if (!have_rcu_nocb_mask)
2402                 return;
2403
2404 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
2405         pr_info("\tOffload RCU callbacks from CPU 0\n");
2406         cpumask_set_cpu(0, rcu_nocb_mask);
2407 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2408 #ifdef CONFIG_RCU_NOCB_CPU_ALL
2409         pr_info("\tOffload RCU callbacks from all CPUs\n");
2410         cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2411 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2412 #if defined(CONFIG_NO_HZ_FULL)
2413         if (tick_nohz_full_running)
2414                 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2415 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2416
2417         if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2418                 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2419                 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2420                             rcu_nocb_mask);
2421         }
2422         cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
2423         pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
2424         if (rcu_nocb_poll)
2425                 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2426
2427         for_each_rcu_flavor(rsp) {
2428                 for_each_cpu(cpu, rcu_nocb_mask) {
2429                         struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2430
2431                         /*
2432                          * If there are early callbacks, they will need
2433                          * to be moved to the nocb lists.
2434                          */
2435                         WARN_ON_ONCE(rdp->nxttail[RCU_NEXT_TAIL] !=
2436                                      &rdp->nxtlist &&
2437                                      rdp->nxttail[RCU_NEXT_TAIL] != NULL);
2438                         init_nocb_callback_list(rdp);
2439                 }
2440                 rcu_organize_nocb_kthreads(rsp);
2441         }
2442 }
2443
2444 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2445 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2446 {
2447         rdp->nocb_tail = &rdp->nocb_head;
2448         init_waitqueue_head(&rdp->nocb_wq);
2449         rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2450 }
2451
2452 /*
2453  * If the specified CPU is a no-CBs CPU that does not already have its
2454  * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2455  * brought online out of order, this can require re-organizing the
2456  * leader-follower relationships.
2457  */
2458 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2459 {
2460         struct rcu_data *rdp;
2461         struct rcu_data *rdp_last;
2462         struct rcu_data *rdp_old_leader;
2463         struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2464         struct task_struct *t;
2465
2466         /*
2467          * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2468          * then nothing to do.
2469          */
2470         if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2471                 return;
2472
2473         /* If we didn't spawn the leader first, reorganize! */
2474         rdp_old_leader = rdp_spawn->nocb_leader;
2475         if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2476                 rdp_last = NULL;
2477                 rdp = rdp_old_leader;
2478                 do {
2479                         rdp->nocb_leader = rdp_spawn;
2480                         if (rdp_last && rdp != rdp_spawn)
2481                                 rdp_last->nocb_next_follower = rdp;
2482                         if (rdp == rdp_spawn) {
2483                                 rdp = rdp->nocb_next_follower;
2484                         } else {
2485                                 rdp_last = rdp;
2486                                 rdp = rdp->nocb_next_follower;
2487                                 rdp_last->nocb_next_follower = NULL;
2488                         }
2489                 } while (rdp);
2490                 rdp_spawn->nocb_next_follower = rdp_old_leader;
2491         }
2492
2493         /* Spawn the kthread for this CPU and RCU flavor. */
2494         t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2495                         "rcuo%c/%d", rsp->abbr, cpu);
2496         BUG_ON(IS_ERR(t));
2497         ACCESS_ONCE(rdp_spawn->nocb_kthread) = t;
2498 }
2499
2500 /*
2501  * If the specified CPU is a no-CBs CPU that does not already have its
2502  * rcuo kthreads, spawn them.
2503  */
2504 static void rcu_spawn_all_nocb_kthreads(int cpu)
2505 {
2506         struct rcu_state *rsp;
2507
2508         if (rcu_scheduler_fully_active)
2509                 for_each_rcu_flavor(rsp)
2510                         rcu_spawn_one_nocb_kthread(rsp, cpu);
2511 }
2512
2513 /*
2514  * Once the scheduler is running, spawn rcuo kthreads for all online
2515  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2516  * non-boot CPUs come online -- if this changes, we will need to add
2517  * some mutual exclusion.
2518  */
2519 static void __init rcu_spawn_nocb_kthreads(void)
2520 {
2521         int cpu;
2522
2523         for_each_online_cpu(cpu)
2524                 rcu_spawn_all_nocb_kthreads(cpu);
2525 }
2526
2527 /* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2528 static int rcu_nocb_leader_stride = -1;
2529 module_param(rcu_nocb_leader_stride, int, 0444);
2530
2531 /*
2532  * Initialize leader-follower relationships for all no-CBs CPU.
2533  */
2534 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2535 {
2536         int cpu;
2537         int ls = rcu_nocb_leader_stride;
2538         int nl = 0;  /* Next leader. */
2539         struct rcu_data *rdp;
2540         struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2541         struct rcu_data *rdp_prev = NULL;
2542
2543         if (!have_rcu_nocb_mask)
2544                 return;
2545         if (ls == -1) {
2546                 ls = int_sqrt(nr_cpu_ids);
2547                 rcu_nocb_leader_stride = ls;
2548         }
2549
2550         /*
2551          * Each pass through this loop sets up one rcu_data structure and
2552          * spawns one rcu_nocb_kthread().
2553          */
2554         for_each_cpu(cpu, rcu_nocb_mask) {
2555                 rdp = per_cpu_ptr(rsp->rda, cpu);
2556                 if (rdp->cpu >= nl) {
2557                         /* New leader, set up for followers & next leader. */
2558                         nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2559                         rdp->nocb_leader = rdp;
2560                         rdp_leader = rdp;
2561                 } else {
2562                         /* Another follower, link to previous leader. */
2563                         rdp->nocb_leader = rdp_leader;
2564                         rdp_prev->nocb_next_follower = rdp;
2565                 }
2566                 rdp_prev = rdp;
2567         }
2568 }
2569
2570 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2571 static bool init_nocb_callback_list(struct rcu_data *rdp)
2572 {
2573         if (!rcu_is_nocb_cpu(rdp->cpu))
2574                 return false;
2575
2576         rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2577         return true;
2578 }
2579
2580 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2581
2582 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2583 {
2584         WARN_ON_ONCE(1); /* Should be dead code. */
2585         return false;
2586 }
2587
2588 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2589 {
2590 }
2591
2592 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2593 {
2594 }
2595
2596 static void rcu_init_one_nocb(struct rcu_node *rnp)
2597 {
2598 }
2599
2600 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2601                             bool lazy, unsigned long flags)
2602 {
2603         return false;
2604 }
2605
2606 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2607                                                      struct rcu_data *rdp,
2608                                                      unsigned long flags)
2609 {
2610         return false;
2611 }
2612
2613 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2614 {
2615 }
2616
2617 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2618 {
2619         return false;
2620 }
2621
2622 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2623 {
2624 }
2625
2626 static void rcu_spawn_all_nocb_kthreads(int cpu)
2627 {
2628 }
2629
2630 static void __init rcu_spawn_nocb_kthreads(void)
2631 {
2632 }
2633
2634 static bool init_nocb_callback_list(struct rcu_data *rdp)
2635 {
2636         return false;
2637 }
2638
2639 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2640
2641 /*
2642  * An adaptive-ticks CPU can potentially execute in kernel mode for an
2643  * arbitrarily long period of time with the scheduling-clock tick turned
2644  * off.  RCU will be paying attention to this CPU because it is in the
2645  * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2646  * machine because the scheduling-clock tick has been disabled.  Therefore,
2647  * if an adaptive-ticks CPU is failing to respond to the current grace
2648  * period and has not be idle from an RCU perspective, kick it.
2649  */
2650 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2651 {
2652 #ifdef CONFIG_NO_HZ_FULL
2653         if (tick_nohz_full_cpu(cpu))
2654                 smp_send_reschedule(cpu);
2655 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2656 }
2657
2658
2659 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2660
2661 static int full_sysidle_state;          /* Current system-idle state. */
2662 #define RCU_SYSIDLE_NOT         0       /* Some CPU is not idle. */
2663 #define RCU_SYSIDLE_SHORT       1       /* All CPUs idle for brief period. */
2664 #define RCU_SYSIDLE_LONG        2       /* All CPUs idle for long enough. */
2665 #define RCU_SYSIDLE_FULL        3       /* All CPUs idle, ready for sysidle. */
2666 #define RCU_SYSIDLE_FULL_NOTED  4       /* Actually entered sysidle state. */
2667
2668 /*
2669  * Invoked to note exit from irq or task transition to idle.  Note that
2670  * usermode execution does -not- count as idle here!  After all, we want
2671  * to detect full-system idle states, not RCU quiescent states and grace
2672  * periods.  The caller must have disabled interrupts.
2673  */
2674 static void rcu_sysidle_enter(int irq)
2675 {
2676         unsigned long j;
2677         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2678
2679         /* If there are no nohz_full= CPUs, no need to track this. */
2680         if (!tick_nohz_full_enabled())
2681                 return;
2682
2683         /* Adjust nesting, check for fully idle. */
2684         if (irq) {
2685                 rdtp->dynticks_idle_nesting--;
2686                 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2687                 if (rdtp->dynticks_idle_nesting != 0)
2688                         return;  /* Still not fully idle. */
2689         } else {
2690                 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2691                     DYNTICK_TASK_NEST_VALUE) {
2692                         rdtp->dynticks_idle_nesting = 0;
2693                 } else {
2694                         rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2695                         WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2696                         return;  /* Still not fully idle. */
2697                 }
2698         }
2699
2700         /* Record start of fully idle period. */
2701         j = jiffies;
2702         ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
2703         smp_mb__before_atomic();
2704         atomic_inc(&rdtp->dynticks_idle);
2705         smp_mb__after_atomic();
2706         WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2707 }
2708
2709 /*
2710  * Unconditionally force exit from full system-idle state.  This is
2711  * invoked when a normal CPU exits idle, but must be called separately
2712  * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2713  * is that the timekeeping CPU is permitted to take scheduling-clock
2714  * interrupts while the system is in system-idle state, and of course
2715  * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2716  * interrupt from any other type of interrupt.
2717  */
2718 void rcu_sysidle_force_exit(void)
2719 {
2720         int oldstate = ACCESS_ONCE(full_sysidle_state);
2721         int newoldstate;
2722
2723         /*
2724          * Each pass through the following loop attempts to exit full
2725          * system-idle state.  If contention proves to be a problem,
2726          * a trylock-based contention tree could be used here.
2727          */
2728         while (oldstate > RCU_SYSIDLE_SHORT) {
2729                 newoldstate = cmpxchg(&full_sysidle_state,
2730                                       oldstate, RCU_SYSIDLE_NOT);
2731                 if (oldstate == newoldstate &&
2732                     oldstate == RCU_SYSIDLE_FULL_NOTED) {
2733                         rcu_kick_nohz_cpu(tick_do_timer_cpu);
2734                         return; /* We cleared it, done! */
2735                 }
2736                 oldstate = newoldstate;
2737         }
2738         smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2739 }
2740
2741 /*
2742  * Invoked to note entry to irq or task transition from idle.  Note that
2743  * usermode execution does -not- count as idle here!  The caller must
2744  * have disabled interrupts.
2745  */
2746 static void rcu_sysidle_exit(int irq)
2747 {
2748         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2749
2750         /* If there are no nohz_full= CPUs, no need to track this. */
2751         if (!tick_nohz_full_enabled())
2752                 return;
2753
2754         /* Adjust nesting, check for already non-idle. */
2755         if (irq) {
2756                 rdtp->dynticks_idle_nesting++;
2757                 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2758                 if (rdtp->dynticks_idle_nesting != 1)
2759                         return; /* Already non-idle. */
2760         } else {
2761                 /*
2762                  * Allow for irq misnesting.  Yes, it really is possible
2763                  * to enter an irq handler then never leave it, and maybe
2764                  * also vice versa.  Handle both possibilities.
2765                  */
2766                 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2767                         rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2768                         WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2769                         return; /* Already non-idle. */
2770                 } else {
2771                         rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2772                 }
2773         }
2774
2775         /* Record end of idle period. */
2776         smp_mb__before_atomic();
2777         atomic_inc(&rdtp->dynticks_idle);
2778         smp_mb__after_atomic();
2779         WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2780
2781         /*
2782          * If we are the timekeeping CPU, we are permitted to be non-idle
2783          * during a system-idle state.  This must be the case, because
2784          * the timekeeping CPU has to take scheduling-clock interrupts
2785          * during the time that the system is transitioning to full
2786          * system-idle state.  This means that the timekeeping CPU must
2787          * invoke rcu_sysidle_force_exit() directly if it does anything
2788          * more than take a scheduling-clock interrupt.
2789          */
2790         if (smp_processor_id() == tick_do_timer_cpu)
2791                 return;
2792
2793         /* Update system-idle state: We are clearly no longer fully idle! */
2794         rcu_sysidle_force_exit();
2795 }
2796
2797 /*
2798  * Check to see if the current CPU is idle.  Note that usermode execution
2799  * does not count as idle.  The caller must have disabled interrupts.
2800  */
2801 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2802                                   unsigned long *maxj)
2803 {
2804         int cur;
2805         unsigned long j;
2806         struct rcu_dynticks *rdtp = rdp->dynticks;
2807
2808         /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2809         if (!tick_nohz_full_enabled())
2810                 return;
2811
2812         /*
2813          * If some other CPU has already reported non-idle, if this is
2814          * not the flavor of RCU that tracks sysidle state, or if this
2815          * is an offline or the timekeeping CPU, nothing to do.
2816          */
2817         if (!*isidle || rdp->rsp != rcu_state_p ||
2818             cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2819                 return;
2820         if (rcu_gp_in_progress(rdp->rsp))
2821                 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2822
2823         /* Pick up current idle and NMI-nesting counter and check. */
2824         cur = atomic_read(&rdtp->dynticks_idle);
2825         if (cur & 0x1) {
2826                 *isidle = false; /* We are not idle! */
2827                 return;
2828         }
2829         smp_mb(); /* Read counters before timestamps. */
2830
2831         /* Pick up timestamps. */
2832         j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2833         /* If this CPU entered idle more recently, update maxj timestamp. */
2834         if (ULONG_CMP_LT(*maxj, j))
2835                 *maxj = j;
2836 }
2837
2838 /*
2839  * Is this the flavor of RCU that is handling full-system idle?
2840  */
2841 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2842 {
2843         return rsp == rcu_state_p;
2844 }
2845
2846 /*
2847  * Return a delay in jiffies based on the number of CPUs, rcu_node
2848  * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2849  * systems more time to transition to full-idle state in order to
2850  * avoid the cache thrashing that otherwise occur on the state variable.
2851  * Really small systems (less than a couple of tens of CPUs) should
2852  * instead use a single global atomically incremented counter, and later
2853  * versions of this will automatically reconfigure themselves accordingly.
2854  */
2855 static unsigned long rcu_sysidle_delay(void)
2856 {
2857         if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2858                 return 0;
2859         return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2860 }
2861
2862 /*
2863  * Advance the full-system-idle state.  This is invoked when all of
2864  * the non-timekeeping CPUs are idle.
2865  */
2866 static void rcu_sysidle(unsigned long j)
2867 {
2868         /* Check the current state. */
2869         switch (ACCESS_ONCE(full_sysidle_state)) {
2870         case RCU_SYSIDLE_NOT:
2871
2872                 /* First time all are idle, so note a short idle period. */
2873                 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2874                 break;
2875
2876         case RCU_SYSIDLE_SHORT:
2877
2878                 /*
2879                  * Idle for a bit, time to advance to next state?
2880                  * cmpxchg failure means race with non-idle, let them win.
2881                  */
2882                 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2883                         (void)cmpxchg(&full_sysidle_state,
2884                                       RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2885                 break;
2886
2887         case RCU_SYSIDLE_LONG:
2888
2889                 /*
2890                  * Do an additional check pass before advancing to full.
2891                  * cmpxchg failure means race with non-idle, let them win.
2892                  */
2893                 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2894                         (void)cmpxchg(&full_sysidle_state,
2895                                       RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2896                 break;
2897
2898         default:
2899                 break;
2900         }
2901 }
2902
2903 /*
2904  * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2905  * back to the beginning.
2906  */
2907 static void rcu_sysidle_cancel(void)
2908 {
2909         smp_mb();
2910         if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2911                 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
2912 }
2913
2914 /*
2915  * Update the sysidle state based on the results of a force-quiescent-state
2916  * scan of the CPUs' dyntick-idle state.
2917  */
2918 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2919                                unsigned long maxj, bool gpkt)
2920 {
2921         if (rsp != rcu_state_p)
2922                 return;  /* Wrong flavor, ignore. */
2923         if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2924                 return;  /* Running state machine from timekeeping CPU. */
2925         if (isidle)
2926                 rcu_sysidle(maxj);    /* More idle! */
2927         else
2928                 rcu_sysidle_cancel(); /* Idle is over. */
2929 }
2930
2931 /*
2932  * Wrapper for rcu_sysidle_report() when called from the grace-period
2933  * kthread's context.
2934  */
2935 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2936                                   unsigned long maxj)
2937 {
2938         /* If there are no nohz_full= CPUs, no need to track this. */
2939         if (!tick_nohz_full_enabled())
2940                 return;
2941
2942         rcu_sysidle_report(rsp, isidle, maxj, true);
2943 }
2944
2945 /* Callback and function for forcing an RCU grace period. */
2946 struct rcu_sysidle_head {
2947         struct rcu_head rh;
2948         int inuse;
2949 };
2950
2951 static void rcu_sysidle_cb(struct rcu_head *rhp)
2952 {
2953         struct rcu_sysidle_head *rshp;
2954
2955         /*
2956          * The following memory barrier is needed to replace the
2957          * memory barriers that would normally be in the memory
2958          * allocator.
2959          */
2960         smp_mb();  /* grace period precedes setting inuse. */
2961
2962         rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2963         ACCESS_ONCE(rshp->inuse) = 0;
2964 }
2965
2966 /*
2967  * Check to see if the system is fully idle, other than the timekeeping CPU.
2968  * The caller must have disabled interrupts.  This is not intended to be
2969  * called unless tick_nohz_full_enabled().
2970  */
2971 bool rcu_sys_is_idle(void)
2972 {
2973         static struct rcu_sysidle_head rsh;
2974         int rss = ACCESS_ONCE(full_sysidle_state);
2975
2976         if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2977                 return false;
2978
2979         /* Handle small-system case by doing a full scan of CPUs. */
2980         if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2981                 int oldrss = rss - 1;
2982
2983                 /*
2984                  * One pass to advance to each state up to _FULL.
2985                  * Give up if any pass fails to advance the state.
2986                  */
2987                 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2988                         int cpu;
2989                         bool isidle = true;
2990                         unsigned long maxj = jiffies - ULONG_MAX / 4;
2991                         struct rcu_data *rdp;
2992
2993                         /* Scan all the CPUs looking for nonidle CPUs. */
2994                         for_each_possible_cpu(cpu) {
2995                                 rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2996                                 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2997                                 if (!isidle)
2998                                         break;
2999                         }
3000                         rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
3001                         oldrss = rss;
3002                         rss = ACCESS_ONCE(full_sysidle_state);
3003                 }
3004         }
3005
3006         /* If this is the first observation of an idle period, record it. */
3007         if (rss == RCU_SYSIDLE_FULL) {
3008                 rss = cmpxchg(&full_sysidle_state,
3009                               RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
3010                 return rss == RCU_SYSIDLE_FULL;
3011         }
3012
3013         smp_mb(); /* ensure rss load happens before later caller actions. */
3014
3015         /* If already fully idle, tell the caller (in case of races). */
3016         if (rss == RCU_SYSIDLE_FULL_NOTED)
3017                 return true;
3018
3019         /*
3020          * If we aren't there yet, and a grace period is not in flight,
3021          * initiate a grace period.  Either way, tell the caller that
3022          * we are not there yet.  We use an xchg() rather than an assignment
3023          * to make up for the memory barriers that would otherwise be
3024          * provided by the memory allocator.
3025          */
3026         if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
3027             !rcu_gp_in_progress(rcu_state_p) &&
3028             !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
3029                 call_rcu(&rsh.rh, rcu_sysidle_cb);
3030         return false;
3031 }
3032
3033 /*
3034  * Initialize dynticks sysidle state for CPUs coming online.
3035  */
3036 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3037 {
3038         rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
3039 }
3040
3041 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3042
3043 static void rcu_sysidle_enter(int irq)
3044 {
3045 }
3046
3047 static void rcu_sysidle_exit(int irq)
3048 {
3049 }
3050
3051 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
3052                                   unsigned long *maxj)
3053 {
3054 }
3055
3056 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
3057 {
3058         return false;
3059 }
3060
3061 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
3062                                   unsigned long maxj)
3063 {
3064 }
3065
3066 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3067 {
3068 }
3069
3070 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3071
3072 /*
3073  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3074  * grace-period kthread will do force_quiescent_state() processing?
3075  * The idea is to avoid waking up RCU core processing on such a
3076  * CPU unless the grace period has extended for too long.
3077  *
3078  * This code relies on the fact that all NO_HZ_FULL CPUs are also
3079  * CONFIG_RCU_NOCB_CPU CPUs.
3080  */
3081 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3082 {
3083 #ifdef CONFIG_NO_HZ_FULL
3084         if (tick_nohz_full_cpu(smp_processor_id()) &&
3085             (!rcu_gp_in_progress(rsp) ||
3086              ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
3087                 return 1;
3088 #endif /* #ifdef CONFIG_NO_HZ_FULL */
3089         return 0;
3090 }
3091
3092 /*
3093  * Bind the grace-period kthread for the sysidle flavor of RCU to the
3094  * timekeeping CPU.
3095  */
3096 static void rcu_bind_gp_kthread(void)
3097 {
3098         int __maybe_unused cpu;
3099
3100         if (!tick_nohz_full_enabled())
3101                 return;
3102 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3103         cpu = tick_do_timer_cpu;
3104         if (cpu >= 0 && cpu < nr_cpu_ids && raw_smp_processor_id() != cpu)
3105                 set_cpus_allowed_ptr(current, cpumask_of(cpu));
3106 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3107         if (!is_housekeeping_cpu(raw_smp_processor_id()))
3108                 housekeeping_affine(current);
3109 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3110 }
3111
3112 /* Record the current task on dyntick-idle entry. */
3113 static void rcu_dynticks_task_enter(void)
3114 {
3115 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3116         ACCESS_ONCE(current->rcu_tasks_idle_cpu) = smp_processor_id();
3117 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3118 }
3119
3120 /* Record no current task on dyntick-idle exit. */
3121 static void rcu_dynticks_task_exit(void)
3122 {
3123 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3124         ACCESS_ONCE(current->rcu_tasks_idle_cpu) = -1;
3125 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3126 }