rcu: Clear need_qs flag to prevent splat
[firefly-linux-kernel-4.4.55.git] / kernel / rcu / tree_plugin.h
1 /*
2  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, you can access it online at
18  * http://www.gnu.org/licenses/gpl-2.0.html.
19  *
20  * Copyright Red Hat, 2009
21  * Copyright IBM Corporation, 2009
22  *
23  * Author: Ingo Molnar <mingo@elte.hu>
24  *         Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25  */
26
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
32
33 #ifdef CONFIG_RCU_BOOST
34
35 #include "../locking/rtmutex_common.h"
36
37 /*
38  * Control variables for per-CPU and per-rcu_node kthreads.  These
39  * handle all flavors of RCU.
40  */
41 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
42 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
43 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
44 DEFINE_PER_CPU(char, rcu_cpu_has_work);
45
46 #endif /* #ifdef CONFIG_RCU_BOOST */
47
48 #ifdef CONFIG_RCU_NOCB_CPU
49 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
50 static bool have_rcu_nocb_mask;     /* Was rcu_nocb_mask allocated? */
51 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
52 static char __initdata nocb_buf[NR_CPUS * 5];
53 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
54
55 /*
56  * Check the RCU kernel configuration parameters and print informative
57  * messages about anything out of the ordinary.  If you like #ifdef, you
58  * will love this function.
59  */
60 static void __init rcu_bootup_announce_oddness(void)
61 {
62 #ifdef CONFIG_RCU_TRACE
63         pr_info("\tRCU debugfs-based tracing is enabled.\n");
64 #endif
65 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
66         pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
67                CONFIG_RCU_FANOUT);
68 #endif
69 #ifdef CONFIG_RCU_FANOUT_EXACT
70         pr_info("\tHierarchical RCU autobalancing is disabled.\n");
71 #endif
72 #ifdef CONFIG_RCU_FAST_NO_HZ
73         pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
74 #endif
75 #ifdef CONFIG_PROVE_RCU
76         pr_info("\tRCU lockdep checking is enabled.\n");
77 #endif
78 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
79         pr_info("\tRCU torture testing starts during boot.\n");
80 #endif
81 #if defined(CONFIG_RCU_CPU_STALL_INFO)
82         pr_info("\tAdditional per-CPU info printed with stalls.\n");
83 #endif
84 #if NUM_RCU_LVL_4 != 0
85         pr_info("\tFour-level hierarchy is enabled.\n");
86 #endif
87         if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
88                 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
89         if (nr_cpu_ids != NR_CPUS)
90                 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
91 #ifdef CONFIG_RCU_BOOST
92         pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
93 #endif
94 }
95
96 #ifdef CONFIG_PREEMPT_RCU
97
98 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
99 static struct rcu_state *rcu_state_p = &rcu_preempt_state;
100
101 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
102 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
103                                bool wake);
104
105 /*
106  * Tell them what RCU they are running.
107  */
108 static void __init rcu_bootup_announce(void)
109 {
110         pr_info("Preemptible hierarchical RCU implementation.\n");
111         rcu_bootup_announce_oddness();
112 }
113
114 /*
115  * Record a preemptible-RCU quiescent state for the specified CPU.  Note
116  * that this just means that the task currently running on the CPU is
117  * not in a quiescent state.  There might be any number of tasks blocked
118  * while in an RCU read-side critical section.
119  *
120  * As with the other rcu_*_qs() functions, callers to this function
121  * must disable preemption.
122  */
123 static void rcu_preempt_qs(void)
124 {
125         if (!__this_cpu_read(rcu_preempt_data.passed_quiesce)) {
126                 trace_rcu_grace_period(TPS("rcu_preempt"),
127                                        __this_cpu_read(rcu_preempt_data.gpnum),
128                                        TPS("cpuqs"));
129                 __this_cpu_write(rcu_preempt_data.passed_quiesce, 1);
130                 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
131                 current->rcu_read_unlock_special.b.need_qs = false;
132         }
133 }
134
135 /*
136  * We have entered the scheduler, and the current task might soon be
137  * context-switched away from.  If this task is in an RCU read-side
138  * critical section, we will no longer be able to rely on the CPU to
139  * record that fact, so we enqueue the task on the blkd_tasks list.
140  * The task will dequeue itself when it exits the outermost enclosing
141  * RCU read-side critical section.  Therefore, the current grace period
142  * cannot be permitted to complete until the blkd_tasks list entries
143  * predating the current grace period drain, in other words, until
144  * rnp->gp_tasks becomes NULL.
145  *
146  * Caller must disable preemption.
147  */
148 static void rcu_preempt_note_context_switch(void)
149 {
150         struct task_struct *t = current;
151         unsigned long flags;
152         struct rcu_data *rdp;
153         struct rcu_node *rnp;
154
155         if (t->rcu_read_lock_nesting > 0 &&
156             !t->rcu_read_unlock_special.b.blocked) {
157
158                 /* Possibly blocking in an RCU read-side critical section. */
159                 rdp = this_cpu_ptr(rcu_preempt_state.rda);
160                 rnp = rdp->mynode;
161                 raw_spin_lock_irqsave(&rnp->lock, flags);
162                 smp_mb__after_unlock_lock();
163                 t->rcu_read_unlock_special.b.blocked = true;
164                 t->rcu_blocked_node = rnp;
165
166                 /*
167                  * If this CPU has already checked in, then this task
168                  * will hold up the next grace period rather than the
169                  * current grace period.  Queue the task accordingly.
170                  * If the task is queued for the current grace period
171                  * (i.e., this CPU has not yet passed through a quiescent
172                  * state for the current grace period), then as long
173                  * as that task remains queued, the current grace period
174                  * cannot end.  Note that there is some uncertainty as
175                  * to exactly when the current grace period started.
176                  * We take a conservative approach, which can result
177                  * in unnecessarily waiting on tasks that started very
178                  * slightly after the current grace period began.  C'est
179                  * la vie!!!
180                  *
181                  * But first, note that the current CPU must still be
182                  * on line!
183                  */
184                 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
185                 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
186                 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
187                         list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
188                         rnp->gp_tasks = &t->rcu_node_entry;
189 #ifdef CONFIG_RCU_BOOST
190                         if (rnp->boost_tasks != NULL)
191                                 rnp->boost_tasks = rnp->gp_tasks;
192 #endif /* #ifdef CONFIG_RCU_BOOST */
193                 } else {
194                         list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
195                         if (rnp->qsmask & rdp->grpmask)
196                                 rnp->gp_tasks = &t->rcu_node_entry;
197                 }
198                 trace_rcu_preempt_task(rdp->rsp->name,
199                                        t->pid,
200                                        (rnp->qsmask & rdp->grpmask)
201                                        ? rnp->gpnum
202                                        : rnp->gpnum + 1);
203                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
204         } else if (t->rcu_read_lock_nesting < 0 &&
205                    t->rcu_read_unlock_special.s) {
206
207                 /*
208                  * Complete exit from RCU read-side critical section on
209                  * behalf of preempted instance of __rcu_read_unlock().
210                  */
211                 rcu_read_unlock_special(t);
212         }
213
214         /*
215          * Either we were not in an RCU read-side critical section to
216          * begin with, or we have now recorded that critical section
217          * globally.  Either way, we can now note a quiescent state
218          * for this CPU.  Again, if we were in an RCU read-side critical
219          * section, and if that critical section was blocking the current
220          * grace period, then the fact that the task has been enqueued
221          * means that we continue to block the current grace period.
222          */
223         rcu_preempt_qs();
224 }
225
226 /*
227  * Check for preempted RCU readers blocking the current grace period
228  * for the specified rcu_node structure.  If the caller needs a reliable
229  * answer, it must hold the rcu_node's ->lock.
230  */
231 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
232 {
233         return rnp->gp_tasks != NULL;
234 }
235
236 /*
237  * Record a quiescent state for all tasks that were previously queued
238  * on the specified rcu_node structure and that were blocking the current
239  * RCU grace period.  The caller must hold the specified rnp->lock with
240  * irqs disabled, and this lock is released upon return, but irqs remain
241  * disabled.
242  */
243 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
244         __releases(rnp->lock)
245 {
246         unsigned long mask;
247         struct rcu_node *rnp_p;
248
249         if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
250                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
251                 return;  /* Still need more quiescent states! */
252         }
253
254         rnp_p = rnp->parent;
255         if (rnp_p == NULL) {
256                 /*
257                  * Either there is only one rcu_node in the tree,
258                  * or tasks were kicked up to root rcu_node due to
259                  * CPUs going offline.
260                  */
261                 rcu_report_qs_rsp(&rcu_preempt_state, flags);
262                 return;
263         }
264
265         /* Report up the rest of the hierarchy. */
266         mask = rnp->grpmask;
267         raw_spin_unlock(&rnp->lock);    /* irqs remain disabled. */
268         raw_spin_lock(&rnp_p->lock);    /* irqs already disabled. */
269         smp_mb__after_unlock_lock();
270         rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
271 }
272
273 /*
274  * Advance a ->blkd_tasks-list pointer to the next entry, instead
275  * returning NULL if at the end of the list.
276  */
277 static struct list_head *rcu_next_node_entry(struct task_struct *t,
278                                              struct rcu_node *rnp)
279 {
280         struct list_head *np;
281
282         np = t->rcu_node_entry.next;
283         if (np == &rnp->blkd_tasks)
284                 np = NULL;
285         return np;
286 }
287
288 /*
289  * Return true if the specified rcu_node structure has tasks that were
290  * preempted within an RCU read-side critical section.
291  */
292 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
293 {
294         return !list_empty(&rnp->blkd_tasks);
295 }
296
297 /*
298  * Handle special cases during rcu_read_unlock(), such as needing to
299  * notify RCU core processing or task having blocked during the RCU
300  * read-side critical section.
301  */
302 void rcu_read_unlock_special(struct task_struct *t)
303 {
304         bool empty;
305         bool empty_exp;
306         bool empty_norm;
307         bool empty_exp_now;
308         unsigned long flags;
309         struct list_head *np;
310 #ifdef CONFIG_RCU_BOOST
311         bool drop_boost_mutex = false;
312 #endif /* #ifdef CONFIG_RCU_BOOST */
313         struct rcu_node *rnp;
314         union rcu_special special;
315
316         /* NMI handlers cannot block and cannot safely manipulate state. */
317         if (in_nmi())
318                 return;
319
320         local_irq_save(flags);
321
322         /*
323          * If RCU core is waiting for this CPU to exit critical section,
324          * let it know that we have done so.  Because irqs are disabled,
325          * t->rcu_read_unlock_special cannot change.
326          */
327         special = t->rcu_read_unlock_special;
328         if (special.b.need_qs) {
329                 rcu_preempt_qs();
330                 t->rcu_read_unlock_special.b.need_qs = false;
331                 if (!t->rcu_read_unlock_special.s) {
332                         local_irq_restore(flags);
333                         return;
334                 }
335         }
336
337         /* Hardware IRQ handlers cannot block, complain if they get here. */
338         if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
339                 local_irq_restore(flags);
340                 return;
341         }
342
343         /* Clean up if blocked during RCU read-side critical section. */
344         if (special.b.blocked) {
345                 t->rcu_read_unlock_special.b.blocked = false;
346
347                 /*
348                  * Remove this task from the list it blocked on.  The
349                  * task can migrate while we acquire the lock, but at
350                  * most one time.  So at most two passes through loop.
351                  */
352                 for (;;) {
353                         rnp = t->rcu_blocked_node;
354                         raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
355                         smp_mb__after_unlock_lock();
356                         if (rnp == t->rcu_blocked_node)
357                                 break;
358                         raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
359                 }
360                 empty = !rcu_preempt_has_tasks(rnp);
361                 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
362                 empty_exp = !rcu_preempted_readers_exp(rnp);
363                 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
364                 np = rcu_next_node_entry(t, rnp);
365                 list_del_init(&t->rcu_node_entry);
366                 t->rcu_blocked_node = NULL;
367                 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
368                                                 rnp->gpnum, t->pid);
369                 if (&t->rcu_node_entry == rnp->gp_tasks)
370                         rnp->gp_tasks = np;
371                 if (&t->rcu_node_entry == rnp->exp_tasks)
372                         rnp->exp_tasks = np;
373 #ifdef CONFIG_RCU_BOOST
374                 if (&t->rcu_node_entry == rnp->boost_tasks)
375                         rnp->boost_tasks = np;
376                 /* Snapshot ->boost_mtx ownership with rcu_node lock held. */
377                 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
378 #endif /* #ifdef CONFIG_RCU_BOOST */
379
380                 /*
381                  * If this was the last task on the list, go see if we
382                  * need to propagate ->qsmaskinit bit clearing up the
383                  * rcu_node tree.
384                  */
385                 if (!empty && !rcu_preempt_has_tasks(rnp))
386                         rcu_cleanup_dead_rnp(rnp);
387
388                 /*
389                  * If this was the last task on the current list, and if
390                  * we aren't waiting on any CPUs, report the quiescent state.
391                  * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
392                  * so we must take a snapshot of the expedited state.
393                  */
394                 empty_exp_now = !rcu_preempted_readers_exp(rnp);
395                 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
396                         trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
397                                                          rnp->gpnum,
398                                                          0, rnp->qsmask,
399                                                          rnp->level,
400                                                          rnp->grplo,
401                                                          rnp->grphi,
402                                                          !!rnp->gp_tasks);
403                         rcu_report_unblock_qs_rnp(rnp, flags);
404                 } else {
405                         raw_spin_unlock_irqrestore(&rnp->lock, flags);
406                 }
407
408 #ifdef CONFIG_RCU_BOOST
409                 /* Unboost if we were boosted. */
410                 if (drop_boost_mutex)
411                         rt_mutex_unlock(&rnp->boost_mtx);
412 #endif /* #ifdef CONFIG_RCU_BOOST */
413
414                 /*
415                  * If this was the last task on the expedited lists,
416                  * then we need to report up the rcu_node hierarchy.
417                  */
418                 if (!empty_exp && empty_exp_now)
419                         rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
420         } else {
421                 local_irq_restore(flags);
422         }
423 }
424
425 /*
426  * Dump detailed information for all tasks blocking the current RCU
427  * grace period on the specified rcu_node structure.
428  */
429 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
430 {
431         unsigned long flags;
432         struct task_struct *t;
433
434         raw_spin_lock_irqsave(&rnp->lock, flags);
435         if (!rcu_preempt_blocked_readers_cgp(rnp)) {
436                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
437                 return;
438         }
439         t = list_entry(rnp->gp_tasks,
440                        struct task_struct, rcu_node_entry);
441         list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
442                 sched_show_task(t);
443         raw_spin_unlock_irqrestore(&rnp->lock, flags);
444 }
445
446 /*
447  * Dump detailed information for all tasks blocking the current RCU
448  * grace period.
449  */
450 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
451 {
452         struct rcu_node *rnp = rcu_get_root(rsp);
453
454         rcu_print_detail_task_stall_rnp(rnp);
455         rcu_for_each_leaf_node(rsp, rnp)
456                 rcu_print_detail_task_stall_rnp(rnp);
457 }
458
459 #ifdef CONFIG_RCU_CPU_STALL_INFO
460
461 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
462 {
463         pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
464                rnp->level, rnp->grplo, rnp->grphi);
465 }
466
467 static void rcu_print_task_stall_end(void)
468 {
469         pr_cont("\n");
470 }
471
472 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
473
474 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
475 {
476 }
477
478 static void rcu_print_task_stall_end(void)
479 {
480 }
481
482 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
483
484 /*
485  * Scan the current list of tasks blocked within RCU read-side critical
486  * sections, printing out the tid of each.
487  */
488 static int rcu_print_task_stall(struct rcu_node *rnp)
489 {
490         struct task_struct *t;
491         int ndetected = 0;
492
493         if (!rcu_preempt_blocked_readers_cgp(rnp))
494                 return 0;
495         rcu_print_task_stall_begin(rnp);
496         t = list_entry(rnp->gp_tasks,
497                        struct task_struct, rcu_node_entry);
498         list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
499                 pr_cont(" P%d", t->pid);
500                 ndetected++;
501         }
502         rcu_print_task_stall_end();
503         return ndetected;
504 }
505
506 /*
507  * Check that the list of blocked tasks for the newly completed grace
508  * period is in fact empty.  It is a serious bug to complete a grace
509  * period that still has RCU readers blocked!  This function must be
510  * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
511  * must be held by the caller.
512  *
513  * Also, if there are blocked tasks on the list, they automatically
514  * block the newly created grace period, so set up ->gp_tasks accordingly.
515  */
516 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
517 {
518         WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
519         if (rcu_preempt_has_tasks(rnp))
520                 rnp->gp_tasks = rnp->blkd_tasks.next;
521         WARN_ON_ONCE(rnp->qsmask);
522 }
523
524 #ifdef CONFIG_HOTPLUG_CPU
525
526 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
527
528 /*
529  * Check for a quiescent state from the current CPU.  When a task blocks,
530  * the task is recorded in the corresponding CPU's rcu_node structure,
531  * which is checked elsewhere.
532  *
533  * Caller must disable hard irqs.
534  */
535 static void rcu_preempt_check_callbacks(void)
536 {
537         struct task_struct *t = current;
538
539         if (t->rcu_read_lock_nesting == 0) {
540                 rcu_preempt_qs();
541                 return;
542         }
543         if (t->rcu_read_lock_nesting > 0 &&
544             __this_cpu_read(rcu_preempt_data.qs_pending) &&
545             !__this_cpu_read(rcu_preempt_data.passed_quiesce))
546                 t->rcu_read_unlock_special.b.need_qs = true;
547 }
548
549 #ifdef CONFIG_RCU_BOOST
550
551 static void rcu_preempt_do_callbacks(void)
552 {
553         rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
554 }
555
556 #endif /* #ifdef CONFIG_RCU_BOOST */
557
558 /*
559  * Queue a preemptible-RCU callback for invocation after a grace period.
560  */
561 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
562 {
563         __call_rcu(head, func, &rcu_preempt_state, -1, 0);
564 }
565 EXPORT_SYMBOL_GPL(call_rcu);
566
567 /**
568  * synchronize_rcu - wait until a grace period has elapsed.
569  *
570  * Control will return to the caller some time after a full grace
571  * period has elapsed, in other words after all currently executing RCU
572  * read-side critical sections have completed.  Note, however, that
573  * upon return from synchronize_rcu(), the caller might well be executing
574  * concurrently with new RCU read-side critical sections that began while
575  * synchronize_rcu() was waiting.  RCU read-side critical sections are
576  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
577  *
578  * See the description of synchronize_sched() for more detailed information
579  * on memory ordering guarantees.
580  */
581 void synchronize_rcu(void)
582 {
583         rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
584                            !lock_is_held(&rcu_lock_map) &&
585                            !lock_is_held(&rcu_sched_lock_map),
586                            "Illegal synchronize_rcu() in RCU read-side critical section");
587         if (!rcu_scheduler_active)
588                 return;
589         if (rcu_expedited)
590                 synchronize_rcu_expedited();
591         else
592                 wait_rcu_gp(call_rcu);
593 }
594 EXPORT_SYMBOL_GPL(synchronize_rcu);
595
596 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
597 static unsigned long sync_rcu_preempt_exp_count;
598 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
599
600 /*
601  * Return non-zero if there are any tasks in RCU read-side critical
602  * sections blocking the current preemptible-RCU expedited grace period.
603  * If there is no preemptible-RCU expedited grace period currently in
604  * progress, returns zero unconditionally.
605  */
606 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
607 {
608         return rnp->exp_tasks != NULL;
609 }
610
611 /*
612  * return non-zero if there is no RCU expedited grace period in progress
613  * for the specified rcu_node structure, in other words, if all CPUs and
614  * tasks covered by the specified rcu_node structure have done their bit
615  * for the current expedited grace period.  Works only for preemptible
616  * RCU -- other RCU implementation use other means.
617  *
618  * Caller must hold sync_rcu_preempt_exp_mutex.
619  */
620 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
621 {
622         return !rcu_preempted_readers_exp(rnp) &&
623                ACCESS_ONCE(rnp->expmask) == 0;
624 }
625
626 /*
627  * Report the exit from RCU read-side critical section for the last task
628  * that queued itself during or before the current expedited preemptible-RCU
629  * grace period.  This event is reported either to the rcu_node structure on
630  * which the task was queued or to one of that rcu_node structure's ancestors,
631  * recursively up the tree.  (Calm down, calm down, we do the recursion
632  * iteratively!)
633  *
634  * Most callers will set the "wake" flag, but the task initiating the
635  * expedited grace period need not wake itself.
636  *
637  * Caller must hold sync_rcu_preempt_exp_mutex.
638  */
639 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
640                                bool wake)
641 {
642         unsigned long flags;
643         unsigned long mask;
644
645         raw_spin_lock_irqsave(&rnp->lock, flags);
646         smp_mb__after_unlock_lock();
647         for (;;) {
648                 if (!sync_rcu_preempt_exp_done(rnp)) {
649                         raw_spin_unlock_irqrestore(&rnp->lock, flags);
650                         break;
651                 }
652                 if (rnp->parent == NULL) {
653                         raw_spin_unlock_irqrestore(&rnp->lock, flags);
654                         if (wake) {
655                                 smp_mb(); /* EGP done before wake_up(). */
656                                 wake_up(&sync_rcu_preempt_exp_wq);
657                         }
658                         break;
659                 }
660                 mask = rnp->grpmask;
661                 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
662                 rnp = rnp->parent;
663                 raw_spin_lock(&rnp->lock); /* irqs already disabled */
664                 smp_mb__after_unlock_lock();
665                 rnp->expmask &= ~mask;
666         }
667 }
668
669 /*
670  * Snapshot the tasks blocking the newly started preemptible-RCU expedited
671  * grace period for the specified rcu_node structure.  If there are no such
672  * tasks, report it up the rcu_node hierarchy.
673  *
674  * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
675  * CPU hotplug operations.
676  */
677 static void
678 sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
679 {
680         unsigned long flags;
681         int must_wait = 0;
682
683         raw_spin_lock_irqsave(&rnp->lock, flags);
684         smp_mb__after_unlock_lock();
685         if (!rcu_preempt_has_tasks(rnp)) {
686                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
687         } else {
688                 rnp->exp_tasks = rnp->blkd_tasks.next;
689                 rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
690                 must_wait = 1;
691         }
692         if (!must_wait)
693                 rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
694 }
695
696 /**
697  * synchronize_rcu_expedited - Brute-force RCU grace period
698  *
699  * Wait for an RCU-preempt grace period, but expedite it.  The basic
700  * idea is to invoke synchronize_sched_expedited() to push all the tasks to
701  * the ->blkd_tasks lists and wait for this list to drain.  This consumes
702  * significant time on all CPUs and is unfriendly to real-time workloads,
703  * so is thus not recommended for any sort of common-case code.
704  * In fact, if you are using synchronize_rcu_expedited() in a loop,
705  * please restructure your code to batch your updates, and then Use a
706  * single synchronize_rcu() instead.
707  */
708 void synchronize_rcu_expedited(void)
709 {
710         unsigned long flags;
711         struct rcu_node *rnp;
712         struct rcu_state *rsp = &rcu_preempt_state;
713         unsigned long snap;
714         int trycount = 0;
715
716         smp_mb(); /* Caller's modifications seen first by other CPUs. */
717         snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
718         smp_mb(); /* Above access cannot bleed into critical section. */
719
720         /*
721          * Block CPU-hotplug operations.  This means that any CPU-hotplug
722          * operation that finds an rcu_node structure with tasks in the
723          * process of being boosted will know that all tasks blocking
724          * this expedited grace period will already be in the process of
725          * being boosted.  This simplifies the process of moving tasks
726          * from leaf to root rcu_node structures.
727          */
728         if (!try_get_online_cpus()) {
729                 /* CPU-hotplug operation in flight, fall back to normal GP. */
730                 wait_rcu_gp(call_rcu);
731                 return;
732         }
733
734         /*
735          * Acquire lock, falling back to synchronize_rcu() if too many
736          * lock-acquisition failures.  Of course, if someone does the
737          * expedited grace period for us, just leave.
738          */
739         while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
740                 if (ULONG_CMP_LT(snap,
741                     ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
742                         put_online_cpus();
743                         goto mb_ret; /* Others did our work for us. */
744                 }
745                 if (trycount++ < 10) {
746                         udelay(trycount * num_online_cpus());
747                 } else {
748                         put_online_cpus();
749                         wait_rcu_gp(call_rcu);
750                         return;
751                 }
752         }
753         if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
754                 put_online_cpus();
755                 goto unlock_mb_ret; /* Others did our work for us. */
756         }
757
758         /* force all RCU readers onto ->blkd_tasks lists. */
759         synchronize_sched_expedited();
760
761         /* Initialize ->expmask for all non-leaf rcu_node structures. */
762         rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
763                 raw_spin_lock_irqsave(&rnp->lock, flags);
764                 smp_mb__after_unlock_lock();
765                 rnp->expmask = rnp->qsmaskinit;
766                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
767         }
768
769         /* Snapshot current state of ->blkd_tasks lists. */
770         rcu_for_each_leaf_node(rsp, rnp)
771                 sync_rcu_preempt_exp_init(rsp, rnp);
772         if (NUM_RCU_NODES > 1)
773                 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
774
775         put_online_cpus();
776
777         /* Wait for snapshotted ->blkd_tasks lists to drain. */
778         rnp = rcu_get_root(rsp);
779         wait_event(sync_rcu_preempt_exp_wq,
780                    sync_rcu_preempt_exp_done(rnp));
781
782         /* Clean up and exit. */
783         smp_mb(); /* ensure expedited GP seen before counter increment. */
784         ACCESS_ONCE(sync_rcu_preempt_exp_count) =
785                                         sync_rcu_preempt_exp_count + 1;
786 unlock_mb_ret:
787         mutex_unlock(&sync_rcu_preempt_exp_mutex);
788 mb_ret:
789         smp_mb(); /* ensure subsequent action seen after grace period. */
790 }
791 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
792
793 /**
794  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
795  *
796  * Note that this primitive does not necessarily wait for an RCU grace period
797  * to complete.  For example, if there are no RCU callbacks queued anywhere
798  * in the system, then rcu_barrier() is within its rights to return
799  * immediately, without waiting for anything, much less an RCU grace period.
800  */
801 void rcu_barrier(void)
802 {
803         _rcu_barrier(&rcu_preempt_state);
804 }
805 EXPORT_SYMBOL_GPL(rcu_barrier);
806
807 /*
808  * Initialize preemptible RCU's state structures.
809  */
810 static void __init __rcu_init_preempt(void)
811 {
812         rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
813 }
814
815 /*
816  * Check for a task exiting while in a preemptible-RCU read-side
817  * critical section, clean up if so.  No need to issue warnings,
818  * as debug_check_no_locks_held() already does this if lockdep
819  * is enabled.
820  */
821 void exit_rcu(void)
822 {
823         struct task_struct *t = current;
824
825         if (likely(list_empty(&current->rcu_node_entry)))
826                 return;
827         t->rcu_read_lock_nesting = 1;
828         barrier();
829         t->rcu_read_unlock_special.b.blocked = true;
830         __rcu_read_unlock();
831 }
832
833 #else /* #ifdef CONFIG_PREEMPT_RCU */
834
835 static struct rcu_state *rcu_state_p = &rcu_sched_state;
836
837 /*
838  * Tell them what RCU they are running.
839  */
840 static void __init rcu_bootup_announce(void)
841 {
842         pr_info("Hierarchical RCU implementation.\n");
843         rcu_bootup_announce_oddness();
844 }
845
846 /*
847  * Because preemptible RCU does not exist, we never have to check for
848  * CPUs being in quiescent states.
849  */
850 static void rcu_preempt_note_context_switch(void)
851 {
852 }
853
854 /*
855  * Because preemptible RCU does not exist, there are never any preempted
856  * RCU readers.
857  */
858 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
859 {
860         return 0;
861 }
862
863 #ifdef CONFIG_HOTPLUG_CPU
864
865 /*
866  * Because there is no preemptible RCU, there can be no readers blocked.
867  */
868 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
869 {
870         return false;
871 }
872
873 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
874
875 /*
876  * Because preemptible RCU does not exist, we never have to check for
877  * tasks blocked within RCU read-side critical sections.
878  */
879 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
880 {
881 }
882
883 /*
884  * Because preemptible RCU does not exist, we never have to check for
885  * tasks blocked within RCU read-side critical sections.
886  */
887 static int rcu_print_task_stall(struct rcu_node *rnp)
888 {
889         return 0;
890 }
891
892 /*
893  * Because there is no preemptible RCU, there can be no readers blocked,
894  * so there is no need to check for blocked tasks.  So check only for
895  * bogus qsmask values.
896  */
897 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
898 {
899         WARN_ON_ONCE(rnp->qsmask);
900 }
901
902 /*
903  * Because preemptible RCU does not exist, it never has any callbacks
904  * to check.
905  */
906 static void rcu_preempt_check_callbacks(void)
907 {
908 }
909
910 /*
911  * Wait for an rcu-preempt grace period, but make it happen quickly.
912  * But because preemptible RCU does not exist, map to rcu-sched.
913  */
914 void synchronize_rcu_expedited(void)
915 {
916         synchronize_sched_expedited();
917 }
918 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
919
920 /*
921  * Because preemptible RCU does not exist, rcu_barrier() is just
922  * another name for rcu_barrier_sched().
923  */
924 void rcu_barrier(void)
925 {
926         rcu_barrier_sched();
927 }
928 EXPORT_SYMBOL_GPL(rcu_barrier);
929
930 /*
931  * Because preemptible RCU does not exist, it need not be initialized.
932  */
933 static void __init __rcu_init_preempt(void)
934 {
935 }
936
937 /*
938  * Because preemptible RCU does not exist, tasks cannot possibly exit
939  * while in preemptible RCU read-side critical sections.
940  */
941 void exit_rcu(void)
942 {
943 }
944
945 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
946
947 #ifdef CONFIG_RCU_BOOST
948
949 #include "../locking/rtmutex_common.h"
950
951 #ifdef CONFIG_RCU_TRACE
952
953 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
954 {
955         if (!rcu_preempt_has_tasks(rnp))
956                 rnp->n_balk_blkd_tasks++;
957         else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
958                 rnp->n_balk_exp_gp_tasks++;
959         else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
960                 rnp->n_balk_boost_tasks++;
961         else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
962                 rnp->n_balk_notblocked++;
963         else if (rnp->gp_tasks != NULL &&
964                  ULONG_CMP_LT(jiffies, rnp->boost_time))
965                 rnp->n_balk_notyet++;
966         else
967                 rnp->n_balk_nos++;
968 }
969
970 #else /* #ifdef CONFIG_RCU_TRACE */
971
972 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
973 {
974 }
975
976 #endif /* #else #ifdef CONFIG_RCU_TRACE */
977
978 static void rcu_wake_cond(struct task_struct *t, int status)
979 {
980         /*
981          * If the thread is yielding, only wake it when this
982          * is invoked from idle
983          */
984         if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
985                 wake_up_process(t);
986 }
987
988 /*
989  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
990  * or ->boost_tasks, advancing the pointer to the next task in the
991  * ->blkd_tasks list.
992  *
993  * Note that irqs must be enabled: boosting the task can block.
994  * Returns 1 if there are more tasks needing to be boosted.
995  */
996 static int rcu_boost(struct rcu_node *rnp)
997 {
998         unsigned long flags;
999         struct task_struct *t;
1000         struct list_head *tb;
1001
1002         if (ACCESS_ONCE(rnp->exp_tasks) == NULL &&
1003             ACCESS_ONCE(rnp->boost_tasks) == NULL)
1004                 return 0;  /* Nothing left to boost. */
1005
1006         raw_spin_lock_irqsave(&rnp->lock, flags);
1007         smp_mb__after_unlock_lock();
1008
1009         /*
1010          * Recheck under the lock: all tasks in need of boosting
1011          * might exit their RCU read-side critical sections on their own.
1012          */
1013         if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1014                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1015                 return 0;
1016         }
1017
1018         /*
1019          * Preferentially boost tasks blocking expedited grace periods.
1020          * This cannot starve the normal grace periods because a second
1021          * expedited grace period must boost all blocked tasks, including
1022          * those blocking the pre-existing normal grace period.
1023          */
1024         if (rnp->exp_tasks != NULL) {
1025                 tb = rnp->exp_tasks;
1026                 rnp->n_exp_boosts++;
1027         } else {
1028                 tb = rnp->boost_tasks;
1029                 rnp->n_normal_boosts++;
1030         }
1031         rnp->n_tasks_boosted++;
1032
1033         /*
1034          * We boost task t by manufacturing an rt_mutex that appears to
1035          * be held by task t.  We leave a pointer to that rt_mutex where
1036          * task t can find it, and task t will release the mutex when it
1037          * exits its outermost RCU read-side critical section.  Then
1038          * simply acquiring this artificial rt_mutex will boost task
1039          * t's priority.  (Thanks to tglx for suggesting this approach!)
1040          *
1041          * Note that task t must acquire rnp->lock to remove itself from
1042          * the ->blkd_tasks list, which it will do from exit() if from
1043          * nowhere else.  We therefore are guaranteed that task t will
1044          * stay around at least until we drop rnp->lock.  Note that
1045          * rnp->lock also resolves races between our priority boosting
1046          * and task t's exiting its outermost RCU read-side critical
1047          * section.
1048          */
1049         t = container_of(tb, struct task_struct, rcu_node_entry);
1050         rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1051         raw_spin_unlock_irqrestore(&rnp->lock, flags);
1052         /* Lock only for side effect: boosts task t's priority. */
1053         rt_mutex_lock(&rnp->boost_mtx);
1054         rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1055
1056         return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1057                ACCESS_ONCE(rnp->boost_tasks) != NULL;
1058 }
1059
1060 /*
1061  * Priority-boosting kthread.  One per leaf rcu_node and one for the
1062  * root rcu_node.
1063  */
1064 static int rcu_boost_kthread(void *arg)
1065 {
1066         struct rcu_node *rnp = (struct rcu_node *)arg;
1067         int spincnt = 0;
1068         int more2boost;
1069
1070         trace_rcu_utilization(TPS("Start boost kthread@init"));
1071         for (;;) {
1072                 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1073                 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1074                 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1075                 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1076                 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1077                 more2boost = rcu_boost(rnp);
1078                 if (more2boost)
1079                         spincnt++;
1080                 else
1081                         spincnt = 0;
1082                 if (spincnt > 10) {
1083                         rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1084                         trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1085                         schedule_timeout_interruptible(2);
1086                         trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1087                         spincnt = 0;
1088                 }
1089         }
1090         /* NOTREACHED */
1091         trace_rcu_utilization(TPS("End boost kthread@notreached"));
1092         return 0;
1093 }
1094
1095 /*
1096  * Check to see if it is time to start boosting RCU readers that are
1097  * blocking the current grace period, and, if so, tell the per-rcu_node
1098  * kthread to start boosting them.  If there is an expedited grace
1099  * period in progress, it is always time to boost.
1100  *
1101  * The caller must hold rnp->lock, which this function releases.
1102  * The ->boost_kthread_task is immortal, so we don't need to worry
1103  * about it going away.
1104  */
1105 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1106         __releases(rnp->lock)
1107 {
1108         struct task_struct *t;
1109
1110         if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1111                 rnp->n_balk_exp_gp_tasks++;
1112                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1113                 return;
1114         }
1115         if (rnp->exp_tasks != NULL ||
1116             (rnp->gp_tasks != NULL &&
1117              rnp->boost_tasks == NULL &&
1118              rnp->qsmask == 0 &&
1119              ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1120                 if (rnp->exp_tasks == NULL)
1121                         rnp->boost_tasks = rnp->gp_tasks;
1122                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1123                 t = rnp->boost_kthread_task;
1124                 if (t)
1125                         rcu_wake_cond(t, rnp->boost_kthread_status);
1126         } else {
1127                 rcu_initiate_boost_trace(rnp);
1128                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1129         }
1130 }
1131
1132 /*
1133  * Wake up the per-CPU kthread to invoke RCU callbacks.
1134  */
1135 static void invoke_rcu_callbacks_kthread(void)
1136 {
1137         unsigned long flags;
1138
1139         local_irq_save(flags);
1140         __this_cpu_write(rcu_cpu_has_work, 1);
1141         if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1142             current != __this_cpu_read(rcu_cpu_kthread_task)) {
1143                 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1144                               __this_cpu_read(rcu_cpu_kthread_status));
1145         }
1146         local_irq_restore(flags);
1147 }
1148
1149 /*
1150  * Is the current CPU running the RCU-callbacks kthread?
1151  * Caller must have preemption disabled.
1152  */
1153 static bool rcu_is_callbacks_kthread(void)
1154 {
1155         return __this_cpu_read(rcu_cpu_kthread_task) == current;
1156 }
1157
1158 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1159
1160 /*
1161  * Do priority-boost accounting for the start of a new grace period.
1162  */
1163 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1164 {
1165         rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1166 }
1167
1168 /*
1169  * Create an RCU-boost kthread for the specified node if one does not
1170  * already exist.  We only create this kthread for preemptible RCU.
1171  * Returns zero if all is well, a negated errno otherwise.
1172  */
1173 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1174                                                  struct rcu_node *rnp)
1175 {
1176         int rnp_index = rnp - &rsp->node[0];
1177         unsigned long flags;
1178         struct sched_param sp;
1179         struct task_struct *t;
1180
1181         if (&rcu_preempt_state != rsp)
1182                 return 0;
1183
1184         if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1185                 return 0;
1186
1187         rsp->boost = 1;
1188         if (rnp->boost_kthread_task != NULL)
1189                 return 0;
1190         t = kthread_create(rcu_boost_kthread, (void *)rnp,
1191                            "rcub/%d", rnp_index);
1192         if (IS_ERR(t))
1193                 return PTR_ERR(t);
1194         raw_spin_lock_irqsave(&rnp->lock, flags);
1195         smp_mb__after_unlock_lock();
1196         rnp->boost_kthread_task = t;
1197         raw_spin_unlock_irqrestore(&rnp->lock, flags);
1198         sp.sched_priority = kthread_prio;
1199         sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1200         wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1201         return 0;
1202 }
1203
1204 static void rcu_kthread_do_work(void)
1205 {
1206         rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1207         rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1208         rcu_preempt_do_callbacks();
1209 }
1210
1211 static void rcu_cpu_kthread_setup(unsigned int cpu)
1212 {
1213         struct sched_param sp;
1214
1215         sp.sched_priority = kthread_prio;
1216         sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1217 }
1218
1219 static void rcu_cpu_kthread_park(unsigned int cpu)
1220 {
1221         per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1222 }
1223
1224 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1225 {
1226         return __this_cpu_read(rcu_cpu_has_work);
1227 }
1228
1229 /*
1230  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1231  * RCU softirq used in flavors and configurations of RCU that do not
1232  * support RCU priority boosting.
1233  */
1234 static void rcu_cpu_kthread(unsigned int cpu)
1235 {
1236         unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1237         char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1238         int spincnt;
1239
1240         for (spincnt = 0; spincnt < 10; spincnt++) {
1241                 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1242                 local_bh_disable();
1243                 *statusp = RCU_KTHREAD_RUNNING;
1244                 this_cpu_inc(rcu_cpu_kthread_loops);
1245                 local_irq_disable();
1246                 work = *workp;
1247                 *workp = 0;
1248                 local_irq_enable();
1249                 if (work)
1250                         rcu_kthread_do_work();
1251                 local_bh_enable();
1252                 if (*workp == 0) {
1253                         trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1254                         *statusp = RCU_KTHREAD_WAITING;
1255                         return;
1256                 }
1257         }
1258         *statusp = RCU_KTHREAD_YIELDING;
1259         trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1260         schedule_timeout_interruptible(2);
1261         trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1262         *statusp = RCU_KTHREAD_WAITING;
1263 }
1264
1265 /*
1266  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1267  * served by the rcu_node in question.  The CPU hotplug lock is still
1268  * held, so the value of rnp->qsmaskinit will be stable.
1269  *
1270  * We don't include outgoingcpu in the affinity set, use -1 if there is
1271  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1272  * this function allows the kthread to execute on any CPU.
1273  */
1274 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1275 {
1276         struct task_struct *t = rnp->boost_kthread_task;
1277         unsigned long mask = rnp->qsmaskinit;
1278         cpumask_var_t cm;
1279         int cpu;
1280
1281         if (!t)
1282                 return;
1283         if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1284                 return;
1285         for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1286                 if ((mask & 0x1) && cpu != outgoingcpu)
1287                         cpumask_set_cpu(cpu, cm);
1288         if (cpumask_weight(cm) == 0)
1289                 cpumask_setall(cm);
1290         set_cpus_allowed_ptr(t, cm);
1291         free_cpumask_var(cm);
1292 }
1293
1294 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1295         .store                  = &rcu_cpu_kthread_task,
1296         .thread_should_run      = rcu_cpu_kthread_should_run,
1297         .thread_fn              = rcu_cpu_kthread,
1298         .thread_comm            = "rcuc/%u",
1299         .setup                  = rcu_cpu_kthread_setup,
1300         .park                   = rcu_cpu_kthread_park,
1301 };
1302
1303 /*
1304  * Spawn boost kthreads -- called as soon as the scheduler is running.
1305  */
1306 static void __init rcu_spawn_boost_kthreads(void)
1307 {
1308         struct rcu_node *rnp;
1309         int cpu;
1310
1311         for_each_possible_cpu(cpu)
1312                 per_cpu(rcu_cpu_has_work, cpu) = 0;
1313         BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1314         rcu_for_each_leaf_node(rcu_state_p, rnp)
1315                 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1316 }
1317
1318 static void rcu_prepare_kthreads(int cpu)
1319 {
1320         struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1321         struct rcu_node *rnp = rdp->mynode;
1322
1323         /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1324         if (rcu_scheduler_fully_active)
1325                 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1326 }
1327
1328 #else /* #ifdef CONFIG_RCU_BOOST */
1329
1330 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1331         __releases(rnp->lock)
1332 {
1333         raw_spin_unlock_irqrestore(&rnp->lock, flags);
1334 }
1335
1336 static void invoke_rcu_callbacks_kthread(void)
1337 {
1338         WARN_ON_ONCE(1);
1339 }
1340
1341 static bool rcu_is_callbacks_kthread(void)
1342 {
1343         return false;
1344 }
1345
1346 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1347 {
1348 }
1349
1350 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1351 {
1352 }
1353
1354 static void __init rcu_spawn_boost_kthreads(void)
1355 {
1356 }
1357
1358 static void rcu_prepare_kthreads(int cpu)
1359 {
1360 }
1361
1362 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1363
1364 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1365
1366 /*
1367  * Check to see if any future RCU-related work will need to be done
1368  * by the current CPU, even if none need be done immediately, returning
1369  * 1 if so.  This function is part of the RCU implementation; it is -not-
1370  * an exported member of the RCU API.
1371  *
1372  * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1373  * any flavor of RCU.
1374  */
1375 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1376 int rcu_needs_cpu(unsigned long *delta_jiffies)
1377 {
1378         *delta_jiffies = ULONG_MAX;
1379         return rcu_cpu_has_callbacks(NULL);
1380 }
1381 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1382
1383 /*
1384  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1385  * after it.
1386  */
1387 static void rcu_cleanup_after_idle(void)
1388 {
1389 }
1390
1391 /*
1392  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1393  * is nothing.
1394  */
1395 static void rcu_prepare_for_idle(void)
1396 {
1397 }
1398
1399 /*
1400  * Don't bother keeping a running count of the number of RCU callbacks
1401  * posted because CONFIG_RCU_FAST_NO_HZ=n.
1402  */
1403 static void rcu_idle_count_callbacks_posted(void)
1404 {
1405 }
1406
1407 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1408
1409 /*
1410  * This code is invoked when a CPU goes idle, at which point we want
1411  * to have the CPU do everything required for RCU so that it can enter
1412  * the energy-efficient dyntick-idle mode.  This is handled by a
1413  * state machine implemented by rcu_prepare_for_idle() below.
1414  *
1415  * The following three proprocessor symbols control this state machine:
1416  *
1417  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1418  *      to sleep in dyntick-idle mode with RCU callbacks pending.  This
1419  *      is sized to be roughly one RCU grace period.  Those energy-efficiency
1420  *      benchmarkers who might otherwise be tempted to set this to a large
1421  *      number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1422  *      system.  And if you are -that- concerned about energy efficiency,
1423  *      just power the system down and be done with it!
1424  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1425  *      permitted to sleep in dyntick-idle mode with only lazy RCU
1426  *      callbacks pending.  Setting this too high can OOM your system.
1427  *
1428  * The values below work well in practice.  If future workloads require
1429  * adjustment, they can be converted into kernel config parameters, though
1430  * making the state machine smarter might be a better option.
1431  */
1432 #define RCU_IDLE_GP_DELAY 4             /* Roughly one grace period. */
1433 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1434
1435 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1436 module_param(rcu_idle_gp_delay, int, 0644);
1437 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1438 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1439
1440 extern int tick_nohz_active;
1441
1442 /*
1443  * Try to advance callbacks for all flavors of RCU on the current CPU, but
1444  * only if it has been awhile since the last time we did so.  Afterwards,
1445  * if there are any callbacks ready for immediate invocation, return true.
1446  */
1447 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1448 {
1449         bool cbs_ready = false;
1450         struct rcu_data *rdp;
1451         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1452         struct rcu_node *rnp;
1453         struct rcu_state *rsp;
1454
1455         /* Exit early if we advanced recently. */
1456         if (jiffies == rdtp->last_advance_all)
1457                 return false;
1458         rdtp->last_advance_all = jiffies;
1459
1460         for_each_rcu_flavor(rsp) {
1461                 rdp = this_cpu_ptr(rsp->rda);
1462                 rnp = rdp->mynode;
1463
1464                 /*
1465                  * Don't bother checking unless a grace period has
1466                  * completed since we last checked and there are
1467                  * callbacks not yet ready to invoke.
1468                  */
1469                 if ((rdp->completed != rnp->completed ||
1470                      unlikely(ACCESS_ONCE(rdp->gpwrap))) &&
1471                     rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1472                         note_gp_changes(rsp, rdp);
1473
1474                 if (cpu_has_callbacks_ready_to_invoke(rdp))
1475                         cbs_ready = true;
1476         }
1477         return cbs_ready;
1478 }
1479
1480 /*
1481  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1482  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1483  * caller to set the timeout based on whether or not there are non-lazy
1484  * callbacks.
1485  *
1486  * The caller must have disabled interrupts.
1487  */
1488 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1489 int rcu_needs_cpu(unsigned long *dj)
1490 {
1491         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1492
1493         /* Snapshot to detect later posting of non-lazy callback. */
1494         rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1495
1496         /* If no callbacks, RCU doesn't need the CPU. */
1497         if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1498                 *dj = ULONG_MAX;
1499                 return 0;
1500         }
1501
1502         /* Attempt to advance callbacks. */
1503         if (rcu_try_advance_all_cbs()) {
1504                 /* Some ready to invoke, so initiate later invocation. */
1505                 invoke_rcu_core();
1506                 return 1;
1507         }
1508         rdtp->last_accelerate = jiffies;
1509
1510         /* Request timer delay depending on laziness, and round. */
1511         if (!rdtp->all_lazy) {
1512                 *dj = round_up(rcu_idle_gp_delay + jiffies,
1513                                rcu_idle_gp_delay) - jiffies;
1514         } else {
1515                 *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1516         }
1517         return 0;
1518 }
1519 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1520
1521 /*
1522  * Prepare a CPU for idle from an RCU perspective.  The first major task
1523  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1524  * The second major task is to check to see if a non-lazy callback has
1525  * arrived at a CPU that previously had only lazy callbacks.  The third
1526  * major task is to accelerate (that is, assign grace-period numbers to)
1527  * any recently arrived callbacks.
1528  *
1529  * The caller must have disabled interrupts.
1530  */
1531 static void rcu_prepare_for_idle(void)
1532 {
1533 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1534         bool needwake;
1535         struct rcu_data *rdp;
1536         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1537         struct rcu_node *rnp;
1538         struct rcu_state *rsp;
1539         int tne;
1540
1541         /* Handle nohz enablement switches conservatively. */
1542         tne = ACCESS_ONCE(tick_nohz_active);
1543         if (tne != rdtp->tick_nohz_enabled_snap) {
1544                 if (rcu_cpu_has_callbacks(NULL))
1545                         invoke_rcu_core(); /* force nohz to see update. */
1546                 rdtp->tick_nohz_enabled_snap = tne;
1547                 return;
1548         }
1549         if (!tne)
1550                 return;
1551
1552         /* If this is a no-CBs CPU, no callbacks, just return. */
1553         if (rcu_is_nocb_cpu(smp_processor_id()))
1554                 return;
1555
1556         /*
1557          * If a non-lazy callback arrived at a CPU having only lazy
1558          * callbacks, invoke RCU core for the side-effect of recalculating
1559          * idle duration on re-entry to idle.
1560          */
1561         if (rdtp->all_lazy &&
1562             rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1563                 rdtp->all_lazy = false;
1564                 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1565                 invoke_rcu_core();
1566                 return;
1567         }
1568
1569         /*
1570          * If we have not yet accelerated this jiffy, accelerate all
1571          * callbacks on this CPU.
1572          */
1573         if (rdtp->last_accelerate == jiffies)
1574                 return;
1575         rdtp->last_accelerate = jiffies;
1576         for_each_rcu_flavor(rsp) {
1577                 rdp = this_cpu_ptr(rsp->rda);
1578                 if (!*rdp->nxttail[RCU_DONE_TAIL])
1579                         continue;
1580                 rnp = rdp->mynode;
1581                 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1582                 smp_mb__after_unlock_lock();
1583                 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1584                 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1585                 if (needwake)
1586                         rcu_gp_kthread_wake(rsp);
1587         }
1588 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1589 }
1590
1591 /*
1592  * Clean up for exit from idle.  Attempt to advance callbacks based on
1593  * any grace periods that elapsed while the CPU was idle, and if any
1594  * callbacks are now ready to invoke, initiate invocation.
1595  */
1596 static void rcu_cleanup_after_idle(void)
1597 {
1598 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1599         if (rcu_is_nocb_cpu(smp_processor_id()))
1600                 return;
1601         if (rcu_try_advance_all_cbs())
1602                 invoke_rcu_core();
1603 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1604 }
1605
1606 /*
1607  * Keep a running count of the number of non-lazy callbacks posted
1608  * on this CPU.  This running counter (which is never decremented) allows
1609  * rcu_prepare_for_idle() to detect when something out of the idle loop
1610  * posts a callback, even if an equal number of callbacks are invoked.
1611  * Of course, callbacks should only be posted from within a trace event
1612  * designed to be called from idle or from within RCU_NONIDLE().
1613  */
1614 static void rcu_idle_count_callbacks_posted(void)
1615 {
1616         __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1617 }
1618
1619 /*
1620  * Data for flushing lazy RCU callbacks at OOM time.
1621  */
1622 static atomic_t oom_callback_count;
1623 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1624
1625 /*
1626  * RCU OOM callback -- decrement the outstanding count and deliver the
1627  * wake-up if we are the last one.
1628  */
1629 static void rcu_oom_callback(struct rcu_head *rhp)
1630 {
1631         if (atomic_dec_and_test(&oom_callback_count))
1632                 wake_up(&oom_callback_wq);
1633 }
1634
1635 /*
1636  * Post an rcu_oom_notify callback on the current CPU if it has at
1637  * least one lazy callback.  This will unnecessarily post callbacks
1638  * to CPUs that already have a non-lazy callback at the end of their
1639  * callback list, but this is an infrequent operation, so accept some
1640  * extra overhead to keep things simple.
1641  */
1642 static void rcu_oom_notify_cpu(void *unused)
1643 {
1644         struct rcu_state *rsp;
1645         struct rcu_data *rdp;
1646
1647         for_each_rcu_flavor(rsp) {
1648                 rdp = raw_cpu_ptr(rsp->rda);
1649                 if (rdp->qlen_lazy != 0) {
1650                         atomic_inc(&oom_callback_count);
1651                         rsp->call(&rdp->oom_head, rcu_oom_callback);
1652                 }
1653         }
1654 }
1655
1656 /*
1657  * If low on memory, ensure that each CPU has a non-lazy callback.
1658  * This will wake up CPUs that have only lazy callbacks, in turn
1659  * ensuring that they free up the corresponding memory in a timely manner.
1660  * Because an uncertain amount of memory will be freed in some uncertain
1661  * timeframe, we do not claim to have freed anything.
1662  */
1663 static int rcu_oom_notify(struct notifier_block *self,
1664                           unsigned long notused, void *nfreed)
1665 {
1666         int cpu;
1667
1668         /* Wait for callbacks from earlier instance to complete. */
1669         wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1670         smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1671
1672         /*
1673          * Prevent premature wakeup: ensure that all increments happen
1674          * before there is a chance of the counter reaching zero.
1675          */
1676         atomic_set(&oom_callback_count, 1);
1677
1678         get_online_cpus();
1679         for_each_online_cpu(cpu) {
1680                 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1681                 cond_resched_rcu_qs();
1682         }
1683         put_online_cpus();
1684
1685         /* Unconditionally decrement: no need to wake ourselves up. */
1686         atomic_dec(&oom_callback_count);
1687
1688         return NOTIFY_OK;
1689 }
1690
1691 static struct notifier_block rcu_oom_nb = {
1692         .notifier_call = rcu_oom_notify
1693 };
1694
1695 static int __init rcu_register_oom_notifier(void)
1696 {
1697         register_oom_notifier(&rcu_oom_nb);
1698         return 0;
1699 }
1700 early_initcall(rcu_register_oom_notifier);
1701
1702 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1703
1704 #ifdef CONFIG_RCU_CPU_STALL_INFO
1705
1706 #ifdef CONFIG_RCU_FAST_NO_HZ
1707
1708 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1709 {
1710         struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1711         unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1712
1713         sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1714                 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1715                 ulong2long(nlpd),
1716                 rdtp->all_lazy ? 'L' : '.',
1717                 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1718 }
1719
1720 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1721
1722 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1723 {
1724         *cp = '\0';
1725 }
1726
1727 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1728
1729 /* Initiate the stall-info list. */
1730 static void print_cpu_stall_info_begin(void)
1731 {
1732         pr_cont("\n");
1733 }
1734
1735 /*
1736  * Print out diagnostic information for the specified stalled CPU.
1737  *
1738  * If the specified CPU is aware of the current RCU grace period
1739  * (flavor specified by rsp), then print the number of scheduling
1740  * clock interrupts the CPU has taken during the time that it has
1741  * been aware.  Otherwise, print the number of RCU grace periods
1742  * that this CPU is ignorant of, for example, "1" if the CPU was
1743  * aware of the previous grace period.
1744  *
1745  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1746  */
1747 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1748 {
1749         char fast_no_hz[72];
1750         struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1751         struct rcu_dynticks *rdtp = rdp->dynticks;
1752         char *ticks_title;
1753         unsigned long ticks_value;
1754
1755         if (rsp->gpnum == rdp->gpnum) {
1756                 ticks_title = "ticks this GP";
1757                 ticks_value = rdp->ticks_this_gp;
1758         } else {
1759                 ticks_title = "GPs behind";
1760                 ticks_value = rsp->gpnum - rdp->gpnum;
1761         }
1762         print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1763         pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1764                cpu, ticks_value, ticks_title,
1765                atomic_read(&rdtp->dynticks) & 0xfff,
1766                rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1767                rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1768                ACCESS_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1769                fast_no_hz);
1770 }
1771
1772 /* Terminate the stall-info list. */
1773 static void print_cpu_stall_info_end(void)
1774 {
1775         pr_err("\t");
1776 }
1777
1778 /* Zero ->ticks_this_gp for all flavors of RCU. */
1779 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1780 {
1781         rdp->ticks_this_gp = 0;
1782         rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1783 }
1784
1785 /* Increment ->ticks_this_gp for all flavors of RCU. */
1786 static void increment_cpu_stall_ticks(void)
1787 {
1788         struct rcu_state *rsp;
1789
1790         for_each_rcu_flavor(rsp)
1791                 raw_cpu_inc(rsp->rda->ticks_this_gp);
1792 }
1793
1794 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1795
1796 static void print_cpu_stall_info_begin(void)
1797 {
1798         pr_cont(" {");
1799 }
1800
1801 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1802 {
1803         pr_cont(" %d", cpu);
1804 }
1805
1806 static void print_cpu_stall_info_end(void)
1807 {
1808         pr_cont("} ");
1809 }
1810
1811 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1812 {
1813 }
1814
1815 static void increment_cpu_stall_ticks(void)
1816 {
1817 }
1818
1819 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
1820
1821 #ifdef CONFIG_RCU_NOCB_CPU
1822
1823 /*
1824  * Offload callback processing from the boot-time-specified set of CPUs
1825  * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1826  * kthread created that pulls the callbacks from the corresponding CPU,
1827  * waits for a grace period to elapse, and invokes the callbacks.
1828  * The no-CBs CPUs do a wake_up() on their kthread when they insert
1829  * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1830  * has been specified, in which case each kthread actively polls its
1831  * CPU.  (Which isn't so great for energy efficiency, but which does
1832  * reduce RCU's overhead on that CPU.)
1833  *
1834  * This is intended to be used in conjunction with Frederic Weisbecker's
1835  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1836  * running CPU-bound user-mode computations.
1837  *
1838  * Offloading of callback processing could also in theory be used as
1839  * an energy-efficiency measure because CPUs with no RCU callbacks
1840  * queued are more aggressive about entering dyntick-idle mode.
1841  */
1842
1843
1844 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1845 static int __init rcu_nocb_setup(char *str)
1846 {
1847         alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1848         have_rcu_nocb_mask = true;
1849         cpulist_parse(str, rcu_nocb_mask);
1850         return 1;
1851 }
1852 __setup("rcu_nocbs=", rcu_nocb_setup);
1853
1854 static int __init parse_rcu_nocb_poll(char *arg)
1855 {
1856         rcu_nocb_poll = 1;
1857         return 0;
1858 }
1859 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1860
1861 /*
1862  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1863  * grace period.
1864  */
1865 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1866 {
1867         wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
1868 }
1869
1870 /*
1871  * Set the root rcu_node structure's ->need_future_gp field
1872  * based on the sum of those of all rcu_node structures.  This does
1873  * double-count the root rcu_node structure's requests, but this
1874  * is necessary to handle the possibility of a rcu_nocb_kthread()
1875  * having awakened during the time that the rcu_node structures
1876  * were being updated for the end of the previous grace period.
1877  */
1878 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1879 {
1880         rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1881 }
1882
1883 static void rcu_init_one_nocb(struct rcu_node *rnp)
1884 {
1885         init_waitqueue_head(&rnp->nocb_gp_wq[0]);
1886         init_waitqueue_head(&rnp->nocb_gp_wq[1]);
1887 }
1888
1889 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1890 /* Is the specified CPU a no-CBs CPU? */
1891 bool rcu_is_nocb_cpu(int cpu)
1892 {
1893         if (have_rcu_nocb_mask)
1894                 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1895         return false;
1896 }
1897 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1898
1899 /*
1900  * Kick the leader kthread for this NOCB group.
1901  */
1902 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1903 {
1904         struct rcu_data *rdp_leader = rdp->nocb_leader;
1905
1906         if (!ACCESS_ONCE(rdp_leader->nocb_kthread))
1907                 return;
1908         if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1909                 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
1910                 ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false;
1911                 wake_up(&rdp_leader->nocb_wq);
1912         }
1913 }
1914
1915 /*
1916  * Does the specified CPU need an RCU callback for the specified flavor
1917  * of rcu_barrier()?
1918  */
1919 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1920 {
1921         struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1922         unsigned long ret;
1923 #ifdef CONFIG_PROVE_RCU
1924         struct rcu_head *rhp;
1925 #endif /* #ifdef CONFIG_PROVE_RCU */
1926
1927         /*
1928          * Check count of all no-CBs callbacks awaiting invocation.
1929          * There needs to be a barrier before this function is called,
1930          * but associated with a prior determination that no more
1931          * callbacks would be posted.  In the worst case, the first
1932          * barrier in _rcu_barrier() suffices (but the caller cannot
1933          * necessarily rely on this, not a substitute for the caller
1934          * getting the concurrency design right!).  There must also be
1935          * a barrier between the following load an posting of a callback
1936          * (if a callback is in fact needed).  This is associated with an
1937          * atomic_inc() in the caller.
1938          */
1939         ret = atomic_long_read(&rdp->nocb_q_count);
1940
1941 #ifdef CONFIG_PROVE_RCU
1942         rhp = ACCESS_ONCE(rdp->nocb_head);
1943         if (!rhp)
1944                 rhp = ACCESS_ONCE(rdp->nocb_gp_head);
1945         if (!rhp)
1946                 rhp = ACCESS_ONCE(rdp->nocb_follower_head);
1947
1948         /* Having no rcuo kthread but CBs after scheduler starts is bad! */
1949         if (!ACCESS_ONCE(rdp->nocb_kthread) && rhp) {
1950                 /* RCU callback enqueued before CPU first came online??? */
1951                 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1952                        cpu, rhp->func);
1953                 WARN_ON_ONCE(1);
1954         }
1955 #endif /* #ifdef CONFIG_PROVE_RCU */
1956
1957         return !!ret;
1958 }
1959
1960 /*
1961  * Enqueue the specified string of rcu_head structures onto the specified
1962  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
1963  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
1964  * counts are supplied by rhcount and rhcount_lazy.
1965  *
1966  * If warranted, also wake up the kthread servicing this CPUs queues.
1967  */
1968 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1969                                     struct rcu_head *rhp,
1970                                     struct rcu_head **rhtp,
1971                                     int rhcount, int rhcount_lazy,
1972                                     unsigned long flags)
1973 {
1974         int len;
1975         struct rcu_head **old_rhpp;
1976         struct task_struct *t;
1977
1978         /* Enqueue the callback on the nocb list and update counts. */
1979         atomic_long_add(rhcount, &rdp->nocb_q_count);
1980         /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1981         old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1982         ACCESS_ONCE(*old_rhpp) = rhp;
1983         atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1984         smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1985
1986         /* If we are not being polled and there is a kthread, awaken it ... */
1987         t = ACCESS_ONCE(rdp->nocb_kthread);
1988         if (rcu_nocb_poll || !t) {
1989                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1990                                     TPS("WakeNotPoll"));
1991                 return;
1992         }
1993         len = atomic_long_read(&rdp->nocb_q_count);
1994         if (old_rhpp == &rdp->nocb_head) {
1995                 if (!irqs_disabled_flags(flags)) {
1996                         /* ... if queue was empty ... */
1997                         wake_nocb_leader(rdp, false);
1998                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1999                                             TPS("WakeEmpty"));
2000                 } else {
2001                         rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
2002                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2003                                             TPS("WakeEmptyIsDeferred"));
2004                 }
2005                 rdp->qlen_last_fqs_check = 0;
2006         } else if (len > rdp->qlen_last_fqs_check + qhimark) {
2007                 /* ... or if many callbacks queued. */
2008                 if (!irqs_disabled_flags(flags)) {
2009                         wake_nocb_leader(rdp, true);
2010                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2011                                             TPS("WakeOvf"));
2012                 } else {
2013                         rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
2014                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2015                                             TPS("WakeOvfIsDeferred"));
2016                 }
2017                 rdp->qlen_last_fqs_check = LONG_MAX / 2;
2018         } else {
2019                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
2020         }
2021         return;
2022 }
2023
2024 /*
2025  * This is a helper for __call_rcu(), which invokes this when the normal
2026  * callback queue is inoperable.  If this is not a no-CBs CPU, this
2027  * function returns failure back to __call_rcu(), which can complain
2028  * appropriately.
2029  *
2030  * Otherwise, this function queues the callback where the corresponding
2031  * "rcuo" kthread can find it.
2032  */
2033 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2034                             bool lazy, unsigned long flags)
2035 {
2036
2037         if (!rcu_is_nocb_cpu(rdp->cpu))
2038                 return false;
2039         __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2040         if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2041                 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2042                                          (unsigned long)rhp->func,
2043                                          -atomic_long_read(&rdp->nocb_q_count_lazy),
2044                                          -atomic_long_read(&rdp->nocb_q_count));
2045         else
2046                 trace_rcu_callback(rdp->rsp->name, rhp,
2047                                    -atomic_long_read(&rdp->nocb_q_count_lazy),
2048                                    -atomic_long_read(&rdp->nocb_q_count));
2049
2050         /*
2051          * If called from an extended quiescent state with interrupts
2052          * disabled, invoke the RCU core in order to allow the idle-entry
2053          * deferred-wakeup check to function.
2054          */
2055         if (irqs_disabled_flags(flags) &&
2056             !rcu_is_watching() &&
2057             cpu_online(smp_processor_id()))
2058                 invoke_rcu_core();
2059
2060         return true;
2061 }
2062
2063 /*
2064  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2065  * not a no-CBs CPU.
2066  */
2067 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2068                                                      struct rcu_data *rdp,
2069                                                      unsigned long flags)
2070 {
2071         long ql = rsp->qlen;
2072         long qll = rsp->qlen_lazy;
2073
2074         /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2075         if (!rcu_is_nocb_cpu(smp_processor_id()))
2076                 return false;
2077         rsp->qlen = 0;
2078         rsp->qlen_lazy = 0;
2079
2080         /* First, enqueue the donelist, if any.  This preserves CB ordering. */
2081         if (rsp->orphan_donelist != NULL) {
2082                 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2083                                         rsp->orphan_donetail, ql, qll, flags);
2084                 ql = qll = 0;
2085                 rsp->orphan_donelist = NULL;
2086                 rsp->orphan_donetail = &rsp->orphan_donelist;
2087         }
2088         if (rsp->orphan_nxtlist != NULL) {
2089                 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2090                                         rsp->orphan_nxttail, ql, qll, flags);
2091                 ql = qll = 0;
2092                 rsp->orphan_nxtlist = NULL;
2093                 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2094         }
2095         return true;
2096 }
2097
2098 /*
2099  * If necessary, kick off a new grace period, and either way wait
2100  * for a subsequent grace period to complete.
2101  */
2102 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2103 {
2104         unsigned long c;
2105         bool d;
2106         unsigned long flags;
2107         bool needwake;
2108         struct rcu_node *rnp = rdp->mynode;
2109
2110         raw_spin_lock_irqsave(&rnp->lock, flags);
2111         smp_mb__after_unlock_lock();
2112         needwake = rcu_start_future_gp(rnp, rdp, &c);
2113         raw_spin_unlock_irqrestore(&rnp->lock, flags);
2114         if (needwake)
2115                 rcu_gp_kthread_wake(rdp->rsp);
2116
2117         /*
2118          * Wait for the grace period.  Do so interruptibly to avoid messing
2119          * up the load average.
2120          */
2121         trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2122         for (;;) {
2123                 wait_event_interruptible(
2124                         rnp->nocb_gp_wq[c & 0x1],
2125                         (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2126                 if (likely(d))
2127                         break;
2128                 WARN_ON(signal_pending(current));
2129                 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2130         }
2131         trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2132         smp_mb(); /* Ensure that CB invocation happens after GP end. */
2133 }
2134
2135 /*
2136  * Leaders come here to wait for additional callbacks to show up.
2137  * This function does not return until callbacks appear.
2138  */
2139 static void nocb_leader_wait(struct rcu_data *my_rdp)
2140 {
2141         bool firsttime = true;
2142         bool gotcbs;
2143         struct rcu_data *rdp;
2144         struct rcu_head **tail;
2145
2146 wait_again:
2147
2148         /* Wait for callbacks to appear. */
2149         if (!rcu_nocb_poll) {
2150                 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2151                 wait_event_interruptible(my_rdp->nocb_wq,
2152                                 !ACCESS_ONCE(my_rdp->nocb_leader_sleep));
2153                 /* Memory barrier handled by smp_mb() calls below and repoll. */
2154         } else if (firsttime) {
2155                 firsttime = false; /* Don't drown trace log with "Poll"! */
2156                 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2157         }
2158
2159         /*
2160          * Each pass through the following loop checks a follower for CBs.
2161          * We are our own first follower.  Any CBs found are moved to
2162          * nocb_gp_head, where they await a grace period.
2163          */
2164         gotcbs = false;
2165         for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2166                 rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head);
2167                 if (!rdp->nocb_gp_head)
2168                         continue;  /* No CBs here, try next follower. */
2169
2170                 /* Move callbacks to wait-for-GP list, which is empty. */
2171                 ACCESS_ONCE(rdp->nocb_head) = NULL;
2172                 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2173                 gotcbs = true;
2174         }
2175
2176         /*
2177          * If there were no callbacks, sleep a bit, rescan after a
2178          * memory barrier, and go retry.
2179          */
2180         if (unlikely(!gotcbs)) {
2181                 if (!rcu_nocb_poll)
2182                         trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2183                                             "WokeEmpty");
2184                 WARN_ON(signal_pending(current));
2185                 schedule_timeout_interruptible(1);
2186
2187                 /* Rescan in case we were a victim of memory ordering. */
2188                 my_rdp->nocb_leader_sleep = true;
2189                 smp_mb();  /* Ensure _sleep true before scan. */
2190                 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2191                         if (ACCESS_ONCE(rdp->nocb_head)) {
2192                                 /* Found CB, so short-circuit next wait. */
2193                                 my_rdp->nocb_leader_sleep = false;
2194                                 break;
2195                         }
2196                 goto wait_again;
2197         }
2198
2199         /* Wait for one grace period. */
2200         rcu_nocb_wait_gp(my_rdp);
2201
2202         /*
2203          * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2204          * We set it now, but recheck for new callbacks while
2205          * traversing our follower list.
2206          */
2207         my_rdp->nocb_leader_sleep = true;
2208         smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2209
2210         /* Each pass through the following loop wakes a follower, if needed. */
2211         for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2212                 if (ACCESS_ONCE(rdp->nocb_head))
2213                         my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2214                 if (!rdp->nocb_gp_head)
2215                         continue; /* No CBs, so no need to wake follower. */
2216
2217                 /* Append callbacks to follower's "done" list. */
2218                 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2219                 *tail = rdp->nocb_gp_head;
2220                 smp_mb__after_atomic(); /* Store *tail before wakeup. */
2221                 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2222                         /*
2223                          * List was empty, wake up the follower.
2224                          * Memory barriers supplied by atomic_long_add().
2225                          */
2226                         wake_up(&rdp->nocb_wq);
2227                 }
2228         }
2229
2230         /* If we (the leader) don't have CBs, go wait some more. */
2231         if (!my_rdp->nocb_follower_head)
2232                 goto wait_again;
2233 }
2234
2235 /*
2236  * Followers come here to wait for additional callbacks to show up.
2237  * This function does not return until callbacks appear.
2238  */
2239 static void nocb_follower_wait(struct rcu_data *rdp)
2240 {
2241         bool firsttime = true;
2242
2243         for (;;) {
2244                 if (!rcu_nocb_poll) {
2245                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2246                                             "FollowerSleep");
2247                         wait_event_interruptible(rdp->nocb_wq,
2248                                                  ACCESS_ONCE(rdp->nocb_follower_head));
2249                 } else if (firsttime) {
2250                         /* Don't drown trace log with "Poll"! */
2251                         firsttime = false;
2252                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2253                 }
2254                 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2255                         /* ^^^ Ensure CB invocation follows _head test. */
2256                         return;
2257                 }
2258                 if (!rcu_nocb_poll)
2259                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2260                                             "WokeEmpty");
2261                 WARN_ON(signal_pending(current));
2262                 schedule_timeout_interruptible(1);
2263         }
2264 }
2265
2266 /*
2267  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2268  * callbacks queued by the corresponding no-CBs CPU, however, there is
2269  * an optional leader-follower relationship so that the grace-period
2270  * kthreads don't have to do quite so many wakeups.
2271  */
2272 static int rcu_nocb_kthread(void *arg)
2273 {
2274         int c, cl;
2275         struct rcu_head *list;
2276         struct rcu_head *next;
2277         struct rcu_head **tail;
2278         struct rcu_data *rdp = arg;
2279
2280         /* Each pass through this loop invokes one batch of callbacks */
2281         for (;;) {
2282                 /* Wait for callbacks. */
2283                 if (rdp->nocb_leader == rdp)
2284                         nocb_leader_wait(rdp);
2285                 else
2286                         nocb_follower_wait(rdp);
2287
2288                 /* Pull the ready-to-invoke callbacks onto local list. */
2289                 list = ACCESS_ONCE(rdp->nocb_follower_head);
2290                 BUG_ON(!list);
2291                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2292                 ACCESS_ONCE(rdp->nocb_follower_head) = NULL;
2293                 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2294
2295                 /* Each pass through the following loop invokes a callback. */
2296                 trace_rcu_batch_start(rdp->rsp->name,
2297                                       atomic_long_read(&rdp->nocb_q_count_lazy),
2298                                       atomic_long_read(&rdp->nocb_q_count), -1);
2299                 c = cl = 0;
2300                 while (list) {
2301                         next = list->next;
2302                         /* Wait for enqueuing to complete, if needed. */
2303                         while (next == NULL && &list->next != tail) {
2304                                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2305                                                     TPS("WaitQueue"));
2306                                 schedule_timeout_interruptible(1);
2307                                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2308                                                     TPS("WokeQueue"));
2309                                 next = list->next;
2310                         }
2311                         debug_rcu_head_unqueue(list);
2312                         local_bh_disable();
2313                         if (__rcu_reclaim(rdp->rsp->name, list))
2314                                 cl++;
2315                         c++;
2316                         local_bh_enable();
2317                         list = next;
2318                 }
2319                 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2320                 smp_mb__before_atomic();  /* _add after CB invocation. */
2321                 atomic_long_add(-c, &rdp->nocb_q_count);
2322                 atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2323                 rdp->n_nocbs_invoked += c;
2324         }
2325         return 0;
2326 }
2327
2328 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2329 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2330 {
2331         return ACCESS_ONCE(rdp->nocb_defer_wakeup);
2332 }
2333
2334 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2335 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2336 {
2337         int ndw;
2338
2339         if (!rcu_nocb_need_deferred_wakeup(rdp))
2340                 return;
2341         ndw = ACCESS_ONCE(rdp->nocb_defer_wakeup);
2342         ACCESS_ONCE(rdp->nocb_defer_wakeup) = RCU_NOGP_WAKE_NOT;
2343         wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2344         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2345 }
2346
2347 void __init rcu_init_nohz(void)
2348 {
2349         int cpu;
2350         bool need_rcu_nocb_mask = true;
2351         struct rcu_state *rsp;
2352
2353 #ifdef CONFIG_RCU_NOCB_CPU_NONE
2354         need_rcu_nocb_mask = false;
2355 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2356
2357 #if defined(CONFIG_NO_HZ_FULL)
2358         if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2359                 need_rcu_nocb_mask = true;
2360 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2361
2362         if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2363                 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2364                         pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2365                         return;
2366                 }
2367                 have_rcu_nocb_mask = true;
2368         }
2369         if (!have_rcu_nocb_mask)
2370                 return;
2371
2372 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
2373         pr_info("\tOffload RCU callbacks from CPU 0\n");
2374         cpumask_set_cpu(0, rcu_nocb_mask);
2375 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2376 #ifdef CONFIG_RCU_NOCB_CPU_ALL
2377         pr_info("\tOffload RCU callbacks from all CPUs\n");
2378         cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2379 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2380 #if defined(CONFIG_NO_HZ_FULL)
2381         if (tick_nohz_full_running)
2382                 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2383 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2384
2385         if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2386                 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2387                 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2388                             rcu_nocb_mask);
2389         }
2390         cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
2391         pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
2392         if (rcu_nocb_poll)
2393                 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2394
2395         for_each_rcu_flavor(rsp) {
2396                 for_each_cpu(cpu, rcu_nocb_mask) {
2397                         struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2398
2399                         /*
2400                          * If there are early callbacks, they will need
2401                          * to be moved to the nocb lists.
2402                          */
2403                         WARN_ON_ONCE(rdp->nxttail[RCU_NEXT_TAIL] !=
2404                                      &rdp->nxtlist &&
2405                                      rdp->nxttail[RCU_NEXT_TAIL] != NULL);
2406                         init_nocb_callback_list(rdp);
2407                 }
2408                 rcu_organize_nocb_kthreads(rsp);
2409         }
2410 }
2411
2412 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2413 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2414 {
2415         rdp->nocb_tail = &rdp->nocb_head;
2416         init_waitqueue_head(&rdp->nocb_wq);
2417         rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2418 }
2419
2420 /*
2421  * If the specified CPU is a no-CBs CPU that does not already have its
2422  * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2423  * brought online out of order, this can require re-organizing the
2424  * leader-follower relationships.
2425  */
2426 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2427 {
2428         struct rcu_data *rdp;
2429         struct rcu_data *rdp_last;
2430         struct rcu_data *rdp_old_leader;
2431         struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2432         struct task_struct *t;
2433
2434         /*
2435          * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2436          * then nothing to do.
2437          */
2438         if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2439                 return;
2440
2441         /* If we didn't spawn the leader first, reorganize! */
2442         rdp_old_leader = rdp_spawn->nocb_leader;
2443         if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2444                 rdp_last = NULL;
2445                 rdp = rdp_old_leader;
2446                 do {
2447                         rdp->nocb_leader = rdp_spawn;
2448                         if (rdp_last && rdp != rdp_spawn)
2449                                 rdp_last->nocb_next_follower = rdp;
2450                         if (rdp == rdp_spawn) {
2451                                 rdp = rdp->nocb_next_follower;
2452                         } else {
2453                                 rdp_last = rdp;
2454                                 rdp = rdp->nocb_next_follower;
2455                                 rdp_last->nocb_next_follower = NULL;
2456                         }
2457                 } while (rdp);
2458                 rdp_spawn->nocb_next_follower = rdp_old_leader;
2459         }
2460
2461         /* Spawn the kthread for this CPU and RCU flavor. */
2462         t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2463                         "rcuo%c/%d", rsp->abbr, cpu);
2464         BUG_ON(IS_ERR(t));
2465         ACCESS_ONCE(rdp_spawn->nocb_kthread) = t;
2466 }
2467
2468 /*
2469  * If the specified CPU is a no-CBs CPU that does not already have its
2470  * rcuo kthreads, spawn them.
2471  */
2472 static void rcu_spawn_all_nocb_kthreads(int cpu)
2473 {
2474         struct rcu_state *rsp;
2475
2476         if (rcu_scheduler_fully_active)
2477                 for_each_rcu_flavor(rsp)
2478                         rcu_spawn_one_nocb_kthread(rsp, cpu);
2479 }
2480
2481 /*
2482  * Once the scheduler is running, spawn rcuo kthreads for all online
2483  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2484  * non-boot CPUs come online -- if this changes, we will need to add
2485  * some mutual exclusion.
2486  */
2487 static void __init rcu_spawn_nocb_kthreads(void)
2488 {
2489         int cpu;
2490
2491         for_each_online_cpu(cpu)
2492                 rcu_spawn_all_nocb_kthreads(cpu);
2493 }
2494
2495 /* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2496 static int rcu_nocb_leader_stride = -1;
2497 module_param(rcu_nocb_leader_stride, int, 0444);
2498
2499 /*
2500  * Initialize leader-follower relationships for all no-CBs CPU.
2501  */
2502 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2503 {
2504         int cpu;
2505         int ls = rcu_nocb_leader_stride;
2506         int nl = 0;  /* Next leader. */
2507         struct rcu_data *rdp;
2508         struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2509         struct rcu_data *rdp_prev = NULL;
2510
2511         if (!have_rcu_nocb_mask)
2512                 return;
2513         if (ls == -1) {
2514                 ls = int_sqrt(nr_cpu_ids);
2515                 rcu_nocb_leader_stride = ls;
2516         }
2517
2518         /*
2519          * Each pass through this loop sets up one rcu_data structure and
2520          * spawns one rcu_nocb_kthread().
2521          */
2522         for_each_cpu(cpu, rcu_nocb_mask) {
2523                 rdp = per_cpu_ptr(rsp->rda, cpu);
2524                 if (rdp->cpu >= nl) {
2525                         /* New leader, set up for followers & next leader. */
2526                         nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2527                         rdp->nocb_leader = rdp;
2528                         rdp_leader = rdp;
2529                 } else {
2530                         /* Another follower, link to previous leader. */
2531                         rdp->nocb_leader = rdp_leader;
2532                         rdp_prev->nocb_next_follower = rdp;
2533                 }
2534                 rdp_prev = rdp;
2535         }
2536 }
2537
2538 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2539 static bool init_nocb_callback_list(struct rcu_data *rdp)
2540 {
2541         if (!rcu_is_nocb_cpu(rdp->cpu))
2542                 return false;
2543
2544         rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2545         return true;
2546 }
2547
2548 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2549
2550 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2551 {
2552         WARN_ON_ONCE(1); /* Should be dead code. */
2553         return false;
2554 }
2555
2556 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2557 {
2558 }
2559
2560 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2561 {
2562 }
2563
2564 static void rcu_init_one_nocb(struct rcu_node *rnp)
2565 {
2566 }
2567
2568 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2569                             bool lazy, unsigned long flags)
2570 {
2571         return false;
2572 }
2573
2574 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2575                                                      struct rcu_data *rdp,
2576                                                      unsigned long flags)
2577 {
2578         return false;
2579 }
2580
2581 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2582 {
2583 }
2584
2585 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2586 {
2587         return false;
2588 }
2589
2590 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2591 {
2592 }
2593
2594 static void rcu_spawn_all_nocb_kthreads(int cpu)
2595 {
2596 }
2597
2598 static void __init rcu_spawn_nocb_kthreads(void)
2599 {
2600 }
2601
2602 static bool init_nocb_callback_list(struct rcu_data *rdp)
2603 {
2604         return false;
2605 }
2606
2607 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2608
2609 /*
2610  * An adaptive-ticks CPU can potentially execute in kernel mode for an
2611  * arbitrarily long period of time with the scheduling-clock tick turned
2612  * off.  RCU will be paying attention to this CPU because it is in the
2613  * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2614  * machine because the scheduling-clock tick has been disabled.  Therefore,
2615  * if an adaptive-ticks CPU is failing to respond to the current grace
2616  * period and has not be idle from an RCU perspective, kick it.
2617  */
2618 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2619 {
2620 #ifdef CONFIG_NO_HZ_FULL
2621         if (tick_nohz_full_cpu(cpu))
2622                 smp_send_reschedule(cpu);
2623 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2624 }
2625
2626
2627 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2628
2629 static int full_sysidle_state;          /* Current system-idle state. */
2630 #define RCU_SYSIDLE_NOT         0       /* Some CPU is not idle. */
2631 #define RCU_SYSIDLE_SHORT       1       /* All CPUs idle for brief period. */
2632 #define RCU_SYSIDLE_LONG        2       /* All CPUs idle for long enough. */
2633 #define RCU_SYSIDLE_FULL        3       /* All CPUs idle, ready for sysidle. */
2634 #define RCU_SYSIDLE_FULL_NOTED  4       /* Actually entered sysidle state. */
2635
2636 /*
2637  * Invoked to note exit from irq or task transition to idle.  Note that
2638  * usermode execution does -not- count as idle here!  After all, we want
2639  * to detect full-system idle states, not RCU quiescent states and grace
2640  * periods.  The caller must have disabled interrupts.
2641  */
2642 static void rcu_sysidle_enter(int irq)
2643 {
2644         unsigned long j;
2645         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2646
2647         /* If there are no nohz_full= CPUs, no need to track this. */
2648         if (!tick_nohz_full_enabled())
2649                 return;
2650
2651         /* Adjust nesting, check for fully idle. */
2652         if (irq) {
2653                 rdtp->dynticks_idle_nesting--;
2654                 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2655                 if (rdtp->dynticks_idle_nesting != 0)
2656                         return;  /* Still not fully idle. */
2657         } else {
2658                 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2659                     DYNTICK_TASK_NEST_VALUE) {
2660                         rdtp->dynticks_idle_nesting = 0;
2661                 } else {
2662                         rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2663                         WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2664                         return;  /* Still not fully idle. */
2665                 }
2666         }
2667
2668         /* Record start of fully idle period. */
2669         j = jiffies;
2670         ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
2671         smp_mb__before_atomic();
2672         atomic_inc(&rdtp->dynticks_idle);
2673         smp_mb__after_atomic();
2674         WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2675 }
2676
2677 /*
2678  * Unconditionally force exit from full system-idle state.  This is
2679  * invoked when a normal CPU exits idle, but must be called separately
2680  * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2681  * is that the timekeeping CPU is permitted to take scheduling-clock
2682  * interrupts while the system is in system-idle state, and of course
2683  * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2684  * interrupt from any other type of interrupt.
2685  */
2686 void rcu_sysidle_force_exit(void)
2687 {
2688         int oldstate = ACCESS_ONCE(full_sysidle_state);
2689         int newoldstate;
2690
2691         /*
2692          * Each pass through the following loop attempts to exit full
2693          * system-idle state.  If contention proves to be a problem,
2694          * a trylock-based contention tree could be used here.
2695          */
2696         while (oldstate > RCU_SYSIDLE_SHORT) {
2697                 newoldstate = cmpxchg(&full_sysidle_state,
2698                                       oldstate, RCU_SYSIDLE_NOT);
2699                 if (oldstate == newoldstate &&
2700                     oldstate == RCU_SYSIDLE_FULL_NOTED) {
2701                         rcu_kick_nohz_cpu(tick_do_timer_cpu);
2702                         return; /* We cleared it, done! */
2703                 }
2704                 oldstate = newoldstate;
2705         }
2706         smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2707 }
2708
2709 /*
2710  * Invoked to note entry to irq or task transition from idle.  Note that
2711  * usermode execution does -not- count as idle here!  The caller must
2712  * have disabled interrupts.
2713  */
2714 static void rcu_sysidle_exit(int irq)
2715 {
2716         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2717
2718         /* If there are no nohz_full= CPUs, no need to track this. */
2719         if (!tick_nohz_full_enabled())
2720                 return;
2721
2722         /* Adjust nesting, check for already non-idle. */
2723         if (irq) {
2724                 rdtp->dynticks_idle_nesting++;
2725                 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2726                 if (rdtp->dynticks_idle_nesting != 1)
2727                         return; /* Already non-idle. */
2728         } else {
2729                 /*
2730                  * Allow for irq misnesting.  Yes, it really is possible
2731                  * to enter an irq handler then never leave it, and maybe
2732                  * also vice versa.  Handle both possibilities.
2733                  */
2734                 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2735                         rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2736                         WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2737                         return; /* Already non-idle. */
2738                 } else {
2739                         rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2740                 }
2741         }
2742
2743         /* Record end of idle period. */
2744         smp_mb__before_atomic();
2745         atomic_inc(&rdtp->dynticks_idle);
2746         smp_mb__after_atomic();
2747         WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2748
2749         /*
2750          * If we are the timekeeping CPU, we are permitted to be non-idle
2751          * during a system-idle state.  This must be the case, because
2752          * the timekeeping CPU has to take scheduling-clock interrupts
2753          * during the time that the system is transitioning to full
2754          * system-idle state.  This means that the timekeeping CPU must
2755          * invoke rcu_sysidle_force_exit() directly if it does anything
2756          * more than take a scheduling-clock interrupt.
2757          */
2758         if (smp_processor_id() == tick_do_timer_cpu)
2759                 return;
2760
2761         /* Update system-idle state: We are clearly no longer fully idle! */
2762         rcu_sysidle_force_exit();
2763 }
2764
2765 /*
2766  * Check to see if the current CPU is idle.  Note that usermode execution
2767  * does not count as idle.  The caller must have disabled interrupts.
2768  */
2769 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2770                                   unsigned long *maxj)
2771 {
2772         int cur;
2773         unsigned long j;
2774         struct rcu_dynticks *rdtp = rdp->dynticks;
2775
2776         /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2777         if (!tick_nohz_full_enabled())
2778                 return;
2779
2780         /*
2781          * If some other CPU has already reported non-idle, if this is
2782          * not the flavor of RCU that tracks sysidle state, or if this
2783          * is an offline or the timekeeping CPU, nothing to do.
2784          */
2785         if (!*isidle || rdp->rsp != rcu_state_p ||
2786             cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2787                 return;
2788         if (rcu_gp_in_progress(rdp->rsp))
2789                 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2790
2791         /* Pick up current idle and NMI-nesting counter and check. */
2792         cur = atomic_read(&rdtp->dynticks_idle);
2793         if (cur & 0x1) {
2794                 *isidle = false; /* We are not idle! */
2795                 return;
2796         }
2797         smp_mb(); /* Read counters before timestamps. */
2798
2799         /* Pick up timestamps. */
2800         j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2801         /* If this CPU entered idle more recently, update maxj timestamp. */
2802         if (ULONG_CMP_LT(*maxj, j))
2803                 *maxj = j;
2804 }
2805
2806 /*
2807  * Is this the flavor of RCU that is handling full-system idle?
2808  */
2809 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2810 {
2811         return rsp == rcu_state_p;
2812 }
2813
2814 /*
2815  * Return a delay in jiffies based on the number of CPUs, rcu_node
2816  * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2817  * systems more time to transition to full-idle state in order to
2818  * avoid the cache thrashing that otherwise occur on the state variable.
2819  * Really small systems (less than a couple of tens of CPUs) should
2820  * instead use a single global atomically incremented counter, and later
2821  * versions of this will automatically reconfigure themselves accordingly.
2822  */
2823 static unsigned long rcu_sysidle_delay(void)
2824 {
2825         if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2826                 return 0;
2827         return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2828 }
2829
2830 /*
2831  * Advance the full-system-idle state.  This is invoked when all of
2832  * the non-timekeeping CPUs are idle.
2833  */
2834 static void rcu_sysidle(unsigned long j)
2835 {
2836         /* Check the current state. */
2837         switch (ACCESS_ONCE(full_sysidle_state)) {
2838         case RCU_SYSIDLE_NOT:
2839
2840                 /* First time all are idle, so note a short idle period. */
2841                 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2842                 break;
2843
2844         case RCU_SYSIDLE_SHORT:
2845
2846                 /*
2847                  * Idle for a bit, time to advance to next state?
2848                  * cmpxchg failure means race with non-idle, let them win.
2849                  */
2850                 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2851                         (void)cmpxchg(&full_sysidle_state,
2852                                       RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2853                 break;
2854
2855         case RCU_SYSIDLE_LONG:
2856
2857                 /*
2858                  * Do an additional check pass before advancing to full.
2859                  * cmpxchg failure means race with non-idle, let them win.
2860                  */
2861                 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2862                         (void)cmpxchg(&full_sysidle_state,
2863                                       RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2864                 break;
2865
2866         default:
2867                 break;
2868         }
2869 }
2870
2871 /*
2872  * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2873  * back to the beginning.
2874  */
2875 static void rcu_sysidle_cancel(void)
2876 {
2877         smp_mb();
2878         if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2879                 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
2880 }
2881
2882 /*
2883  * Update the sysidle state based on the results of a force-quiescent-state
2884  * scan of the CPUs' dyntick-idle state.
2885  */
2886 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2887                                unsigned long maxj, bool gpkt)
2888 {
2889         if (rsp != rcu_state_p)
2890                 return;  /* Wrong flavor, ignore. */
2891         if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2892                 return;  /* Running state machine from timekeeping CPU. */
2893         if (isidle)
2894                 rcu_sysidle(maxj);    /* More idle! */
2895         else
2896                 rcu_sysidle_cancel(); /* Idle is over. */
2897 }
2898
2899 /*
2900  * Wrapper for rcu_sysidle_report() when called from the grace-period
2901  * kthread's context.
2902  */
2903 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2904                                   unsigned long maxj)
2905 {
2906         /* If there are no nohz_full= CPUs, no need to track this. */
2907         if (!tick_nohz_full_enabled())
2908                 return;
2909
2910         rcu_sysidle_report(rsp, isidle, maxj, true);
2911 }
2912
2913 /* Callback and function for forcing an RCU grace period. */
2914 struct rcu_sysidle_head {
2915         struct rcu_head rh;
2916         int inuse;
2917 };
2918
2919 static void rcu_sysidle_cb(struct rcu_head *rhp)
2920 {
2921         struct rcu_sysidle_head *rshp;
2922
2923         /*
2924          * The following memory barrier is needed to replace the
2925          * memory barriers that would normally be in the memory
2926          * allocator.
2927          */
2928         smp_mb();  /* grace period precedes setting inuse. */
2929
2930         rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2931         ACCESS_ONCE(rshp->inuse) = 0;
2932 }
2933
2934 /*
2935  * Check to see if the system is fully idle, other than the timekeeping CPU.
2936  * The caller must have disabled interrupts.  This is not intended to be
2937  * called unless tick_nohz_full_enabled().
2938  */
2939 bool rcu_sys_is_idle(void)
2940 {
2941         static struct rcu_sysidle_head rsh;
2942         int rss = ACCESS_ONCE(full_sysidle_state);
2943
2944         if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2945                 return false;
2946
2947         /* Handle small-system case by doing a full scan of CPUs. */
2948         if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2949                 int oldrss = rss - 1;
2950
2951                 /*
2952                  * One pass to advance to each state up to _FULL.
2953                  * Give up if any pass fails to advance the state.
2954                  */
2955                 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2956                         int cpu;
2957                         bool isidle = true;
2958                         unsigned long maxj = jiffies - ULONG_MAX / 4;
2959                         struct rcu_data *rdp;
2960
2961                         /* Scan all the CPUs looking for nonidle CPUs. */
2962                         for_each_possible_cpu(cpu) {
2963                                 rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2964                                 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2965                                 if (!isidle)
2966                                         break;
2967                         }
2968                         rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2969                         oldrss = rss;
2970                         rss = ACCESS_ONCE(full_sysidle_state);
2971                 }
2972         }
2973
2974         /* If this is the first observation of an idle period, record it. */
2975         if (rss == RCU_SYSIDLE_FULL) {
2976                 rss = cmpxchg(&full_sysidle_state,
2977                               RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2978                 return rss == RCU_SYSIDLE_FULL;
2979         }
2980
2981         smp_mb(); /* ensure rss load happens before later caller actions. */
2982
2983         /* If already fully idle, tell the caller (in case of races). */
2984         if (rss == RCU_SYSIDLE_FULL_NOTED)
2985                 return true;
2986
2987         /*
2988          * If we aren't there yet, and a grace period is not in flight,
2989          * initiate a grace period.  Either way, tell the caller that
2990          * we are not there yet.  We use an xchg() rather than an assignment
2991          * to make up for the memory barriers that would otherwise be
2992          * provided by the memory allocator.
2993          */
2994         if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2995             !rcu_gp_in_progress(rcu_state_p) &&
2996             !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2997                 call_rcu(&rsh.rh, rcu_sysidle_cb);
2998         return false;
2999 }
3000
3001 /*
3002  * Initialize dynticks sysidle state for CPUs coming online.
3003  */
3004 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3005 {
3006         rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
3007 }
3008
3009 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3010
3011 static void rcu_sysidle_enter(int irq)
3012 {
3013 }
3014
3015 static void rcu_sysidle_exit(int irq)
3016 {
3017 }
3018
3019 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
3020                                   unsigned long *maxj)
3021 {
3022 }
3023
3024 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
3025 {
3026         return false;
3027 }
3028
3029 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
3030                                   unsigned long maxj)
3031 {
3032 }
3033
3034 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3035 {
3036 }
3037
3038 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3039
3040 /*
3041  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3042  * grace-period kthread will do force_quiescent_state() processing?
3043  * The idea is to avoid waking up RCU core processing on such a
3044  * CPU unless the grace period has extended for too long.
3045  *
3046  * This code relies on the fact that all NO_HZ_FULL CPUs are also
3047  * CONFIG_RCU_NOCB_CPU CPUs.
3048  */
3049 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3050 {
3051 #ifdef CONFIG_NO_HZ_FULL
3052         if (tick_nohz_full_cpu(smp_processor_id()) &&
3053             (!rcu_gp_in_progress(rsp) ||
3054              ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
3055                 return 1;
3056 #endif /* #ifdef CONFIG_NO_HZ_FULL */
3057         return 0;
3058 }
3059
3060 /*
3061  * Bind the grace-period kthread for the sysidle flavor of RCU to the
3062  * timekeeping CPU.
3063  */
3064 static void rcu_bind_gp_kthread(void)
3065 {
3066         int __maybe_unused cpu;
3067
3068         if (!tick_nohz_full_enabled())
3069                 return;
3070 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3071         cpu = tick_do_timer_cpu;
3072         if (cpu >= 0 && cpu < nr_cpu_ids && raw_smp_processor_id() != cpu)
3073                 set_cpus_allowed_ptr(current, cpumask_of(cpu));
3074 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3075         if (!is_housekeeping_cpu(raw_smp_processor_id()))
3076                 housekeeping_affine(current);
3077 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3078 }
3079
3080 /* Record the current task on dyntick-idle entry. */
3081 static void rcu_dynticks_task_enter(void)
3082 {
3083 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3084         ACCESS_ONCE(current->rcu_tasks_idle_cpu) = smp_processor_id();
3085 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3086 }
3087
3088 /* Record no current task on dyntick-idle exit. */
3089 static void rcu_dynticks_task_exit(void)
3090 {
3091 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3092         ACCESS_ONCE(current->rcu_tasks_idle_cpu) = -1;
3093 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3094 }