4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
78 #include <asm/switch_to.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
98 void update_rq_clock(struct rq *rq)
102 lockdep_assert_held(&rq->lock);
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
111 update_rq_clock_task(rq, delta);
115 * Debugging: various feature bits
118 #define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
127 #ifdef CONFIG_SCHED_DEBUG
128 #define SCHED_FEAT(name, enabled) \
131 static const char * const sched_feat_names[] = {
132 #include "features.h"
137 static int sched_feat_show(struct seq_file *m, void *v)
141 for (i = 0; i < __SCHED_FEAT_NR; i++) {
142 if (!(sysctl_sched_features & (1UL << i)))
144 seq_printf(m, "%s ", sched_feat_names[i]);
151 #ifdef HAVE_JUMP_LABEL
153 #define jump_label_key__true STATIC_KEY_INIT_TRUE
154 #define jump_label_key__false STATIC_KEY_INIT_FALSE
156 #define SCHED_FEAT(name, enabled) \
157 jump_label_key__##enabled ,
159 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
160 #include "features.h"
165 static void sched_feat_disable(int i)
167 if (static_key_enabled(&sched_feat_keys[i]))
168 static_key_slow_dec(&sched_feat_keys[i]);
171 static void sched_feat_enable(int i)
173 if (!static_key_enabled(&sched_feat_keys[i]))
174 static_key_slow_inc(&sched_feat_keys[i]);
177 static void sched_feat_disable(int i) { };
178 static void sched_feat_enable(int i) { };
179 #endif /* HAVE_JUMP_LABEL */
181 static int sched_feat_set(char *cmp)
186 if (strncmp(cmp, "NO_", 3) == 0) {
191 for (i = 0; i < __SCHED_FEAT_NR; i++) {
192 if (strcmp(cmp, sched_feat_names[i]) == 0) {
194 sysctl_sched_features &= ~(1UL << i);
195 sched_feat_disable(i);
197 sysctl_sched_features |= (1UL << i);
198 sched_feat_enable(i);
208 sched_feat_write(struct file *filp, const char __user *ubuf,
209 size_t cnt, loff_t *ppos)
219 if (copy_from_user(&buf, ubuf, cnt))
225 /* Ensure the static_key remains in a consistent state */
226 inode = file_inode(filp);
227 mutex_lock(&inode->i_mutex);
228 i = sched_feat_set(cmp);
229 mutex_unlock(&inode->i_mutex);
230 if (i == __SCHED_FEAT_NR)
238 static int sched_feat_open(struct inode *inode, struct file *filp)
240 return single_open(filp, sched_feat_show, NULL);
243 static const struct file_operations sched_feat_fops = {
244 .open = sched_feat_open,
245 .write = sched_feat_write,
248 .release = single_release,
251 static __init int sched_init_debug(void)
253 debugfs_create_file("sched_features", 0644, NULL, NULL,
258 late_initcall(sched_init_debug);
259 #endif /* CONFIG_SCHED_DEBUG */
262 * Number of tasks to iterate in a single balance run.
263 * Limited because this is done with IRQs disabled.
265 const_debug unsigned int sysctl_sched_nr_migrate = 32;
268 * period over which we average the RT time consumption, measured
273 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
276 * period over which we measure -rt task cpu usage in us.
279 unsigned int sysctl_sched_rt_period = 1000000;
281 __read_mostly int scheduler_running;
284 * part of the period that we allow rt tasks to run in us.
287 int sysctl_sched_rt_runtime = 950000;
289 /* cpus with isolated domains */
290 cpumask_var_t cpu_isolated_map;
293 * this_rq_lock - lock this runqueue and disable interrupts.
295 static struct rq *this_rq_lock(void)
302 raw_spin_lock(&rq->lock);
307 #ifdef CONFIG_SCHED_HRTICK
309 * Use HR-timers to deliver accurate preemption points.
312 static void hrtick_clear(struct rq *rq)
314 if (hrtimer_active(&rq->hrtick_timer))
315 hrtimer_cancel(&rq->hrtick_timer);
319 * High-resolution timer tick.
320 * Runs from hardirq context with interrupts disabled.
322 static enum hrtimer_restart hrtick(struct hrtimer *timer)
324 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
326 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
328 raw_spin_lock(&rq->lock);
330 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
331 raw_spin_unlock(&rq->lock);
333 return HRTIMER_NORESTART;
338 static void __hrtick_restart(struct rq *rq)
340 struct hrtimer *timer = &rq->hrtick_timer;
342 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
346 * called from hardirq (IPI) context
348 static void __hrtick_start(void *arg)
352 raw_spin_lock(&rq->lock);
353 __hrtick_restart(rq);
354 rq->hrtick_csd_pending = 0;
355 raw_spin_unlock(&rq->lock);
359 * Called to set the hrtick timer state.
361 * called with rq->lock held and irqs disabled
363 void hrtick_start(struct rq *rq, u64 delay)
365 struct hrtimer *timer = &rq->hrtick_timer;
370 * Don't schedule slices shorter than 10000ns, that just
371 * doesn't make sense and can cause timer DoS.
373 delta = max_t(s64, delay, 10000LL);
374 time = ktime_add_ns(timer->base->get_time(), delta);
376 hrtimer_set_expires(timer, time);
378 if (rq == this_rq()) {
379 __hrtick_restart(rq);
380 } else if (!rq->hrtick_csd_pending) {
381 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
382 rq->hrtick_csd_pending = 1;
387 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
389 int cpu = (int)(long)hcpu;
392 case CPU_UP_CANCELED:
393 case CPU_UP_CANCELED_FROZEN:
394 case CPU_DOWN_PREPARE:
395 case CPU_DOWN_PREPARE_FROZEN:
397 case CPU_DEAD_FROZEN:
398 hrtick_clear(cpu_rq(cpu));
405 static __init void init_hrtick(void)
407 hotcpu_notifier(hotplug_hrtick, 0);
411 * Called to set the hrtick timer state.
413 * called with rq->lock held and irqs disabled
415 void hrtick_start(struct rq *rq, u64 delay)
418 * Don't schedule slices shorter than 10000ns, that just
419 * doesn't make sense. Rely on vruntime for fairness.
421 delay = max_t(u64, delay, 10000LL);
422 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
423 HRTIMER_MODE_REL_PINNED);
426 static inline void init_hrtick(void)
429 #endif /* CONFIG_SMP */
431 static void init_rq_hrtick(struct rq *rq)
434 rq->hrtick_csd_pending = 0;
436 rq->hrtick_csd.flags = 0;
437 rq->hrtick_csd.func = __hrtick_start;
438 rq->hrtick_csd.info = rq;
441 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
442 rq->hrtick_timer.function = hrtick;
444 #else /* CONFIG_SCHED_HRTICK */
445 static inline void hrtick_clear(struct rq *rq)
449 static inline void init_rq_hrtick(struct rq *rq)
453 static inline void init_hrtick(void)
456 #endif /* CONFIG_SCHED_HRTICK */
459 * cmpxchg based fetch_or, macro so it works for different integer types
461 #define fetch_or(ptr, val) \
462 ({ typeof(*(ptr)) __old, __val = *(ptr); \
464 __old = cmpxchg((ptr), __val, __val | (val)); \
465 if (__old == __val) \
472 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
474 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
475 * this avoids any races wrt polling state changes and thereby avoids
478 static bool set_nr_and_not_polling(struct task_struct *p)
480 struct thread_info *ti = task_thread_info(p);
481 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
485 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
487 * If this returns true, then the idle task promises to call
488 * sched_ttwu_pending() and reschedule soon.
490 static bool set_nr_if_polling(struct task_struct *p)
492 struct thread_info *ti = task_thread_info(p);
493 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
496 if (!(val & _TIF_POLLING_NRFLAG))
498 if (val & _TIF_NEED_RESCHED)
500 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
509 static bool set_nr_and_not_polling(struct task_struct *p)
511 set_tsk_need_resched(p);
516 static bool set_nr_if_polling(struct task_struct *p)
523 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
525 struct wake_q_node *node = &task->wake_q;
528 * Atomically grab the task, if ->wake_q is !nil already it means
529 * its already queued (either by us or someone else) and will get the
530 * wakeup due to that.
532 * This cmpxchg() implies a full barrier, which pairs with the write
533 * barrier implied by the wakeup in wake_up_list().
535 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
538 get_task_struct(task);
541 * The head is context local, there can be no concurrency.
544 head->lastp = &node->next;
547 void wake_up_q(struct wake_q_head *head)
549 struct wake_q_node *node = head->first;
551 while (node != WAKE_Q_TAIL) {
552 struct task_struct *task;
554 task = container_of(node, struct task_struct, wake_q);
556 /* task can safely be re-inserted now */
558 task->wake_q.next = NULL;
561 * wake_up_process() implies a wmb() to pair with the queueing
562 * in wake_q_add() so as not to miss wakeups.
564 wake_up_process(task);
565 put_task_struct(task);
570 * resched_curr - mark rq's current task 'to be rescheduled now'.
572 * On UP this means the setting of the need_resched flag, on SMP it
573 * might also involve a cross-CPU call to trigger the scheduler on
576 void resched_curr(struct rq *rq)
578 struct task_struct *curr = rq->curr;
581 lockdep_assert_held(&rq->lock);
583 if (test_tsk_need_resched(curr))
588 if (cpu == smp_processor_id()) {
589 set_tsk_need_resched(curr);
590 set_preempt_need_resched();
594 if (set_nr_and_not_polling(curr))
595 smp_send_reschedule(cpu);
597 trace_sched_wake_idle_without_ipi(cpu);
600 void resched_cpu(int cpu)
602 struct rq *rq = cpu_rq(cpu);
605 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
608 raw_spin_unlock_irqrestore(&rq->lock, flags);
612 #ifdef CONFIG_NO_HZ_COMMON
614 * In the semi idle case, use the nearest busy cpu for migrating timers
615 * from an idle cpu. This is good for power-savings.
617 * We don't do similar optimization for completely idle system, as
618 * selecting an idle cpu will add more delays to the timers than intended
619 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
621 int get_nohz_timer_target(void)
623 int i, cpu = smp_processor_id();
624 struct sched_domain *sd;
630 for_each_domain(cpu, sd) {
631 for_each_cpu(i, sched_domain_span(sd)) {
643 * When add_timer_on() enqueues a timer into the timer wheel of an
644 * idle CPU then this timer might expire before the next timer event
645 * which is scheduled to wake up that CPU. In case of a completely
646 * idle system the next event might even be infinite time into the
647 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
648 * leaves the inner idle loop so the newly added timer is taken into
649 * account when the CPU goes back to idle and evaluates the timer
650 * wheel for the next timer event.
652 static void wake_up_idle_cpu(int cpu)
654 struct rq *rq = cpu_rq(cpu);
656 if (cpu == smp_processor_id())
659 if (set_nr_and_not_polling(rq->idle))
660 smp_send_reschedule(cpu);
662 trace_sched_wake_idle_without_ipi(cpu);
665 static bool wake_up_full_nohz_cpu(int cpu)
668 * We just need the target to call irq_exit() and re-evaluate
669 * the next tick. The nohz full kick at least implies that.
670 * If needed we can still optimize that later with an
673 if (tick_nohz_full_cpu(cpu)) {
674 if (cpu != smp_processor_id() ||
675 tick_nohz_tick_stopped())
676 tick_nohz_full_kick_cpu(cpu);
683 void wake_up_nohz_cpu(int cpu)
685 if (!wake_up_full_nohz_cpu(cpu))
686 wake_up_idle_cpu(cpu);
689 static inline bool got_nohz_idle_kick(void)
691 int cpu = smp_processor_id();
693 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
696 if (idle_cpu(cpu) && !need_resched())
700 * We can't run Idle Load Balance on this CPU for this time so we
701 * cancel it and clear NOHZ_BALANCE_KICK
703 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
707 #else /* CONFIG_NO_HZ_COMMON */
709 static inline bool got_nohz_idle_kick(void)
714 #endif /* CONFIG_NO_HZ_COMMON */
716 #ifdef CONFIG_NO_HZ_FULL
717 bool sched_can_stop_tick(void)
720 * FIFO realtime policy runs the highest priority task. Other runnable
721 * tasks are of a lower priority. The scheduler tick does nothing.
723 if (current->policy == SCHED_FIFO)
727 * Round-robin realtime tasks time slice with other tasks at the same
728 * realtime priority. Is this task the only one at this priority?
730 if (current->policy == SCHED_RR) {
731 struct sched_rt_entity *rt_se = ¤t->rt;
733 return rt_se->run_list.prev == rt_se->run_list.next;
737 * More than one running task need preemption.
738 * nr_running update is assumed to be visible
739 * after IPI is sent from wakers.
741 if (this_rq()->nr_running > 1)
746 #endif /* CONFIG_NO_HZ_FULL */
748 void sched_avg_update(struct rq *rq)
750 s64 period = sched_avg_period();
752 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
754 * Inline assembly required to prevent the compiler
755 * optimising this loop into a divmod call.
756 * See __iter_div_u64_rem() for another example of this.
758 asm("" : "+rm" (rq->age_stamp));
759 rq->age_stamp += period;
764 #endif /* CONFIG_SMP */
766 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
767 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
769 * Iterate task_group tree rooted at *from, calling @down when first entering a
770 * node and @up when leaving it for the final time.
772 * Caller must hold rcu_lock or sufficient equivalent.
774 int walk_tg_tree_from(struct task_group *from,
775 tg_visitor down, tg_visitor up, void *data)
777 struct task_group *parent, *child;
783 ret = (*down)(parent, data);
786 list_for_each_entry_rcu(child, &parent->children, siblings) {
793 ret = (*up)(parent, data);
794 if (ret || parent == from)
798 parent = parent->parent;
805 int tg_nop(struct task_group *tg, void *data)
811 static void set_load_weight(struct task_struct *p)
813 int prio = p->static_prio - MAX_RT_PRIO;
814 struct load_weight *load = &p->se.load;
817 * SCHED_IDLE tasks get minimal weight:
819 if (p->policy == SCHED_IDLE) {
820 load->weight = scale_load(WEIGHT_IDLEPRIO);
821 load->inv_weight = WMULT_IDLEPRIO;
825 load->weight = scale_load(prio_to_weight[prio]);
826 load->inv_weight = prio_to_wmult[prio];
829 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
832 sched_info_queued(rq, p);
833 p->sched_class->enqueue_task(rq, p, flags);
836 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
839 sched_info_dequeued(rq, p);
840 p->sched_class->dequeue_task(rq, p, flags);
843 void activate_task(struct rq *rq, struct task_struct *p, int flags)
845 if (task_contributes_to_load(p))
846 rq->nr_uninterruptible--;
848 enqueue_task(rq, p, flags);
851 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
853 if (task_contributes_to_load(p))
854 rq->nr_uninterruptible++;
856 dequeue_task(rq, p, flags);
859 static void update_rq_clock_task(struct rq *rq, s64 delta)
862 * In theory, the compile should just see 0 here, and optimize out the call
863 * to sched_rt_avg_update. But I don't trust it...
865 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
866 s64 steal = 0, irq_delta = 0;
868 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
869 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
872 * Since irq_time is only updated on {soft,}irq_exit, we might run into
873 * this case when a previous update_rq_clock() happened inside a
876 * When this happens, we stop ->clock_task and only update the
877 * prev_irq_time stamp to account for the part that fit, so that a next
878 * update will consume the rest. This ensures ->clock_task is
881 * It does however cause some slight miss-attribution of {soft,}irq
882 * time, a more accurate solution would be to update the irq_time using
883 * the current rq->clock timestamp, except that would require using
886 if (irq_delta > delta)
889 rq->prev_irq_time += irq_delta;
892 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
893 if (static_key_false((¶virt_steal_rq_enabled))) {
894 steal = paravirt_steal_clock(cpu_of(rq));
895 steal -= rq->prev_steal_time_rq;
897 if (unlikely(steal > delta))
900 rq->prev_steal_time_rq += steal;
905 rq->clock_task += delta;
907 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
908 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
909 sched_rt_avg_update(rq, irq_delta + steal);
913 void sched_set_stop_task(int cpu, struct task_struct *stop)
915 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
916 struct task_struct *old_stop = cpu_rq(cpu)->stop;
920 * Make it appear like a SCHED_FIFO task, its something
921 * userspace knows about and won't get confused about.
923 * Also, it will make PI more or less work without too
924 * much confusion -- but then, stop work should not
925 * rely on PI working anyway.
927 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
929 stop->sched_class = &stop_sched_class;
932 cpu_rq(cpu)->stop = stop;
936 * Reset it back to a normal scheduling class so that
937 * it can die in pieces.
939 old_stop->sched_class = &rt_sched_class;
944 * __normal_prio - return the priority that is based on the static prio
946 static inline int __normal_prio(struct task_struct *p)
948 return p->static_prio;
952 * Calculate the expected normal priority: i.e. priority
953 * without taking RT-inheritance into account. Might be
954 * boosted by interactivity modifiers. Changes upon fork,
955 * setprio syscalls, and whenever the interactivity
956 * estimator recalculates.
958 static inline int normal_prio(struct task_struct *p)
962 if (task_has_dl_policy(p))
963 prio = MAX_DL_PRIO-1;
964 else if (task_has_rt_policy(p))
965 prio = MAX_RT_PRIO-1 - p->rt_priority;
967 prio = __normal_prio(p);
972 * Calculate the current priority, i.e. the priority
973 * taken into account by the scheduler. This value might
974 * be boosted by RT tasks, or might be boosted by
975 * interactivity modifiers. Will be RT if the task got
976 * RT-boosted. If not then it returns p->normal_prio.
978 static int effective_prio(struct task_struct *p)
980 p->normal_prio = normal_prio(p);
982 * If we are RT tasks or we were boosted to RT priority,
983 * keep the priority unchanged. Otherwise, update priority
984 * to the normal priority:
986 if (!rt_prio(p->prio))
987 return p->normal_prio;
992 * task_curr - is this task currently executing on a CPU?
993 * @p: the task in question.
995 * Return: 1 if the task is currently executing. 0 otherwise.
997 inline int task_curr(const struct task_struct *p)
999 return cpu_curr(task_cpu(p)) == p;
1003 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1004 * use the balance_callback list if you want balancing.
1006 * this means any call to check_class_changed() must be followed by a call to
1007 * balance_callback().
1009 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1010 const struct sched_class *prev_class,
1013 if (prev_class != p->sched_class) {
1014 if (prev_class->switched_from)
1015 prev_class->switched_from(rq, p);
1017 p->sched_class->switched_to(rq, p);
1018 } else if (oldprio != p->prio || dl_task(p))
1019 p->sched_class->prio_changed(rq, p, oldprio);
1022 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1024 const struct sched_class *class;
1026 if (p->sched_class == rq->curr->sched_class) {
1027 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1029 for_each_class(class) {
1030 if (class == rq->curr->sched_class)
1032 if (class == p->sched_class) {
1040 * A queue event has occurred, and we're going to schedule. In
1041 * this case, we can save a useless back to back clock update.
1043 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1044 rq_clock_skip_update(rq, true);
1049 * This is how migration works:
1051 * 1) we invoke migration_cpu_stop() on the target CPU using
1053 * 2) stopper starts to run (implicitly forcing the migrated thread
1055 * 3) it checks whether the migrated task is still in the wrong runqueue.
1056 * 4) if it's in the wrong runqueue then the migration thread removes
1057 * it and puts it into the right queue.
1058 * 5) stopper completes and stop_one_cpu() returns and the migration
1063 * move_queued_task - move a queued task to new rq.
1065 * Returns (locked) new rq. Old rq's lock is released.
1067 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
1069 lockdep_assert_held(&rq->lock);
1071 dequeue_task(rq, p, 0);
1072 p->on_rq = TASK_ON_RQ_MIGRATING;
1073 set_task_cpu(p, new_cpu);
1074 raw_spin_unlock(&rq->lock);
1076 rq = cpu_rq(new_cpu);
1078 raw_spin_lock(&rq->lock);
1079 BUG_ON(task_cpu(p) != new_cpu);
1080 p->on_rq = TASK_ON_RQ_QUEUED;
1081 enqueue_task(rq, p, 0);
1082 check_preempt_curr(rq, p, 0);
1087 struct migration_arg {
1088 struct task_struct *task;
1093 * Move (not current) task off this cpu, onto dest cpu. We're doing
1094 * this because either it can't run here any more (set_cpus_allowed()
1095 * away from this CPU, or CPU going down), or because we're
1096 * attempting to rebalance this task on exec (sched_exec).
1098 * So we race with normal scheduler movements, but that's OK, as long
1099 * as the task is no longer on this CPU.
1101 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1103 if (unlikely(!cpu_active(dest_cpu)))
1106 /* Affinity changed (again). */
1107 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1110 rq = move_queued_task(rq, p, dest_cpu);
1116 * migration_cpu_stop - this will be executed by a highprio stopper thread
1117 * and performs thread migration by bumping thread off CPU then
1118 * 'pushing' onto another runqueue.
1120 static int migration_cpu_stop(void *data)
1122 struct migration_arg *arg = data;
1123 struct task_struct *p = arg->task;
1124 struct rq *rq = this_rq();
1127 * The original target cpu might have gone down and we might
1128 * be on another cpu but it doesn't matter.
1130 local_irq_disable();
1132 * We need to explicitly wake pending tasks before running
1133 * __migrate_task() such that we will not miss enforcing cpus_allowed
1134 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1136 sched_ttwu_pending();
1138 raw_spin_lock(&p->pi_lock);
1139 raw_spin_lock(&rq->lock);
1141 * If task_rq(p) != rq, it cannot be migrated here, because we're
1142 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1143 * we're holding p->pi_lock.
1145 if (task_rq(p) == rq && task_on_rq_queued(p))
1146 rq = __migrate_task(rq, p, arg->dest_cpu);
1147 raw_spin_unlock(&rq->lock);
1148 raw_spin_unlock(&p->pi_lock);
1155 * sched_class::set_cpus_allowed must do the below, but is not required to
1156 * actually call this function.
1158 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1160 cpumask_copy(&p->cpus_allowed, new_mask);
1161 p->nr_cpus_allowed = cpumask_weight(new_mask);
1164 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1166 struct rq *rq = task_rq(p);
1167 bool queued, running;
1169 lockdep_assert_held(&p->pi_lock);
1171 queued = task_on_rq_queued(p);
1172 running = task_current(rq, p);
1176 * Because __kthread_bind() calls this on blocked tasks without
1179 lockdep_assert_held(&rq->lock);
1180 dequeue_task(rq, p, 0);
1183 put_prev_task(rq, p);
1185 p->sched_class->set_cpus_allowed(p, new_mask);
1188 p->sched_class->set_curr_task(rq);
1190 enqueue_task(rq, p, 0);
1194 * Change a given task's CPU affinity. Migrate the thread to a
1195 * proper CPU and schedule it away if the CPU it's executing on
1196 * is removed from the allowed bitmask.
1198 * NOTE: the caller must have a valid reference to the task, the
1199 * task must not exit() & deallocate itself prematurely. The
1200 * call is not atomic; no spinlocks may be held.
1202 static int __set_cpus_allowed_ptr(struct task_struct *p,
1203 const struct cpumask *new_mask, bool check)
1205 unsigned long flags;
1207 unsigned int dest_cpu;
1210 rq = task_rq_lock(p, &flags);
1213 * Must re-check here, to close a race against __kthread_bind(),
1214 * sched_setaffinity() is not guaranteed to observe the flag.
1216 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1221 if (cpumask_equal(&p->cpus_allowed, new_mask))
1224 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1229 do_set_cpus_allowed(p, new_mask);
1231 /* Can the task run on the task's current CPU? If so, we're done */
1232 if (cpumask_test_cpu(task_cpu(p), new_mask))
1235 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1236 if (task_running(rq, p) || p->state == TASK_WAKING) {
1237 struct migration_arg arg = { p, dest_cpu };
1238 /* Need help from migration thread: drop lock and wait. */
1239 task_rq_unlock(rq, p, &flags);
1240 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1241 tlb_migrate_finish(p->mm);
1243 } else if (task_on_rq_queued(p)) {
1245 * OK, since we're going to drop the lock immediately
1246 * afterwards anyway.
1248 lockdep_unpin_lock(&rq->lock);
1249 rq = move_queued_task(rq, p, dest_cpu);
1250 lockdep_pin_lock(&rq->lock);
1253 task_rq_unlock(rq, p, &flags);
1258 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1260 return __set_cpus_allowed_ptr(p, new_mask, false);
1262 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1264 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1266 #ifdef CONFIG_SCHED_DEBUG
1268 * We should never call set_task_cpu() on a blocked task,
1269 * ttwu() will sort out the placement.
1271 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1274 #ifdef CONFIG_LOCKDEP
1276 * The caller should hold either p->pi_lock or rq->lock, when changing
1277 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1279 * sched_move_task() holds both and thus holding either pins the cgroup,
1282 * Furthermore, all task_rq users should acquire both locks, see
1285 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1286 lockdep_is_held(&task_rq(p)->lock)));
1290 trace_sched_migrate_task(p, new_cpu);
1292 if (task_cpu(p) != new_cpu) {
1293 if (p->sched_class->migrate_task_rq)
1294 p->sched_class->migrate_task_rq(p, new_cpu);
1295 p->se.nr_migrations++;
1296 perf_event_task_migrate(p);
1299 __set_task_cpu(p, new_cpu);
1302 static void __migrate_swap_task(struct task_struct *p, int cpu)
1304 if (task_on_rq_queued(p)) {
1305 struct rq *src_rq, *dst_rq;
1307 src_rq = task_rq(p);
1308 dst_rq = cpu_rq(cpu);
1310 deactivate_task(src_rq, p, 0);
1311 set_task_cpu(p, cpu);
1312 activate_task(dst_rq, p, 0);
1313 check_preempt_curr(dst_rq, p, 0);
1316 * Task isn't running anymore; make it appear like we migrated
1317 * it before it went to sleep. This means on wakeup we make the
1318 * previous cpu our targer instead of where it really is.
1324 struct migration_swap_arg {
1325 struct task_struct *src_task, *dst_task;
1326 int src_cpu, dst_cpu;
1329 static int migrate_swap_stop(void *data)
1331 struct migration_swap_arg *arg = data;
1332 struct rq *src_rq, *dst_rq;
1335 src_rq = cpu_rq(arg->src_cpu);
1336 dst_rq = cpu_rq(arg->dst_cpu);
1338 double_raw_lock(&arg->src_task->pi_lock,
1339 &arg->dst_task->pi_lock);
1340 double_rq_lock(src_rq, dst_rq);
1341 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1344 if (task_cpu(arg->src_task) != arg->src_cpu)
1347 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1350 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1353 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1354 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1359 double_rq_unlock(src_rq, dst_rq);
1360 raw_spin_unlock(&arg->dst_task->pi_lock);
1361 raw_spin_unlock(&arg->src_task->pi_lock);
1367 * Cross migrate two tasks
1369 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1371 struct migration_swap_arg arg;
1374 arg = (struct migration_swap_arg){
1376 .src_cpu = task_cpu(cur),
1378 .dst_cpu = task_cpu(p),
1381 if (arg.src_cpu == arg.dst_cpu)
1385 * These three tests are all lockless; this is OK since all of them
1386 * will be re-checked with proper locks held further down the line.
1388 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1391 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1394 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1397 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1398 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1405 * wait_task_inactive - wait for a thread to unschedule.
1407 * If @match_state is nonzero, it's the @p->state value just checked and
1408 * not expected to change. If it changes, i.e. @p might have woken up,
1409 * then return zero. When we succeed in waiting for @p to be off its CPU,
1410 * we return a positive number (its total switch count). If a second call
1411 * a short while later returns the same number, the caller can be sure that
1412 * @p has remained unscheduled the whole time.
1414 * The caller must ensure that the task *will* unschedule sometime soon,
1415 * else this function might spin for a *long* time. This function can't
1416 * be called with interrupts off, or it may introduce deadlock with
1417 * smp_call_function() if an IPI is sent by the same process we are
1418 * waiting to become inactive.
1420 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1422 unsigned long flags;
1423 int running, queued;
1429 * We do the initial early heuristics without holding
1430 * any task-queue locks at all. We'll only try to get
1431 * the runqueue lock when things look like they will
1437 * If the task is actively running on another CPU
1438 * still, just relax and busy-wait without holding
1441 * NOTE! Since we don't hold any locks, it's not
1442 * even sure that "rq" stays as the right runqueue!
1443 * But we don't care, since "task_running()" will
1444 * return false if the runqueue has changed and p
1445 * is actually now running somewhere else!
1447 while (task_running(rq, p)) {
1448 if (match_state && unlikely(p->state != match_state))
1454 * Ok, time to look more closely! We need the rq
1455 * lock now, to be *sure*. If we're wrong, we'll
1456 * just go back and repeat.
1458 rq = task_rq_lock(p, &flags);
1459 trace_sched_wait_task(p);
1460 running = task_running(rq, p);
1461 queued = task_on_rq_queued(p);
1463 if (!match_state || p->state == match_state)
1464 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1465 task_rq_unlock(rq, p, &flags);
1468 * If it changed from the expected state, bail out now.
1470 if (unlikely(!ncsw))
1474 * Was it really running after all now that we
1475 * checked with the proper locks actually held?
1477 * Oops. Go back and try again..
1479 if (unlikely(running)) {
1485 * It's not enough that it's not actively running,
1486 * it must be off the runqueue _entirely_, and not
1489 * So if it was still runnable (but just not actively
1490 * running right now), it's preempted, and we should
1491 * yield - it could be a while.
1493 if (unlikely(queued)) {
1494 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1496 set_current_state(TASK_UNINTERRUPTIBLE);
1497 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1502 * Ahh, all good. It wasn't running, and it wasn't
1503 * runnable, which means that it will never become
1504 * running in the future either. We're all done!
1513 * kick_process - kick a running thread to enter/exit the kernel
1514 * @p: the to-be-kicked thread
1516 * Cause a process which is running on another CPU to enter
1517 * kernel-mode, without any delay. (to get signals handled.)
1519 * NOTE: this function doesn't have to take the runqueue lock,
1520 * because all it wants to ensure is that the remote task enters
1521 * the kernel. If the IPI races and the task has been migrated
1522 * to another CPU then no harm is done and the purpose has been
1525 void kick_process(struct task_struct *p)
1531 if ((cpu != smp_processor_id()) && task_curr(p))
1532 smp_send_reschedule(cpu);
1535 EXPORT_SYMBOL_GPL(kick_process);
1538 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1540 static int select_fallback_rq(int cpu, struct task_struct *p)
1542 int nid = cpu_to_node(cpu);
1543 const struct cpumask *nodemask = NULL;
1544 enum { cpuset, possible, fail } state = cpuset;
1548 * If the node that the cpu is on has been offlined, cpu_to_node()
1549 * will return -1. There is no cpu on the node, and we should
1550 * select the cpu on the other node.
1553 nodemask = cpumask_of_node(nid);
1555 /* Look for allowed, online CPU in same node. */
1556 for_each_cpu(dest_cpu, nodemask) {
1557 if (!cpu_online(dest_cpu))
1559 if (!cpu_active(dest_cpu))
1561 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1567 /* Any allowed, online CPU? */
1568 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1569 if (!cpu_online(dest_cpu))
1571 if (!cpu_active(dest_cpu))
1578 /* No more Mr. Nice Guy. */
1579 cpuset_cpus_allowed_fallback(p);
1584 do_set_cpus_allowed(p, cpu_possible_mask);
1595 if (state != cpuset) {
1597 * Don't tell them about moving exiting tasks or
1598 * kernel threads (both mm NULL), since they never
1601 if (p->mm && printk_ratelimit()) {
1602 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1603 task_pid_nr(p), p->comm, cpu);
1611 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1614 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1616 lockdep_assert_held(&p->pi_lock);
1618 if (p->nr_cpus_allowed > 1)
1619 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1622 * In order not to call set_task_cpu() on a blocking task we need
1623 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1626 * Since this is common to all placement strategies, this lives here.
1628 * [ this allows ->select_task() to simply return task_cpu(p) and
1629 * not worry about this generic constraint ]
1631 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1633 cpu = select_fallback_rq(task_cpu(p), p);
1638 static void update_avg(u64 *avg, u64 sample)
1640 s64 diff = sample - *avg;
1646 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1647 const struct cpumask *new_mask, bool check)
1649 return set_cpus_allowed_ptr(p, new_mask);
1652 #endif /* CONFIG_SMP */
1655 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1657 #ifdef CONFIG_SCHEDSTATS
1658 struct rq *rq = this_rq();
1661 int this_cpu = smp_processor_id();
1663 if (cpu == this_cpu) {
1664 schedstat_inc(rq, ttwu_local);
1665 schedstat_inc(p, se.statistics.nr_wakeups_local);
1667 struct sched_domain *sd;
1669 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1671 for_each_domain(this_cpu, sd) {
1672 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1673 schedstat_inc(sd, ttwu_wake_remote);
1680 if (wake_flags & WF_MIGRATED)
1681 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1683 #endif /* CONFIG_SMP */
1685 schedstat_inc(rq, ttwu_count);
1686 schedstat_inc(p, se.statistics.nr_wakeups);
1688 if (wake_flags & WF_SYNC)
1689 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1691 #endif /* CONFIG_SCHEDSTATS */
1694 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1696 activate_task(rq, p, en_flags);
1697 p->on_rq = TASK_ON_RQ_QUEUED;
1699 /* if a worker is waking up, notify workqueue */
1700 if (p->flags & PF_WQ_WORKER)
1701 wq_worker_waking_up(p, cpu_of(rq));
1705 * Mark the task runnable and perform wakeup-preemption.
1708 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1710 check_preempt_curr(rq, p, wake_flags);
1711 p->state = TASK_RUNNING;
1712 trace_sched_wakeup(p);
1715 if (p->sched_class->task_woken) {
1717 * Our task @p is fully woken up and running; so its safe to
1718 * drop the rq->lock, hereafter rq is only used for statistics.
1720 lockdep_unpin_lock(&rq->lock);
1721 p->sched_class->task_woken(rq, p);
1722 lockdep_pin_lock(&rq->lock);
1725 if (rq->idle_stamp) {
1726 u64 delta = rq_clock(rq) - rq->idle_stamp;
1727 u64 max = 2*rq->max_idle_balance_cost;
1729 update_avg(&rq->avg_idle, delta);
1731 if (rq->avg_idle > max)
1740 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1742 lockdep_assert_held(&rq->lock);
1745 if (p->sched_contributes_to_load)
1746 rq->nr_uninterruptible--;
1749 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1750 ttwu_do_wakeup(rq, p, wake_flags);
1754 * Called in case the task @p isn't fully descheduled from its runqueue,
1755 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1756 * since all we need to do is flip p->state to TASK_RUNNING, since
1757 * the task is still ->on_rq.
1759 static int ttwu_remote(struct task_struct *p, int wake_flags)
1764 rq = __task_rq_lock(p);
1765 if (task_on_rq_queued(p)) {
1766 /* check_preempt_curr() may use rq clock */
1767 update_rq_clock(rq);
1768 ttwu_do_wakeup(rq, p, wake_flags);
1771 __task_rq_unlock(rq);
1777 void sched_ttwu_pending(void)
1779 struct rq *rq = this_rq();
1780 struct llist_node *llist = llist_del_all(&rq->wake_list);
1781 struct task_struct *p;
1782 unsigned long flags;
1787 raw_spin_lock_irqsave(&rq->lock, flags);
1788 lockdep_pin_lock(&rq->lock);
1791 p = llist_entry(llist, struct task_struct, wake_entry);
1792 llist = llist_next(llist);
1793 ttwu_do_activate(rq, p, 0);
1796 lockdep_unpin_lock(&rq->lock);
1797 raw_spin_unlock_irqrestore(&rq->lock, flags);
1800 void scheduler_ipi(void)
1803 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1804 * TIF_NEED_RESCHED remotely (for the first time) will also send
1807 preempt_fold_need_resched();
1809 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1813 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1814 * traditionally all their work was done from the interrupt return
1815 * path. Now that we actually do some work, we need to make sure
1818 * Some archs already do call them, luckily irq_enter/exit nest
1821 * Arguably we should visit all archs and update all handlers,
1822 * however a fair share of IPIs are still resched only so this would
1823 * somewhat pessimize the simple resched case.
1826 sched_ttwu_pending();
1829 * Check if someone kicked us for doing the nohz idle load balance.
1831 if (unlikely(got_nohz_idle_kick())) {
1832 this_rq()->idle_balance = 1;
1833 raise_softirq_irqoff(SCHED_SOFTIRQ);
1838 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1840 struct rq *rq = cpu_rq(cpu);
1842 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1843 if (!set_nr_if_polling(rq->idle))
1844 smp_send_reschedule(cpu);
1846 trace_sched_wake_idle_without_ipi(cpu);
1850 void wake_up_if_idle(int cpu)
1852 struct rq *rq = cpu_rq(cpu);
1853 unsigned long flags;
1857 if (!is_idle_task(rcu_dereference(rq->curr)))
1860 if (set_nr_if_polling(rq->idle)) {
1861 trace_sched_wake_idle_without_ipi(cpu);
1863 raw_spin_lock_irqsave(&rq->lock, flags);
1864 if (is_idle_task(rq->curr))
1865 smp_send_reschedule(cpu);
1866 /* Else cpu is not in idle, do nothing here */
1867 raw_spin_unlock_irqrestore(&rq->lock, flags);
1874 bool cpus_share_cache(int this_cpu, int that_cpu)
1876 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1878 #endif /* CONFIG_SMP */
1880 static void ttwu_queue(struct task_struct *p, int cpu)
1882 struct rq *rq = cpu_rq(cpu);
1884 #if defined(CONFIG_SMP)
1885 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1886 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1887 ttwu_queue_remote(p, cpu);
1892 raw_spin_lock(&rq->lock);
1893 lockdep_pin_lock(&rq->lock);
1894 ttwu_do_activate(rq, p, 0);
1895 lockdep_unpin_lock(&rq->lock);
1896 raw_spin_unlock(&rq->lock);
1900 * try_to_wake_up - wake up a thread
1901 * @p: the thread to be awakened
1902 * @state: the mask of task states that can be woken
1903 * @wake_flags: wake modifier flags (WF_*)
1905 * Put it on the run-queue if it's not already there. The "current"
1906 * thread is always on the run-queue (except when the actual
1907 * re-schedule is in progress), and as such you're allowed to do
1908 * the simpler "current->state = TASK_RUNNING" to mark yourself
1909 * runnable without the overhead of this.
1911 * Return: %true if @p was woken up, %false if it was already running.
1912 * or @state didn't match @p's state.
1915 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1917 unsigned long flags;
1918 int cpu, success = 0;
1921 * If we are going to wake up a thread waiting for CONDITION we
1922 * need to ensure that CONDITION=1 done by the caller can not be
1923 * reordered with p->state check below. This pairs with mb() in
1924 * set_current_state() the waiting thread does.
1926 smp_mb__before_spinlock();
1927 raw_spin_lock_irqsave(&p->pi_lock, flags);
1928 if (!(p->state & state))
1931 trace_sched_waking(p);
1933 success = 1; /* we're going to change ->state */
1936 if (p->on_rq && ttwu_remote(p, wake_flags))
1941 * If the owning (remote) cpu is still in the middle of schedule() with
1942 * this task as prev, wait until its done referencing the task.
1947 * Pairs with the smp_wmb() in finish_lock_switch().
1951 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1952 p->state = TASK_WAKING;
1954 if (p->sched_class->task_waking)
1955 p->sched_class->task_waking(p);
1957 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1958 if (task_cpu(p) != cpu) {
1959 wake_flags |= WF_MIGRATED;
1960 set_task_cpu(p, cpu);
1962 #endif /* CONFIG_SMP */
1966 ttwu_stat(p, cpu, wake_flags);
1968 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1974 * try_to_wake_up_local - try to wake up a local task with rq lock held
1975 * @p: the thread to be awakened
1977 * Put @p on the run-queue if it's not already there. The caller must
1978 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1981 static void try_to_wake_up_local(struct task_struct *p)
1983 struct rq *rq = task_rq(p);
1985 if (WARN_ON_ONCE(rq != this_rq()) ||
1986 WARN_ON_ONCE(p == current))
1989 lockdep_assert_held(&rq->lock);
1991 if (!raw_spin_trylock(&p->pi_lock)) {
1993 * This is OK, because current is on_cpu, which avoids it being
1994 * picked for load-balance and preemption/IRQs are still
1995 * disabled avoiding further scheduler activity on it and we've
1996 * not yet picked a replacement task.
1998 lockdep_unpin_lock(&rq->lock);
1999 raw_spin_unlock(&rq->lock);
2000 raw_spin_lock(&p->pi_lock);
2001 raw_spin_lock(&rq->lock);
2002 lockdep_pin_lock(&rq->lock);
2005 if (!(p->state & TASK_NORMAL))
2008 trace_sched_waking(p);
2010 if (!task_on_rq_queued(p))
2011 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2013 ttwu_do_wakeup(rq, p, 0);
2014 ttwu_stat(p, smp_processor_id(), 0);
2016 raw_spin_unlock(&p->pi_lock);
2020 * wake_up_process - Wake up a specific process
2021 * @p: The process to be woken up.
2023 * Attempt to wake up the nominated process and move it to the set of runnable
2026 * Return: 1 if the process was woken up, 0 if it was already running.
2028 * It may be assumed that this function implies a write memory barrier before
2029 * changing the task state if and only if any tasks are woken up.
2031 int wake_up_process(struct task_struct *p)
2033 WARN_ON(task_is_stopped_or_traced(p));
2034 return try_to_wake_up(p, TASK_NORMAL, 0);
2036 EXPORT_SYMBOL(wake_up_process);
2038 int wake_up_state(struct task_struct *p, unsigned int state)
2040 return try_to_wake_up(p, state, 0);
2044 * This function clears the sched_dl_entity static params.
2046 void __dl_clear_params(struct task_struct *p)
2048 struct sched_dl_entity *dl_se = &p->dl;
2050 dl_se->dl_runtime = 0;
2051 dl_se->dl_deadline = 0;
2052 dl_se->dl_period = 0;
2056 dl_se->dl_throttled = 0;
2058 dl_se->dl_yielded = 0;
2062 * Perform scheduler related setup for a newly forked process p.
2063 * p is forked by current.
2065 * __sched_fork() is basic setup used by init_idle() too:
2067 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2072 p->se.exec_start = 0;
2073 p->se.sum_exec_runtime = 0;
2074 p->se.prev_sum_exec_runtime = 0;
2075 p->se.nr_migrations = 0;
2077 INIT_LIST_HEAD(&p->se.group_node);
2079 #ifdef CONFIG_SCHEDSTATS
2080 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2083 RB_CLEAR_NODE(&p->dl.rb_node);
2084 init_dl_task_timer(&p->dl);
2085 __dl_clear_params(p);
2087 INIT_LIST_HEAD(&p->rt.run_list);
2089 #ifdef CONFIG_PREEMPT_NOTIFIERS
2090 INIT_HLIST_HEAD(&p->preempt_notifiers);
2093 #ifdef CONFIG_NUMA_BALANCING
2094 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2095 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2096 p->mm->numa_scan_seq = 0;
2099 if (clone_flags & CLONE_VM)
2100 p->numa_preferred_nid = current->numa_preferred_nid;
2102 p->numa_preferred_nid = -1;
2104 p->node_stamp = 0ULL;
2105 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2106 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2107 p->numa_work.next = &p->numa_work;
2108 p->numa_faults = NULL;
2109 p->last_task_numa_placement = 0;
2110 p->last_sum_exec_runtime = 0;
2112 p->numa_group = NULL;
2113 #endif /* CONFIG_NUMA_BALANCING */
2116 #ifdef CONFIG_NUMA_BALANCING
2117 #ifdef CONFIG_SCHED_DEBUG
2118 void set_numabalancing_state(bool enabled)
2121 sched_feat_set("NUMA");
2123 sched_feat_set("NO_NUMA");
2126 __read_mostly bool numabalancing_enabled;
2128 void set_numabalancing_state(bool enabled)
2130 numabalancing_enabled = enabled;
2132 #endif /* CONFIG_SCHED_DEBUG */
2134 #ifdef CONFIG_PROC_SYSCTL
2135 int sysctl_numa_balancing(struct ctl_table *table, int write,
2136 void __user *buffer, size_t *lenp, loff_t *ppos)
2140 int state = numabalancing_enabled;
2142 if (write && !capable(CAP_SYS_ADMIN))
2147 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2151 set_numabalancing_state(state);
2158 * fork()/clone()-time setup:
2160 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2162 unsigned long flags;
2163 int cpu = get_cpu();
2165 __sched_fork(clone_flags, p);
2167 * We mark the process as running here. This guarantees that
2168 * nobody will actually run it, and a signal or other external
2169 * event cannot wake it up and insert it on the runqueue either.
2171 p->state = TASK_RUNNING;
2174 * Make sure we do not leak PI boosting priority to the child.
2176 p->prio = current->normal_prio;
2179 * Revert to default priority/policy on fork if requested.
2181 if (unlikely(p->sched_reset_on_fork)) {
2182 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2183 p->policy = SCHED_NORMAL;
2184 p->static_prio = NICE_TO_PRIO(0);
2186 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2187 p->static_prio = NICE_TO_PRIO(0);
2189 p->prio = p->normal_prio = __normal_prio(p);
2193 * We don't need the reset flag anymore after the fork. It has
2194 * fulfilled its duty:
2196 p->sched_reset_on_fork = 0;
2199 if (dl_prio(p->prio)) {
2202 } else if (rt_prio(p->prio)) {
2203 p->sched_class = &rt_sched_class;
2205 p->sched_class = &fair_sched_class;
2208 if (p->sched_class->task_fork)
2209 p->sched_class->task_fork(p);
2212 * The child is not yet in the pid-hash so no cgroup attach races,
2213 * and the cgroup is pinned to this child due to cgroup_fork()
2214 * is ran before sched_fork().
2216 * Silence PROVE_RCU.
2218 raw_spin_lock_irqsave(&p->pi_lock, flags);
2219 set_task_cpu(p, cpu);
2220 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2222 #ifdef CONFIG_SCHED_INFO
2223 if (likely(sched_info_on()))
2224 memset(&p->sched_info, 0, sizeof(p->sched_info));
2226 #if defined(CONFIG_SMP)
2229 init_task_preempt_count(p);
2231 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2232 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2239 unsigned long to_ratio(u64 period, u64 runtime)
2241 if (runtime == RUNTIME_INF)
2245 * Doing this here saves a lot of checks in all
2246 * the calling paths, and returning zero seems
2247 * safe for them anyway.
2252 return div64_u64(runtime << 20, period);
2256 inline struct dl_bw *dl_bw_of(int i)
2258 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2259 "sched RCU must be held");
2260 return &cpu_rq(i)->rd->dl_bw;
2263 static inline int dl_bw_cpus(int i)
2265 struct root_domain *rd = cpu_rq(i)->rd;
2268 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2269 "sched RCU must be held");
2270 for_each_cpu_and(i, rd->span, cpu_active_mask)
2276 inline struct dl_bw *dl_bw_of(int i)
2278 return &cpu_rq(i)->dl.dl_bw;
2281 static inline int dl_bw_cpus(int i)
2288 * We must be sure that accepting a new task (or allowing changing the
2289 * parameters of an existing one) is consistent with the bandwidth
2290 * constraints. If yes, this function also accordingly updates the currently
2291 * allocated bandwidth to reflect the new situation.
2293 * This function is called while holding p's rq->lock.
2295 * XXX we should delay bw change until the task's 0-lag point, see
2298 static int dl_overflow(struct task_struct *p, int policy,
2299 const struct sched_attr *attr)
2302 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2303 u64 period = attr->sched_period ?: attr->sched_deadline;
2304 u64 runtime = attr->sched_runtime;
2305 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2308 if (new_bw == p->dl.dl_bw)
2312 * Either if a task, enters, leave, or stays -deadline but changes
2313 * its parameters, we may need to update accordingly the total
2314 * allocated bandwidth of the container.
2316 raw_spin_lock(&dl_b->lock);
2317 cpus = dl_bw_cpus(task_cpu(p));
2318 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2319 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2320 __dl_add(dl_b, new_bw);
2322 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2323 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2324 __dl_clear(dl_b, p->dl.dl_bw);
2325 __dl_add(dl_b, new_bw);
2327 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2328 __dl_clear(dl_b, p->dl.dl_bw);
2331 raw_spin_unlock(&dl_b->lock);
2336 extern void init_dl_bw(struct dl_bw *dl_b);
2339 * wake_up_new_task - wake up a newly created task for the first time.
2341 * This function will do some initial scheduler statistics housekeeping
2342 * that must be done for every newly created context, then puts the task
2343 * on the runqueue and wakes it.
2345 void wake_up_new_task(struct task_struct *p)
2347 unsigned long flags;
2350 raw_spin_lock_irqsave(&p->pi_lock, flags);
2353 * Fork balancing, do it here and not earlier because:
2354 * - cpus_allowed can change in the fork path
2355 * - any previously selected cpu might disappear through hotplug
2357 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2360 /* Initialize new task's runnable average */
2361 init_entity_runnable_average(&p->se);
2362 rq = __task_rq_lock(p);
2363 activate_task(rq, p, 0);
2364 p->on_rq = TASK_ON_RQ_QUEUED;
2365 trace_sched_wakeup_new(p);
2366 check_preempt_curr(rq, p, WF_FORK);
2368 if (p->sched_class->task_woken)
2369 p->sched_class->task_woken(rq, p);
2371 task_rq_unlock(rq, p, &flags);
2374 #ifdef CONFIG_PREEMPT_NOTIFIERS
2376 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2378 void preempt_notifier_inc(void)
2380 static_key_slow_inc(&preempt_notifier_key);
2382 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2384 void preempt_notifier_dec(void)
2386 static_key_slow_dec(&preempt_notifier_key);
2388 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2391 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2392 * @notifier: notifier struct to register
2394 void preempt_notifier_register(struct preempt_notifier *notifier)
2396 if (!static_key_false(&preempt_notifier_key))
2397 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2399 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2401 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2404 * preempt_notifier_unregister - no longer interested in preemption notifications
2405 * @notifier: notifier struct to unregister
2407 * This is *not* safe to call from within a preemption notifier.
2409 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2411 hlist_del(¬ifier->link);
2413 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2415 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2417 struct preempt_notifier *notifier;
2419 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2420 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2423 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2425 if (static_key_false(&preempt_notifier_key))
2426 __fire_sched_in_preempt_notifiers(curr);
2430 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2431 struct task_struct *next)
2433 struct preempt_notifier *notifier;
2435 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2436 notifier->ops->sched_out(notifier, next);
2439 static __always_inline void
2440 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2441 struct task_struct *next)
2443 if (static_key_false(&preempt_notifier_key))
2444 __fire_sched_out_preempt_notifiers(curr, next);
2447 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2449 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2454 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2455 struct task_struct *next)
2459 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2462 * prepare_task_switch - prepare to switch tasks
2463 * @rq: the runqueue preparing to switch
2464 * @prev: the current task that is being switched out
2465 * @next: the task we are going to switch to.
2467 * This is called with the rq lock held and interrupts off. It must
2468 * be paired with a subsequent finish_task_switch after the context
2471 * prepare_task_switch sets up locking and calls architecture specific
2475 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2476 struct task_struct *next)
2478 trace_sched_switch(prev, next);
2479 sched_info_switch(rq, prev, next);
2480 perf_event_task_sched_out(prev, next);
2481 fire_sched_out_preempt_notifiers(prev, next);
2482 prepare_lock_switch(rq, next);
2483 prepare_arch_switch(next);
2487 * finish_task_switch - clean up after a task-switch
2488 * @prev: the thread we just switched away from.
2490 * finish_task_switch must be called after the context switch, paired
2491 * with a prepare_task_switch call before the context switch.
2492 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2493 * and do any other architecture-specific cleanup actions.
2495 * Note that we may have delayed dropping an mm in context_switch(). If
2496 * so, we finish that here outside of the runqueue lock. (Doing it
2497 * with the lock held can cause deadlocks; see schedule() for
2500 * The context switch have flipped the stack from under us and restored the
2501 * local variables which were saved when this task called schedule() in the
2502 * past. prev == current is still correct but we need to recalculate this_rq
2503 * because prev may have moved to another CPU.
2505 static struct rq *finish_task_switch(struct task_struct *prev)
2506 __releases(rq->lock)
2508 struct rq *rq = this_rq();
2509 struct mm_struct *mm = rq->prev_mm;
2515 * A task struct has one reference for the use as "current".
2516 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2517 * schedule one last time. The schedule call will never return, and
2518 * the scheduled task must drop that reference.
2519 * The test for TASK_DEAD must occur while the runqueue locks are
2520 * still held, otherwise prev could be scheduled on another cpu, die
2521 * there before we look at prev->state, and then the reference would
2523 * Manfred Spraul <manfred@colorfullife.com>
2525 prev_state = prev->state;
2526 vtime_task_switch(prev);
2527 perf_event_task_sched_in(prev, current);
2528 finish_lock_switch(rq, prev);
2529 finish_arch_post_lock_switch();
2531 fire_sched_in_preempt_notifiers(current);
2534 if (unlikely(prev_state == TASK_DEAD)) {
2535 if (prev->sched_class->task_dead)
2536 prev->sched_class->task_dead(prev);
2539 * Remove function-return probe instances associated with this
2540 * task and put them back on the free list.
2542 kprobe_flush_task(prev);
2543 put_task_struct(prev);
2546 tick_nohz_task_switch();
2552 /* rq->lock is NOT held, but preemption is disabled */
2553 static void __balance_callback(struct rq *rq)
2555 struct callback_head *head, *next;
2556 void (*func)(struct rq *rq);
2557 unsigned long flags;
2559 raw_spin_lock_irqsave(&rq->lock, flags);
2560 head = rq->balance_callback;
2561 rq->balance_callback = NULL;
2563 func = (void (*)(struct rq *))head->func;
2570 raw_spin_unlock_irqrestore(&rq->lock, flags);
2573 static inline void balance_callback(struct rq *rq)
2575 if (unlikely(rq->balance_callback))
2576 __balance_callback(rq);
2581 static inline void balance_callback(struct rq *rq)
2588 * schedule_tail - first thing a freshly forked thread must call.
2589 * @prev: the thread we just switched away from.
2591 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2592 __releases(rq->lock)
2596 /* finish_task_switch() drops rq->lock and enables preemtion */
2598 rq = finish_task_switch(prev);
2599 balance_callback(rq);
2602 if (current->set_child_tid)
2603 put_user(task_pid_vnr(current), current->set_child_tid);
2607 * context_switch - switch to the new MM and the new thread's register state.
2609 static inline struct rq *
2610 context_switch(struct rq *rq, struct task_struct *prev,
2611 struct task_struct *next)
2613 struct mm_struct *mm, *oldmm;
2615 prepare_task_switch(rq, prev, next);
2618 oldmm = prev->active_mm;
2620 * For paravirt, this is coupled with an exit in switch_to to
2621 * combine the page table reload and the switch backend into
2624 arch_start_context_switch(prev);
2627 next->active_mm = oldmm;
2628 atomic_inc(&oldmm->mm_count);
2629 enter_lazy_tlb(oldmm, next);
2631 switch_mm(oldmm, mm, next);
2634 prev->active_mm = NULL;
2635 rq->prev_mm = oldmm;
2638 * Since the runqueue lock will be released by the next
2639 * task (which is an invalid locking op but in the case
2640 * of the scheduler it's an obvious special-case), so we
2641 * do an early lockdep release here:
2643 lockdep_unpin_lock(&rq->lock);
2644 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2646 /* Here we just switch the register state and the stack. */
2647 switch_to(prev, next, prev);
2650 return finish_task_switch(prev);
2654 * nr_running and nr_context_switches:
2656 * externally visible scheduler statistics: current number of runnable
2657 * threads, total number of context switches performed since bootup.
2659 unsigned long nr_running(void)
2661 unsigned long i, sum = 0;
2663 for_each_online_cpu(i)
2664 sum += cpu_rq(i)->nr_running;
2670 * Check if only the current task is running on the cpu.
2672 bool single_task_running(void)
2674 if (cpu_rq(smp_processor_id())->nr_running == 1)
2679 EXPORT_SYMBOL(single_task_running);
2681 unsigned long long nr_context_switches(void)
2684 unsigned long long sum = 0;
2686 for_each_possible_cpu(i)
2687 sum += cpu_rq(i)->nr_switches;
2692 unsigned long nr_iowait(void)
2694 unsigned long i, sum = 0;
2696 for_each_possible_cpu(i)
2697 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2702 unsigned long nr_iowait_cpu(int cpu)
2704 struct rq *this = cpu_rq(cpu);
2705 return atomic_read(&this->nr_iowait);
2708 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2710 struct rq *rq = this_rq();
2711 *nr_waiters = atomic_read(&rq->nr_iowait);
2712 *load = rq->load.weight;
2718 * sched_exec - execve() is a valuable balancing opportunity, because at
2719 * this point the task has the smallest effective memory and cache footprint.
2721 void sched_exec(void)
2723 struct task_struct *p = current;
2724 unsigned long flags;
2727 raw_spin_lock_irqsave(&p->pi_lock, flags);
2728 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2729 if (dest_cpu == smp_processor_id())
2732 if (likely(cpu_active(dest_cpu))) {
2733 struct migration_arg arg = { p, dest_cpu };
2735 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2736 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2740 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2745 DEFINE_PER_CPU(struct kernel_stat, kstat);
2746 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2748 EXPORT_PER_CPU_SYMBOL(kstat);
2749 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2752 * Return accounted runtime for the task.
2753 * In case the task is currently running, return the runtime plus current's
2754 * pending runtime that have not been accounted yet.
2756 unsigned long long task_sched_runtime(struct task_struct *p)
2758 unsigned long flags;
2762 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2764 * 64-bit doesn't need locks to atomically read a 64bit value.
2765 * So we have a optimization chance when the task's delta_exec is 0.
2766 * Reading ->on_cpu is racy, but this is ok.
2768 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2769 * If we race with it entering cpu, unaccounted time is 0. This is
2770 * indistinguishable from the read occurring a few cycles earlier.
2771 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2772 * been accounted, so we're correct here as well.
2774 if (!p->on_cpu || !task_on_rq_queued(p))
2775 return p->se.sum_exec_runtime;
2778 rq = task_rq_lock(p, &flags);
2780 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2781 * project cycles that may never be accounted to this
2782 * thread, breaking clock_gettime().
2784 if (task_current(rq, p) && task_on_rq_queued(p)) {
2785 update_rq_clock(rq);
2786 p->sched_class->update_curr(rq);
2788 ns = p->se.sum_exec_runtime;
2789 task_rq_unlock(rq, p, &flags);
2795 * This function gets called by the timer code, with HZ frequency.
2796 * We call it with interrupts disabled.
2798 void scheduler_tick(void)
2800 int cpu = smp_processor_id();
2801 struct rq *rq = cpu_rq(cpu);
2802 struct task_struct *curr = rq->curr;
2806 raw_spin_lock(&rq->lock);
2807 update_rq_clock(rq);
2808 curr->sched_class->task_tick(rq, curr, 0);
2809 update_cpu_load_active(rq);
2810 calc_global_load_tick(rq);
2811 raw_spin_unlock(&rq->lock);
2813 perf_event_task_tick();
2816 rq->idle_balance = idle_cpu(cpu);
2817 trigger_load_balance(rq);
2819 rq_last_tick_reset(rq);
2822 #ifdef CONFIG_NO_HZ_FULL
2824 * scheduler_tick_max_deferment
2826 * Keep at least one tick per second when a single
2827 * active task is running because the scheduler doesn't
2828 * yet completely support full dynticks environment.
2830 * This makes sure that uptime, CFS vruntime, load
2831 * balancing, etc... continue to move forward, even
2832 * with a very low granularity.
2834 * Return: Maximum deferment in nanoseconds.
2836 u64 scheduler_tick_max_deferment(void)
2838 struct rq *rq = this_rq();
2839 unsigned long next, now = READ_ONCE(jiffies);
2841 next = rq->last_sched_tick + HZ;
2843 if (time_before_eq(next, now))
2846 return jiffies_to_nsecs(next - now);
2850 notrace unsigned long get_parent_ip(unsigned long addr)
2852 if (in_lock_functions(addr)) {
2853 addr = CALLER_ADDR2;
2854 if (in_lock_functions(addr))
2855 addr = CALLER_ADDR3;
2860 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2861 defined(CONFIG_PREEMPT_TRACER))
2863 void preempt_count_add(int val)
2865 #ifdef CONFIG_DEBUG_PREEMPT
2869 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2872 __preempt_count_add(val);
2873 #ifdef CONFIG_DEBUG_PREEMPT
2875 * Spinlock count overflowing soon?
2877 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2880 if (preempt_count() == val) {
2881 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2882 #ifdef CONFIG_DEBUG_PREEMPT
2883 current->preempt_disable_ip = ip;
2885 trace_preempt_off(CALLER_ADDR0, ip);
2888 EXPORT_SYMBOL(preempt_count_add);
2889 NOKPROBE_SYMBOL(preempt_count_add);
2891 void preempt_count_sub(int val)
2893 #ifdef CONFIG_DEBUG_PREEMPT
2897 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2900 * Is the spinlock portion underflowing?
2902 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2903 !(preempt_count() & PREEMPT_MASK)))
2907 if (preempt_count() == val)
2908 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2909 __preempt_count_sub(val);
2911 EXPORT_SYMBOL(preempt_count_sub);
2912 NOKPROBE_SYMBOL(preempt_count_sub);
2917 * Print scheduling while atomic bug:
2919 static noinline void __schedule_bug(struct task_struct *prev)
2921 if (oops_in_progress)
2924 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2925 prev->comm, prev->pid, preempt_count());
2927 debug_show_held_locks(prev);
2929 if (irqs_disabled())
2930 print_irqtrace_events(prev);
2931 #ifdef CONFIG_DEBUG_PREEMPT
2932 if (in_atomic_preempt_off()) {
2933 pr_err("Preemption disabled at:");
2934 print_ip_sym(current->preempt_disable_ip);
2939 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2943 * Various schedule()-time debugging checks and statistics:
2945 static inline void schedule_debug(struct task_struct *prev)
2947 #ifdef CONFIG_SCHED_STACK_END_CHECK
2948 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2951 * Test if we are atomic. Since do_exit() needs to call into
2952 * schedule() atomically, we ignore that path. Otherwise whine
2953 * if we are scheduling when we should not.
2955 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2956 __schedule_bug(prev);
2959 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2961 schedstat_inc(this_rq(), sched_count);
2965 * Pick up the highest-prio task:
2967 static inline struct task_struct *
2968 pick_next_task(struct rq *rq, struct task_struct *prev)
2970 const struct sched_class *class = &fair_sched_class;
2971 struct task_struct *p;
2974 * Optimization: we know that if all tasks are in
2975 * the fair class we can call that function directly:
2977 if (likely(prev->sched_class == class &&
2978 rq->nr_running == rq->cfs.h_nr_running)) {
2979 p = fair_sched_class.pick_next_task(rq, prev);
2980 if (unlikely(p == RETRY_TASK))
2983 /* assumes fair_sched_class->next == idle_sched_class */
2985 p = idle_sched_class.pick_next_task(rq, prev);
2991 for_each_class(class) {
2992 p = class->pick_next_task(rq, prev);
2994 if (unlikely(p == RETRY_TASK))
3000 BUG(); /* the idle class will always have a runnable task */
3004 * __schedule() is the main scheduler function.
3006 * The main means of driving the scheduler and thus entering this function are:
3008 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3010 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3011 * paths. For example, see arch/x86/entry_64.S.
3013 * To drive preemption between tasks, the scheduler sets the flag in timer
3014 * interrupt handler scheduler_tick().
3016 * 3. Wakeups don't really cause entry into schedule(). They add a
3017 * task to the run-queue and that's it.
3019 * Now, if the new task added to the run-queue preempts the current
3020 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3021 * called on the nearest possible occasion:
3023 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3025 * - in syscall or exception context, at the next outmost
3026 * preempt_enable(). (this might be as soon as the wake_up()'s
3029 * - in IRQ context, return from interrupt-handler to
3030 * preemptible context
3032 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3035 * - cond_resched() call
3036 * - explicit schedule() call
3037 * - return from syscall or exception to user-space
3038 * - return from interrupt-handler to user-space
3040 * WARNING: must be called with preemption disabled!
3042 static void __sched __schedule(void)
3044 struct task_struct *prev, *next;
3045 unsigned long *switch_count;
3049 cpu = smp_processor_id();
3051 rcu_note_context_switch();
3054 schedule_debug(prev);
3056 if (sched_feat(HRTICK))
3060 * Make sure that signal_pending_state()->signal_pending() below
3061 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3062 * done by the caller to avoid the race with signal_wake_up().
3064 smp_mb__before_spinlock();
3065 raw_spin_lock_irq(&rq->lock);
3066 lockdep_pin_lock(&rq->lock);
3068 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3070 switch_count = &prev->nivcsw;
3071 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3072 if (unlikely(signal_pending_state(prev->state, prev))) {
3073 prev->state = TASK_RUNNING;
3075 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3079 * If a worker went to sleep, notify and ask workqueue
3080 * whether it wants to wake up a task to maintain
3083 if (prev->flags & PF_WQ_WORKER) {
3084 struct task_struct *to_wakeup;
3086 to_wakeup = wq_worker_sleeping(prev, cpu);
3088 try_to_wake_up_local(to_wakeup);
3091 switch_count = &prev->nvcsw;
3094 if (task_on_rq_queued(prev))
3095 update_rq_clock(rq);
3097 next = pick_next_task(rq, prev);
3098 clear_tsk_need_resched(prev);
3099 clear_preempt_need_resched();
3100 rq->clock_skip_update = 0;
3102 if (likely(prev != next)) {
3107 rq = context_switch(rq, prev, next); /* unlocks the rq */
3110 lockdep_unpin_lock(&rq->lock);
3111 raw_spin_unlock_irq(&rq->lock);
3114 balance_callback(rq);
3117 static inline void sched_submit_work(struct task_struct *tsk)
3119 if (!tsk->state || tsk_is_pi_blocked(tsk))
3122 * If we are going to sleep and we have plugged IO queued,
3123 * make sure to submit it to avoid deadlocks.
3125 if (blk_needs_flush_plug(tsk))
3126 blk_schedule_flush_plug(tsk);
3129 asmlinkage __visible void __sched schedule(void)
3131 struct task_struct *tsk = current;
3133 sched_submit_work(tsk);
3137 sched_preempt_enable_no_resched();
3138 } while (need_resched());
3140 EXPORT_SYMBOL(schedule);
3142 #ifdef CONFIG_CONTEXT_TRACKING
3143 asmlinkage __visible void __sched schedule_user(void)
3146 * If we come here after a random call to set_need_resched(),
3147 * or we have been woken up remotely but the IPI has not yet arrived,
3148 * we haven't yet exited the RCU idle mode. Do it here manually until
3149 * we find a better solution.
3151 * NB: There are buggy callers of this function. Ideally we
3152 * should warn if prev_state != CONTEXT_USER, but that will trigger
3153 * too frequently to make sense yet.
3155 enum ctx_state prev_state = exception_enter();
3157 exception_exit(prev_state);
3162 * schedule_preempt_disabled - called with preemption disabled
3164 * Returns with preemption disabled. Note: preempt_count must be 1
3166 void __sched schedule_preempt_disabled(void)
3168 sched_preempt_enable_no_resched();
3173 static void __sched notrace preempt_schedule_common(void)
3176 preempt_active_enter();
3178 preempt_active_exit();
3181 * Check again in case we missed a preemption opportunity
3182 * between schedule and now.
3184 } while (need_resched());
3187 #ifdef CONFIG_PREEMPT
3189 * this is the entry point to schedule() from in-kernel preemption
3190 * off of preempt_enable. Kernel preemptions off return from interrupt
3191 * occur there and call schedule directly.
3193 asmlinkage __visible void __sched notrace preempt_schedule(void)
3196 * If there is a non-zero preempt_count or interrupts are disabled,
3197 * we do not want to preempt the current task. Just return..
3199 if (likely(!preemptible()))
3202 preempt_schedule_common();
3204 NOKPROBE_SYMBOL(preempt_schedule);
3205 EXPORT_SYMBOL(preempt_schedule);
3208 * preempt_schedule_notrace - preempt_schedule called by tracing
3210 * The tracing infrastructure uses preempt_enable_notrace to prevent
3211 * recursion and tracing preempt enabling caused by the tracing
3212 * infrastructure itself. But as tracing can happen in areas coming
3213 * from userspace or just about to enter userspace, a preempt enable
3214 * can occur before user_exit() is called. This will cause the scheduler
3215 * to be called when the system is still in usermode.
3217 * To prevent this, the preempt_enable_notrace will use this function
3218 * instead of preempt_schedule() to exit user context if needed before
3219 * calling the scheduler.
3221 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3223 enum ctx_state prev_ctx;
3225 if (likely(!preemptible()))
3230 * Use raw __prempt_count() ops that don't call function.
3231 * We can't call functions before disabling preemption which
3232 * disarm preemption tracing recursions.
3234 __preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3237 * Needs preempt disabled in case user_exit() is traced
3238 * and the tracer calls preempt_enable_notrace() causing
3239 * an infinite recursion.
3241 prev_ctx = exception_enter();
3243 exception_exit(prev_ctx);
3246 __preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3247 } while (need_resched());
3249 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3251 #endif /* CONFIG_PREEMPT */
3254 * this is the entry point to schedule() from kernel preemption
3255 * off of irq context.
3256 * Note, that this is called and return with irqs disabled. This will
3257 * protect us against recursive calling from irq.
3259 asmlinkage __visible void __sched preempt_schedule_irq(void)
3261 enum ctx_state prev_state;
3263 /* Catch callers which need to be fixed */
3264 BUG_ON(preempt_count() || !irqs_disabled());
3266 prev_state = exception_enter();
3269 preempt_active_enter();
3272 local_irq_disable();
3273 preempt_active_exit();
3274 } while (need_resched());
3276 exception_exit(prev_state);
3279 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3282 return try_to_wake_up(curr->private, mode, wake_flags);
3284 EXPORT_SYMBOL(default_wake_function);
3286 #ifdef CONFIG_RT_MUTEXES
3289 * rt_mutex_setprio - set the current priority of a task
3291 * @prio: prio value (kernel-internal form)
3293 * This function changes the 'effective' priority of a task. It does
3294 * not touch ->normal_prio like __setscheduler().
3296 * Used by the rt_mutex code to implement priority inheritance
3297 * logic. Call site only calls if the priority of the task changed.
3299 void rt_mutex_setprio(struct task_struct *p, int prio)
3301 int oldprio, queued, running, enqueue_flag = 0;
3303 const struct sched_class *prev_class;
3305 BUG_ON(prio > MAX_PRIO);
3307 rq = __task_rq_lock(p);
3310 * Idle task boosting is a nono in general. There is one
3311 * exception, when PREEMPT_RT and NOHZ is active:
3313 * The idle task calls get_next_timer_interrupt() and holds
3314 * the timer wheel base->lock on the CPU and another CPU wants
3315 * to access the timer (probably to cancel it). We can safely
3316 * ignore the boosting request, as the idle CPU runs this code
3317 * with interrupts disabled and will complete the lock
3318 * protected section without being interrupted. So there is no
3319 * real need to boost.
3321 if (unlikely(p == rq->idle)) {
3322 WARN_ON(p != rq->curr);
3323 WARN_ON(p->pi_blocked_on);
3327 trace_sched_pi_setprio(p, prio);
3329 prev_class = p->sched_class;
3330 queued = task_on_rq_queued(p);
3331 running = task_current(rq, p);
3333 dequeue_task(rq, p, 0);
3335 put_prev_task(rq, p);
3338 * Boosting condition are:
3339 * 1. -rt task is running and holds mutex A
3340 * --> -dl task blocks on mutex A
3342 * 2. -dl task is running and holds mutex A
3343 * --> -dl task blocks on mutex A and could preempt the
3346 if (dl_prio(prio)) {
3347 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3348 if (!dl_prio(p->normal_prio) ||
3349 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3350 p->dl.dl_boosted = 1;
3351 enqueue_flag = ENQUEUE_REPLENISH;
3353 p->dl.dl_boosted = 0;
3354 p->sched_class = &dl_sched_class;
3355 } else if (rt_prio(prio)) {
3356 if (dl_prio(oldprio))
3357 p->dl.dl_boosted = 0;
3359 enqueue_flag = ENQUEUE_HEAD;
3360 p->sched_class = &rt_sched_class;
3362 if (dl_prio(oldprio))
3363 p->dl.dl_boosted = 0;
3364 if (rt_prio(oldprio))
3366 p->sched_class = &fair_sched_class;
3372 p->sched_class->set_curr_task(rq);
3374 enqueue_task(rq, p, enqueue_flag);
3376 check_class_changed(rq, p, prev_class, oldprio);
3378 preempt_disable(); /* avoid rq from going away on us */
3379 __task_rq_unlock(rq);
3381 balance_callback(rq);
3386 void set_user_nice(struct task_struct *p, long nice)
3388 int old_prio, delta, queued;
3389 unsigned long flags;
3392 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3395 * We have to be careful, if called from sys_setpriority(),
3396 * the task might be in the middle of scheduling on another CPU.
3398 rq = task_rq_lock(p, &flags);
3400 * The RT priorities are set via sched_setscheduler(), but we still
3401 * allow the 'normal' nice value to be set - but as expected
3402 * it wont have any effect on scheduling until the task is
3403 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3405 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3406 p->static_prio = NICE_TO_PRIO(nice);
3409 queued = task_on_rq_queued(p);
3411 dequeue_task(rq, p, 0);
3413 p->static_prio = NICE_TO_PRIO(nice);
3416 p->prio = effective_prio(p);
3417 delta = p->prio - old_prio;
3420 enqueue_task(rq, p, 0);
3422 * If the task increased its priority or is running and
3423 * lowered its priority, then reschedule its CPU:
3425 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3429 task_rq_unlock(rq, p, &flags);
3431 EXPORT_SYMBOL(set_user_nice);
3434 * can_nice - check if a task can reduce its nice value
3438 int can_nice(const struct task_struct *p, const int nice)
3440 /* convert nice value [19,-20] to rlimit style value [1,40] */
3441 int nice_rlim = nice_to_rlimit(nice);
3443 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3444 capable(CAP_SYS_NICE));
3447 #ifdef __ARCH_WANT_SYS_NICE
3450 * sys_nice - change the priority of the current process.
3451 * @increment: priority increment
3453 * sys_setpriority is a more generic, but much slower function that
3454 * does similar things.
3456 SYSCALL_DEFINE1(nice, int, increment)
3461 * Setpriority might change our priority at the same moment.
3462 * We don't have to worry. Conceptually one call occurs first
3463 * and we have a single winner.
3465 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3466 nice = task_nice(current) + increment;
3468 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3469 if (increment < 0 && !can_nice(current, nice))
3472 retval = security_task_setnice(current, nice);
3476 set_user_nice(current, nice);
3483 * task_prio - return the priority value of a given task.
3484 * @p: the task in question.
3486 * Return: The priority value as seen by users in /proc.
3487 * RT tasks are offset by -200. Normal tasks are centered
3488 * around 0, value goes from -16 to +15.
3490 int task_prio(const struct task_struct *p)
3492 return p->prio - MAX_RT_PRIO;
3496 * idle_cpu - is a given cpu idle currently?
3497 * @cpu: the processor in question.
3499 * Return: 1 if the CPU is currently idle. 0 otherwise.
3501 int idle_cpu(int cpu)
3503 struct rq *rq = cpu_rq(cpu);
3505 if (rq->curr != rq->idle)
3512 if (!llist_empty(&rq->wake_list))
3520 * idle_task - return the idle task for a given cpu.
3521 * @cpu: the processor in question.
3523 * Return: The idle task for the cpu @cpu.
3525 struct task_struct *idle_task(int cpu)
3527 return cpu_rq(cpu)->idle;
3531 * find_process_by_pid - find a process with a matching PID value.
3532 * @pid: the pid in question.
3534 * The task of @pid, if found. %NULL otherwise.
3536 static struct task_struct *find_process_by_pid(pid_t pid)
3538 return pid ? find_task_by_vpid(pid) : current;
3542 * This function initializes the sched_dl_entity of a newly becoming
3543 * SCHED_DEADLINE task.
3545 * Only the static values are considered here, the actual runtime and the
3546 * absolute deadline will be properly calculated when the task is enqueued
3547 * for the first time with its new policy.
3550 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3552 struct sched_dl_entity *dl_se = &p->dl;
3554 dl_se->dl_runtime = attr->sched_runtime;
3555 dl_se->dl_deadline = attr->sched_deadline;
3556 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3557 dl_se->flags = attr->sched_flags;
3558 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3561 * Changing the parameters of a task is 'tricky' and we're not doing
3562 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3564 * What we SHOULD do is delay the bandwidth release until the 0-lag
3565 * point. This would include retaining the task_struct until that time
3566 * and change dl_overflow() to not immediately decrement the current
3569 * Instead we retain the current runtime/deadline and let the new
3570 * parameters take effect after the current reservation period lapses.
3571 * This is safe (albeit pessimistic) because the 0-lag point is always
3572 * before the current scheduling deadline.
3574 * We can still have temporary overloads because we do not delay the
3575 * change in bandwidth until that time; so admission control is
3576 * not on the safe side. It does however guarantee tasks will never
3577 * consume more than promised.
3582 * sched_setparam() passes in -1 for its policy, to let the functions
3583 * it calls know not to change it.
3585 #define SETPARAM_POLICY -1
3587 static void __setscheduler_params(struct task_struct *p,
3588 const struct sched_attr *attr)
3590 int policy = attr->sched_policy;
3592 if (policy == SETPARAM_POLICY)
3597 if (dl_policy(policy))
3598 __setparam_dl(p, attr);
3599 else if (fair_policy(policy))
3600 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3603 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3604 * !rt_policy. Always setting this ensures that things like
3605 * getparam()/getattr() don't report silly values for !rt tasks.
3607 p->rt_priority = attr->sched_priority;
3608 p->normal_prio = normal_prio(p);
3612 /* Actually do priority change: must hold pi & rq lock. */
3613 static void __setscheduler(struct rq *rq, struct task_struct *p,
3614 const struct sched_attr *attr, bool keep_boost)
3616 __setscheduler_params(p, attr);
3619 * Keep a potential priority boosting if called from
3620 * sched_setscheduler().
3623 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3625 p->prio = normal_prio(p);
3627 if (dl_prio(p->prio))
3628 p->sched_class = &dl_sched_class;
3629 else if (rt_prio(p->prio))
3630 p->sched_class = &rt_sched_class;
3632 p->sched_class = &fair_sched_class;
3636 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3638 struct sched_dl_entity *dl_se = &p->dl;
3640 attr->sched_priority = p->rt_priority;
3641 attr->sched_runtime = dl_se->dl_runtime;
3642 attr->sched_deadline = dl_se->dl_deadline;
3643 attr->sched_period = dl_se->dl_period;
3644 attr->sched_flags = dl_se->flags;
3648 * This function validates the new parameters of a -deadline task.
3649 * We ask for the deadline not being zero, and greater or equal
3650 * than the runtime, as well as the period of being zero or
3651 * greater than deadline. Furthermore, we have to be sure that
3652 * user parameters are above the internal resolution of 1us (we
3653 * check sched_runtime only since it is always the smaller one) and
3654 * below 2^63 ns (we have to check both sched_deadline and
3655 * sched_period, as the latter can be zero).
3658 __checkparam_dl(const struct sched_attr *attr)
3661 if (attr->sched_deadline == 0)
3665 * Since we truncate DL_SCALE bits, make sure we're at least
3668 if (attr->sched_runtime < (1ULL << DL_SCALE))
3672 * Since we use the MSB for wrap-around and sign issues, make
3673 * sure it's not set (mind that period can be equal to zero).
3675 if (attr->sched_deadline & (1ULL << 63) ||
3676 attr->sched_period & (1ULL << 63))
3679 /* runtime <= deadline <= period (if period != 0) */
3680 if ((attr->sched_period != 0 &&
3681 attr->sched_period < attr->sched_deadline) ||
3682 attr->sched_deadline < attr->sched_runtime)
3689 * check the target process has a UID that matches the current process's
3691 static bool check_same_owner(struct task_struct *p)
3693 const struct cred *cred = current_cred(), *pcred;
3697 pcred = __task_cred(p);
3698 match = (uid_eq(cred->euid, pcred->euid) ||
3699 uid_eq(cred->euid, pcred->uid));
3704 static bool dl_param_changed(struct task_struct *p,
3705 const struct sched_attr *attr)
3707 struct sched_dl_entity *dl_se = &p->dl;
3709 if (dl_se->dl_runtime != attr->sched_runtime ||
3710 dl_se->dl_deadline != attr->sched_deadline ||
3711 dl_se->dl_period != attr->sched_period ||
3712 dl_se->flags != attr->sched_flags)
3718 static int __sched_setscheduler(struct task_struct *p,
3719 const struct sched_attr *attr,
3722 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3723 MAX_RT_PRIO - 1 - attr->sched_priority;
3724 int retval, oldprio, oldpolicy = -1, queued, running;
3725 int new_effective_prio, policy = attr->sched_policy;
3726 unsigned long flags;
3727 const struct sched_class *prev_class;
3731 /* may grab non-irq protected spin_locks */
3732 BUG_ON(in_interrupt());
3734 /* double check policy once rq lock held */
3736 reset_on_fork = p->sched_reset_on_fork;
3737 policy = oldpolicy = p->policy;
3739 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3741 if (policy != SCHED_DEADLINE &&
3742 policy != SCHED_FIFO && policy != SCHED_RR &&
3743 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3744 policy != SCHED_IDLE)
3748 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3752 * Valid priorities for SCHED_FIFO and SCHED_RR are
3753 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3754 * SCHED_BATCH and SCHED_IDLE is 0.
3756 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3757 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3759 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3760 (rt_policy(policy) != (attr->sched_priority != 0)))
3764 * Allow unprivileged RT tasks to decrease priority:
3766 if (user && !capable(CAP_SYS_NICE)) {
3767 if (fair_policy(policy)) {
3768 if (attr->sched_nice < task_nice(p) &&
3769 !can_nice(p, attr->sched_nice))
3773 if (rt_policy(policy)) {
3774 unsigned long rlim_rtprio =
3775 task_rlimit(p, RLIMIT_RTPRIO);
3777 /* can't set/change the rt policy */
3778 if (policy != p->policy && !rlim_rtprio)
3781 /* can't increase priority */
3782 if (attr->sched_priority > p->rt_priority &&
3783 attr->sched_priority > rlim_rtprio)
3788 * Can't set/change SCHED_DEADLINE policy at all for now
3789 * (safest behavior); in the future we would like to allow
3790 * unprivileged DL tasks to increase their relative deadline
3791 * or reduce their runtime (both ways reducing utilization)
3793 if (dl_policy(policy))
3797 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3798 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3800 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3801 if (!can_nice(p, task_nice(p)))
3805 /* can't change other user's priorities */
3806 if (!check_same_owner(p))
3809 /* Normal users shall not reset the sched_reset_on_fork flag */
3810 if (p->sched_reset_on_fork && !reset_on_fork)
3815 retval = security_task_setscheduler(p);
3821 * make sure no PI-waiters arrive (or leave) while we are
3822 * changing the priority of the task:
3824 * To be able to change p->policy safely, the appropriate
3825 * runqueue lock must be held.
3827 rq = task_rq_lock(p, &flags);
3830 * Changing the policy of the stop threads its a very bad idea
3832 if (p == rq->stop) {
3833 task_rq_unlock(rq, p, &flags);
3838 * If not changing anything there's no need to proceed further,
3839 * but store a possible modification of reset_on_fork.
3841 if (unlikely(policy == p->policy)) {
3842 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3844 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3846 if (dl_policy(policy) && dl_param_changed(p, attr))
3849 p->sched_reset_on_fork = reset_on_fork;
3850 task_rq_unlock(rq, p, &flags);
3856 #ifdef CONFIG_RT_GROUP_SCHED
3858 * Do not allow realtime tasks into groups that have no runtime
3861 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3862 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3863 !task_group_is_autogroup(task_group(p))) {
3864 task_rq_unlock(rq, p, &flags);
3869 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3870 cpumask_t *span = rq->rd->span;
3873 * Don't allow tasks with an affinity mask smaller than
3874 * the entire root_domain to become SCHED_DEADLINE. We
3875 * will also fail if there's no bandwidth available.
3877 if (!cpumask_subset(span, &p->cpus_allowed) ||
3878 rq->rd->dl_bw.bw == 0) {
3879 task_rq_unlock(rq, p, &flags);
3886 /* recheck policy now with rq lock held */
3887 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3888 policy = oldpolicy = -1;
3889 task_rq_unlock(rq, p, &flags);
3894 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3895 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3898 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3899 task_rq_unlock(rq, p, &flags);
3903 p->sched_reset_on_fork = reset_on_fork;
3908 * Take priority boosted tasks into account. If the new
3909 * effective priority is unchanged, we just store the new
3910 * normal parameters and do not touch the scheduler class and
3911 * the runqueue. This will be done when the task deboost
3914 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3915 if (new_effective_prio == oldprio) {
3916 __setscheduler_params(p, attr);
3917 task_rq_unlock(rq, p, &flags);
3922 queued = task_on_rq_queued(p);
3923 running = task_current(rq, p);
3925 dequeue_task(rq, p, 0);
3927 put_prev_task(rq, p);
3929 prev_class = p->sched_class;
3930 __setscheduler(rq, p, attr, pi);
3933 p->sched_class->set_curr_task(rq);
3936 * We enqueue to tail when the priority of a task is
3937 * increased (user space view).
3939 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3942 check_class_changed(rq, p, prev_class, oldprio);
3943 preempt_disable(); /* avoid rq from going away on us */
3944 task_rq_unlock(rq, p, &flags);
3947 rt_mutex_adjust_pi(p);
3950 * Run balance callbacks after we've adjusted the PI chain.
3952 balance_callback(rq);
3958 static int _sched_setscheduler(struct task_struct *p, int policy,
3959 const struct sched_param *param, bool check)
3961 struct sched_attr attr = {
3962 .sched_policy = policy,
3963 .sched_priority = param->sched_priority,
3964 .sched_nice = PRIO_TO_NICE(p->static_prio),
3967 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3968 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3969 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3970 policy &= ~SCHED_RESET_ON_FORK;
3971 attr.sched_policy = policy;
3974 return __sched_setscheduler(p, &attr, check, true);
3977 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3978 * @p: the task in question.
3979 * @policy: new policy.
3980 * @param: structure containing the new RT priority.
3982 * Return: 0 on success. An error code otherwise.
3984 * NOTE that the task may be already dead.
3986 int sched_setscheduler(struct task_struct *p, int policy,
3987 const struct sched_param *param)
3989 return _sched_setscheduler(p, policy, param, true);
3991 EXPORT_SYMBOL_GPL(sched_setscheduler);
3993 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3995 return __sched_setscheduler(p, attr, true, true);
3997 EXPORT_SYMBOL_GPL(sched_setattr);
4000 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4001 * @p: the task in question.
4002 * @policy: new policy.
4003 * @param: structure containing the new RT priority.
4005 * Just like sched_setscheduler, only don't bother checking if the
4006 * current context has permission. For example, this is needed in
4007 * stop_machine(): we create temporary high priority worker threads,
4008 * but our caller might not have that capability.
4010 * Return: 0 on success. An error code otherwise.
4012 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4013 const struct sched_param *param)
4015 return _sched_setscheduler(p, policy, param, false);
4019 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4021 struct sched_param lparam;
4022 struct task_struct *p;
4025 if (!param || pid < 0)
4027 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4032 p = find_process_by_pid(pid);
4034 retval = sched_setscheduler(p, policy, &lparam);
4041 * Mimics kernel/events/core.c perf_copy_attr().
4043 static int sched_copy_attr(struct sched_attr __user *uattr,
4044 struct sched_attr *attr)
4049 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4053 * zero the full structure, so that a short copy will be nice.
4055 memset(attr, 0, sizeof(*attr));
4057 ret = get_user(size, &uattr->size);
4061 if (size > PAGE_SIZE) /* silly large */
4064 if (!size) /* abi compat */
4065 size = SCHED_ATTR_SIZE_VER0;
4067 if (size < SCHED_ATTR_SIZE_VER0)
4071 * If we're handed a bigger struct than we know of,
4072 * ensure all the unknown bits are 0 - i.e. new
4073 * user-space does not rely on any kernel feature
4074 * extensions we dont know about yet.
4076 if (size > sizeof(*attr)) {
4077 unsigned char __user *addr;
4078 unsigned char __user *end;
4081 addr = (void __user *)uattr + sizeof(*attr);
4082 end = (void __user *)uattr + size;
4084 for (; addr < end; addr++) {
4085 ret = get_user(val, addr);
4091 size = sizeof(*attr);
4094 ret = copy_from_user(attr, uattr, size);
4099 * XXX: do we want to be lenient like existing syscalls; or do we want
4100 * to be strict and return an error on out-of-bounds values?
4102 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4107 put_user(sizeof(*attr), &uattr->size);
4112 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4113 * @pid: the pid in question.
4114 * @policy: new policy.
4115 * @param: structure containing the new RT priority.
4117 * Return: 0 on success. An error code otherwise.
4119 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4120 struct sched_param __user *, param)
4122 /* negative values for policy are not valid */
4126 return do_sched_setscheduler(pid, policy, param);
4130 * sys_sched_setparam - set/change the RT priority of a thread
4131 * @pid: the pid in question.
4132 * @param: structure containing the new RT priority.
4134 * Return: 0 on success. An error code otherwise.
4136 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4138 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4142 * sys_sched_setattr - same as above, but with extended sched_attr
4143 * @pid: the pid in question.
4144 * @uattr: structure containing the extended parameters.
4145 * @flags: for future extension.
4147 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4148 unsigned int, flags)
4150 struct sched_attr attr;
4151 struct task_struct *p;
4154 if (!uattr || pid < 0 || flags)
4157 retval = sched_copy_attr(uattr, &attr);
4161 if ((int)attr.sched_policy < 0)
4166 p = find_process_by_pid(pid);
4168 retval = sched_setattr(p, &attr);
4175 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4176 * @pid: the pid in question.
4178 * Return: On success, the policy of the thread. Otherwise, a negative error
4181 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4183 struct task_struct *p;
4191 p = find_process_by_pid(pid);
4193 retval = security_task_getscheduler(p);
4196 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4203 * sys_sched_getparam - get the RT priority of a thread
4204 * @pid: the pid in question.
4205 * @param: structure containing the RT priority.
4207 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4210 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4212 struct sched_param lp = { .sched_priority = 0 };
4213 struct task_struct *p;
4216 if (!param || pid < 0)
4220 p = find_process_by_pid(pid);
4225 retval = security_task_getscheduler(p);
4229 if (task_has_rt_policy(p))
4230 lp.sched_priority = p->rt_priority;
4234 * This one might sleep, we cannot do it with a spinlock held ...
4236 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4245 static int sched_read_attr(struct sched_attr __user *uattr,
4246 struct sched_attr *attr,
4251 if (!access_ok(VERIFY_WRITE, uattr, usize))
4255 * If we're handed a smaller struct than we know of,
4256 * ensure all the unknown bits are 0 - i.e. old
4257 * user-space does not get uncomplete information.
4259 if (usize < sizeof(*attr)) {
4260 unsigned char *addr;
4263 addr = (void *)attr + usize;
4264 end = (void *)attr + sizeof(*attr);
4266 for (; addr < end; addr++) {
4274 ret = copy_to_user(uattr, attr, attr->size);
4282 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4283 * @pid: the pid in question.
4284 * @uattr: structure containing the extended parameters.
4285 * @size: sizeof(attr) for fwd/bwd comp.
4286 * @flags: for future extension.
4288 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4289 unsigned int, size, unsigned int, flags)
4291 struct sched_attr attr = {
4292 .size = sizeof(struct sched_attr),
4294 struct task_struct *p;
4297 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4298 size < SCHED_ATTR_SIZE_VER0 || flags)
4302 p = find_process_by_pid(pid);
4307 retval = security_task_getscheduler(p);
4311 attr.sched_policy = p->policy;
4312 if (p->sched_reset_on_fork)
4313 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4314 if (task_has_dl_policy(p))
4315 __getparam_dl(p, &attr);
4316 else if (task_has_rt_policy(p))
4317 attr.sched_priority = p->rt_priority;
4319 attr.sched_nice = task_nice(p);
4323 retval = sched_read_attr(uattr, &attr, size);
4331 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4333 cpumask_var_t cpus_allowed, new_mask;
4334 struct task_struct *p;
4339 p = find_process_by_pid(pid);
4345 /* Prevent p going away */
4349 if (p->flags & PF_NO_SETAFFINITY) {
4353 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4357 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4359 goto out_free_cpus_allowed;
4362 if (!check_same_owner(p)) {
4364 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4366 goto out_free_new_mask;
4371 retval = security_task_setscheduler(p);
4373 goto out_free_new_mask;
4376 cpuset_cpus_allowed(p, cpus_allowed);
4377 cpumask_and(new_mask, in_mask, cpus_allowed);
4380 * Since bandwidth control happens on root_domain basis,
4381 * if admission test is enabled, we only admit -deadline
4382 * tasks allowed to run on all the CPUs in the task's
4386 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4388 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4391 goto out_free_new_mask;
4397 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4400 cpuset_cpus_allowed(p, cpus_allowed);
4401 if (!cpumask_subset(new_mask, cpus_allowed)) {
4403 * We must have raced with a concurrent cpuset
4404 * update. Just reset the cpus_allowed to the
4405 * cpuset's cpus_allowed
4407 cpumask_copy(new_mask, cpus_allowed);
4412 free_cpumask_var(new_mask);
4413 out_free_cpus_allowed:
4414 free_cpumask_var(cpus_allowed);
4420 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4421 struct cpumask *new_mask)
4423 if (len < cpumask_size())
4424 cpumask_clear(new_mask);
4425 else if (len > cpumask_size())
4426 len = cpumask_size();
4428 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4432 * sys_sched_setaffinity - set the cpu affinity of a process
4433 * @pid: pid of the process
4434 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4435 * @user_mask_ptr: user-space pointer to the new cpu mask
4437 * Return: 0 on success. An error code otherwise.
4439 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4440 unsigned long __user *, user_mask_ptr)
4442 cpumask_var_t new_mask;
4445 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4448 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4450 retval = sched_setaffinity(pid, new_mask);
4451 free_cpumask_var(new_mask);
4455 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4457 struct task_struct *p;
4458 unsigned long flags;
4464 p = find_process_by_pid(pid);
4468 retval = security_task_getscheduler(p);
4472 raw_spin_lock_irqsave(&p->pi_lock, flags);
4473 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4474 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4483 * sys_sched_getaffinity - get the cpu affinity of a process
4484 * @pid: pid of the process
4485 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4486 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4488 * Return: 0 on success. An error code otherwise.
4490 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4491 unsigned long __user *, user_mask_ptr)
4496 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4498 if (len & (sizeof(unsigned long)-1))
4501 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4504 ret = sched_getaffinity(pid, mask);
4506 size_t retlen = min_t(size_t, len, cpumask_size());
4508 if (copy_to_user(user_mask_ptr, mask, retlen))
4513 free_cpumask_var(mask);
4519 * sys_sched_yield - yield the current processor to other threads.
4521 * This function yields the current CPU to other tasks. If there are no
4522 * other threads running on this CPU then this function will return.
4526 SYSCALL_DEFINE0(sched_yield)
4528 struct rq *rq = this_rq_lock();
4530 schedstat_inc(rq, yld_count);
4531 current->sched_class->yield_task(rq);
4534 * Since we are going to call schedule() anyway, there's
4535 * no need to preempt or enable interrupts:
4537 __release(rq->lock);
4538 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4539 do_raw_spin_unlock(&rq->lock);
4540 sched_preempt_enable_no_resched();
4547 int __sched _cond_resched(void)
4549 if (should_resched(0)) {
4550 preempt_schedule_common();
4555 EXPORT_SYMBOL(_cond_resched);
4558 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4559 * call schedule, and on return reacquire the lock.
4561 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4562 * operations here to prevent schedule() from being called twice (once via
4563 * spin_unlock(), once by hand).
4565 int __cond_resched_lock(spinlock_t *lock)
4567 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4570 lockdep_assert_held(lock);
4572 if (spin_needbreak(lock) || resched) {
4575 preempt_schedule_common();
4583 EXPORT_SYMBOL(__cond_resched_lock);
4585 int __sched __cond_resched_softirq(void)
4587 BUG_ON(!in_softirq());
4589 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4591 preempt_schedule_common();
4597 EXPORT_SYMBOL(__cond_resched_softirq);
4600 * yield - yield the current processor to other threads.
4602 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4604 * The scheduler is at all times free to pick the calling task as the most
4605 * eligible task to run, if removing the yield() call from your code breaks
4606 * it, its already broken.
4608 * Typical broken usage is:
4613 * where one assumes that yield() will let 'the other' process run that will
4614 * make event true. If the current task is a SCHED_FIFO task that will never
4615 * happen. Never use yield() as a progress guarantee!!
4617 * If you want to use yield() to wait for something, use wait_event().
4618 * If you want to use yield() to be 'nice' for others, use cond_resched().
4619 * If you still want to use yield(), do not!
4621 void __sched yield(void)
4623 set_current_state(TASK_RUNNING);
4626 EXPORT_SYMBOL(yield);
4629 * yield_to - yield the current processor to another thread in
4630 * your thread group, or accelerate that thread toward the
4631 * processor it's on.
4633 * @preempt: whether task preemption is allowed or not
4635 * It's the caller's job to ensure that the target task struct
4636 * can't go away on us before we can do any checks.
4639 * true (>0) if we indeed boosted the target task.
4640 * false (0) if we failed to boost the target.
4641 * -ESRCH if there's no task to yield to.
4643 int __sched yield_to(struct task_struct *p, bool preempt)
4645 struct task_struct *curr = current;
4646 struct rq *rq, *p_rq;
4647 unsigned long flags;
4650 local_irq_save(flags);
4656 * If we're the only runnable task on the rq and target rq also
4657 * has only one task, there's absolutely no point in yielding.
4659 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4664 double_rq_lock(rq, p_rq);
4665 if (task_rq(p) != p_rq) {
4666 double_rq_unlock(rq, p_rq);
4670 if (!curr->sched_class->yield_to_task)
4673 if (curr->sched_class != p->sched_class)
4676 if (task_running(p_rq, p) || p->state)
4679 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4681 schedstat_inc(rq, yld_count);
4683 * Make p's CPU reschedule; pick_next_entity takes care of
4686 if (preempt && rq != p_rq)
4691 double_rq_unlock(rq, p_rq);
4693 local_irq_restore(flags);
4700 EXPORT_SYMBOL_GPL(yield_to);
4703 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4704 * that process accounting knows that this is a task in IO wait state.
4706 long __sched io_schedule_timeout(long timeout)
4708 int old_iowait = current->in_iowait;
4712 current->in_iowait = 1;
4713 blk_schedule_flush_plug(current);
4715 delayacct_blkio_start();
4717 atomic_inc(&rq->nr_iowait);
4718 ret = schedule_timeout(timeout);
4719 current->in_iowait = old_iowait;
4720 atomic_dec(&rq->nr_iowait);
4721 delayacct_blkio_end();
4725 EXPORT_SYMBOL(io_schedule_timeout);
4728 * sys_sched_get_priority_max - return maximum RT priority.
4729 * @policy: scheduling class.
4731 * Return: On success, this syscall returns the maximum
4732 * rt_priority that can be used by a given scheduling class.
4733 * On failure, a negative error code is returned.
4735 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4742 ret = MAX_USER_RT_PRIO-1;
4744 case SCHED_DEADLINE:
4755 * sys_sched_get_priority_min - return minimum RT priority.
4756 * @policy: scheduling class.
4758 * Return: On success, this syscall returns the minimum
4759 * rt_priority that can be used by a given scheduling class.
4760 * On failure, a negative error code is returned.
4762 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4771 case SCHED_DEADLINE:
4781 * sys_sched_rr_get_interval - return the default timeslice of a process.
4782 * @pid: pid of the process.
4783 * @interval: userspace pointer to the timeslice value.
4785 * this syscall writes the default timeslice value of a given process
4786 * into the user-space timespec buffer. A value of '0' means infinity.
4788 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4791 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4792 struct timespec __user *, interval)
4794 struct task_struct *p;
4795 unsigned int time_slice;
4796 unsigned long flags;
4806 p = find_process_by_pid(pid);
4810 retval = security_task_getscheduler(p);
4814 rq = task_rq_lock(p, &flags);
4816 if (p->sched_class->get_rr_interval)
4817 time_slice = p->sched_class->get_rr_interval(rq, p);
4818 task_rq_unlock(rq, p, &flags);
4821 jiffies_to_timespec(time_slice, &t);
4822 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4830 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4832 void sched_show_task(struct task_struct *p)
4834 unsigned long free = 0;
4836 unsigned long state = p->state;
4839 state = __ffs(state) + 1;
4840 printk(KERN_INFO "%-15.15s %c", p->comm,
4841 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4842 #if BITS_PER_LONG == 32
4843 if (state == TASK_RUNNING)
4844 printk(KERN_CONT " running ");
4846 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4848 if (state == TASK_RUNNING)
4849 printk(KERN_CONT " running task ");
4851 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4853 #ifdef CONFIG_DEBUG_STACK_USAGE
4854 free = stack_not_used(p);
4859 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4861 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4862 task_pid_nr(p), ppid,
4863 (unsigned long)task_thread_info(p)->flags);
4865 print_worker_info(KERN_INFO, p);
4866 show_stack(p, NULL);
4869 void show_state_filter(unsigned long state_filter)
4871 struct task_struct *g, *p;
4873 #if BITS_PER_LONG == 32
4875 " task PC stack pid father\n");
4878 " task PC stack pid father\n");
4881 for_each_process_thread(g, p) {
4883 * reset the NMI-timeout, listing all files on a slow
4884 * console might take a lot of time:
4886 touch_nmi_watchdog();
4887 if (!state_filter || (p->state & state_filter))
4891 touch_all_softlockup_watchdogs();
4893 #ifdef CONFIG_SCHED_DEBUG
4894 sysrq_sched_debug_show();
4898 * Only show locks if all tasks are dumped:
4901 debug_show_all_locks();
4904 void init_idle_bootup_task(struct task_struct *idle)
4906 idle->sched_class = &idle_sched_class;
4910 * init_idle - set up an idle thread for a given CPU
4911 * @idle: task in question
4912 * @cpu: cpu the idle task belongs to
4914 * NOTE: this function does not set the idle thread's NEED_RESCHED
4915 * flag, to make booting more robust.
4917 void init_idle(struct task_struct *idle, int cpu)
4919 struct rq *rq = cpu_rq(cpu);
4920 unsigned long flags;
4922 raw_spin_lock_irqsave(&idle->pi_lock, flags);
4923 raw_spin_lock(&rq->lock);
4925 __sched_fork(0, idle);
4926 idle->state = TASK_RUNNING;
4927 idle->se.exec_start = sched_clock();
4929 do_set_cpus_allowed(idle, cpumask_of(cpu));
4931 * We're having a chicken and egg problem, even though we are
4932 * holding rq->lock, the cpu isn't yet set to this cpu so the
4933 * lockdep check in task_group() will fail.
4935 * Similar case to sched_fork(). / Alternatively we could
4936 * use task_rq_lock() here and obtain the other rq->lock.
4941 __set_task_cpu(idle, cpu);
4944 rq->curr = rq->idle = idle;
4945 idle->on_rq = TASK_ON_RQ_QUEUED;
4946 #if defined(CONFIG_SMP)
4949 raw_spin_unlock(&rq->lock);
4950 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
4952 /* Set the preempt count _outside_ the spinlocks! */
4953 init_idle_preempt_count(idle, cpu);
4956 * The idle tasks have their own, simple scheduling class:
4958 idle->sched_class = &idle_sched_class;
4959 ftrace_graph_init_idle_task(idle, cpu);
4960 vtime_init_idle(idle, cpu);
4961 #if defined(CONFIG_SMP)
4962 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4966 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4967 const struct cpumask *trial)
4969 int ret = 1, trial_cpus;
4970 struct dl_bw *cur_dl_b;
4971 unsigned long flags;
4973 if (!cpumask_weight(cur))
4976 rcu_read_lock_sched();
4977 cur_dl_b = dl_bw_of(cpumask_any(cur));
4978 trial_cpus = cpumask_weight(trial);
4980 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4981 if (cur_dl_b->bw != -1 &&
4982 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4984 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4985 rcu_read_unlock_sched();
4990 int task_can_attach(struct task_struct *p,
4991 const struct cpumask *cs_cpus_allowed)
4996 * Kthreads which disallow setaffinity shouldn't be moved
4997 * to a new cpuset; we don't want to change their cpu
4998 * affinity and isolating such threads by their set of
4999 * allowed nodes is unnecessary. Thus, cpusets are not
5000 * applicable for such threads. This prevents checking for
5001 * success of set_cpus_allowed_ptr() on all attached tasks
5002 * before cpus_allowed may be changed.
5004 if (p->flags & PF_NO_SETAFFINITY) {
5010 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5012 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5017 unsigned long flags;
5019 rcu_read_lock_sched();
5020 dl_b = dl_bw_of(dest_cpu);
5021 raw_spin_lock_irqsave(&dl_b->lock, flags);
5022 cpus = dl_bw_cpus(dest_cpu);
5023 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5028 * We reserve space for this task in the destination
5029 * root_domain, as we can't fail after this point.
5030 * We will free resources in the source root_domain
5031 * later on (see set_cpus_allowed_dl()).
5033 __dl_add(dl_b, p->dl.dl_bw);
5035 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5036 rcu_read_unlock_sched();
5046 #ifdef CONFIG_NUMA_BALANCING
5047 /* Migrate current task p to target_cpu */
5048 int migrate_task_to(struct task_struct *p, int target_cpu)
5050 struct migration_arg arg = { p, target_cpu };
5051 int curr_cpu = task_cpu(p);
5053 if (curr_cpu == target_cpu)
5056 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5059 /* TODO: This is not properly updating schedstats */
5061 trace_sched_move_numa(p, curr_cpu, target_cpu);
5062 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5066 * Requeue a task on a given node and accurately track the number of NUMA
5067 * tasks on the runqueues
5069 void sched_setnuma(struct task_struct *p, int nid)
5072 unsigned long flags;
5073 bool queued, running;
5075 rq = task_rq_lock(p, &flags);
5076 queued = task_on_rq_queued(p);
5077 running = task_current(rq, p);
5080 dequeue_task(rq, p, 0);
5082 put_prev_task(rq, p);
5084 p->numa_preferred_nid = nid;
5087 p->sched_class->set_curr_task(rq);
5089 enqueue_task(rq, p, 0);
5090 task_rq_unlock(rq, p, &flags);
5092 #endif /* CONFIG_NUMA_BALANCING */
5094 #ifdef CONFIG_HOTPLUG_CPU
5096 * Ensures that the idle task is using init_mm right before its cpu goes
5099 void idle_task_exit(void)
5101 struct mm_struct *mm = current->active_mm;
5103 BUG_ON(cpu_online(smp_processor_id()));
5105 if (mm != &init_mm) {
5106 switch_mm(mm, &init_mm, current);
5107 finish_arch_post_lock_switch();
5113 * Since this CPU is going 'away' for a while, fold any nr_active delta
5114 * we might have. Assumes we're called after migrate_tasks() so that the
5115 * nr_active count is stable.
5117 * Also see the comment "Global load-average calculations".
5119 static void calc_load_migrate(struct rq *rq)
5121 long delta = calc_load_fold_active(rq);
5123 atomic_long_add(delta, &calc_load_tasks);
5126 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5130 static const struct sched_class fake_sched_class = {
5131 .put_prev_task = put_prev_task_fake,
5134 static struct task_struct fake_task = {
5136 * Avoid pull_{rt,dl}_task()
5138 .prio = MAX_PRIO + 1,
5139 .sched_class = &fake_sched_class,
5143 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5144 * try_to_wake_up()->select_task_rq().
5146 * Called with rq->lock held even though we'er in stop_machine() and
5147 * there's no concurrency possible, we hold the required locks anyway
5148 * because of lock validation efforts.
5150 static void migrate_tasks(struct rq *dead_rq)
5152 struct rq *rq = dead_rq;
5153 struct task_struct *next, *stop = rq->stop;
5157 * Fudge the rq selection such that the below task selection loop
5158 * doesn't get stuck on the currently eligible stop task.
5160 * We're currently inside stop_machine() and the rq is either stuck
5161 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5162 * either way we should never end up calling schedule() until we're
5168 * put_prev_task() and pick_next_task() sched
5169 * class method both need to have an up-to-date
5170 * value of rq->clock[_task]
5172 update_rq_clock(rq);
5176 * There's this thread running, bail when that's the only
5179 if (rq->nr_running == 1)
5183 * Ensure rq->lock covers the entire task selection
5184 * until the migration.
5186 lockdep_pin_lock(&rq->lock);
5187 next = pick_next_task(rq, &fake_task);
5189 next->sched_class->put_prev_task(rq, next);
5191 /* Find suitable destination for @next, with force if needed. */
5192 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5194 lockdep_unpin_lock(&rq->lock);
5195 rq = __migrate_task(rq, next, dest_cpu);
5196 if (rq != dead_rq) {
5197 raw_spin_unlock(&rq->lock);
5199 raw_spin_lock(&rq->lock);
5205 #endif /* CONFIG_HOTPLUG_CPU */
5207 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5209 static struct ctl_table sd_ctl_dir[] = {
5211 .procname = "sched_domain",
5217 static struct ctl_table sd_ctl_root[] = {
5219 .procname = "kernel",
5221 .child = sd_ctl_dir,
5226 static struct ctl_table *sd_alloc_ctl_entry(int n)
5228 struct ctl_table *entry =
5229 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5234 static void sd_free_ctl_entry(struct ctl_table **tablep)
5236 struct ctl_table *entry;
5239 * In the intermediate directories, both the child directory and
5240 * procname are dynamically allocated and could fail but the mode
5241 * will always be set. In the lowest directory the names are
5242 * static strings and all have proc handlers.
5244 for (entry = *tablep; entry->mode; entry++) {
5246 sd_free_ctl_entry(&entry->child);
5247 if (entry->proc_handler == NULL)
5248 kfree(entry->procname);
5255 static int min_load_idx = 0;
5256 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5259 set_table_entry(struct ctl_table *entry,
5260 const char *procname, void *data, int maxlen,
5261 umode_t mode, proc_handler *proc_handler,
5264 entry->procname = procname;
5266 entry->maxlen = maxlen;
5268 entry->proc_handler = proc_handler;
5271 entry->extra1 = &min_load_idx;
5272 entry->extra2 = &max_load_idx;
5276 static struct ctl_table *
5277 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5279 struct ctl_table *table = sd_alloc_ctl_entry(14);
5284 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5285 sizeof(long), 0644, proc_doulongvec_minmax, false);
5286 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5287 sizeof(long), 0644, proc_doulongvec_minmax, false);
5288 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5289 sizeof(int), 0644, proc_dointvec_minmax, true);
5290 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5291 sizeof(int), 0644, proc_dointvec_minmax, true);
5292 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5293 sizeof(int), 0644, proc_dointvec_minmax, true);
5294 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5295 sizeof(int), 0644, proc_dointvec_minmax, true);
5296 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5297 sizeof(int), 0644, proc_dointvec_minmax, true);
5298 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5299 sizeof(int), 0644, proc_dointvec_minmax, false);
5300 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5301 sizeof(int), 0644, proc_dointvec_minmax, false);
5302 set_table_entry(&table[9], "cache_nice_tries",
5303 &sd->cache_nice_tries,
5304 sizeof(int), 0644, proc_dointvec_minmax, false);
5305 set_table_entry(&table[10], "flags", &sd->flags,
5306 sizeof(int), 0644, proc_dointvec_minmax, false);
5307 set_table_entry(&table[11], "max_newidle_lb_cost",
5308 &sd->max_newidle_lb_cost,
5309 sizeof(long), 0644, proc_doulongvec_minmax, false);
5310 set_table_entry(&table[12], "name", sd->name,
5311 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5312 /* &table[13] is terminator */
5317 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5319 struct ctl_table *entry, *table;
5320 struct sched_domain *sd;
5321 int domain_num = 0, i;
5324 for_each_domain(cpu, sd)
5326 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5331 for_each_domain(cpu, sd) {
5332 snprintf(buf, 32, "domain%d", i);
5333 entry->procname = kstrdup(buf, GFP_KERNEL);
5335 entry->child = sd_alloc_ctl_domain_table(sd);
5342 static struct ctl_table_header *sd_sysctl_header;
5343 static void register_sched_domain_sysctl(void)
5345 int i, cpu_num = num_possible_cpus();
5346 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5349 WARN_ON(sd_ctl_dir[0].child);
5350 sd_ctl_dir[0].child = entry;
5355 for_each_possible_cpu(i) {
5356 snprintf(buf, 32, "cpu%d", i);
5357 entry->procname = kstrdup(buf, GFP_KERNEL);
5359 entry->child = sd_alloc_ctl_cpu_table(i);
5363 WARN_ON(sd_sysctl_header);
5364 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5367 /* may be called multiple times per register */
5368 static void unregister_sched_domain_sysctl(void)
5370 unregister_sysctl_table(sd_sysctl_header);
5371 sd_sysctl_header = NULL;
5372 if (sd_ctl_dir[0].child)
5373 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5376 static void register_sched_domain_sysctl(void)
5379 static void unregister_sched_domain_sysctl(void)
5382 #endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
5384 static void set_rq_online(struct rq *rq)
5387 const struct sched_class *class;
5389 cpumask_set_cpu(rq->cpu, rq->rd->online);
5392 for_each_class(class) {
5393 if (class->rq_online)
5394 class->rq_online(rq);
5399 static void set_rq_offline(struct rq *rq)
5402 const struct sched_class *class;
5404 for_each_class(class) {
5405 if (class->rq_offline)
5406 class->rq_offline(rq);
5409 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5415 * migration_call - callback that gets triggered when a CPU is added.
5416 * Here we can start up the necessary migration thread for the new CPU.
5419 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5421 int cpu = (long)hcpu;
5422 unsigned long flags;
5423 struct rq *rq = cpu_rq(cpu);
5425 switch (action & ~CPU_TASKS_FROZEN) {
5427 case CPU_UP_PREPARE:
5428 rq->calc_load_update = calc_load_update;
5432 /* Update our root-domain */
5433 raw_spin_lock_irqsave(&rq->lock, flags);
5435 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5439 raw_spin_unlock_irqrestore(&rq->lock, flags);
5442 #ifdef CONFIG_HOTPLUG_CPU
5444 sched_ttwu_pending();
5445 /* Update our root-domain */
5446 raw_spin_lock_irqsave(&rq->lock, flags);
5448 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5452 BUG_ON(rq->nr_running != 1); /* the migration thread */
5453 raw_spin_unlock_irqrestore(&rq->lock, flags);
5457 calc_load_migrate(rq);
5462 update_max_interval();
5468 * Register at high priority so that task migration (migrate_all_tasks)
5469 * happens before everything else. This has to be lower priority than
5470 * the notifier in the perf_event subsystem, though.
5472 static struct notifier_block migration_notifier = {
5473 .notifier_call = migration_call,
5474 .priority = CPU_PRI_MIGRATION,
5477 static void set_cpu_rq_start_time(void)
5479 int cpu = smp_processor_id();
5480 struct rq *rq = cpu_rq(cpu);
5481 rq->age_stamp = sched_clock_cpu(cpu);
5484 static int sched_cpu_active(struct notifier_block *nfb,
5485 unsigned long action, void *hcpu)
5487 switch (action & ~CPU_TASKS_FROZEN) {
5489 set_cpu_rq_start_time();
5493 * At this point a starting CPU has marked itself as online via
5494 * set_cpu_online(). But it might not yet have marked itself
5495 * as active, which is essential from here on.
5497 * Thus, fall-through and help the starting CPU along.
5499 case CPU_DOWN_FAILED:
5500 set_cpu_active((long)hcpu, true);
5507 static int sched_cpu_inactive(struct notifier_block *nfb,
5508 unsigned long action, void *hcpu)
5510 switch (action & ~CPU_TASKS_FROZEN) {
5511 case CPU_DOWN_PREPARE:
5512 set_cpu_active((long)hcpu, false);
5519 static int __init migration_init(void)
5521 void *cpu = (void *)(long)smp_processor_id();
5524 /* Initialize migration for the boot CPU */
5525 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5526 BUG_ON(err == NOTIFY_BAD);
5527 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5528 register_cpu_notifier(&migration_notifier);
5530 /* Register cpu active notifiers */
5531 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5532 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5536 early_initcall(migration_init);
5538 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5540 #ifdef CONFIG_SCHED_DEBUG
5542 static __read_mostly int sched_debug_enabled;
5544 static int __init sched_debug_setup(char *str)
5546 sched_debug_enabled = 1;
5550 early_param("sched_debug", sched_debug_setup);
5552 static inline bool sched_debug(void)
5554 return sched_debug_enabled;
5557 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5558 struct cpumask *groupmask)
5560 struct sched_group *group = sd->groups;
5562 cpumask_clear(groupmask);
5564 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5566 if (!(sd->flags & SD_LOAD_BALANCE)) {
5567 printk("does not load-balance\n");
5569 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5574 printk(KERN_CONT "span %*pbl level %s\n",
5575 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5577 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5578 printk(KERN_ERR "ERROR: domain->span does not contain "
5581 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5582 printk(KERN_ERR "ERROR: domain->groups does not contain"
5586 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5590 printk(KERN_ERR "ERROR: group is NULL\n");
5594 if (!cpumask_weight(sched_group_cpus(group))) {
5595 printk(KERN_CONT "\n");
5596 printk(KERN_ERR "ERROR: empty group\n");
5600 if (!(sd->flags & SD_OVERLAP) &&
5601 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5602 printk(KERN_CONT "\n");
5603 printk(KERN_ERR "ERROR: repeated CPUs\n");
5607 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5609 printk(KERN_CONT " %*pbl",
5610 cpumask_pr_args(sched_group_cpus(group)));
5611 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5612 printk(KERN_CONT " (cpu_capacity = %d)",
5613 group->sgc->capacity);
5616 group = group->next;
5617 } while (group != sd->groups);
5618 printk(KERN_CONT "\n");
5620 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5621 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5624 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5625 printk(KERN_ERR "ERROR: parent span is not a superset "
5626 "of domain->span\n");
5630 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5634 if (!sched_debug_enabled)
5638 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5642 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5645 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5653 #else /* !CONFIG_SCHED_DEBUG */
5654 # define sched_domain_debug(sd, cpu) do { } while (0)
5655 static inline bool sched_debug(void)
5659 #endif /* CONFIG_SCHED_DEBUG */
5661 static int sd_degenerate(struct sched_domain *sd)
5663 if (cpumask_weight(sched_domain_span(sd)) == 1)
5666 /* Following flags need at least 2 groups */
5667 if (sd->flags & (SD_LOAD_BALANCE |
5668 SD_BALANCE_NEWIDLE |
5671 SD_SHARE_CPUCAPACITY |
5672 SD_SHARE_PKG_RESOURCES |
5673 SD_SHARE_POWERDOMAIN)) {
5674 if (sd->groups != sd->groups->next)
5678 /* Following flags don't use groups */
5679 if (sd->flags & (SD_WAKE_AFFINE))
5686 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5688 unsigned long cflags = sd->flags, pflags = parent->flags;
5690 if (sd_degenerate(parent))
5693 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5696 /* Flags needing groups don't count if only 1 group in parent */
5697 if (parent->groups == parent->groups->next) {
5698 pflags &= ~(SD_LOAD_BALANCE |
5699 SD_BALANCE_NEWIDLE |
5702 SD_SHARE_CPUCAPACITY |
5703 SD_SHARE_PKG_RESOURCES |
5705 SD_SHARE_POWERDOMAIN);
5706 if (nr_node_ids == 1)
5707 pflags &= ~SD_SERIALIZE;
5709 if (~cflags & pflags)
5715 static void free_rootdomain(struct rcu_head *rcu)
5717 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5719 cpupri_cleanup(&rd->cpupri);
5720 cpudl_cleanup(&rd->cpudl);
5721 free_cpumask_var(rd->dlo_mask);
5722 free_cpumask_var(rd->rto_mask);
5723 free_cpumask_var(rd->online);
5724 free_cpumask_var(rd->span);
5728 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5730 struct root_domain *old_rd = NULL;
5731 unsigned long flags;
5733 raw_spin_lock_irqsave(&rq->lock, flags);
5738 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5741 cpumask_clear_cpu(rq->cpu, old_rd->span);
5744 * If we dont want to free the old_rd yet then
5745 * set old_rd to NULL to skip the freeing later
5748 if (!atomic_dec_and_test(&old_rd->refcount))
5752 atomic_inc(&rd->refcount);
5755 cpumask_set_cpu(rq->cpu, rd->span);
5756 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5759 raw_spin_unlock_irqrestore(&rq->lock, flags);
5762 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5765 static int init_rootdomain(struct root_domain *rd)
5767 memset(rd, 0, sizeof(*rd));
5769 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5771 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5773 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5775 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5778 init_dl_bw(&rd->dl_bw);
5779 if (cpudl_init(&rd->cpudl) != 0)
5782 if (cpupri_init(&rd->cpupri) != 0)
5787 free_cpumask_var(rd->rto_mask);
5789 free_cpumask_var(rd->dlo_mask);
5791 free_cpumask_var(rd->online);
5793 free_cpumask_var(rd->span);
5799 * By default the system creates a single root-domain with all cpus as
5800 * members (mimicking the global state we have today).
5802 struct root_domain def_root_domain;
5804 static void init_defrootdomain(void)
5806 init_rootdomain(&def_root_domain);
5808 atomic_set(&def_root_domain.refcount, 1);
5811 static struct root_domain *alloc_rootdomain(void)
5813 struct root_domain *rd;
5815 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5819 if (init_rootdomain(rd) != 0) {
5827 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5829 struct sched_group *tmp, *first;
5838 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5843 } while (sg != first);
5846 static void free_sched_domain(struct rcu_head *rcu)
5848 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5851 * If its an overlapping domain it has private groups, iterate and
5854 if (sd->flags & SD_OVERLAP) {
5855 free_sched_groups(sd->groups, 1);
5856 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5857 kfree(sd->groups->sgc);
5863 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5865 call_rcu(&sd->rcu, free_sched_domain);
5868 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5870 for (; sd; sd = sd->parent)
5871 destroy_sched_domain(sd, cpu);
5875 * Keep a special pointer to the highest sched_domain that has
5876 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5877 * allows us to avoid some pointer chasing select_idle_sibling().
5879 * Also keep a unique ID per domain (we use the first cpu number in
5880 * the cpumask of the domain), this allows us to quickly tell if
5881 * two cpus are in the same cache domain, see cpus_share_cache().
5883 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5884 DEFINE_PER_CPU(int, sd_llc_size);
5885 DEFINE_PER_CPU(int, sd_llc_id);
5886 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5887 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5888 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5890 static void update_top_cache_domain(int cpu)
5892 struct sched_domain *sd;
5893 struct sched_domain *busy_sd = NULL;
5897 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5899 id = cpumask_first(sched_domain_span(sd));
5900 size = cpumask_weight(sched_domain_span(sd));
5901 busy_sd = sd->parent; /* sd_busy */
5903 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5905 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5906 per_cpu(sd_llc_size, cpu) = size;
5907 per_cpu(sd_llc_id, cpu) = id;
5909 sd = lowest_flag_domain(cpu, SD_NUMA);
5910 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5912 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5913 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5917 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5918 * hold the hotplug lock.
5921 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5923 struct rq *rq = cpu_rq(cpu);
5924 struct sched_domain *tmp;
5926 /* Remove the sched domains which do not contribute to scheduling. */
5927 for (tmp = sd; tmp; ) {
5928 struct sched_domain *parent = tmp->parent;
5932 if (sd_parent_degenerate(tmp, parent)) {
5933 tmp->parent = parent->parent;
5935 parent->parent->child = tmp;
5937 * Transfer SD_PREFER_SIBLING down in case of a
5938 * degenerate parent; the spans match for this
5939 * so the property transfers.
5941 if (parent->flags & SD_PREFER_SIBLING)
5942 tmp->flags |= SD_PREFER_SIBLING;
5943 destroy_sched_domain(parent, cpu);
5948 if (sd && sd_degenerate(sd)) {
5951 destroy_sched_domain(tmp, cpu);
5956 sched_domain_debug(sd, cpu);
5958 rq_attach_root(rq, rd);
5960 rcu_assign_pointer(rq->sd, sd);
5961 destroy_sched_domains(tmp, cpu);
5963 update_top_cache_domain(cpu);
5966 /* Setup the mask of cpus configured for isolated domains */
5967 static int __init isolated_cpu_setup(char *str)
5969 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5970 cpulist_parse(str, cpu_isolated_map);
5974 __setup("isolcpus=", isolated_cpu_setup);
5977 struct sched_domain ** __percpu sd;
5978 struct root_domain *rd;
5989 * Build an iteration mask that can exclude certain CPUs from the upwards
5992 * Asymmetric node setups can result in situations where the domain tree is of
5993 * unequal depth, make sure to skip domains that already cover the entire
5996 * In that case build_sched_domains() will have terminated the iteration early
5997 * and our sibling sd spans will be empty. Domains should always include the
5998 * cpu they're built on, so check that.
6001 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6003 const struct cpumask *span = sched_domain_span(sd);
6004 struct sd_data *sdd = sd->private;
6005 struct sched_domain *sibling;
6008 for_each_cpu(i, span) {
6009 sibling = *per_cpu_ptr(sdd->sd, i);
6010 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6013 cpumask_set_cpu(i, sched_group_mask(sg));
6018 * Return the canonical balance cpu for this group, this is the first cpu
6019 * of this group that's also in the iteration mask.
6021 int group_balance_cpu(struct sched_group *sg)
6023 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6027 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6029 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6030 const struct cpumask *span = sched_domain_span(sd);
6031 struct cpumask *covered = sched_domains_tmpmask;
6032 struct sd_data *sdd = sd->private;
6033 struct sched_domain *sibling;
6036 cpumask_clear(covered);
6038 for_each_cpu(i, span) {
6039 struct cpumask *sg_span;
6041 if (cpumask_test_cpu(i, covered))
6044 sibling = *per_cpu_ptr(sdd->sd, i);
6046 /* See the comment near build_group_mask(). */
6047 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6050 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6051 GFP_KERNEL, cpu_to_node(cpu));
6056 sg_span = sched_group_cpus(sg);
6058 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6060 cpumask_set_cpu(i, sg_span);
6062 cpumask_or(covered, covered, sg_span);
6064 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6065 if (atomic_inc_return(&sg->sgc->ref) == 1)
6066 build_group_mask(sd, sg);
6069 * Initialize sgc->capacity such that even if we mess up the
6070 * domains and no possible iteration will get us here, we won't
6073 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6076 * Make sure the first group of this domain contains the
6077 * canonical balance cpu. Otherwise the sched_domain iteration
6078 * breaks. See update_sg_lb_stats().
6080 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6081 group_balance_cpu(sg) == cpu)
6091 sd->groups = groups;
6096 free_sched_groups(first, 0);
6101 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6103 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6104 struct sched_domain *child = sd->child;
6107 cpu = cpumask_first(sched_domain_span(child));
6110 *sg = *per_cpu_ptr(sdd->sg, cpu);
6111 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6112 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6119 * build_sched_groups will build a circular linked list of the groups
6120 * covered by the given span, and will set each group's ->cpumask correctly,
6121 * and ->cpu_capacity to 0.
6123 * Assumes the sched_domain tree is fully constructed
6126 build_sched_groups(struct sched_domain *sd, int cpu)
6128 struct sched_group *first = NULL, *last = NULL;
6129 struct sd_data *sdd = sd->private;
6130 const struct cpumask *span = sched_domain_span(sd);
6131 struct cpumask *covered;
6134 get_group(cpu, sdd, &sd->groups);
6135 atomic_inc(&sd->groups->ref);
6137 if (cpu != cpumask_first(span))
6140 lockdep_assert_held(&sched_domains_mutex);
6141 covered = sched_domains_tmpmask;
6143 cpumask_clear(covered);
6145 for_each_cpu(i, span) {
6146 struct sched_group *sg;
6149 if (cpumask_test_cpu(i, covered))
6152 group = get_group(i, sdd, &sg);
6153 cpumask_setall(sched_group_mask(sg));
6155 for_each_cpu(j, span) {
6156 if (get_group(j, sdd, NULL) != group)
6159 cpumask_set_cpu(j, covered);
6160 cpumask_set_cpu(j, sched_group_cpus(sg));
6175 * Initialize sched groups cpu_capacity.
6177 * cpu_capacity indicates the capacity of sched group, which is used while
6178 * distributing the load between different sched groups in a sched domain.
6179 * Typically cpu_capacity for all the groups in a sched domain will be same
6180 * unless there are asymmetries in the topology. If there are asymmetries,
6181 * group having more cpu_capacity will pickup more load compared to the
6182 * group having less cpu_capacity.
6184 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6186 struct sched_group *sg = sd->groups;
6191 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6193 } while (sg != sd->groups);
6195 if (cpu != group_balance_cpu(sg))
6198 update_group_capacity(sd, cpu);
6199 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6203 * Initializers for schedule domains
6204 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6207 static int default_relax_domain_level = -1;
6208 int sched_domain_level_max;
6210 static int __init setup_relax_domain_level(char *str)
6212 if (kstrtoint(str, 0, &default_relax_domain_level))
6213 pr_warn("Unable to set relax_domain_level\n");
6217 __setup("relax_domain_level=", setup_relax_domain_level);
6219 static void set_domain_attribute(struct sched_domain *sd,
6220 struct sched_domain_attr *attr)
6224 if (!attr || attr->relax_domain_level < 0) {
6225 if (default_relax_domain_level < 0)
6228 request = default_relax_domain_level;
6230 request = attr->relax_domain_level;
6231 if (request < sd->level) {
6232 /* turn off idle balance on this domain */
6233 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6235 /* turn on idle balance on this domain */
6236 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6240 static void __sdt_free(const struct cpumask *cpu_map);
6241 static int __sdt_alloc(const struct cpumask *cpu_map);
6243 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6244 const struct cpumask *cpu_map)
6248 if (!atomic_read(&d->rd->refcount))
6249 free_rootdomain(&d->rd->rcu); /* fall through */
6251 free_percpu(d->sd); /* fall through */
6253 __sdt_free(cpu_map); /* fall through */
6259 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6260 const struct cpumask *cpu_map)
6262 memset(d, 0, sizeof(*d));
6264 if (__sdt_alloc(cpu_map))
6265 return sa_sd_storage;
6266 d->sd = alloc_percpu(struct sched_domain *);
6268 return sa_sd_storage;
6269 d->rd = alloc_rootdomain();
6272 return sa_rootdomain;
6276 * NULL the sd_data elements we've used to build the sched_domain and
6277 * sched_group structure so that the subsequent __free_domain_allocs()
6278 * will not free the data we're using.
6280 static void claim_allocations(int cpu, struct sched_domain *sd)
6282 struct sd_data *sdd = sd->private;
6284 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6285 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6287 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6288 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6290 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6291 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6295 static int sched_domains_numa_levels;
6296 enum numa_topology_type sched_numa_topology_type;
6297 static int *sched_domains_numa_distance;
6298 int sched_max_numa_distance;
6299 static struct cpumask ***sched_domains_numa_masks;
6300 static int sched_domains_curr_level;
6304 * SD_flags allowed in topology descriptions.
6306 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6307 * SD_SHARE_PKG_RESOURCES - describes shared caches
6308 * SD_NUMA - describes NUMA topologies
6309 * SD_SHARE_POWERDOMAIN - describes shared power domain
6312 * SD_ASYM_PACKING - describes SMT quirks
6314 #define TOPOLOGY_SD_FLAGS \
6315 (SD_SHARE_CPUCAPACITY | \
6316 SD_SHARE_PKG_RESOURCES | \
6319 SD_SHARE_POWERDOMAIN)
6321 static struct sched_domain *
6322 sd_init(struct sched_domain_topology_level *tl, int cpu)
6324 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6325 int sd_weight, sd_flags = 0;
6329 * Ugly hack to pass state to sd_numa_mask()...
6331 sched_domains_curr_level = tl->numa_level;
6334 sd_weight = cpumask_weight(tl->mask(cpu));
6337 sd_flags = (*tl->sd_flags)();
6338 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6339 "wrong sd_flags in topology description\n"))
6340 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6342 *sd = (struct sched_domain){
6343 .min_interval = sd_weight,
6344 .max_interval = 2*sd_weight,
6346 .imbalance_pct = 125,
6348 .cache_nice_tries = 0,
6355 .flags = 1*SD_LOAD_BALANCE
6356 | 1*SD_BALANCE_NEWIDLE
6361 | 0*SD_SHARE_CPUCAPACITY
6362 | 0*SD_SHARE_PKG_RESOURCES
6364 | 0*SD_PREFER_SIBLING
6369 .last_balance = jiffies,
6370 .balance_interval = sd_weight,
6372 .max_newidle_lb_cost = 0,
6373 .next_decay_max_lb_cost = jiffies,
6374 #ifdef CONFIG_SCHED_DEBUG
6380 * Convert topological properties into behaviour.
6383 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6384 sd->flags |= SD_PREFER_SIBLING;
6385 sd->imbalance_pct = 110;
6386 sd->smt_gain = 1178; /* ~15% */
6388 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6389 sd->imbalance_pct = 117;
6390 sd->cache_nice_tries = 1;
6394 } else if (sd->flags & SD_NUMA) {
6395 sd->cache_nice_tries = 2;
6399 sd->flags |= SD_SERIALIZE;
6400 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6401 sd->flags &= ~(SD_BALANCE_EXEC |
6408 sd->flags |= SD_PREFER_SIBLING;
6409 sd->cache_nice_tries = 1;
6414 sd->private = &tl->data;
6420 * Topology list, bottom-up.
6422 static struct sched_domain_topology_level default_topology[] = {
6423 #ifdef CONFIG_SCHED_SMT
6424 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6426 #ifdef CONFIG_SCHED_MC
6427 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6429 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6433 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6435 #define for_each_sd_topology(tl) \
6436 for (tl = sched_domain_topology; tl->mask; tl++)
6438 void set_sched_topology(struct sched_domain_topology_level *tl)
6440 sched_domain_topology = tl;
6445 static const struct cpumask *sd_numa_mask(int cpu)
6447 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6450 static void sched_numa_warn(const char *str)
6452 static int done = false;
6460 printk(KERN_WARNING "ERROR: %s\n\n", str);
6462 for (i = 0; i < nr_node_ids; i++) {
6463 printk(KERN_WARNING " ");
6464 for (j = 0; j < nr_node_ids; j++)
6465 printk(KERN_CONT "%02d ", node_distance(i,j));
6466 printk(KERN_CONT "\n");
6468 printk(KERN_WARNING "\n");
6471 bool find_numa_distance(int distance)
6475 if (distance == node_distance(0, 0))
6478 for (i = 0; i < sched_domains_numa_levels; i++) {
6479 if (sched_domains_numa_distance[i] == distance)
6487 * A system can have three types of NUMA topology:
6488 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6489 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6490 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6492 * The difference between a glueless mesh topology and a backplane
6493 * topology lies in whether communication between not directly
6494 * connected nodes goes through intermediary nodes (where programs
6495 * could run), or through backplane controllers. This affects
6496 * placement of programs.
6498 * The type of topology can be discerned with the following tests:
6499 * - If the maximum distance between any nodes is 1 hop, the system
6500 * is directly connected.
6501 * - If for two nodes A and B, located N > 1 hops away from each other,
6502 * there is an intermediary node C, which is < N hops away from both
6503 * nodes A and B, the system is a glueless mesh.
6505 static void init_numa_topology_type(void)
6509 n = sched_max_numa_distance;
6511 if (sched_domains_numa_levels <= 1) {
6512 sched_numa_topology_type = NUMA_DIRECT;
6516 for_each_online_node(a) {
6517 for_each_online_node(b) {
6518 /* Find two nodes furthest removed from each other. */
6519 if (node_distance(a, b) < n)
6522 /* Is there an intermediary node between a and b? */
6523 for_each_online_node(c) {
6524 if (node_distance(a, c) < n &&
6525 node_distance(b, c) < n) {
6526 sched_numa_topology_type =
6532 sched_numa_topology_type = NUMA_BACKPLANE;
6538 static void sched_init_numa(void)
6540 int next_distance, curr_distance = node_distance(0, 0);
6541 struct sched_domain_topology_level *tl;
6545 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6546 if (!sched_domains_numa_distance)
6550 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6551 * unique distances in the node_distance() table.
6553 * Assumes node_distance(0,j) includes all distances in
6554 * node_distance(i,j) in order to avoid cubic time.
6556 next_distance = curr_distance;
6557 for (i = 0; i < nr_node_ids; i++) {
6558 for (j = 0; j < nr_node_ids; j++) {
6559 for (k = 0; k < nr_node_ids; k++) {
6560 int distance = node_distance(i, k);
6562 if (distance > curr_distance &&
6563 (distance < next_distance ||
6564 next_distance == curr_distance))
6565 next_distance = distance;
6568 * While not a strong assumption it would be nice to know
6569 * about cases where if node A is connected to B, B is not
6570 * equally connected to A.
6572 if (sched_debug() && node_distance(k, i) != distance)
6573 sched_numa_warn("Node-distance not symmetric");
6575 if (sched_debug() && i && !find_numa_distance(distance))
6576 sched_numa_warn("Node-0 not representative");
6578 if (next_distance != curr_distance) {
6579 sched_domains_numa_distance[level++] = next_distance;
6580 sched_domains_numa_levels = level;
6581 curr_distance = next_distance;
6586 * In case of sched_debug() we verify the above assumption.
6596 * 'level' contains the number of unique distances, excluding the
6597 * identity distance node_distance(i,i).
6599 * The sched_domains_numa_distance[] array includes the actual distance
6604 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6605 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6606 * the array will contain less then 'level' members. This could be
6607 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6608 * in other functions.
6610 * We reset it to 'level' at the end of this function.
6612 sched_domains_numa_levels = 0;
6614 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6615 if (!sched_domains_numa_masks)
6619 * Now for each level, construct a mask per node which contains all
6620 * cpus of nodes that are that many hops away from us.
6622 for (i = 0; i < level; i++) {
6623 sched_domains_numa_masks[i] =
6624 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6625 if (!sched_domains_numa_masks[i])
6628 for (j = 0; j < nr_node_ids; j++) {
6629 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6633 sched_domains_numa_masks[i][j] = mask;
6635 for (k = 0; k < nr_node_ids; k++) {
6636 if (node_distance(j, k) > sched_domains_numa_distance[i])
6639 cpumask_or(mask, mask, cpumask_of_node(k));
6644 /* Compute default topology size */
6645 for (i = 0; sched_domain_topology[i].mask; i++);
6647 tl = kzalloc((i + level + 1) *
6648 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6653 * Copy the default topology bits..
6655 for (i = 0; sched_domain_topology[i].mask; i++)
6656 tl[i] = sched_domain_topology[i];
6659 * .. and append 'j' levels of NUMA goodness.
6661 for (j = 0; j < level; i++, j++) {
6662 tl[i] = (struct sched_domain_topology_level){
6663 .mask = sd_numa_mask,
6664 .sd_flags = cpu_numa_flags,
6665 .flags = SDTL_OVERLAP,
6671 sched_domain_topology = tl;
6673 sched_domains_numa_levels = level;
6674 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6676 init_numa_topology_type();
6679 static void sched_domains_numa_masks_set(int cpu)
6682 int node = cpu_to_node(cpu);
6684 for (i = 0; i < sched_domains_numa_levels; i++) {
6685 for (j = 0; j < nr_node_ids; j++) {
6686 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6687 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6692 static void sched_domains_numa_masks_clear(int cpu)
6695 for (i = 0; i < sched_domains_numa_levels; i++) {
6696 for (j = 0; j < nr_node_ids; j++)
6697 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6702 * Update sched_domains_numa_masks[level][node] array when new cpus
6705 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6706 unsigned long action,
6709 int cpu = (long)hcpu;
6711 switch (action & ~CPU_TASKS_FROZEN) {
6713 sched_domains_numa_masks_set(cpu);
6717 sched_domains_numa_masks_clear(cpu);
6727 static inline void sched_init_numa(void)
6731 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6732 unsigned long action,
6737 #endif /* CONFIG_NUMA */
6739 static int __sdt_alloc(const struct cpumask *cpu_map)
6741 struct sched_domain_topology_level *tl;
6744 for_each_sd_topology(tl) {
6745 struct sd_data *sdd = &tl->data;
6747 sdd->sd = alloc_percpu(struct sched_domain *);
6751 sdd->sg = alloc_percpu(struct sched_group *);
6755 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6759 for_each_cpu(j, cpu_map) {
6760 struct sched_domain *sd;
6761 struct sched_group *sg;
6762 struct sched_group_capacity *sgc;
6764 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6765 GFP_KERNEL, cpu_to_node(j));
6769 *per_cpu_ptr(sdd->sd, j) = sd;
6771 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6772 GFP_KERNEL, cpu_to_node(j));
6778 *per_cpu_ptr(sdd->sg, j) = sg;
6780 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6781 GFP_KERNEL, cpu_to_node(j));
6785 *per_cpu_ptr(sdd->sgc, j) = sgc;
6792 static void __sdt_free(const struct cpumask *cpu_map)
6794 struct sched_domain_topology_level *tl;
6797 for_each_sd_topology(tl) {
6798 struct sd_data *sdd = &tl->data;
6800 for_each_cpu(j, cpu_map) {
6801 struct sched_domain *sd;
6804 sd = *per_cpu_ptr(sdd->sd, j);
6805 if (sd && (sd->flags & SD_OVERLAP))
6806 free_sched_groups(sd->groups, 0);
6807 kfree(*per_cpu_ptr(sdd->sd, j));
6811 kfree(*per_cpu_ptr(sdd->sg, j));
6813 kfree(*per_cpu_ptr(sdd->sgc, j));
6815 free_percpu(sdd->sd);
6817 free_percpu(sdd->sg);
6819 free_percpu(sdd->sgc);
6824 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6825 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6826 struct sched_domain *child, int cpu)
6828 struct sched_domain *sd = sd_init(tl, cpu);
6832 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6834 sd->level = child->level + 1;
6835 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6839 if (!cpumask_subset(sched_domain_span(child),
6840 sched_domain_span(sd))) {
6841 pr_err("BUG: arch topology borken\n");
6842 #ifdef CONFIG_SCHED_DEBUG
6843 pr_err(" the %s domain not a subset of the %s domain\n",
6844 child->name, sd->name);
6846 /* Fixup, ensure @sd has at least @child cpus. */
6847 cpumask_or(sched_domain_span(sd),
6848 sched_domain_span(sd),
6849 sched_domain_span(child));
6853 set_domain_attribute(sd, attr);
6859 * Build sched domains for a given set of cpus and attach the sched domains
6860 * to the individual cpus
6862 static int build_sched_domains(const struct cpumask *cpu_map,
6863 struct sched_domain_attr *attr)
6865 enum s_alloc alloc_state;
6866 struct sched_domain *sd;
6868 int i, ret = -ENOMEM;
6870 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6871 if (alloc_state != sa_rootdomain)
6874 /* Set up domains for cpus specified by the cpu_map. */
6875 for_each_cpu(i, cpu_map) {
6876 struct sched_domain_topology_level *tl;
6879 for_each_sd_topology(tl) {
6880 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6881 if (tl == sched_domain_topology)
6882 *per_cpu_ptr(d.sd, i) = sd;
6883 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6884 sd->flags |= SD_OVERLAP;
6885 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6890 /* Build the groups for the domains */
6891 for_each_cpu(i, cpu_map) {
6892 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6893 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6894 if (sd->flags & SD_OVERLAP) {
6895 if (build_overlap_sched_groups(sd, i))
6898 if (build_sched_groups(sd, i))
6904 /* Calculate CPU capacity for physical packages and nodes */
6905 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6906 if (!cpumask_test_cpu(i, cpu_map))
6909 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6910 claim_allocations(i, sd);
6911 init_sched_groups_capacity(i, sd);
6915 /* Attach the domains */
6917 for_each_cpu(i, cpu_map) {
6918 sd = *per_cpu_ptr(d.sd, i);
6919 cpu_attach_domain(sd, d.rd, i);
6925 __free_domain_allocs(&d, alloc_state, cpu_map);
6929 static cpumask_var_t *doms_cur; /* current sched domains */
6930 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6931 static struct sched_domain_attr *dattr_cur;
6932 /* attribues of custom domains in 'doms_cur' */
6935 * Special case: If a kmalloc of a doms_cur partition (array of
6936 * cpumask) fails, then fallback to a single sched domain,
6937 * as determined by the single cpumask fallback_doms.
6939 static cpumask_var_t fallback_doms;
6942 * arch_update_cpu_topology lets virtualized architectures update the
6943 * cpu core maps. It is supposed to return 1 if the topology changed
6944 * or 0 if it stayed the same.
6946 int __weak arch_update_cpu_topology(void)
6951 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6954 cpumask_var_t *doms;
6956 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6959 for (i = 0; i < ndoms; i++) {
6960 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6961 free_sched_domains(doms, i);
6968 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6971 for (i = 0; i < ndoms; i++)
6972 free_cpumask_var(doms[i]);
6977 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6978 * For now this just excludes isolated cpus, but could be used to
6979 * exclude other special cases in the future.
6981 static int init_sched_domains(const struct cpumask *cpu_map)
6985 arch_update_cpu_topology();
6987 doms_cur = alloc_sched_domains(ndoms_cur);
6989 doms_cur = &fallback_doms;
6990 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6991 err = build_sched_domains(doms_cur[0], NULL);
6992 register_sched_domain_sysctl();
6998 * Detach sched domains from a group of cpus specified in cpu_map
6999 * These cpus will now be attached to the NULL domain
7001 static void detach_destroy_domains(const struct cpumask *cpu_map)
7006 for_each_cpu(i, cpu_map)
7007 cpu_attach_domain(NULL, &def_root_domain, i);
7011 /* handle null as "default" */
7012 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7013 struct sched_domain_attr *new, int idx_new)
7015 struct sched_domain_attr tmp;
7022 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7023 new ? (new + idx_new) : &tmp,
7024 sizeof(struct sched_domain_attr));
7028 * Partition sched domains as specified by the 'ndoms_new'
7029 * cpumasks in the array doms_new[] of cpumasks. This compares
7030 * doms_new[] to the current sched domain partitioning, doms_cur[].
7031 * It destroys each deleted domain and builds each new domain.
7033 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7034 * The masks don't intersect (don't overlap.) We should setup one
7035 * sched domain for each mask. CPUs not in any of the cpumasks will
7036 * not be load balanced. If the same cpumask appears both in the
7037 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7040 * The passed in 'doms_new' should be allocated using
7041 * alloc_sched_domains. This routine takes ownership of it and will
7042 * free_sched_domains it when done with it. If the caller failed the
7043 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7044 * and partition_sched_domains() will fallback to the single partition
7045 * 'fallback_doms', it also forces the domains to be rebuilt.
7047 * If doms_new == NULL it will be replaced with cpu_online_mask.
7048 * ndoms_new == 0 is a special case for destroying existing domains,
7049 * and it will not create the default domain.
7051 * Call with hotplug lock held
7053 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7054 struct sched_domain_attr *dattr_new)
7059 mutex_lock(&sched_domains_mutex);
7061 /* always unregister in case we don't destroy any domains */
7062 unregister_sched_domain_sysctl();
7064 /* Let architecture update cpu core mappings. */
7065 new_topology = arch_update_cpu_topology();
7067 n = doms_new ? ndoms_new : 0;
7069 /* Destroy deleted domains */
7070 for (i = 0; i < ndoms_cur; i++) {
7071 for (j = 0; j < n && !new_topology; j++) {
7072 if (cpumask_equal(doms_cur[i], doms_new[j])
7073 && dattrs_equal(dattr_cur, i, dattr_new, j))
7076 /* no match - a current sched domain not in new doms_new[] */
7077 detach_destroy_domains(doms_cur[i]);
7083 if (doms_new == NULL) {
7085 doms_new = &fallback_doms;
7086 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7087 WARN_ON_ONCE(dattr_new);
7090 /* Build new domains */
7091 for (i = 0; i < ndoms_new; i++) {
7092 for (j = 0; j < n && !new_topology; j++) {
7093 if (cpumask_equal(doms_new[i], doms_cur[j])
7094 && dattrs_equal(dattr_new, i, dattr_cur, j))
7097 /* no match - add a new doms_new */
7098 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7103 /* Remember the new sched domains */
7104 if (doms_cur != &fallback_doms)
7105 free_sched_domains(doms_cur, ndoms_cur);
7106 kfree(dattr_cur); /* kfree(NULL) is safe */
7107 doms_cur = doms_new;
7108 dattr_cur = dattr_new;
7109 ndoms_cur = ndoms_new;
7111 register_sched_domain_sysctl();
7113 mutex_unlock(&sched_domains_mutex);
7116 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7119 * Update cpusets according to cpu_active mask. If cpusets are
7120 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7121 * around partition_sched_domains().
7123 * If we come here as part of a suspend/resume, don't touch cpusets because we
7124 * want to restore it back to its original state upon resume anyway.
7126 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7130 case CPU_ONLINE_FROZEN:
7131 case CPU_DOWN_FAILED_FROZEN:
7134 * num_cpus_frozen tracks how many CPUs are involved in suspend
7135 * resume sequence. As long as this is not the last online
7136 * operation in the resume sequence, just build a single sched
7137 * domain, ignoring cpusets.
7140 if (likely(num_cpus_frozen)) {
7141 partition_sched_domains(1, NULL, NULL);
7146 * This is the last CPU online operation. So fall through and
7147 * restore the original sched domains by considering the
7148 * cpuset configurations.
7152 cpuset_update_active_cpus(true);
7160 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7163 unsigned long flags;
7164 long cpu = (long)hcpu;
7170 case CPU_DOWN_PREPARE:
7171 rcu_read_lock_sched();
7172 dl_b = dl_bw_of(cpu);
7174 raw_spin_lock_irqsave(&dl_b->lock, flags);
7175 cpus = dl_bw_cpus(cpu);
7176 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7177 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7179 rcu_read_unlock_sched();
7182 return notifier_from_errno(-EBUSY);
7183 cpuset_update_active_cpus(false);
7185 case CPU_DOWN_PREPARE_FROZEN:
7187 partition_sched_domains(1, NULL, NULL);
7195 void __init sched_init_smp(void)
7197 cpumask_var_t non_isolated_cpus;
7199 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7200 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7202 /* nohz_full won't take effect without isolating the cpus. */
7203 tick_nohz_full_add_cpus_to(cpu_isolated_map);
7208 * There's no userspace yet to cause hotplug operations; hence all the
7209 * cpu masks are stable and all blatant races in the below code cannot
7212 mutex_lock(&sched_domains_mutex);
7213 init_sched_domains(cpu_active_mask);
7214 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7215 if (cpumask_empty(non_isolated_cpus))
7216 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7217 mutex_unlock(&sched_domains_mutex);
7219 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7220 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7221 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7225 /* Move init over to a non-isolated CPU */
7226 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7228 sched_init_granularity();
7229 free_cpumask_var(non_isolated_cpus);
7231 init_sched_rt_class();
7232 init_sched_dl_class();
7235 void __init sched_init_smp(void)
7237 sched_init_granularity();
7239 #endif /* CONFIG_SMP */
7241 int in_sched_functions(unsigned long addr)
7243 return in_lock_functions(addr) ||
7244 (addr >= (unsigned long)__sched_text_start
7245 && addr < (unsigned long)__sched_text_end);
7248 #ifdef CONFIG_CGROUP_SCHED
7250 * Default task group.
7251 * Every task in system belongs to this group at bootup.
7253 struct task_group root_task_group;
7254 LIST_HEAD(task_groups);
7257 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7259 void __init sched_init(void)
7262 unsigned long alloc_size = 0, ptr;
7264 #ifdef CONFIG_FAIR_GROUP_SCHED
7265 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7267 #ifdef CONFIG_RT_GROUP_SCHED
7268 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7271 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7273 #ifdef CONFIG_FAIR_GROUP_SCHED
7274 root_task_group.se = (struct sched_entity **)ptr;
7275 ptr += nr_cpu_ids * sizeof(void **);
7277 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7278 ptr += nr_cpu_ids * sizeof(void **);
7280 #endif /* CONFIG_FAIR_GROUP_SCHED */
7281 #ifdef CONFIG_RT_GROUP_SCHED
7282 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7283 ptr += nr_cpu_ids * sizeof(void **);
7285 root_task_group.rt_rq = (struct rt_rq **)ptr;
7286 ptr += nr_cpu_ids * sizeof(void **);
7288 #endif /* CONFIG_RT_GROUP_SCHED */
7290 #ifdef CONFIG_CPUMASK_OFFSTACK
7291 for_each_possible_cpu(i) {
7292 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7293 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7295 #endif /* CONFIG_CPUMASK_OFFSTACK */
7297 init_rt_bandwidth(&def_rt_bandwidth,
7298 global_rt_period(), global_rt_runtime());
7299 init_dl_bandwidth(&def_dl_bandwidth,
7300 global_rt_period(), global_rt_runtime());
7303 init_defrootdomain();
7306 #ifdef CONFIG_RT_GROUP_SCHED
7307 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7308 global_rt_period(), global_rt_runtime());
7309 #endif /* CONFIG_RT_GROUP_SCHED */
7311 #ifdef CONFIG_CGROUP_SCHED
7312 list_add(&root_task_group.list, &task_groups);
7313 INIT_LIST_HEAD(&root_task_group.children);
7314 INIT_LIST_HEAD(&root_task_group.siblings);
7315 autogroup_init(&init_task);
7317 #endif /* CONFIG_CGROUP_SCHED */
7319 for_each_possible_cpu(i) {
7323 raw_spin_lock_init(&rq->lock);
7325 rq->calc_load_active = 0;
7326 rq->calc_load_update = jiffies + LOAD_FREQ;
7327 init_cfs_rq(&rq->cfs);
7328 init_rt_rq(&rq->rt);
7329 init_dl_rq(&rq->dl);
7330 #ifdef CONFIG_FAIR_GROUP_SCHED
7331 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7332 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7334 * How much cpu bandwidth does root_task_group get?
7336 * In case of task-groups formed thr' the cgroup filesystem, it
7337 * gets 100% of the cpu resources in the system. This overall
7338 * system cpu resource is divided among the tasks of
7339 * root_task_group and its child task-groups in a fair manner,
7340 * based on each entity's (task or task-group's) weight
7341 * (se->load.weight).
7343 * In other words, if root_task_group has 10 tasks of weight
7344 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7345 * then A0's share of the cpu resource is:
7347 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7349 * We achieve this by letting root_task_group's tasks sit
7350 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7352 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7353 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7354 #endif /* CONFIG_FAIR_GROUP_SCHED */
7356 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7357 #ifdef CONFIG_RT_GROUP_SCHED
7358 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7361 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7362 rq->cpu_load[j] = 0;
7364 rq->last_load_update_tick = jiffies;
7369 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7370 rq->balance_callback = NULL;
7371 rq->active_balance = 0;
7372 rq->next_balance = jiffies;
7377 rq->avg_idle = 2*sysctl_sched_migration_cost;
7378 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7380 INIT_LIST_HEAD(&rq->cfs_tasks);
7382 rq_attach_root(rq, &def_root_domain);
7383 #ifdef CONFIG_NO_HZ_COMMON
7386 #ifdef CONFIG_NO_HZ_FULL
7387 rq->last_sched_tick = 0;
7391 atomic_set(&rq->nr_iowait, 0);
7394 set_load_weight(&init_task);
7396 #ifdef CONFIG_PREEMPT_NOTIFIERS
7397 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7401 * The boot idle thread does lazy MMU switching as well:
7403 atomic_inc(&init_mm.mm_count);
7404 enter_lazy_tlb(&init_mm, current);
7407 * During early bootup we pretend to be a normal task:
7409 current->sched_class = &fair_sched_class;
7412 * Make us the idle thread. Technically, schedule() should not be
7413 * called from this thread, however somewhere below it might be,
7414 * but because we are the idle thread, we just pick up running again
7415 * when this runqueue becomes "idle".
7417 init_idle(current, smp_processor_id());
7419 calc_load_update = jiffies + LOAD_FREQ;
7422 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7423 /* May be allocated at isolcpus cmdline parse time */
7424 if (cpu_isolated_map == NULL)
7425 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7426 idle_thread_set_boot_cpu();
7427 set_cpu_rq_start_time();
7429 init_sched_fair_class();
7431 scheduler_running = 1;
7434 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7435 static inline int preempt_count_equals(int preempt_offset)
7437 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7439 return (nested == preempt_offset);
7442 void __might_sleep(const char *file, int line, int preempt_offset)
7445 * Blocking primitives will set (and therefore destroy) current->state,
7446 * since we will exit with TASK_RUNNING make sure we enter with it,
7447 * otherwise we will destroy state.
7449 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7450 "do not call blocking ops when !TASK_RUNNING; "
7451 "state=%lx set at [<%p>] %pS\n",
7453 (void *)current->task_state_change,
7454 (void *)current->task_state_change);
7456 ___might_sleep(file, line, preempt_offset);
7458 EXPORT_SYMBOL(__might_sleep);
7460 void ___might_sleep(const char *file, int line, int preempt_offset)
7462 static unsigned long prev_jiffy; /* ratelimiting */
7464 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7465 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7466 !is_idle_task(current)) ||
7467 system_state != SYSTEM_RUNNING || oops_in_progress)
7469 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7471 prev_jiffy = jiffies;
7474 "BUG: sleeping function called from invalid context at %s:%d\n",
7477 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7478 in_atomic(), irqs_disabled(),
7479 current->pid, current->comm);
7481 if (task_stack_end_corrupted(current))
7482 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7484 debug_show_held_locks(current);
7485 if (irqs_disabled())
7486 print_irqtrace_events(current);
7487 #ifdef CONFIG_DEBUG_PREEMPT
7488 if (!preempt_count_equals(preempt_offset)) {
7489 pr_err("Preemption disabled at:");
7490 print_ip_sym(current->preempt_disable_ip);
7496 EXPORT_SYMBOL(___might_sleep);
7499 #ifdef CONFIG_MAGIC_SYSRQ
7500 void normalize_rt_tasks(void)
7502 struct task_struct *g, *p;
7503 struct sched_attr attr = {
7504 .sched_policy = SCHED_NORMAL,
7507 read_lock(&tasklist_lock);
7508 for_each_process_thread(g, p) {
7510 * Only normalize user tasks:
7512 if (p->flags & PF_KTHREAD)
7515 p->se.exec_start = 0;
7516 #ifdef CONFIG_SCHEDSTATS
7517 p->se.statistics.wait_start = 0;
7518 p->se.statistics.sleep_start = 0;
7519 p->se.statistics.block_start = 0;
7522 if (!dl_task(p) && !rt_task(p)) {
7524 * Renice negative nice level userspace
7527 if (task_nice(p) < 0)
7528 set_user_nice(p, 0);
7532 __sched_setscheduler(p, &attr, false, false);
7534 read_unlock(&tasklist_lock);
7537 #endif /* CONFIG_MAGIC_SYSRQ */
7539 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7541 * These functions are only useful for the IA64 MCA handling, or kdb.
7543 * They can only be called when the whole system has been
7544 * stopped - every CPU needs to be quiescent, and no scheduling
7545 * activity can take place. Using them for anything else would
7546 * be a serious bug, and as a result, they aren't even visible
7547 * under any other configuration.
7551 * curr_task - return the current task for a given cpu.
7552 * @cpu: the processor in question.
7554 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7556 * Return: The current task for @cpu.
7558 struct task_struct *curr_task(int cpu)
7560 return cpu_curr(cpu);
7563 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7567 * set_curr_task - set the current task for a given cpu.
7568 * @cpu: the processor in question.
7569 * @p: the task pointer to set.
7571 * Description: This function must only be used when non-maskable interrupts
7572 * are serviced on a separate stack. It allows the architecture to switch the
7573 * notion of the current task on a cpu in a non-blocking manner. This function
7574 * must be called with all CPU's synchronized, and interrupts disabled, the
7575 * and caller must save the original value of the current task (see
7576 * curr_task() above) and restore that value before reenabling interrupts and
7577 * re-starting the system.
7579 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7581 void set_curr_task(int cpu, struct task_struct *p)
7588 #ifdef CONFIG_CGROUP_SCHED
7589 /* task_group_lock serializes the addition/removal of task groups */
7590 static DEFINE_SPINLOCK(task_group_lock);
7592 static void free_sched_group(struct task_group *tg)
7594 free_fair_sched_group(tg);
7595 free_rt_sched_group(tg);
7600 /* allocate runqueue etc for a new task group */
7601 struct task_group *sched_create_group(struct task_group *parent)
7603 struct task_group *tg;
7605 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7607 return ERR_PTR(-ENOMEM);
7609 if (!alloc_fair_sched_group(tg, parent))
7612 if (!alloc_rt_sched_group(tg, parent))
7618 free_sched_group(tg);
7619 return ERR_PTR(-ENOMEM);
7622 void sched_online_group(struct task_group *tg, struct task_group *parent)
7624 unsigned long flags;
7626 spin_lock_irqsave(&task_group_lock, flags);
7627 list_add_rcu(&tg->list, &task_groups);
7629 WARN_ON(!parent); /* root should already exist */
7631 tg->parent = parent;
7632 INIT_LIST_HEAD(&tg->children);
7633 list_add_rcu(&tg->siblings, &parent->children);
7634 spin_unlock_irqrestore(&task_group_lock, flags);
7637 /* rcu callback to free various structures associated with a task group */
7638 static void free_sched_group_rcu(struct rcu_head *rhp)
7640 /* now it should be safe to free those cfs_rqs */
7641 free_sched_group(container_of(rhp, struct task_group, rcu));
7644 /* Destroy runqueue etc associated with a task group */
7645 void sched_destroy_group(struct task_group *tg)
7647 /* wait for possible concurrent references to cfs_rqs complete */
7648 call_rcu(&tg->rcu, free_sched_group_rcu);
7651 void sched_offline_group(struct task_group *tg)
7653 unsigned long flags;
7656 /* end participation in shares distribution */
7657 for_each_possible_cpu(i)
7658 unregister_fair_sched_group(tg, i);
7660 spin_lock_irqsave(&task_group_lock, flags);
7661 list_del_rcu(&tg->list);
7662 list_del_rcu(&tg->siblings);
7663 spin_unlock_irqrestore(&task_group_lock, flags);
7666 /* change task's runqueue when it moves between groups.
7667 * The caller of this function should have put the task in its new group
7668 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7669 * reflect its new group.
7671 void sched_move_task(struct task_struct *tsk)
7673 struct task_group *tg;
7674 int queued, running;
7675 unsigned long flags;
7678 rq = task_rq_lock(tsk, &flags);
7680 running = task_current(rq, tsk);
7681 queued = task_on_rq_queued(tsk);
7684 dequeue_task(rq, tsk, 0);
7685 if (unlikely(running))
7686 put_prev_task(rq, tsk);
7689 * All callers are synchronized by task_rq_lock(); we do not use RCU
7690 * which is pointless here. Thus, we pass "true" to task_css_check()
7691 * to prevent lockdep warnings.
7693 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7694 struct task_group, css);
7695 tg = autogroup_task_group(tsk, tg);
7696 tsk->sched_task_group = tg;
7698 #ifdef CONFIG_FAIR_GROUP_SCHED
7699 if (tsk->sched_class->task_move_group)
7700 tsk->sched_class->task_move_group(tsk, queued);
7703 set_task_rq(tsk, task_cpu(tsk));
7705 if (unlikely(running))
7706 tsk->sched_class->set_curr_task(rq);
7708 enqueue_task(rq, tsk, 0);
7710 task_rq_unlock(rq, tsk, &flags);
7712 #endif /* CONFIG_CGROUP_SCHED */
7714 #ifdef CONFIG_RT_GROUP_SCHED
7716 * Ensure that the real time constraints are schedulable.
7718 static DEFINE_MUTEX(rt_constraints_mutex);
7720 /* Must be called with tasklist_lock held */
7721 static inline int tg_has_rt_tasks(struct task_group *tg)
7723 struct task_struct *g, *p;
7726 * Autogroups do not have RT tasks; see autogroup_create().
7728 if (task_group_is_autogroup(tg))
7731 for_each_process_thread(g, p) {
7732 if (rt_task(p) && task_group(p) == tg)
7739 struct rt_schedulable_data {
7740 struct task_group *tg;
7745 static int tg_rt_schedulable(struct task_group *tg, void *data)
7747 struct rt_schedulable_data *d = data;
7748 struct task_group *child;
7749 unsigned long total, sum = 0;
7750 u64 period, runtime;
7752 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7753 runtime = tg->rt_bandwidth.rt_runtime;
7756 period = d->rt_period;
7757 runtime = d->rt_runtime;
7761 * Cannot have more runtime than the period.
7763 if (runtime > period && runtime != RUNTIME_INF)
7767 * Ensure we don't starve existing RT tasks.
7769 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7772 total = to_ratio(period, runtime);
7775 * Nobody can have more than the global setting allows.
7777 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7781 * The sum of our children's runtime should not exceed our own.
7783 list_for_each_entry_rcu(child, &tg->children, siblings) {
7784 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7785 runtime = child->rt_bandwidth.rt_runtime;
7787 if (child == d->tg) {
7788 period = d->rt_period;
7789 runtime = d->rt_runtime;
7792 sum += to_ratio(period, runtime);
7801 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7805 struct rt_schedulable_data data = {
7807 .rt_period = period,
7808 .rt_runtime = runtime,
7812 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7818 static int tg_set_rt_bandwidth(struct task_group *tg,
7819 u64 rt_period, u64 rt_runtime)
7824 * Disallowing the root group RT runtime is BAD, it would disallow the
7825 * kernel creating (and or operating) RT threads.
7827 if (tg == &root_task_group && rt_runtime == 0)
7830 /* No period doesn't make any sense. */
7834 mutex_lock(&rt_constraints_mutex);
7835 read_lock(&tasklist_lock);
7836 err = __rt_schedulable(tg, rt_period, rt_runtime);
7840 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7841 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7842 tg->rt_bandwidth.rt_runtime = rt_runtime;
7844 for_each_possible_cpu(i) {
7845 struct rt_rq *rt_rq = tg->rt_rq[i];
7847 raw_spin_lock(&rt_rq->rt_runtime_lock);
7848 rt_rq->rt_runtime = rt_runtime;
7849 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7851 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7853 read_unlock(&tasklist_lock);
7854 mutex_unlock(&rt_constraints_mutex);
7859 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7861 u64 rt_runtime, rt_period;
7863 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7864 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7865 if (rt_runtime_us < 0)
7866 rt_runtime = RUNTIME_INF;
7868 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7871 static long sched_group_rt_runtime(struct task_group *tg)
7875 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7878 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7879 do_div(rt_runtime_us, NSEC_PER_USEC);
7880 return rt_runtime_us;
7883 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7885 u64 rt_runtime, rt_period;
7887 rt_period = rt_period_us * NSEC_PER_USEC;
7888 rt_runtime = tg->rt_bandwidth.rt_runtime;
7890 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7893 static long sched_group_rt_period(struct task_group *tg)
7897 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7898 do_div(rt_period_us, NSEC_PER_USEC);
7899 return rt_period_us;
7901 #endif /* CONFIG_RT_GROUP_SCHED */
7903 #ifdef CONFIG_RT_GROUP_SCHED
7904 static int sched_rt_global_constraints(void)
7908 mutex_lock(&rt_constraints_mutex);
7909 read_lock(&tasklist_lock);
7910 ret = __rt_schedulable(NULL, 0, 0);
7911 read_unlock(&tasklist_lock);
7912 mutex_unlock(&rt_constraints_mutex);
7917 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7919 /* Don't accept realtime tasks when there is no way for them to run */
7920 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7926 #else /* !CONFIG_RT_GROUP_SCHED */
7927 static int sched_rt_global_constraints(void)
7929 unsigned long flags;
7932 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7933 for_each_possible_cpu(i) {
7934 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7936 raw_spin_lock(&rt_rq->rt_runtime_lock);
7937 rt_rq->rt_runtime = global_rt_runtime();
7938 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7940 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7944 #endif /* CONFIG_RT_GROUP_SCHED */
7946 static int sched_dl_global_validate(void)
7948 u64 runtime = global_rt_runtime();
7949 u64 period = global_rt_period();
7950 u64 new_bw = to_ratio(period, runtime);
7953 unsigned long flags;
7956 * Here we want to check the bandwidth not being set to some
7957 * value smaller than the currently allocated bandwidth in
7958 * any of the root_domains.
7960 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7961 * cycling on root_domains... Discussion on different/better
7962 * solutions is welcome!
7964 for_each_possible_cpu(cpu) {
7965 rcu_read_lock_sched();
7966 dl_b = dl_bw_of(cpu);
7968 raw_spin_lock_irqsave(&dl_b->lock, flags);
7969 if (new_bw < dl_b->total_bw)
7971 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7973 rcu_read_unlock_sched();
7982 static void sched_dl_do_global(void)
7987 unsigned long flags;
7989 def_dl_bandwidth.dl_period = global_rt_period();
7990 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7992 if (global_rt_runtime() != RUNTIME_INF)
7993 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7996 * FIXME: As above...
7998 for_each_possible_cpu(cpu) {
7999 rcu_read_lock_sched();
8000 dl_b = dl_bw_of(cpu);
8002 raw_spin_lock_irqsave(&dl_b->lock, flags);
8004 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8006 rcu_read_unlock_sched();
8010 static int sched_rt_global_validate(void)
8012 if (sysctl_sched_rt_period <= 0)
8015 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8016 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8022 static void sched_rt_do_global(void)
8024 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8025 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8028 int sched_rt_handler(struct ctl_table *table, int write,
8029 void __user *buffer, size_t *lenp,
8032 int old_period, old_runtime;
8033 static DEFINE_MUTEX(mutex);
8037 old_period = sysctl_sched_rt_period;
8038 old_runtime = sysctl_sched_rt_runtime;
8040 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8042 if (!ret && write) {
8043 ret = sched_rt_global_validate();
8047 ret = sched_dl_global_validate();
8051 ret = sched_rt_global_constraints();
8055 sched_rt_do_global();
8056 sched_dl_do_global();
8060 sysctl_sched_rt_period = old_period;
8061 sysctl_sched_rt_runtime = old_runtime;
8063 mutex_unlock(&mutex);
8068 int sched_rr_handler(struct ctl_table *table, int write,
8069 void __user *buffer, size_t *lenp,
8073 static DEFINE_MUTEX(mutex);
8076 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8077 /* make sure that internally we keep jiffies */
8078 /* also, writing zero resets timeslice to default */
8079 if (!ret && write) {
8080 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8081 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8083 mutex_unlock(&mutex);
8087 #ifdef CONFIG_CGROUP_SCHED
8089 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8091 return css ? container_of(css, struct task_group, css) : NULL;
8094 static struct cgroup_subsys_state *
8095 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8097 struct task_group *parent = css_tg(parent_css);
8098 struct task_group *tg;
8101 /* This is early initialization for the top cgroup */
8102 return &root_task_group.css;
8105 tg = sched_create_group(parent);
8107 return ERR_PTR(-ENOMEM);
8112 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8114 struct task_group *tg = css_tg(css);
8115 struct task_group *parent = css_tg(css->parent);
8118 sched_online_group(tg, parent);
8122 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8124 struct task_group *tg = css_tg(css);
8126 sched_destroy_group(tg);
8129 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8131 struct task_group *tg = css_tg(css);
8133 sched_offline_group(tg);
8136 static void cpu_cgroup_fork(struct task_struct *task, void *private)
8138 sched_move_task(task);
8141 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
8142 struct cgroup_taskset *tset)
8144 struct task_struct *task;
8146 cgroup_taskset_for_each(task, tset) {
8147 #ifdef CONFIG_RT_GROUP_SCHED
8148 if (!sched_rt_can_attach(css_tg(css), task))
8151 /* We don't support RT-tasks being in separate groups */
8152 if (task->sched_class != &fair_sched_class)
8159 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8160 struct cgroup_taskset *tset)
8162 struct task_struct *task;
8164 cgroup_taskset_for_each(task, tset)
8165 sched_move_task(task);
8168 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8169 struct cgroup_subsys_state *old_css,
8170 struct task_struct *task)
8173 * cgroup_exit() is called in the copy_process() failure path.
8174 * Ignore this case since the task hasn't ran yet, this avoids
8175 * trying to poke a half freed task state from generic code.
8177 if (!(task->flags & PF_EXITING))
8180 sched_move_task(task);
8183 #ifdef CONFIG_FAIR_GROUP_SCHED
8184 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8185 struct cftype *cftype, u64 shareval)
8187 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8190 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8193 struct task_group *tg = css_tg(css);
8195 return (u64) scale_load_down(tg->shares);
8198 #ifdef CONFIG_CFS_BANDWIDTH
8199 static DEFINE_MUTEX(cfs_constraints_mutex);
8201 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8202 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8204 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8206 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8208 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8209 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8211 if (tg == &root_task_group)
8215 * Ensure we have at some amount of bandwidth every period. This is
8216 * to prevent reaching a state of large arrears when throttled via
8217 * entity_tick() resulting in prolonged exit starvation.
8219 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8223 * Likewise, bound things on the otherside by preventing insane quota
8224 * periods. This also allows us to normalize in computing quota
8227 if (period > max_cfs_quota_period)
8231 * Prevent race between setting of cfs_rq->runtime_enabled and
8232 * unthrottle_offline_cfs_rqs().
8235 mutex_lock(&cfs_constraints_mutex);
8236 ret = __cfs_schedulable(tg, period, quota);
8240 runtime_enabled = quota != RUNTIME_INF;
8241 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8243 * If we need to toggle cfs_bandwidth_used, off->on must occur
8244 * before making related changes, and on->off must occur afterwards
8246 if (runtime_enabled && !runtime_was_enabled)
8247 cfs_bandwidth_usage_inc();
8248 raw_spin_lock_irq(&cfs_b->lock);
8249 cfs_b->period = ns_to_ktime(period);
8250 cfs_b->quota = quota;
8252 __refill_cfs_bandwidth_runtime(cfs_b);
8253 /* restart the period timer (if active) to handle new period expiry */
8254 if (runtime_enabled)
8255 start_cfs_bandwidth(cfs_b);
8256 raw_spin_unlock_irq(&cfs_b->lock);
8258 for_each_online_cpu(i) {
8259 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8260 struct rq *rq = cfs_rq->rq;
8262 raw_spin_lock_irq(&rq->lock);
8263 cfs_rq->runtime_enabled = runtime_enabled;
8264 cfs_rq->runtime_remaining = 0;
8266 if (cfs_rq->throttled)
8267 unthrottle_cfs_rq(cfs_rq);
8268 raw_spin_unlock_irq(&rq->lock);
8270 if (runtime_was_enabled && !runtime_enabled)
8271 cfs_bandwidth_usage_dec();
8273 mutex_unlock(&cfs_constraints_mutex);
8279 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8283 period = ktime_to_ns(tg->cfs_bandwidth.period);
8284 if (cfs_quota_us < 0)
8285 quota = RUNTIME_INF;
8287 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8289 return tg_set_cfs_bandwidth(tg, period, quota);
8292 long tg_get_cfs_quota(struct task_group *tg)
8296 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8299 quota_us = tg->cfs_bandwidth.quota;
8300 do_div(quota_us, NSEC_PER_USEC);
8305 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8309 period = (u64)cfs_period_us * NSEC_PER_USEC;
8310 quota = tg->cfs_bandwidth.quota;
8312 return tg_set_cfs_bandwidth(tg, period, quota);
8315 long tg_get_cfs_period(struct task_group *tg)
8319 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8320 do_div(cfs_period_us, NSEC_PER_USEC);
8322 return cfs_period_us;
8325 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8328 return tg_get_cfs_quota(css_tg(css));
8331 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8332 struct cftype *cftype, s64 cfs_quota_us)
8334 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8337 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8340 return tg_get_cfs_period(css_tg(css));
8343 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8344 struct cftype *cftype, u64 cfs_period_us)
8346 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8349 struct cfs_schedulable_data {
8350 struct task_group *tg;
8355 * normalize group quota/period to be quota/max_period
8356 * note: units are usecs
8358 static u64 normalize_cfs_quota(struct task_group *tg,
8359 struct cfs_schedulable_data *d)
8367 period = tg_get_cfs_period(tg);
8368 quota = tg_get_cfs_quota(tg);
8371 /* note: these should typically be equivalent */
8372 if (quota == RUNTIME_INF || quota == -1)
8375 return to_ratio(period, quota);
8378 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8380 struct cfs_schedulable_data *d = data;
8381 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8382 s64 quota = 0, parent_quota = -1;
8385 quota = RUNTIME_INF;
8387 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8389 quota = normalize_cfs_quota(tg, d);
8390 parent_quota = parent_b->hierarchical_quota;
8393 * ensure max(child_quota) <= parent_quota, inherit when no
8396 if (quota == RUNTIME_INF)
8397 quota = parent_quota;
8398 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8401 cfs_b->hierarchical_quota = quota;
8406 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8409 struct cfs_schedulable_data data = {
8415 if (quota != RUNTIME_INF) {
8416 do_div(data.period, NSEC_PER_USEC);
8417 do_div(data.quota, NSEC_PER_USEC);
8421 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8427 static int cpu_stats_show(struct seq_file *sf, void *v)
8429 struct task_group *tg = css_tg(seq_css(sf));
8430 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8432 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8433 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8434 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8438 #endif /* CONFIG_CFS_BANDWIDTH */
8439 #endif /* CONFIG_FAIR_GROUP_SCHED */
8441 #ifdef CONFIG_RT_GROUP_SCHED
8442 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8443 struct cftype *cft, s64 val)
8445 return sched_group_set_rt_runtime(css_tg(css), val);
8448 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8451 return sched_group_rt_runtime(css_tg(css));
8454 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8455 struct cftype *cftype, u64 rt_period_us)
8457 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8460 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8463 return sched_group_rt_period(css_tg(css));
8465 #endif /* CONFIG_RT_GROUP_SCHED */
8467 static struct cftype cpu_files[] = {
8468 #ifdef CONFIG_FAIR_GROUP_SCHED
8471 .read_u64 = cpu_shares_read_u64,
8472 .write_u64 = cpu_shares_write_u64,
8475 #ifdef CONFIG_CFS_BANDWIDTH
8477 .name = "cfs_quota_us",
8478 .read_s64 = cpu_cfs_quota_read_s64,
8479 .write_s64 = cpu_cfs_quota_write_s64,
8482 .name = "cfs_period_us",
8483 .read_u64 = cpu_cfs_period_read_u64,
8484 .write_u64 = cpu_cfs_period_write_u64,
8488 .seq_show = cpu_stats_show,
8491 #ifdef CONFIG_RT_GROUP_SCHED
8493 .name = "rt_runtime_us",
8494 .read_s64 = cpu_rt_runtime_read,
8495 .write_s64 = cpu_rt_runtime_write,
8498 .name = "rt_period_us",
8499 .read_u64 = cpu_rt_period_read_uint,
8500 .write_u64 = cpu_rt_period_write_uint,
8506 struct cgroup_subsys cpu_cgrp_subsys = {
8507 .css_alloc = cpu_cgroup_css_alloc,
8508 .css_free = cpu_cgroup_css_free,
8509 .css_online = cpu_cgroup_css_online,
8510 .css_offline = cpu_cgroup_css_offline,
8511 .fork = cpu_cgroup_fork,
8512 .can_attach = cpu_cgroup_can_attach,
8513 .attach = cpu_cgroup_attach,
8514 .exit = cpu_cgroup_exit,
8515 .legacy_cftypes = cpu_files,
8519 #endif /* CONFIG_CGROUP_SCHED */
8521 void dump_cpu_task(int cpu)
8523 pr_info("Task dump for CPU %d:\n", cpu);
8524 sched_show_task(cpu_curr(cpu));