2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
33 #include <trace/events/sched.h>
38 * Targeted preemption latency for CPU-bound tasks:
39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41 * NOTE: this latency value is not the same as the concept of
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
65 * Minimal preemption granularity for CPU-bound tasks:
66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 static unsigned int sched_nr_latency = 8;
77 * After fork, child runs first. If set to 0 (default) then
78 * parent will (try to) run first.
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
83 * SCHED_OTHER wake-up granularity.
84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
96 * The exponential sliding window over which load is averaged for shares
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102 #ifdef CONFIG_CFS_BANDWIDTH
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
111 * default: 5 msec, units: microseconds
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
116 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128 static inline void update_load_set(struct load_weight *lw, unsigned long w)
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
141 * This idea comes from the SD scheduler of Con Kolivas:
143 static int get_update_sysctl_factor(void)
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
152 case SCHED_TUNABLESCALING_LINEAR:
155 case SCHED_TUNABLESCALING_LOG:
157 factor = 1 + ilog2(cpus);
164 static void update_sysctl(void)
166 unsigned int factor = get_update_sysctl_factor();
168 #define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
176 void sched_init_granularity(void)
181 #define WMULT_CONST (~0U)
182 #define WMULT_SHIFT 32
184 static void __update_inv_weight(struct load_weight *lw)
188 if (likely(lw->inv_weight))
191 w = scale_load_down(lw->weight);
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
198 lw->inv_weight = WMULT_CONST / w;
202 * delta_exec * weight / lw.weight
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
218 __update_inv_weight(lw);
220 if (unlikely(fact >> 32)) {
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
235 return mul_u64_u32_shr(delta_exec, fact, shift);
239 const struct sched_class fair_sched_class;
241 /**************************************************************
242 * CFS operations on generic schedulable entities:
245 #ifdef CONFIG_FAIR_GROUP_SCHED
247 /* cpu runqueue to which this cfs_rq is attached */
248 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
253 /* An entity is a task if it doesn't "own" a runqueue */
254 #define entity_is_task(se) (!se->my_q)
256 static inline struct task_struct *task_of(struct sched_entity *se)
258 #ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
261 return container_of(se, struct task_struct, se);
264 /* Walk up scheduling entities hierarchy */
265 #define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
268 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
273 /* runqueue on which this entity is (to be) queued */
274 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
279 /* runqueue "owned" by this group */
280 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
285 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
288 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290 if (!cfs_rq->on_list) {
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
307 /* We should have no load, but we need to update last_decay. */
308 update_cfs_rq_blocked_load(cfs_rq, 0);
312 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
320 /* Iterate thr' all leaf cfs_rq's on a runqueue */
321 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324 /* Do the two (enqueued) entities belong to the same group ? */
326 is_same_group(struct sched_entity *se, struct sched_entity *pse)
328 if (se->cfs_rq == pse->cfs_rq)
334 static inline struct sched_entity *parent_entity(struct sched_entity *se)
339 /* return depth at which a sched entity is present in the hierarchy */
340 static inline int depth_se(struct sched_entity *se)
344 for_each_sched_entity(se)
351 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
353 int se_depth, pse_depth;
356 * preemption test can be made between sibling entities who are in the
357 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
358 * both tasks until we find their ancestors who are siblings of common
362 /* First walk up until both entities are at same depth */
363 se_depth = depth_se(*se);
364 pse_depth = depth_se(*pse);
366 while (se_depth > pse_depth) {
368 *se = parent_entity(*se);
371 while (pse_depth > se_depth) {
373 *pse = parent_entity(*pse);
376 while (!is_same_group(*se, *pse)) {
377 *se = parent_entity(*se);
378 *pse = parent_entity(*pse);
382 #else /* !CONFIG_FAIR_GROUP_SCHED */
384 static inline struct task_struct *task_of(struct sched_entity *se)
386 return container_of(se, struct task_struct, se);
389 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
391 return container_of(cfs_rq, struct rq, cfs);
394 #define entity_is_task(se) 1
396 #define for_each_sched_entity(se) \
397 for (; se; se = NULL)
399 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
401 return &task_rq(p)->cfs;
404 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
406 struct task_struct *p = task_of(se);
407 struct rq *rq = task_rq(p);
412 /* runqueue "owned" by this group */
413 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
418 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
422 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
426 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
427 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
430 is_same_group(struct sched_entity *se, struct sched_entity *pse)
435 static inline struct sched_entity *parent_entity(struct sched_entity *se)
441 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
445 #endif /* CONFIG_FAIR_GROUP_SCHED */
447 static __always_inline
448 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
450 /**************************************************************
451 * Scheduling class tree data structure manipulation methods:
454 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
456 s64 delta = (s64)(vruntime - max_vruntime);
458 max_vruntime = vruntime;
463 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
465 s64 delta = (s64)(vruntime - min_vruntime);
467 min_vruntime = vruntime;
472 static inline int entity_before(struct sched_entity *a,
473 struct sched_entity *b)
475 return (s64)(a->vruntime - b->vruntime) < 0;
478 static void update_min_vruntime(struct cfs_rq *cfs_rq)
480 u64 vruntime = cfs_rq->min_vruntime;
483 vruntime = cfs_rq->curr->vruntime;
485 if (cfs_rq->rb_leftmost) {
486 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
491 vruntime = se->vruntime;
493 vruntime = min_vruntime(vruntime, se->vruntime);
496 /* ensure we never gain time by being placed backwards. */
497 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
500 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
505 * Enqueue an entity into the rb-tree:
507 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
509 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
510 struct rb_node *parent = NULL;
511 struct sched_entity *entry;
515 * Find the right place in the rbtree:
519 entry = rb_entry(parent, struct sched_entity, run_node);
521 * We dont care about collisions. Nodes with
522 * the same key stay together.
524 if (entity_before(se, entry)) {
525 link = &parent->rb_left;
527 link = &parent->rb_right;
533 * Maintain a cache of leftmost tree entries (it is frequently
537 cfs_rq->rb_leftmost = &se->run_node;
539 rb_link_node(&se->run_node, parent, link);
540 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
543 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
545 if (cfs_rq->rb_leftmost == &se->run_node) {
546 struct rb_node *next_node;
548 next_node = rb_next(&se->run_node);
549 cfs_rq->rb_leftmost = next_node;
552 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
555 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
557 struct rb_node *left = cfs_rq->rb_leftmost;
562 return rb_entry(left, struct sched_entity, run_node);
565 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
567 struct rb_node *next = rb_next(&se->run_node);
572 return rb_entry(next, struct sched_entity, run_node);
575 #ifdef CONFIG_SCHED_DEBUG
576 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
578 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
583 return rb_entry(last, struct sched_entity, run_node);
586 /**************************************************************
587 * Scheduling class statistics methods:
590 int sched_proc_update_handler(struct ctl_table *table, int write,
591 void __user *buffer, size_t *lenp,
594 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
595 int factor = get_update_sysctl_factor();
600 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
601 sysctl_sched_min_granularity);
603 #define WRT_SYSCTL(name) \
604 (normalized_sysctl_##name = sysctl_##name / (factor))
605 WRT_SYSCTL(sched_min_granularity);
606 WRT_SYSCTL(sched_latency);
607 WRT_SYSCTL(sched_wakeup_granularity);
617 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
619 if (unlikely(se->load.weight != NICE_0_LOAD))
620 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
626 * The idea is to set a period in which each task runs once.
628 * When there are too many tasks (sched_nr_latency) we have to stretch
629 * this period because otherwise the slices get too small.
631 * p = (nr <= nl) ? l : l*nr/nl
633 static u64 __sched_period(unsigned long nr_running)
635 u64 period = sysctl_sched_latency;
636 unsigned long nr_latency = sched_nr_latency;
638 if (unlikely(nr_running > nr_latency)) {
639 period = sysctl_sched_min_granularity;
640 period *= nr_running;
647 * We calculate the wall-time slice from the period by taking a part
648 * proportional to the weight.
652 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
654 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
656 for_each_sched_entity(se) {
657 struct load_weight *load;
658 struct load_weight lw;
660 cfs_rq = cfs_rq_of(se);
661 load = &cfs_rq->load;
663 if (unlikely(!se->on_rq)) {
666 update_load_add(&lw, se->load.weight);
669 slice = __calc_delta(slice, se->load.weight, load);
675 * We calculate the vruntime slice of a to-be-inserted task.
679 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
681 return calc_delta_fair(sched_slice(cfs_rq, se), se);
685 static unsigned long task_h_load(struct task_struct *p);
687 static inline void __update_task_entity_contrib(struct sched_entity *se);
689 /* Give new task start runnable values to heavy its load in infant time */
690 void init_task_runnable_average(struct task_struct *p)
694 p->se.avg.decay_count = 0;
695 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
696 p->se.avg.runnable_avg_sum = slice;
697 p->se.avg.runnable_avg_period = slice;
698 __update_task_entity_contrib(&p->se);
701 void init_task_runnable_average(struct task_struct *p)
707 * Update the current task's runtime statistics.
709 static void update_curr(struct cfs_rq *cfs_rq)
711 struct sched_entity *curr = cfs_rq->curr;
712 u64 now = rq_clock_task(rq_of(cfs_rq));
718 delta_exec = now - curr->exec_start;
719 if (unlikely((s64)delta_exec <= 0))
722 curr->exec_start = now;
724 schedstat_set(curr->statistics.exec_max,
725 max(delta_exec, curr->statistics.exec_max));
727 curr->sum_exec_runtime += delta_exec;
728 schedstat_add(cfs_rq, exec_clock, delta_exec);
730 curr->vruntime += calc_delta_fair(delta_exec, curr);
731 update_min_vruntime(cfs_rq);
733 if (entity_is_task(curr)) {
734 struct task_struct *curtask = task_of(curr);
736 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
737 cpuacct_charge(curtask, delta_exec);
738 account_group_exec_runtime(curtask, delta_exec);
741 account_cfs_rq_runtime(cfs_rq, delta_exec);
745 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
747 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
751 * Task is being enqueued - update stats:
753 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
756 * Are we enqueueing a waiting task? (for current tasks
757 * a dequeue/enqueue event is a NOP)
759 if (se != cfs_rq->curr)
760 update_stats_wait_start(cfs_rq, se);
764 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
766 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
767 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
768 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
769 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
770 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
771 #ifdef CONFIG_SCHEDSTATS
772 if (entity_is_task(se)) {
773 trace_sched_stat_wait(task_of(se),
774 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
777 schedstat_set(se->statistics.wait_start, 0);
781 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
784 * Mark the end of the wait period if dequeueing a
787 if (se != cfs_rq->curr)
788 update_stats_wait_end(cfs_rq, se);
792 * We are picking a new current task - update its stats:
795 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
798 * We are starting a new run period:
800 se->exec_start = rq_clock_task(rq_of(cfs_rq));
803 /**************************************************
804 * Scheduling class queueing methods:
807 #ifdef CONFIG_NUMA_BALANCING
809 * Approximate time to scan a full NUMA task in ms. The task scan period is
810 * calculated based on the tasks virtual memory size and
811 * numa_balancing_scan_size.
813 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
814 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
816 /* Portion of address space to scan in MB */
817 unsigned int sysctl_numa_balancing_scan_size = 256;
819 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
820 unsigned int sysctl_numa_balancing_scan_delay = 1000;
823 * After skipping a page migration on a shared page, skip N more numa page
824 * migrations unconditionally. This reduces the number of NUMA migrations
825 * in shared memory workloads, and has the effect of pulling tasks towards
826 * where their memory lives, over pulling the memory towards the task.
828 unsigned int sysctl_numa_balancing_migrate_deferred = 16;
830 static unsigned int task_nr_scan_windows(struct task_struct *p)
832 unsigned long rss = 0;
833 unsigned long nr_scan_pages;
836 * Calculations based on RSS as non-present and empty pages are skipped
837 * by the PTE scanner and NUMA hinting faults should be trapped based
840 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
841 rss = get_mm_rss(p->mm);
845 rss = round_up(rss, nr_scan_pages);
846 return rss / nr_scan_pages;
849 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
850 #define MAX_SCAN_WINDOW 2560
852 static unsigned int task_scan_min(struct task_struct *p)
854 unsigned int scan, floor;
855 unsigned int windows = 1;
857 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
858 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
859 floor = 1000 / windows;
861 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
862 return max_t(unsigned int, floor, scan);
865 static unsigned int task_scan_max(struct task_struct *p)
867 unsigned int smin = task_scan_min(p);
870 /* Watch for min being lower than max due to floor calculations */
871 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
872 return max(smin, smax);
876 * Once a preferred node is selected the scheduler balancer will prefer moving
877 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
878 * scans. This will give the process the chance to accumulate more faults on
879 * the preferred node but still allow the scheduler to move the task again if
880 * the nodes CPUs are overloaded.
882 unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
884 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
886 rq->nr_numa_running += (p->numa_preferred_nid != -1);
887 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
890 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
892 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
893 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
899 spinlock_t lock; /* nr_tasks, tasks */
902 struct list_head task_list;
905 unsigned long total_faults;
906 unsigned long faults[0];
909 pid_t task_numa_group_id(struct task_struct *p)
911 return p->numa_group ? p->numa_group->gid : 0;
914 static inline int task_faults_idx(int nid, int priv)
916 return 2 * nid + priv;
919 static inline unsigned long task_faults(struct task_struct *p, int nid)
924 return p->numa_faults[task_faults_idx(nid, 0)] +
925 p->numa_faults[task_faults_idx(nid, 1)];
928 static inline unsigned long group_faults(struct task_struct *p, int nid)
933 return p->numa_group->faults[2*nid] + p->numa_group->faults[2*nid+1];
937 * These return the fraction of accesses done by a particular task, or
938 * task group, on a particular numa node. The group weight is given a
939 * larger multiplier, in order to group tasks together that are almost
940 * evenly spread out between numa nodes.
942 static inline unsigned long task_weight(struct task_struct *p, int nid)
944 unsigned long total_faults;
949 total_faults = p->total_numa_faults;
954 return 1000 * task_faults(p, nid) / total_faults;
957 static inline unsigned long group_weight(struct task_struct *p, int nid)
959 if (!p->numa_group || !p->numa_group->total_faults)
962 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
965 static unsigned long weighted_cpuload(const int cpu);
966 static unsigned long source_load(int cpu, int type);
967 static unsigned long target_load(int cpu, int type);
968 static unsigned long power_of(int cpu);
969 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
971 /* Cached statistics for all CPUs within a node */
973 unsigned long nr_running;
976 /* Total compute capacity of CPUs on a node */
979 /* Approximate capacity in terms of runnable tasks on a node */
980 unsigned long capacity;
985 * XXX borrowed from update_sg_lb_stats
987 static void update_numa_stats(struct numa_stats *ns, int nid)
991 memset(ns, 0, sizeof(*ns));
992 for_each_cpu(cpu, cpumask_of_node(nid)) {
993 struct rq *rq = cpu_rq(cpu);
995 ns->nr_running += rq->nr_running;
996 ns->load += weighted_cpuload(cpu);
997 ns->power += power_of(cpu);
1003 * If we raced with hotplug and there are no CPUs left in our mask
1004 * the @ns structure is NULL'ed and task_numa_compare() will
1005 * not find this node attractive.
1007 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
1013 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1014 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1015 ns->has_capacity = (ns->nr_running < ns->capacity);
1018 struct task_numa_env {
1019 struct task_struct *p;
1021 int src_cpu, src_nid;
1022 int dst_cpu, dst_nid;
1024 struct numa_stats src_stats, dst_stats;
1026 int imbalance_pct, idx;
1028 struct task_struct *best_task;
1033 static void task_numa_assign(struct task_numa_env *env,
1034 struct task_struct *p, long imp)
1037 put_task_struct(env->best_task);
1042 env->best_imp = imp;
1043 env->best_cpu = env->dst_cpu;
1047 * This checks if the overall compute and NUMA accesses of the system would
1048 * be improved if the source tasks was migrated to the target dst_cpu taking
1049 * into account that it might be best if task running on the dst_cpu should
1050 * be exchanged with the source task
1052 static void task_numa_compare(struct task_numa_env *env,
1053 long taskimp, long groupimp)
1055 struct rq *src_rq = cpu_rq(env->src_cpu);
1056 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1057 struct task_struct *cur;
1058 long dst_load, src_load;
1060 long imp = (groupimp > 0) ? groupimp : taskimp;
1063 cur = ACCESS_ONCE(dst_rq->curr);
1064 if (cur->pid == 0) /* idle */
1068 * "imp" is the fault differential for the source task between the
1069 * source and destination node. Calculate the total differential for
1070 * the source task and potential destination task. The more negative
1071 * the value is, the more rmeote accesses that would be expected to
1072 * be incurred if the tasks were swapped.
1075 /* Skip this swap candidate if cannot move to the source cpu */
1076 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1080 * If dst and source tasks are in the same NUMA group, or not
1081 * in any group then look only at task weights.
1083 if (cur->numa_group == env->p->numa_group) {
1084 imp = taskimp + task_weight(cur, env->src_nid) -
1085 task_weight(cur, env->dst_nid);
1087 * Add some hysteresis to prevent swapping the
1088 * tasks within a group over tiny differences.
1090 if (cur->numa_group)
1094 * Compare the group weights. If a task is all by
1095 * itself (not part of a group), use the task weight
1098 if (env->p->numa_group)
1103 if (cur->numa_group)
1104 imp += group_weight(cur, env->src_nid) -
1105 group_weight(cur, env->dst_nid);
1107 imp += task_weight(cur, env->src_nid) -
1108 task_weight(cur, env->dst_nid);
1112 if (imp < env->best_imp)
1116 /* Is there capacity at our destination? */
1117 if (env->src_stats.has_capacity &&
1118 !env->dst_stats.has_capacity)
1124 /* Balance doesn't matter much if we're running a task per cpu */
1125 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1129 * In the overloaded case, try and keep the load balanced.
1132 dst_load = env->dst_stats.load;
1133 src_load = env->src_stats.load;
1135 /* XXX missing power terms */
1136 load = task_h_load(env->p);
1141 load = task_h_load(cur);
1146 /* make src_load the smaller */
1147 if (dst_load < src_load)
1148 swap(dst_load, src_load);
1150 if (src_load * env->imbalance_pct < dst_load * 100)
1154 task_numa_assign(env, cur, imp);
1159 static void task_numa_find_cpu(struct task_numa_env *env,
1160 long taskimp, long groupimp)
1164 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1165 /* Skip this CPU if the source task cannot migrate */
1166 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1170 task_numa_compare(env, taskimp, groupimp);
1174 static int task_numa_migrate(struct task_struct *p)
1176 struct task_numa_env env = {
1179 .src_cpu = task_cpu(p),
1180 .src_nid = task_node(p),
1182 .imbalance_pct = 112,
1188 struct sched_domain *sd;
1189 unsigned long taskweight, groupweight;
1191 long taskimp, groupimp;
1194 * Pick the lowest SD_NUMA domain, as that would have the smallest
1195 * imbalance and would be the first to start moving tasks about.
1197 * And we want to avoid any moving of tasks about, as that would create
1198 * random movement of tasks -- counter the numa conditions we're trying
1202 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1204 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1208 * Cpusets can break the scheduler domain tree into smaller
1209 * balance domains, some of which do not cross NUMA boundaries.
1210 * Tasks that are "trapped" in such domains cannot be migrated
1211 * elsewhere, so there is no point in (re)trying.
1213 if (unlikely(!sd)) {
1214 p->numa_preferred_nid = cpu_to_node(task_cpu(p));
1218 taskweight = task_weight(p, env.src_nid);
1219 groupweight = group_weight(p, env.src_nid);
1220 update_numa_stats(&env.src_stats, env.src_nid);
1221 env.dst_nid = p->numa_preferred_nid;
1222 taskimp = task_weight(p, env.dst_nid) - taskweight;
1223 groupimp = group_weight(p, env.dst_nid) - groupweight;
1224 update_numa_stats(&env.dst_stats, env.dst_nid);
1226 /* If the preferred nid has capacity, try to use it. */
1227 if (env.dst_stats.has_capacity)
1228 task_numa_find_cpu(&env, taskimp, groupimp);
1230 /* No space available on the preferred nid. Look elsewhere. */
1231 if (env.best_cpu == -1) {
1232 for_each_online_node(nid) {
1233 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1236 /* Only consider nodes where both task and groups benefit */
1237 taskimp = task_weight(p, nid) - taskweight;
1238 groupimp = group_weight(p, nid) - groupweight;
1239 if (taskimp < 0 && groupimp < 0)
1243 update_numa_stats(&env.dst_stats, env.dst_nid);
1244 task_numa_find_cpu(&env, taskimp, groupimp);
1248 /* No better CPU than the current one was found. */
1249 if (env.best_cpu == -1)
1252 sched_setnuma(p, env.dst_nid);
1255 * Reset the scan period if the task is being rescheduled on an
1256 * alternative node to recheck if the tasks is now properly placed.
1258 p->numa_scan_period = task_scan_min(p);
1260 if (env.best_task == NULL) {
1261 int ret = migrate_task_to(p, env.best_cpu);
1265 ret = migrate_swap(p, env.best_task);
1266 put_task_struct(env.best_task);
1270 /* Attempt to migrate a task to a CPU on the preferred node. */
1271 static void numa_migrate_preferred(struct task_struct *p)
1273 /* This task has no NUMA fault statistics yet */
1274 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1277 /* Periodically retry migrating the task to the preferred node */
1278 p->numa_migrate_retry = jiffies + HZ;
1280 /* Success if task is already running on preferred CPU */
1281 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid)
1284 /* Otherwise, try migrate to a CPU on the preferred node */
1285 task_numa_migrate(p);
1289 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1290 * increments. The more local the fault statistics are, the higher the scan
1291 * period will be for the next scan window. If local/remote ratio is below
1292 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1293 * scan period will decrease
1295 #define NUMA_PERIOD_SLOTS 10
1296 #define NUMA_PERIOD_THRESHOLD 3
1299 * Increase the scan period (slow down scanning) if the majority of
1300 * our memory is already on our local node, or if the majority of
1301 * the page accesses are shared with other processes.
1302 * Otherwise, decrease the scan period.
1304 static void update_task_scan_period(struct task_struct *p,
1305 unsigned long shared, unsigned long private)
1307 unsigned int period_slot;
1311 unsigned long remote = p->numa_faults_locality[0];
1312 unsigned long local = p->numa_faults_locality[1];
1315 * If there were no record hinting faults then either the task is
1316 * completely idle or all activity is areas that are not of interest
1317 * to automatic numa balancing. Scan slower
1319 if (local + shared == 0) {
1320 p->numa_scan_period = min(p->numa_scan_period_max,
1321 p->numa_scan_period << 1);
1323 p->mm->numa_next_scan = jiffies +
1324 msecs_to_jiffies(p->numa_scan_period);
1330 * Prepare to scale scan period relative to the current period.
1331 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1332 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1333 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1335 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1336 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1337 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1338 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1341 diff = slot * period_slot;
1343 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1346 * Scale scan rate increases based on sharing. There is an
1347 * inverse relationship between the degree of sharing and
1348 * the adjustment made to the scanning period. Broadly
1349 * speaking the intent is that there is little point
1350 * scanning faster if shared accesses dominate as it may
1351 * simply bounce migrations uselessly
1353 period_slot = DIV_ROUND_UP(diff, NUMA_PERIOD_SLOTS);
1354 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1355 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1358 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1359 task_scan_min(p), task_scan_max(p));
1360 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1363 static void task_numa_placement(struct task_struct *p)
1365 int seq, nid, max_nid = -1, max_group_nid = -1;
1366 unsigned long max_faults = 0, max_group_faults = 0;
1367 unsigned long fault_types[2] = { 0, 0 };
1368 spinlock_t *group_lock = NULL;
1370 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1371 if (p->numa_scan_seq == seq)
1373 p->numa_scan_seq = seq;
1374 p->numa_scan_period_max = task_scan_max(p);
1376 /* If the task is part of a group prevent parallel updates to group stats */
1377 if (p->numa_group) {
1378 group_lock = &p->numa_group->lock;
1379 spin_lock(group_lock);
1382 /* Find the node with the highest number of faults */
1383 for_each_online_node(nid) {
1384 unsigned long faults = 0, group_faults = 0;
1387 for (priv = 0; priv < 2; priv++) {
1390 i = task_faults_idx(nid, priv);
1391 diff = -p->numa_faults[i];
1393 /* Decay existing window, copy faults since last scan */
1394 p->numa_faults[i] >>= 1;
1395 p->numa_faults[i] += p->numa_faults_buffer[i];
1396 fault_types[priv] += p->numa_faults_buffer[i];
1397 p->numa_faults_buffer[i] = 0;
1399 faults += p->numa_faults[i];
1400 diff += p->numa_faults[i];
1401 p->total_numa_faults += diff;
1402 if (p->numa_group) {
1403 /* safe because we can only change our own group */
1404 p->numa_group->faults[i] += diff;
1405 p->numa_group->total_faults += diff;
1406 group_faults += p->numa_group->faults[i];
1410 if (faults > max_faults) {
1411 max_faults = faults;
1415 if (group_faults > max_group_faults) {
1416 max_group_faults = group_faults;
1417 max_group_nid = nid;
1421 update_task_scan_period(p, fault_types[0], fault_types[1]);
1423 if (p->numa_group) {
1425 * If the preferred task and group nids are different,
1426 * iterate over the nodes again to find the best place.
1428 if (max_nid != max_group_nid) {
1429 unsigned long weight, max_weight = 0;
1431 for_each_online_node(nid) {
1432 weight = task_weight(p, nid) + group_weight(p, nid);
1433 if (weight > max_weight) {
1434 max_weight = weight;
1440 spin_unlock(group_lock);
1443 /* Preferred node as the node with the most faults */
1444 if (max_faults && max_nid != p->numa_preferred_nid) {
1445 /* Update the preferred nid and migrate task if possible */
1446 sched_setnuma(p, max_nid);
1447 numa_migrate_preferred(p);
1451 static inline int get_numa_group(struct numa_group *grp)
1453 return atomic_inc_not_zero(&grp->refcount);
1456 static inline void put_numa_group(struct numa_group *grp)
1458 if (atomic_dec_and_test(&grp->refcount))
1459 kfree_rcu(grp, rcu);
1462 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1465 struct numa_group *grp, *my_grp;
1466 struct task_struct *tsk;
1468 int cpu = cpupid_to_cpu(cpupid);
1471 if (unlikely(!p->numa_group)) {
1472 unsigned int size = sizeof(struct numa_group) +
1473 2*nr_node_ids*sizeof(unsigned long);
1475 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1479 atomic_set(&grp->refcount, 1);
1480 spin_lock_init(&grp->lock);
1481 INIT_LIST_HEAD(&grp->task_list);
1484 for (i = 0; i < 2*nr_node_ids; i++)
1485 grp->faults[i] = p->numa_faults[i];
1487 grp->total_faults = p->total_numa_faults;
1489 list_add(&p->numa_entry, &grp->task_list);
1491 rcu_assign_pointer(p->numa_group, grp);
1495 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1497 if (!cpupid_match_pid(tsk, cpupid))
1500 grp = rcu_dereference(tsk->numa_group);
1504 my_grp = p->numa_group;
1509 * Only join the other group if its bigger; if we're the bigger group,
1510 * the other task will join us.
1512 if (my_grp->nr_tasks > grp->nr_tasks)
1516 * Tie-break on the grp address.
1518 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1521 /* Always join threads in the same process. */
1522 if (tsk->mm == current->mm)
1525 /* Simple filter to avoid false positives due to PID collisions */
1526 if (flags & TNF_SHARED)
1529 /* Update priv based on whether false sharing was detected */
1532 if (join && !get_numa_group(grp))
1540 double_lock(&my_grp->lock, &grp->lock);
1542 for (i = 0; i < 2*nr_node_ids; i++) {
1543 my_grp->faults[i] -= p->numa_faults[i];
1544 grp->faults[i] += p->numa_faults[i];
1546 my_grp->total_faults -= p->total_numa_faults;
1547 grp->total_faults += p->total_numa_faults;
1549 list_move(&p->numa_entry, &grp->task_list);
1553 spin_unlock(&my_grp->lock);
1554 spin_unlock(&grp->lock);
1556 rcu_assign_pointer(p->numa_group, grp);
1558 put_numa_group(my_grp);
1566 void task_numa_free(struct task_struct *p)
1568 struct numa_group *grp = p->numa_group;
1570 void *numa_faults = p->numa_faults;
1573 spin_lock(&grp->lock);
1574 for (i = 0; i < 2*nr_node_ids; i++)
1575 grp->faults[i] -= p->numa_faults[i];
1576 grp->total_faults -= p->total_numa_faults;
1578 list_del(&p->numa_entry);
1580 spin_unlock(&grp->lock);
1581 rcu_assign_pointer(p->numa_group, NULL);
1582 put_numa_group(grp);
1585 p->numa_faults = NULL;
1586 p->numa_faults_buffer = NULL;
1591 * Got a PROT_NONE fault for a page on @node.
1593 void task_numa_fault(int last_cpupid, int node, int pages, int flags)
1595 struct task_struct *p = current;
1596 bool migrated = flags & TNF_MIGRATED;
1599 if (!numabalancing_enabled)
1602 /* for example, ksmd faulting in a user's mm */
1606 /* Do not worry about placement if exiting */
1607 if (p->state == TASK_DEAD)
1610 /* Allocate buffer to track faults on a per-node basis */
1611 if (unlikely(!p->numa_faults)) {
1612 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
1614 /* numa_faults and numa_faults_buffer share the allocation */
1615 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
1616 if (!p->numa_faults)
1619 BUG_ON(p->numa_faults_buffer);
1620 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
1621 p->total_numa_faults = 0;
1622 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1626 * First accesses are treated as private, otherwise consider accesses
1627 * to be private if the accessing pid has not changed
1629 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1632 priv = cpupid_match_pid(p, last_cpupid);
1633 if (!priv && !(flags & TNF_NO_GROUP))
1634 task_numa_group(p, last_cpupid, flags, &priv);
1637 task_numa_placement(p);
1640 * Retry task to preferred node migration periodically, in case it
1641 * case it previously failed, or the scheduler moved us.
1643 if (time_after(jiffies, p->numa_migrate_retry))
1644 numa_migrate_preferred(p);
1647 p->numa_pages_migrated += pages;
1649 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
1650 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
1653 static void reset_ptenuma_scan(struct task_struct *p)
1655 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1656 p->mm->numa_scan_offset = 0;
1660 * The expensive part of numa migration is done from task_work context.
1661 * Triggered from task_tick_numa().
1663 void task_numa_work(struct callback_head *work)
1665 unsigned long migrate, next_scan, now = jiffies;
1666 struct task_struct *p = current;
1667 struct mm_struct *mm = p->mm;
1668 struct vm_area_struct *vma;
1669 unsigned long start, end;
1670 unsigned long nr_pte_updates = 0;
1673 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1675 work->next = work; /* protect against double add */
1677 * Who cares about NUMA placement when they're dying.
1679 * NOTE: make sure not to dereference p->mm before this check,
1680 * exit_task_work() happens _after_ exit_mm() so we could be called
1681 * without p->mm even though we still had it when we enqueued this
1684 if (p->flags & PF_EXITING)
1687 if (!mm->numa_next_scan) {
1688 mm->numa_next_scan = now +
1689 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1693 * Enforce maximal scan/migration frequency..
1695 migrate = mm->numa_next_scan;
1696 if (time_before(now, migrate))
1699 if (p->numa_scan_period == 0) {
1700 p->numa_scan_period_max = task_scan_max(p);
1701 p->numa_scan_period = task_scan_min(p);
1704 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1705 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1709 * Delay this task enough that another task of this mm will likely win
1710 * the next time around.
1712 p->node_stamp += 2 * TICK_NSEC;
1714 start = mm->numa_scan_offset;
1715 pages = sysctl_numa_balancing_scan_size;
1716 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1720 down_read(&mm->mmap_sem);
1721 vma = find_vma(mm, start);
1723 reset_ptenuma_scan(p);
1727 for (; vma; vma = vma->vm_next) {
1728 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1732 * Shared library pages mapped by multiple processes are not
1733 * migrated as it is expected they are cache replicated. Avoid
1734 * hinting faults in read-only file-backed mappings or the vdso
1735 * as migrating the pages will be of marginal benefit.
1738 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1742 * Skip inaccessible VMAs to avoid any confusion between
1743 * PROT_NONE and NUMA hinting ptes
1745 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1749 start = max(start, vma->vm_start);
1750 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1751 end = min(end, vma->vm_end);
1752 nr_pte_updates += change_prot_numa(vma, start, end);
1755 * Scan sysctl_numa_balancing_scan_size but ensure that
1756 * at least one PTE is updated so that unused virtual
1757 * address space is quickly skipped.
1760 pages -= (end - start) >> PAGE_SHIFT;
1765 } while (end != vma->vm_end);
1770 * It is possible to reach the end of the VMA list but the last few
1771 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1772 * would find the !migratable VMA on the next scan but not reset the
1773 * scanner to the start so check it now.
1776 mm->numa_scan_offset = start;
1778 reset_ptenuma_scan(p);
1779 up_read(&mm->mmap_sem);
1783 * Drive the periodic memory faults..
1785 void task_tick_numa(struct rq *rq, struct task_struct *curr)
1787 struct callback_head *work = &curr->numa_work;
1791 * We don't care about NUMA placement if we don't have memory.
1793 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1797 * Using runtime rather than walltime has the dual advantage that
1798 * we (mostly) drive the selection from busy threads and that the
1799 * task needs to have done some actual work before we bother with
1802 now = curr->se.sum_exec_runtime;
1803 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1805 if (now - curr->node_stamp > period) {
1806 if (!curr->node_stamp)
1807 curr->numa_scan_period = task_scan_min(curr);
1808 curr->node_stamp += period;
1810 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1811 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1812 task_work_add(curr, work, true);
1817 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1821 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1825 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1828 #endif /* CONFIG_NUMA_BALANCING */
1831 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1833 update_load_add(&cfs_rq->load, se->load.weight);
1834 if (!parent_entity(se))
1835 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1837 if (entity_is_task(se)) {
1838 struct rq *rq = rq_of(cfs_rq);
1840 account_numa_enqueue(rq, task_of(se));
1841 list_add(&se->group_node, &rq->cfs_tasks);
1844 cfs_rq->nr_running++;
1848 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1850 update_load_sub(&cfs_rq->load, se->load.weight);
1851 if (!parent_entity(se))
1852 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1853 if (entity_is_task(se)) {
1854 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
1855 list_del_init(&se->group_node);
1857 cfs_rq->nr_running--;
1860 #ifdef CONFIG_FAIR_GROUP_SCHED
1862 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1867 * Use this CPU's actual weight instead of the last load_contribution
1868 * to gain a more accurate current total weight. See
1869 * update_cfs_rq_load_contribution().
1871 tg_weight = atomic_long_read(&tg->load_avg);
1872 tg_weight -= cfs_rq->tg_load_contrib;
1873 tg_weight += cfs_rq->load.weight;
1878 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1880 long tg_weight, load, shares;
1882 tg_weight = calc_tg_weight(tg, cfs_rq);
1883 load = cfs_rq->load.weight;
1885 shares = (tg->shares * load);
1887 shares /= tg_weight;
1889 if (shares < MIN_SHARES)
1890 shares = MIN_SHARES;
1891 if (shares > tg->shares)
1892 shares = tg->shares;
1896 # else /* CONFIG_SMP */
1897 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1901 # endif /* CONFIG_SMP */
1902 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1903 unsigned long weight)
1906 /* commit outstanding execution time */
1907 if (cfs_rq->curr == se)
1908 update_curr(cfs_rq);
1909 account_entity_dequeue(cfs_rq, se);
1912 update_load_set(&se->load, weight);
1915 account_entity_enqueue(cfs_rq, se);
1918 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1920 static void update_cfs_shares(struct cfs_rq *cfs_rq)
1922 struct task_group *tg;
1923 struct sched_entity *se;
1927 se = tg->se[cpu_of(rq_of(cfs_rq))];
1928 if (!se || throttled_hierarchy(cfs_rq))
1931 if (likely(se->load.weight == tg->shares))
1934 shares = calc_cfs_shares(cfs_rq, tg);
1936 reweight_entity(cfs_rq_of(se), se, shares);
1938 #else /* CONFIG_FAIR_GROUP_SCHED */
1939 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
1942 #endif /* CONFIG_FAIR_GROUP_SCHED */
1946 * We choose a half-life close to 1 scheduling period.
1947 * Note: The tables below are dependent on this value.
1949 #define LOAD_AVG_PERIOD 32
1950 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1951 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1953 /* Precomputed fixed inverse multiplies for multiplication by y^n */
1954 static const u32 runnable_avg_yN_inv[] = {
1955 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1956 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1957 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1958 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1959 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1960 0x85aac367, 0x82cd8698,
1964 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1965 * over-estimates when re-combining.
1967 static const u32 runnable_avg_yN_sum[] = {
1968 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1969 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1970 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1975 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1977 static __always_inline u64 decay_load(u64 val, u64 n)
1979 unsigned int local_n;
1983 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1986 /* after bounds checking we can collapse to 32-bit */
1990 * As y^PERIOD = 1/2, we can combine
1991 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1992 * With a look-up table which covers k^n (n<PERIOD)
1994 * To achieve constant time decay_load.
1996 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1997 val >>= local_n / LOAD_AVG_PERIOD;
1998 local_n %= LOAD_AVG_PERIOD;
2001 val *= runnable_avg_yN_inv[local_n];
2002 /* We don't use SRR here since we always want to round down. */
2007 * For updates fully spanning n periods, the contribution to runnable
2008 * average will be: \Sum 1024*y^n
2010 * We can compute this reasonably efficiently by combining:
2011 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2013 static u32 __compute_runnable_contrib(u64 n)
2017 if (likely(n <= LOAD_AVG_PERIOD))
2018 return runnable_avg_yN_sum[n];
2019 else if (unlikely(n >= LOAD_AVG_MAX_N))
2020 return LOAD_AVG_MAX;
2022 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2024 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2025 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2027 n -= LOAD_AVG_PERIOD;
2028 } while (n > LOAD_AVG_PERIOD);
2030 contrib = decay_load(contrib, n);
2031 return contrib + runnable_avg_yN_sum[n];
2035 * We can represent the historical contribution to runnable average as the
2036 * coefficients of a geometric series. To do this we sub-divide our runnable
2037 * history into segments of approximately 1ms (1024us); label the segment that
2038 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2040 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2042 * (now) (~1ms ago) (~2ms ago)
2044 * Let u_i denote the fraction of p_i that the entity was runnable.
2046 * We then designate the fractions u_i as our co-efficients, yielding the
2047 * following representation of historical load:
2048 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2050 * We choose y based on the with of a reasonably scheduling period, fixing:
2053 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2054 * approximately half as much as the contribution to load within the last ms
2057 * When a period "rolls over" and we have new u_0`, multiplying the previous
2058 * sum again by y is sufficient to update:
2059 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2060 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2062 static __always_inline int __update_entity_runnable_avg(u64 now,
2063 struct sched_avg *sa,
2067 u32 runnable_contrib;
2068 int delta_w, decayed = 0;
2070 delta = now - sa->last_runnable_update;
2072 * This should only happen when time goes backwards, which it
2073 * unfortunately does during sched clock init when we swap over to TSC.
2075 if ((s64)delta < 0) {
2076 sa->last_runnable_update = now;
2081 * Use 1024ns as the unit of measurement since it's a reasonable
2082 * approximation of 1us and fast to compute.
2087 sa->last_runnable_update = now;
2089 /* delta_w is the amount already accumulated against our next period */
2090 delta_w = sa->runnable_avg_period % 1024;
2091 if (delta + delta_w >= 1024) {
2092 /* period roll-over */
2096 * Now that we know we're crossing a period boundary, figure
2097 * out how much from delta we need to complete the current
2098 * period and accrue it.
2100 delta_w = 1024 - delta_w;
2102 sa->runnable_avg_sum += delta_w;
2103 sa->runnable_avg_period += delta_w;
2107 /* Figure out how many additional periods this update spans */
2108 periods = delta / 1024;
2111 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2113 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2116 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2117 runnable_contrib = __compute_runnable_contrib(periods);
2119 sa->runnable_avg_sum += runnable_contrib;
2120 sa->runnable_avg_period += runnable_contrib;
2123 /* Remainder of delta accrued against u_0` */
2125 sa->runnable_avg_sum += delta;
2126 sa->runnable_avg_period += delta;
2131 /* Synchronize an entity's decay with its parenting cfs_rq.*/
2132 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2134 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2135 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2137 decays -= se->avg.decay_count;
2141 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2142 se->avg.decay_count = 0;
2147 #ifdef CONFIG_FAIR_GROUP_SCHED
2148 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2151 struct task_group *tg = cfs_rq->tg;
2154 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2155 tg_contrib -= cfs_rq->tg_load_contrib;
2157 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2158 atomic_long_add(tg_contrib, &tg->load_avg);
2159 cfs_rq->tg_load_contrib += tg_contrib;
2164 * Aggregate cfs_rq runnable averages into an equivalent task_group
2165 * representation for computing load contributions.
2167 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2168 struct cfs_rq *cfs_rq)
2170 struct task_group *tg = cfs_rq->tg;
2173 /* The fraction of a cpu used by this cfs_rq */
2174 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2175 sa->runnable_avg_period + 1);
2176 contrib -= cfs_rq->tg_runnable_contrib;
2178 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2179 atomic_add(contrib, &tg->runnable_avg);
2180 cfs_rq->tg_runnable_contrib += contrib;
2184 static inline void __update_group_entity_contrib(struct sched_entity *se)
2186 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2187 struct task_group *tg = cfs_rq->tg;
2192 contrib = cfs_rq->tg_load_contrib * tg->shares;
2193 se->avg.load_avg_contrib = div_u64(contrib,
2194 atomic_long_read(&tg->load_avg) + 1);
2197 * For group entities we need to compute a correction term in the case
2198 * that they are consuming <1 cpu so that we would contribute the same
2199 * load as a task of equal weight.
2201 * Explicitly co-ordinating this measurement would be expensive, but
2202 * fortunately the sum of each cpus contribution forms a usable
2203 * lower-bound on the true value.
2205 * Consider the aggregate of 2 contributions. Either they are disjoint
2206 * (and the sum represents true value) or they are disjoint and we are
2207 * understating by the aggregate of their overlap.
2209 * Extending this to N cpus, for a given overlap, the maximum amount we
2210 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2211 * cpus that overlap for this interval and w_i is the interval width.
2213 * On a small machine; the first term is well-bounded which bounds the
2214 * total error since w_i is a subset of the period. Whereas on a
2215 * larger machine, while this first term can be larger, if w_i is the
2216 * of consequential size guaranteed to see n_i*w_i quickly converge to
2217 * our upper bound of 1-cpu.
2219 runnable_avg = atomic_read(&tg->runnable_avg);
2220 if (runnable_avg < NICE_0_LOAD) {
2221 se->avg.load_avg_contrib *= runnable_avg;
2222 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2226 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2227 int force_update) {}
2228 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2229 struct cfs_rq *cfs_rq) {}
2230 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2233 static inline void __update_task_entity_contrib(struct sched_entity *se)
2237 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2238 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2239 contrib /= (se->avg.runnable_avg_period + 1);
2240 se->avg.load_avg_contrib = scale_load(contrib);
2243 /* Compute the current contribution to load_avg by se, return any delta */
2244 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2246 long old_contrib = se->avg.load_avg_contrib;
2248 if (entity_is_task(se)) {
2249 __update_task_entity_contrib(se);
2251 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2252 __update_group_entity_contrib(se);
2255 return se->avg.load_avg_contrib - old_contrib;
2258 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2261 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2262 cfs_rq->blocked_load_avg -= load_contrib;
2264 cfs_rq->blocked_load_avg = 0;
2267 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2269 /* Update a sched_entity's runnable average */
2270 static inline void update_entity_load_avg(struct sched_entity *se,
2273 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2278 * For a group entity we need to use their owned cfs_rq_clock_task() in
2279 * case they are the parent of a throttled hierarchy.
2281 if (entity_is_task(se))
2282 now = cfs_rq_clock_task(cfs_rq);
2284 now = cfs_rq_clock_task(group_cfs_rq(se));
2286 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2289 contrib_delta = __update_entity_load_avg_contrib(se);
2295 cfs_rq->runnable_load_avg += contrib_delta;
2297 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2301 * Decay the load contributed by all blocked children and account this so that
2302 * their contribution may appropriately discounted when they wake up.
2304 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2306 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2309 decays = now - cfs_rq->last_decay;
2310 if (!decays && !force_update)
2313 if (atomic_long_read(&cfs_rq->removed_load)) {
2314 unsigned long removed_load;
2315 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2316 subtract_blocked_load_contrib(cfs_rq, removed_load);
2320 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2322 atomic64_add(decays, &cfs_rq->decay_counter);
2323 cfs_rq->last_decay = now;
2326 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2329 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2331 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2332 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2335 /* Add the load generated by se into cfs_rq's child load-average */
2336 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2337 struct sched_entity *se,
2341 * We track migrations using entity decay_count <= 0, on a wake-up
2342 * migration we use a negative decay count to track the remote decays
2343 * accumulated while sleeping.
2345 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2346 * are seen by enqueue_entity_load_avg() as a migration with an already
2347 * constructed load_avg_contrib.
2349 if (unlikely(se->avg.decay_count <= 0)) {
2350 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2351 if (se->avg.decay_count) {
2353 * In a wake-up migration we have to approximate the
2354 * time sleeping. This is because we can't synchronize
2355 * clock_task between the two cpus, and it is not
2356 * guaranteed to be read-safe. Instead, we can
2357 * approximate this using our carried decays, which are
2358 * explicitly atomically readable.
2360 se->avg.last_runnable_update -= (-se->avg.decay_count)
2362 update_entity_load_avg(se, 0);
2363 /* Indicate that we're now synchronized and on-rq */
2364 se->avg.decay_count = 0;
2369 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2370 * would have made count negative); we must be careful to avoid
2371 * double-accounting blocked time after synchronizing decays.
2373 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2377 /* migrated tasks did not contribute to our blocked load */
2379 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2380 update_entity_load_avg(se, 0);
2383 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2384 /* we force update consideration on load-balancer moves */
2385 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2389 * Remove se's load from this cfs_rq child load-average, if the entity is
2390 * transitioning to a blocked state we track its projected decay using
2393 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2394 struct sched_entity *se,
2397 update_entity_load_avg(se, 1);
2398 /* we force update consideration on load-balancer moves */
2399 update_cfs_rq_blocked_load(cfs_rq, !sleep);
2401 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2403 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2404 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2405 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2409 * Update the rq's load with the elapsed running time before entering
2410 * idle. if the last scheduled task is not a CFS task, idle_enter will
2411 * be the only way to update the runnable statistic.
2413 void idle_enter_fair(struct rq *this_rq)
2415 update_rq_runnable_avg(this_rq, 1);
2419 * Update the rq's load with the elapsed idle time before a task is
2420 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2421 * be the only way to update the runnable statistic.
2423 void idle_exit_fair(struct rq *this_rq)
2425 update_rq_runnable_avg(this_rq, 0);
2429 static inline void update_entity_load_avg(struct sched_entity *se,
2430 int update_cfs_rq) {}
2431 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2432 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2433 struct sched_entity *se,
2435 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2436 struct sched_entity *se,
2438 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2439 int force_update) {}
2442 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2444 #ifdef CONFIG_SCHEDSTATS
2445 struct task_struct *tsk = NULL;
2447 if (entity_is_task(se))
2450 if (se->statistics.sleep_start) {
2451 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2456 if (unlikely(delta > se->statistics.sleep_max))
2457 se->statistics.sleep_max = delta;
2459 se->statistics.sleep_start = 0;
2460 se->statistics.sum_sleep_runtime += delta;
2463 account_scheduler_latency(tsk, delta >> 10, 1);
2464 trace_sched_stat_sleep(tsk, delta);
2467 if (se->statistics.block_start) {
2468 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2473 if (unlikely(delta > se->statistics.block_max))
2474 se->statistics.block_max = delta;
2476 se->statistics.block_start = 0;
2477 se->statistics.sum_sleep_runtime += delta;
2480 if (tsk->in_iowait) {
2481 se->statistics.iowait_sum += delta;
2482 se->statistics.iowait_count++;
2483 trace_sched_stat_iowait(tsk, delta);
2486 trace_sched_stat_blocked(tsk, delta);
2489 * Blocking time is in units of nanosecs, so shift by
2490 * 20 to get a milliseconds-range estimation of the
2491 * amount of time that the task spent sleeping:
2493 if (unlikely(prof_on == SLEEP_PROFILING)) {
2494 profile_hits(SLEEP_PROFILING,
2495 (void *)get_wchan(tsk),
2498 account_scheduler_latency(tsk, delta >> 10, 0);
2504 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2506 #ifdef CONFIG_SCHED_DEBUG
2507 s64 d = se->vruntime - cfs_rq->min_vruntime;
2512 if (d > 3*sysctl_sched_latency)
2513 schedstat_inc(cfs_rq, nr_spread_over);
2518 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2520 u64 vruntime = cfs_rq->min_vruntime;
2523 * The 'current' period is already promised to the current tasks,
2524 * however the extra weight of the new task will slow them down a
2525 * little, place the new task so that it fits in the slot that
2526 * stays open at the end.
2528 if (initial && sched_feat(START_DEBIT))
2529 vruntime += sched_vslice(cfs_rq, se);
2531 /* sleeps up to a single latency don't count. */
2533 unsigned long thresh = sysctl_sched_latency;
2536 * Halve their sleep time's effect, to allow
2537 * for a gentler effect of sleepers:
2539 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2545 /* ensure we never gain time by being placed backwards. */
2546 se->vruntime = max_vruntime(se->vruntime, vruntime);
2549 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2552 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2555 * Update the normalized vruntime before updating min_vruntime
2556 * through calling update_curr().
2558 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2559 se->vruntime += cfs_rq->min_vruntime;
2562 * Update run-time statistics of the 'current'.
2564 update_curr(cfs_rq);
2565 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2566 account_entity_enqueue(cfs_rq, se);
2567 update_cfs_shares(cfs_rq);
2569 if (flags & ENQUEUE_WAKEUP) {
2570 place_entity(cfs_rq, se, 0);
2571 enqueue_sleeper(cfs_rq, se);
2574 update_stats_enqueue(cfs_rq, se);
2575 check_spread(cfs_rq, se);
2576 if (se != cfs_rq->curr)
2577 __enqueue_entity(cfs_rq, se);
2580 if (cfs_rq->nr_running == 1) {
2581 list_add_leaf_cfs_rq(cfs_rq);
2582 check_enqueue_throttle(cfs_rq);
2586 static void __clear_buddies_last(struct sched_entity *se)
2588 for_each_sched_entity(se) {
2589 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2590 if (cfs_rq->last == se)
2591 cfs_rq->last = NULL;
2597 static void __clear_buddies_next(struct sched_entity *se)
2599 for_each_sched_entity(se) {
2600 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2601 if (cfs_rq->next == se)
2602 cfs_rq->next = NULL;
2608 static void __clear_buddies_skip(struct sched_entity *se)
2610 for_each_sched_entity(se) {
2611 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2612 if (cfs_rq->skip == se)
2613 cfs_rq->skip = NULL;
2619 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2621 if (cfs_rq->last == se)
2622 __clear_buddies_last(se);
2624 if (cfs_rq->next == se)
2625 __clear_buddies_next(se);
2627 if (cfs_rq->skip == se)
2628 __clear_buddies_skip(se);
2631 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2634 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2637 * Update run-time statistics of the 'current'.
2639 update_curr(cfs_rq);
2640 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2642 update_stats_dequeue(cfs_rq, se);
2643 if (flags & DEQUEUE_SLEEP) {
2644 #ifdef CONFIG_SCHEDSTATS
2645 if (entity_is_task(se)) {
2646 struct task_struct *tsk = task_of(se);
2648 if (tsk->state & TASK_INTERRUPTIBLE)
2649 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2650 if (tsk->state & TASK_UNINTERRUPTIBLE)
2651 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2656 clear_buddies(cfs_rq, se);
2658 if (se != cfs_rq->curr)
2659 __dequeue_entity(cfs_rq, se);
2661 account_entity_dequeue(cfs_rq, se);
2664 * Normalize the entity after updating the min_vruntime because the
2665 * update can refer to the ->curr item and we need to reflect this
2666 * movement in our normalized position.
2668 if (!(flags & DEQUEUE_SLEEP))
2669 se->vruntime -= cfs_rq->min_vruntime;
2671 /* return excess runtime on last dequeue */
2672 return_cfs_rq_runtime(cfs_rq);
2674 update_min_vruntime(cfs_rq);
2675 update_cfs_shares(cfs_rq);
2679 * Preempt the current task with a newly woken task if needed:
2682 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2684 unsigned long ideal_runtime, delta_exec;
2685 struct sched_entity *se;
2688 ideal_runtime = sched_slice(cfs_rq, curr);
2689 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2690 if (delta_exec > ideal_runtime) {
2691 resched_task(rq_of(cfs_rq)->curr);
2693 * The current task ran long enough, ensure it doesn't get
2694 * re-elected due to buddy favours.
2696 clear_buddies(cfs_rq, curr);
2701 * Ensure that a task that missed wakeup preemption by a
2702 * narrow margin doesn't have to wait for a full slice.
2703 * This also mitigates buddy induced latencies under load.
2705 if (delta_exec < sysctl_sched_min_granularity)
2708 se = __pick_first_entity(cfs_rq);
2709 delta = curr->vruntime - se->vruntime;
2714 if (delta > ideal_runtime)
2715 resched_task(rq_of(cfs_rq)->curr);
2719 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2721 /* 'current' is not kept within the tree. */
2724 * Any task has to be enqueued before it get to execute on
2725 * a CPU. So account for the time it spent waiting on the
2728 update_stats_wait_end(cfs_rq, se);
2729 __dequeue_entity(cfs_rq, se);
2732 update_stats_curr_start(cfs_rq, se);
2734 #ifdef CONFIG_SCHEDSTATS
2736 * Track our maximum slice length, if the CPU's load is at
2737 * least twice that of our own weight (i.e. dont track it
2738 * when there are only lesser-weight tasks around):
2740 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2741 se->statistics.slice_max = max(se->statistics.slice_max,
2742 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2745 se->prev_sum_exec_runtime = se->sum_exec_runtime;
2749 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2752 * Pick the next process, keeping these things in mind, in this order:
2753 * 1) keep things fair between processes/task groups
2754 * 2) pick the "next" process, since someone really wants that to run
2755 * 3) pick the "last" process, for cache locality
2756 * 4) do not run the "skip" process, if something else is available
2758 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
2760 struct sched_entity *se = __pick_first_entity(cfs_rq);
2761 struct sched_entity *left = se;
2764 * Avoid running the skip buddy, if running something else can
2765 * be done without getting too unfair.
2767 if (cfs_rq->skip == se) {
2768 struct sched_entity *second = __pick_next_entity(se);
2769 if (second && wakeup_preempt_entity(second, left) < 1)
2774 * Prefer last buddy, try to return the CPU to a preempted task.
2776 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2780 * Someone really wants this to run. If it's not unfair, run it.
2782 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2785 clear_buddies(cfs_rq, se);
2790 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2792 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
2795 * If still on the runqueue then deactivate_task()
2796 * was not called and update_curr() has to be done:
2799 update_curr(cfs_rq);
2801 /* throttle cfs_rqs exceeding runtime */
2802 check_cfs_rq_runtime(cfs_rq);
2804 check_spread(cfs_rq, prev);
2806 update_stats_wait_start(cfs_rq, prev);
2807 /* Put 'current' back into the tree. */
2808 __enqueue_entity(cfs_rq, prev);
2809 /* in !on_rq case, update occurred at dequeue */
2810 update_entity_load_avg(prev, 1);
2812 cfs_rq->curr = NULL;
2816 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2819 * Update run-time statistics of the 'current'.
2821 update_curr(cfs_rq);
2824 * Ensure that runnable average is periodically updated.
2826 update_entity_load_avg(curr, 1);
2827 update_cfs_rq_blocked_load(cfs_rq, 1);
2828 update_cfs_shares(cfs_rq);
2830 #ifdef CONFIG_SCHED_HRTICK
2832 * queued ticks are scheduled to match the slice, so don't bother
2833 * validating it and just reschedule.
2836 resched_task(rq_of(cfs_rq)->curr);
2840 * don't let the period tick interfere with the hrtick preemption
2842 if (!sched_feat(DOUBLE_TICK) &&
2843 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2847 if (cfs_rq->nr_running > 1)
2848 check_preempt_tick(cfs_rq, curr);
2852 /**************************************************
2853 * CFS bandwidth control machinery
2856 #ifdef CONFIG_CFS_BANDWIDTH
2858 #ifdef HAVE_JUMP_LABEL
2859 static struct static_key __cfs_bandwidth_used;
2861 static inline bool cfs_bandwidth_used(void)
2863 return static_key_false(&__cfs_bandwidth_used);
2866 void cfs_bandwidth_usage_inc(void)
2868 static_key_slow_inc(&__cfs_bandwidth_used);
2871 void cfs_bandwidth_usage_dec(void)
2873 static_key_slow_dec(&__cfs_bandwidth_used);
2875 #else /* HAVE_JUMP_LABEL */
2876 static bool cfs_bandwidth_used(void)
2881 void cfs_bandwidth_usage_inc(void) {}
2882 void cfs_bandwidth_usage_dec(void) {}
2883 #endif /* HAVE_JUMP_LABEL */
2886 * default period for cfs group bandwidth.
2887 * default: 0.1s, units: nanoseconds
2889 static inline u64 default_cfs_period(void)
2891 return 100000000ULL;
2894 static inline u64 sched_cfs_bandwidth_slice(void)
2896 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2900 * Replenish runtime according to assigned quota and update expiration time.
2901 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2902 * additional synchronization around rq->lock.
2904 * requires cfs_b->lock
2906 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
2910 if (cfs_b->quota == RUNTIME_INF)
2913 now = sched_clock_cpu(smp_processor_id());
2914 cfs_b->runtime = cfs_b->quota;
2915 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2918 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2920 return &tg->cfs_bandwidth;
2923 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2924 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2926 if (unlikely(cfs_rq->throttle_count))
2927 return cfs_rq->throttled_clock_task;
2929 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
2932 /* returns 0 on failure to allocate runtime */
2933 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2935 struct task_group *tg = cfs_rq->tg;
2936 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
2937 u64 amount = 0, min_amount, expires;
2939 /* note: this is a positive sum as runtime_remaining <= 0 */
2940 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2942 raw_spin_lock(&cfs_b->lock);
2943 if (cfs_b->quota == RUNTIME_INF)
2944 amount = min_amount;
2947 * If the bandwidth pool has become inactive, then at least one
2948 * period must have elapsed since the last consumption.
2949 * Refresh the global state and ensure bandwidth timer becomes
2952 if (!cfs_b->timer_active) {
2953 __refill_cfs_bandwidth_runtime(cfs_b);
2954 __start_cfs_bandwidth(cfs_b);
2957 if (cfs_b->runtime > 0) {
2958 amount = min(cfs_b->runtime, min_amount);
2959 cfs_b->runtime -= amount;
2963 expires = cfs_b->runtime_expires;
2964 raw_spin_unlock(&cfs_b->lock);
2966 cfs_rq->runtime_remaining += amount;
2968 * we may have advanced our local expiration to account for allowed
2969 * spread between our sched_clock and the one on which runtime was
2972 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2973 cfs_rq->runtime_expires = expires;
2975 return cfs_rq->runtime_remaining > 0;
2979 * Note: This depends on the synchronization provided by sched_clock and the
2980 * fact that rq->clock snapshots this value.
2982 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2984 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2986 /* if the deadline is ahead of our clock, nothing to do */
2987 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
2990 if (cfs_rq->runtime_remaining < 0)
2994 * If the local deadline has passed we have to consider the
2995 * possibility that our sched_clock is 'fast' and the global deadline
2996 * has not truly expired.
2998 * Fortunately we can check determine whether this the case by checking
2999 * whether the global deadline has advanced.
3002 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
3003 /* extend local deadline, drift is bounded above by 2 ticks */
3004 cfs_rq->runtime_expires += TICK_NSEC;
3006 /* global deadline is ahead, expiration has passed */
3007 cfs_rq->runtime_remaining = 0;
3011 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3013 /* dock delta_exec before expiring quota (as it could span periods) */
3014 cfs_rq->runtime_remaining -= delta_exec;
3015 expire_cfs_rq_runtime(cfs_rq);
3017 if (likely(cfs_rq->runtime_remaining > 0))
3021 * if we're unable to extend our runtime we resched so that the active
3022 * hierarchy can be throttled
3024 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3025 resched_task(rq_of(cfs_rq)->curr);
3028 static __always_inline
3029 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3031 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3034 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3037 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3039 return cfs_bandwidth_used() && cfs_rq->throttled;
3042 /* check whether cfs_rq, or any parent, is throttled */
3043 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3045 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3049 * Ensure that neither of the group entities corresponding to src_cpu or
3050 * dest_cpu are members of a throttled hierarchy when performing group
3051 * load-balance operations.
3053 static inline int throttled_lb_pair(struct task_group *tg,
3054 int src_cpu, int dest_cpu)
3056 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3058 src_cfs_rq = tg->cfs_rq[src_cpu];
3059 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3061 return throttled_hierarchy(src_cfs_rq) ||
3062 throttled_hierarchy(dest_cfs_rq);
3065 /* updated child weight may affect parent so we have to do this bottom up */
3066 static int tg_unthrottle_up(struct task_group *tg, void *data)
3068 struct rq *rq = data;
3069 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3071 cfs_rq->throttle_count--;
3073 if (!cfs_rq->throttle_count) {
3074 /* adjust cfs_rq_clock_task() */
3075 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3076 cfs_rq->throttled_clock_task;
3083 static int tg_throttle_down(struct task_group *tg, void *data)
3085 struct rq *rq = data;
3086 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3088 /* group is entering throttled state, stop time */
3089 if (!cfs_rq->throttle_count)
3090 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3091 cfs_rq->throttle_count++;
3096 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3098 struct rq *rq = rq_of(cfs_rq);
3099 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3100 struct sched_entity *se;
3101 long task_delta, dequeue = 1;
3103 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3105 /* freeze hierarchy runnable averages while throttled */
3107 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3110 task_delta = cfs_rq->h_nr_running;
3111 for_each_sched_entity(se) {
3112 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3113 /* throttled entity or throttle-on-deactivate */
3118 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3119 qcfs_rq->h_nr_running -= task_delta;
3121 if (qcfs_rq->load.weight)
3126 rq->nr_running -= task_delta;
3128 cfs_rq->throttled = 1;
3129 cfs_rq->throttled_clock = rq_clock(rq);
3130 raw_spin_lock(&cfs_b->lock);
3131 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3132 if (!cfs_b->timer_active)
3133 __start_cfs_bandwidth(cfs_b);
3134 raw_spin_unlock(&cfs_b->lock);
3137 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3139 struct rq *rq = rq_of(cfs_rq);
3140 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3141 struct sched_entity *se;
3145 se = cfs_rq->tg->se[cpu_of(rq)];
3147 cfs_rq->throttled = 0;
3149 update_rq_clock(rq);
3151 raw_spin_lock(&cfs_b->lock);
3152 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3153 list_del_rcu(&cfs_rq->throttled_list);
3154 raw_spin_unlock(&cfs_b->lock);
3156 /* update hierarchical throttle state */
3157 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3159 if (!cfs_rq->load.weight)
3162 task_delta = cfs_rq->h_nr_running;
3163 for_each_sched_entity(se) {
3167 cfs_rq = cfs_rq_of(se);
3169 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3170 cfs_rq->h_nr_running += task_delta;
3172 if (cfs_rq_throttled(cfs_rq))
3177 rq->nr_running += task_delta;
3179 /* determine whether we need to wake up potentially idle cpu */
3180 if (rq->curr == rq->idle && rq->cfs.nr_running)
3181 resched_task(rq->curr);
3184 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3185 u64 remaining, u64 expires)
3187 struct cfs_rq *cfs_rq;
3188 u64 runtime = remaining;
3191 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3193 struct rq *rq = rq_of(cfs_rq);
3195 raw_spin_lock(&rq->lock);
3196 if (!cfs_rq_throttled(cfs_rq))
3199 runtime = -cfs_rq->runtime_remaining + 1;
3200 if (runtime > remaining)
3201 runtime = remaining;
3202 remaining -= runtime;
3204 cfs_rq->runtime_remaining += runtime;
3205 cfs_rq->runtime_expires = expires;
3207 /* we check whether we're throttled above */
3208 if (cfs_rq->runtime_remaining > 0)
3209 unthrottle_cfs_rq(cfs_rq);
3212 raw_spin_unlock(&rq->lock);
3223 * Responsible for refilling a task_group's bandwidth and unthrottling its
3224 * cfs_rqs as appropriate. If there has been no activity within the last
3225 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3226 * used to track this state.
3228 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3230 u64 runtime, runtime_expires;
3231 int idle = 1, throttled;
3233 raw_spin_lock(&cfs_b->lock);
3234 /* no need to continue the timer with no bandwidth constraint */
3235 if (cfs_b->quota == RUNTIME_INF)
3238 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3239 /* idle depends on !throttled (for the case of a large deficit) */
3240 idle = cfs_b->idle && !throttled;
3241 cfs_b->nr_periods += overrun;
3243 /* if we're going inactive then everything else can be deferred */
3248 * if we have relooped after returning idle once, we need to update our
3249 * status as actually running, so that other cpus doing
3250 * __start_cfs_bandwidth will stop trying to cancel us.
3252 cfs_b->timer_active = 1;
3254 __refill_cfs_bandwidth_runtime(cfs_b);
3257 /* mark as potentially idle for the upcoming period */
3262 /* account preceding periods in which throttling occurred */
3263 cfs_b->nr_throttled += overrun;
3266 * There are throttled entities so we must first use the new bandwidth
3267 * to unthrottle them before making it generally available. This
3268 * ensures that all existing debts will be paid before a new cfs_rq is
3271 runtime = cfs_b->runtime;
3272 runtime_expires = cfs_b->runtime_expires;
3276 * This check is repeated as we are holding onto the new bandwidth
3277 * while we unthrottle. This can potentially race with an unthrottled
3278 * group trying to acquire new bandwidth from the global pool.
3280 while (throttled && runtime > 0) {
3281 raw_spin_unlock(&cfs_b->lock);
3282 /* we can't nest cfs_b->lock while distributing bandwidth */
3283 runtime = distribute_cfs_runtime(cfs_b, runtime,
3285 raw_spin_lock(&cfs_b->lock);
3287 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3290 /* return (any) remaining runtime */
3291 cfs_b->runtime = runtime;
3293 * While we are ensured activity in the period following an
3294 * unthrottle, this also covers the case in which the new bandwidth is
3295 * insufficient to cover the existing bandwidth deficit. (Forcing the
3296 * timer to remain active while there are any throttled entities.)
3301 cfs_b->timer_active = 0;
3302 raw_spin_unlock(&cfs_b->lock);
3307 /* a cfs_rq won't donate quota below this amount */
3308 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3309 /* minimum remaining period time to redistribute slack quota */
3310 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3311 /* how long we wait to gather additional slack before distributing */
3312 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3315 * Are we near the end of the current quota period?
3317 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3318 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3319 * migrate_hrtimers, base is never cleared, so we are fine.
3321 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3323 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3326 /* if the call-back is running a quota refresh is already occurring */
3327 if (hrtimer_callback_running(refresh_timer))
3330 /* is a quota refresh about to occur? */
3331 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3332 if (remaining < min_expire)
3338 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3340 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3342 /* if there's a quota refresh soon don't bother with slack */
3343 if (runtime_refresh_within(cfs_b, min_left))
3346 start_bandwidth_timer(&cfs_b->slack_timer,
3347 ns_to_ktime(cfs_bandwidth_slack_period));
3350 /* we know any runtime found here is valid as update_curr() precedes return */
3351 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3353 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3354 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3356 if (slack_runtime <= 0)
3359 raw_spin_lock(&cfs_b->lock);
3360 if (cfs_b->quota != RUNTIME_INF &&
3361 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3362 cfs_b->runtime += slack_runtime;
3364 /* we are under rq->lock, defer unthrottling using a timer */
3365 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3366 !list_empty(&cfs_b->throttled_cfs_rq))
3367 start_cfs_slack_bandwidth(cfs_b);
3369 raw_spin_unlock(&cfs_b->lock);
3371 /* even if it's not valid for return we don't want to try again */
3372 cfs_rq->runtime_remaining -= slack_runtime;
3375 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3377 if (!cfs_bandwidth_used())
3380 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3383 __return_cfs_rq_runtime(cfs_rq);
3387 * This is done with a timer (instead of inline with bandwidth return) since
3388 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3390 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3392 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3395 /* confirm we're still not at a refresh boundary */
3396 raw_spin_lock(&cfs_b->lock);
3397 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3398 raw_spin_unlock(&cfs_b->lock);
3402 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3403 runtime = cfs_b->runtime;
3406 expires = cfs_b->runtime_expires;
3407 raw_spin_unlock(&cfs_b->lock);
3412 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3414 raw_spin_lock(&cfs_b->lock);
3415 if (expires == cfs_b->runtime_expires)
3416 cfs_b->runtime = runtime;
3417 raw_spin_unlock(&cfs_b->lock);
3421 * When a group wakes up we want to make sure that its quota is not already
3422 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3423 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3425 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3427 if (!cfs_bandwidth_used())
3430 /* an active group must be handled by the update_curr()->put() path */
3431 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3434 /* ensure the group is not already throttled */
3435 if (cfs_rq_throttled(cfs_rq))
3438 /* update runtime allocation */
3439 account_cfs_rq_runtime(cfs_rq, 0);
3440 if (cfs_rq->runtime_remaining <= 0)
3441 throttle_cfs_rq(cfs_rq);
3444 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3445 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3447 if (!cfs_bandwidth_used())
3450 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3454 * it's possible for a throttled entity to be forced into a running
3455 * state (e.g. set_curr_task), in this case we're finished.
3457 if (cfs_rq_throttled(cfs_rq))
3460 throttle_cfs_rq(cfs_rq);
3463 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3465 struct cfs_bandwidth *cfs_b =
3466 container_of(timer, struct cfs_bandwidth, slack_timer);
3467 do_sched_cfs_slack_timer(cfs_b);
3469 return HRTIMER_NORESTART;
3472 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3474 struct cfs_bandwidth *cfs_b =
3475 container_of(timer, struct cfs_bandwidth, period_timer);
3481 now = hrtimer_cb_get_time(timer);
3482 overrun = hrtimer_forward(timer, now, cfs_b->period);
3487 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3490 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3493 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3495 raw_spin_lock_init(&cfs_b->lock);
3497 cfs_b->quota = RUNTIME_INF;
3498 cfs_b->period = ns_to_ktime(default_cfs_period());
3500 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3501 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3502 cfs_b->period_timer.function = sched_cfs_period_timer;
3503 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3504 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3507 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3509 cfs_rq->runtime_enabled = 0;
3510 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3513 /* requires cfs_b->lock, may release to reprogram timer */
3514 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3517 * The timer may be active because we're trying to set a new bandwidth
3518 * period or because we're racing with the tear-down path
3519 * (timer_active==0 becomes visible before the hrtimer call-back
3520 * terminates). In either case we ensure that it's re-programmed
3522 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3523 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3524 /* bounce the lock to allow do_sched_cfs_period_timer to run */
3525 raw_spin_unlock(&cfs_b->lock);
3527 raw_spin_lock(&cfs_b->lock);
3528 /* if someone else restarted the timer then we're done */
3529 if (cfs_b->timer_active)
3533 cfs_b->timer_active = 1;
3534 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3537 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3539 hrtimer_cancel(&cfs_b->period_timer);
3540 hrtimer_cancel(&cfs_b->slack_timer);
3543 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3545 struct cfs_rq *cfs_rq;
3547 for_each_leaf_cfs_rq(rq, cfs_rq) {
3548 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3550 if (!cfs_rq->runtime_enabled)
3554 * clock_task is not advancing so we just need to make sure
3555 * there's some valid quota amount
3557 cfs_rq->runtime_remaining = cfs_b->quota;
3558 if (cfs_rq_throttled(cfs_rq))
3559 unthrottle_cfs_rq(cfs_rq);
3563 #else /* CONFIG_CFS_BANDWIDTH */
3564 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3566 return rq_clock_task(rq_of(cfs_rq));
3569 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3570 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3571 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3572 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3574 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3579 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3584 static inline int throttled_lb_pair(struct task_group *tg,
3585 int src_cpu, int dest_cpu)
3590 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3592 #ifdef CONFIG_FAIR_GROUP_SCHED
3593 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3596 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3600 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3601 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3603 #endif /* CONFIG_CFS_BANDWIDTH */
3605 /**************************************************
3606 * CFS operations on tasks:
3609 #ifdef CONFIG_SCHED_HRTICK
3610 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3612 struct sched_entity *se = &p->se;
3613 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3615 WARN_ON(task_rq(p) != rq);
3617 if (cfs_rq->nr_running > 1) {
3618 u64 slice = sched_slice(cfs_rq, se);
3619 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3620 s64 delta = slice - ran;
3629 * Don't schedule slices shorter than 10000ns, that just
3630 * doesn't make sense. Rely on vruntime for fairness.
3633 delta = max_t(s64, 10000LL, delta);
3635 hrtick_start(rq, delta);
3640 * called from enqueue/dequeue and updates the hrtick when the
3641 * current task is from our class and nr_running is low enough
3644 static void hrtick_update(struct rq *rq)
3646 struct task_struct *curr = rq->curr;
3648 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3651 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3652 hrtick_start_fair(rq, curr);
3654 #else /* !CONFIG_SCHED_HRTICK */
3656 hrtick_start_fair(struct rq *rq, struct task_struct *p)
3660 static inline void hrtick_update(struct rq *rq)
3666 * The enqueue_task method is called before nr_running is
3667 * increased. Here we update the fair scheduling stats and
3668 * then put the task into the rbtree:
3671 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3673 struct cfs_rq *cfs_rq;
3674 struct sched_entity *se = &p->se;
3676 for_each_sched_entity(se) {
3679 cfs_rq = cfs_rq_of(se);
3680 enqueue_entity(cfs_rq, se, flags);
3683 * end evaluation on encountering a throttled cfs_rq
3685 * note: in the case of encountering a throttled cfs_rq we will
3686 * post the final h_nr_running increment below.
3688 if (cfs_rq_throttled(cfs_rq))
3690 cfs_rq->h_nr_running++;
3692 flags = ENQUEUE_WAKEUP;
3695 for_each_sched_entity(se) {
3696 cfs_rq = cfs_rq_of(se);
3697 cfs_rq->h_nr_running++;
3699 if (cfs_rq_throttled(cfs_rq))
3702 update_cfs_shares(cfs_rq);
3703 update_entity_load_avg(se, 1);
3707 update_rq_runnable_avg(rq, rq->nr_running);
3713 static void set_next_buddy(struct sched_entity *se);
3716 * The dequeue_task method is called before nr_running is
3717 * decreased. We remove the task from the rbtree and
3718 * update the fair scheduling stats:
3720 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3722 struct cfs_rq *cfs_rq;
3723 struct sched_entity *se = &p->se;
3724 int task_sleep = flags & DEQUEUE_SLEEP;
3726 for_each_sched_entity(se) {
3727 cfs_rq = cfs_rq_of(se);
3728 dequeue_entity(cfs_rq, se, flags);
3731 * end evaluation on encountering a throttled cfs_rq
3733 * note: in the case of encountering a throttled cfs_rq we will
3734 * post the final h_nr_running decrement below.
3736 if (cfs_rq_throttled(cfs_rq))
3738 cfs_rq->h_nr_running--;
3740 /* Don't dequeue parent if it has other entities besides us */
3741 if (cfs_rq->load.weight) {
3743 * Bias pick_next to pick a task from this cfs_rq, as
3744 * p is sleeping when it is within its sched_slice.
3746 if (task_sleep && parent_entity(se))
3747 set_next_buddy(parent_entity(se));
3749 /* avoid re-evaluating load for this entity */
3750 se = parent_entity(se);
3753 flags |= DEQUEUE_SLEEP;
3756 for_each_sched_entity(se) {
3757 cfs_rq = cfs_rq_of(se);
3758 cfs_rq->h_nr_running--;
3760 if (cfs_rq_throttled(cfs_rq))
3763 update_cfs_shares(cfs_rq);
3764 update_entity_load_avg(se, 1);
3769 update_rq_runnable_avg(rq, 1);
3775 /* Used instead of source_load when we know the type == 0 */
3776 static unsigned long weighted_cpuload(const int cpu)
3778 return cpu_rq(cpu)->cfs.runnable_load_avg;
3782 * Return a low guess at the load of a migration-source cpu weighted
3783 * according to the scheduling class and "nice" value.
3785 * We want to under-estimate the load of migration sources, to
3786 * balance conservatively.
3788 static unsigned long source_load(int cpu, int type)
3790 struct rq *rq = cpu_rq(cpu);
3791 unsigned long total = weighted_cpuload(cpu);
3793 if (type == 0 || !sched_feat(LB_BIAS))
3796 return min(rq->cpu_load[type-1], total);
3800 * Return a high guess at the load of a migration-target cpu weighted
3801 * according to the scheduling class and "nice" value.
3803 static unsigned long target_load(int cpu, int type)
3805 struct rq *rq = cpu_rq(cpu);
3806 unsigned long total = weighted_cpuload(cpu);
3808 if (type == 0 || !sched_feat(LB_BIAS))
3811 return max(rq->cpu_load[type-1], total);
3814 static unsigned long power_of(int cpu)
3816 return cpu_rq(cpu)->cpu_power;
3819 static unsigned long cpu_avg_load_per_task(int cpu)
3821 struct rq *rq = cpu_rq(cpu);
3822 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
3823 unsigned long load_avg = rq->cfs.runnable_load_avg;
3826 return load_avg / nr_running;
3831 static void record_wakee(struct task_struct *p)
3834 * Rough decay (wiping) for cost saving, don't worry
3835 * about the boundary, really active task won't care
3838 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3839 current->wakee_flips = 0;
3840 current->wakee_flip_decay_ts = jiffies;
3843 if (current->last_wakee != p) {
3844 current->last_wakee = p;
3845 current->wakee_flips++;
3849 static void task_waking_fair(struct task_struct *p)
3851 struct sched_entity *se = &p->se;
3852 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3855 #ifndef CONFIG_64BIT
3856 u64 min_vruntime_copy;
3859 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3861 min_vruntime = cfs_rq->min_vruntime;
3862 } while (min_vruntime != min_vruntime_copy);
3864 min_vruntime = cfs_rq->min_vruntime;
3867 se->vruntime -= min_vruntime;
3871 #ifdef CONFIG_FAIR_GROUP_SCHED
3873 * effective_load() calculates the load change as seen from the root_task_group
3875 * Adding load to a group doesn't make a group heavier, but can cause movement
3876 * of group shares between cpus. Assuming the shares were perfectly aligned one
3877 * can calculate the shift in shares.
3879 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3880 * on this @cpu and results in a total addition (subtraction) of @wg to the
3881 * total group weight.
3883 * Given a runqueue weight distribution (rw_i) we can compute a shares
3884 * distribution (s_i) using:
3886 * s_i = rw_i / \Sum rw_j (1)
3888 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3889 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3890 * shares distribution (s_i):
3892 * rw_i = { 2, 4, 1, 0 }
3893 * s_i = { 2/7, 4/7, 1/7, 0 }
3895 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3896 * task used to run on and the CPU the waker is running on), we need to
3897 * compute the effect of waking a task on either CPU and, in case of a sync
3898 * wakeup, compute the effect of the current task going to sleep.
3900 * So for a change of @wl to the local @cpu with an overall group weight change
3901 * of @wl we can compute the new shares distribution (s'_i) using:
3903 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3905 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3906 * differences in waking a task to CPU 0. The additional task changes the
3907 * weight and shares distributions like:
3909 * rw'_i = { 3, 4, 1, 0 }
3910 * s'_i = { 3/8, 4/8, 1/8, 0 }
3912 * We can then compute the difference in effective weight by using:
3914 * dw_i = S * (s'_i - s_i) (3)
3916 * Where 'S' is the group weight as seen by its parent.
3918 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3919 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3920 * 4/7) times the weight of the group.
3922 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3924 struct sched_entity *se = tg->se[cpu];
3926 if (!tg->parent) /* the trivial, non-cgroup case */
3929 for_each_sched_entity(se) {
3935 * W = @wg + \Sum rw_j
3937 W = wg + calc_tg_weight(tg, se->my_q);
3942 w = se->my_q->load.weight + wl;
3945 * wl = S * s'_i; see (2)
3948 wl = (w * tg->shares) / W;
3953 * Per the above, wl is the new se->load.weight value; since
3954 * those are clipped to [MIN_SHARES, ...) do so now. See
3955 * calc_cfs_shares().
3957 if (wl < MIN_SHARES)
3961 * wl = dw_i = S * (s'_i - s_i); see (3)
3963 wl -= se->load.weight;
3966 * Recursively apply this logic to all parent groups to compute
3967 * the final effective load change on the root group. Since
3968 * only the @tg group gets extra weight, all parent groups can
3969 * only redistribute existing shares. @wl is the shift in shares
3970 * resulting from this level per the above.
3979 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3986 static int wake_wide(struct task_struct *p)
3988 int factor = this_cpu_read(sd_llc_size);
3991 * Yeah, it's the switching-frequency, could means many wakee or
3992 * rapidly switch, use factor here will just help to automatically
3993 * adjust the loose-degree, so bigger node will lead to more pull.
3995 if (p->wakee_flips > factor) {
3997 * wakee is somewhat hot, it needs certain amount of cpu
3998 * resource, so if waker is far more hot, prefer to leave
4001 if (current->wakee_flips > (factor * p->wakee_flips))
4008 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4010 s64 this_load, load;
4011 int idx, this_cpu, prev_cpu;
4012 unsigned long tl_per_task;
4013 struct task_group *tg;
4014 unsigned long weight;
4018 * If we wake multiple tasks be careful to not bounce
4019 * ourselves around too much.
4025 this_cpu = smp_processor_id();
4026 prev_cpu = task_cpu(p);
4027 load = source_load(prev_cpu, idx);
4028 this_load = target_load(this_cpu, idx);
4031 * If sync wakeup then subtract the (maximum possible)
4032 * effect of the currently running task from the load
4033 * of the current CPU:
4036 tg = task_group(current);
4037 weight = current->se.load.weight;
4039 this_load += effective_load(tg, this_cpu, -weight, -weight);
4040 load += effective_load(tg, prev_cpu, 0, -weight);
4044 weight = p->se.load.weight;
4047 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4048 * due to the sync cause above having dropped this_load to 0, we'll
4049 * always have an imbalance, but there's really nothing you can do
4050 * about that, so that's good too.
4052 * Otherwise check if either cpus are near enough in load to allow this
4053 * task to be woken on this_cpu.
4055 if (this_load > 0) {
4056 s64 this_eff_load, prev_eff_load;
4058 this_eff_load = 100;
4059 this_eff_load *= power_of(prev_cpu);
4060 this_eff_load *= this_load +
4061 effective_load(tg, this_cpu, weight, weight);
4063 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4064 prev_eff_load *= power_of(this_cpu);
4065 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4067 balanced = this_eff_load <= prev_eff_load;
4072 * If the currently running task will sleep within
4073 * a reasonable amount of time then attract this newly
4076 if (sync && balanced)
4079 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4080 tl_per_task = cpu_avg_load_per_task(this_cpu);
4083 (this_load <= load &&
4084 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
4086 * This domain has SD_WAKE_AFFINE and
4087 * p is cache cold in this domain, and
4088 * there is no bad imbalance.
4090 schedstat_inc(sd, ttwu_move_affine);
4091 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4099 * find_idlest_group finds and returns the least busy CPU group within the
4102 static struct sched_group *
4103 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4104 int this_cpu, int load_idx)
4106 struct sched_group *idlest = NULL, *group = sd->groups;
4107 unsigned long min_load = ULONG_MAX, this_load = 0;
4108 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4111 unsigned long load, avg_load;
4115 /* Skip over this group if it has no CPUs allowed */
4116 if (!cpumask_intersects(sched_group_cpus(group),
4117 tsk_cpus_allowed(p)))
4120 local_group = cpumask_test_cpu(this_cpu,
4121 sched_group_cpus(group));
4123 /* Tally up the load of all CPUs in the group */
4126 for_each_cpu(i, sched_group_cpus(group)) {
4127 /* Bias balancing toward cpus of our domain */
4129 load = source_load(i, load_idx);
4131 load = target_load(i, load_idx);
4136 /* Adjust by relative CPU power of the group */
4137 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
4140 this_load = avg_load;
4141 } else if (avg_load < min_load) {
4142 min_load = avg_load;
4145 } while (group = group->next, group != sd->groups);
4147 if (!idlest || 100*this_load < imbalance*min_load)
4153 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4156 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4158 unsigned long load, min_load = ULONG_MAX;
4162 /* Traverse only the allowed CPUs */
4163 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4164 load = weighted_cpuload(i);
4166 if (load < min_load || (load == min_load && i == this_cpu)) {
4176 * Try and locate an idle CPU in the sched_domain.
4178 static int select_idle_sibling(struct task_struct *p, int target)
4180 struct sched_domain *sd;
4181 struct sched_group *sg;
4182 int i = task_cpu(p);
4184 if (idle_cpu(target))
4188 * If the prevous cpu is cache affine and idle, don't be stupid.
4190 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4194 * Otherwise, iterate the domains and find an elegible idle cpu.
4196 sd = rcu_dereference(per_cpu(sd_llc, target));
4197 for_each_lower_domain(sd) {
4200 if (!cpumask_intersects(sched_group_cpus(sg),
4201 tsk_cpus_allowed(p)))
4204 for_each_cpu(i, sched_group_cpus(sg)) {
4205 if (i == target || !idle_cpu(i))
4209 target = cpumask_first_and(sched_group_cpus(sg),
4210 tsk_cpus_allowed(p));
4214 } while (sg != sd->groups);
4221 * sched_balance_self: balance the current task (running on cpu) in domains
4222 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4225 * Balance, ie. select the least loaded group.
4227 * Returns the target CPU number, or the same CPU if no balancing is needed.
4229 * preempt must be disabled.
4232 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4234 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4235 int cpu = smp_processor_id();
4237 int want_affine = 0;
4238 int sync = wake_flags & WF_SYNC;
4240 if (p->nr_cpus_allowed == 1)
4243 if (sd_flag & SD_BALANCE_WAKE) {
4244 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
4250 for_each_domain(cpu, tmp) {
4251 if (!(tmp->flags & SD_LOAD_BALANCE))
4255 * If both cpu and prev_cpu are part of this domain,
4256 * cpu is a valid SD_WAKE_AFFINE target.
4258 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4259 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4264 if (tmp->flags & sd_flag)
4269 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4272 new_cpu = select_idle_sibling(p, prev_cpu);
4277 int load_idx = sd->forkexec_idx;
4278 struct sched_group *group;
4281 if (!(sd->flags & sd_flag)) {
4286 if (sd_flag & SD_BALANCE_WAKE)
4287 load_idx = sd->wake_idx;
4289 group = find_idlest_group(sd, p, cpu, load_idx);
4295 new_cpu = find_idlest_cpu(group, p, cpu);
4296 if (new_cpu == -1 || new_cpu == cpu) {
4297 /* Now try balancing at a lower domain level of cpu */
4302 /* Now try balancing at a lower domain level of new_cpu */
4304 weight = sd->span_weight;
4306 for_each_domain(cpu, tmp) {
4307 if (weight <= tmp->span_weight)
4309 if (tmp->flags & sd_flag)
4312 /* while loop will break here if sd == NULL */
4321 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4322 * cfs_rq_of(p) references at time of call are still valid and identify the
4323 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4324 * other assumptions, including the state of rq->lock, should be made.
4327 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4329 struct sched_entity *se = &p->se;
4330 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4333 * Load tracking: accumulate removed load so that it can be processed
4334 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4335 * to blocked load iff they have a positive decay-count. It can never
4336 * be negative here since on-rq tasks have decay-count == 0.
4338 if (se->avg.decay_count) {
4339 se->avg.decay_count = -__synchronize_entity_decay(se);
4340 atomic_long_add(se->avg.load_avg_contrib,
4341 &cfs_rq->removed_load);
4344 #endif /* CONFIG_SMP */
4346 static unsigned long
4347 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4349 unsigned long gran = sysctl_sched_wakeup_granularity;
4352 * Since its curr running now, convert the gran from real-time
4353 * to virtual-time in his units.
4355 * By using 'se' instead of 'curr' we penalize light tasks, so
4356 * they get preempted easier. That is, if 'se' < 'curr' then
4357 * the resulting gran will be larger, therefore penalizing the
4358 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4359 * be smaller, again penalizing the lighter task.
4361 * This is especially important for buddies when the leftmost
4362 * task is higher priority than the buddy.
4364 return calc_delta_fair(gran, se);
4368 * Should 'se' preempt 'curr'.
4382 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4384 s64 gran, vdiff = curr->vruntime - se->vruntime;
4389 gran = wakeup_gran(curr, se);
4396 static void set_last_buddy(struct sched_entity *se)
4398 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4401 for_each_sched_entity(se)
4402 cfs_rq_of(se)->last = se;
4405 static void set_next_buddy(struct sched_entity *se)
4407 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4410 for_each_sched_entity(se)
4411 cfs_rq_of(se)->next = se;
4414 static void set_skip_buddy(struct sched_entity *se)
4416 for_each_sched_entity(se)
4417 cfs_rq_of(se)->skip = se;
4421 * Preempt the current task with a newly woken task if needed:
4423 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4425 struct task_struct *curr = rq->curr;
4426 struct sched_entity *se = &curr->se, *pse = &p->se;
4427 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4428 int scale = cfs_rq->nr_running >= sched_nr_latency;
4429 int next_buddy_marked = 0;
4431 if (unlikely(se == pse))
4435 * This is possible from callers such as move_task(), in which we
4436 * unconditionally check_prempt_curr() after an enqueue (which may have
4437 * lead to a throttle). This both saves work and prevents false
4438 * next-buddy nomination below.
4440 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4443 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4444 set_next_buddy(pse);
4445 next_buddy_marked = 1;
4449 * We can come here with TIF_NEED_RESCHED already set from new task
4452 * Note: this also catches the edge-case of curr being in a throttled
4453 * group (e.g. via set_curr_task), since update_curr() (in the
4454 * enqueue of curr) will have resulted in resched being set. This
4455 * prevents us from potentially nominating it as a false LAST_BUDDY
4458 if (test_tsk_need_resched(curr))
4461 /* Idle tasks are by definition preempted by non-idle tasks. */
4462 if (unlikely(curr->policy == SCHED_IDLE) &&
4463 likely(p->policy != SCHED_IDLE))
4467 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4468 * is driven by the tick):
4470 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4473 find_matching_se(&se, &pse);
4474 update_curr(cfs_rq_of(se));
4476 if (wakeup_preempt_entity(se, pse) == 1) {
4478 * Bias pick_next to pick the sched entity that is
4479 * triggering this preemption.
4481 if (!next_buddy_marked)
4482 set_next_buddy(pse);
4491 * Only set the backward buddy when the current task is still
4492 * on the rq. This can happen when a wakeup gets interleaved
4493 * with schedule on the ->pre_schedule() or idle_balance()
4494 * point, either of which can * drop the rq lock.
4496 * Also, during early boot the idle thread is in the fair class,
4497 * for obvious reasons its a bad idea to schedule back to it.
4499 if (unlikely(!se->on_rq || curr == rq->idle))
4502 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4506 static struct task_struct *pick_next_task_fair(struct rq *rq)
4508 struct task_struct *p;
4509 struct cfs_rq *cfs_rq = &rq->cfs;
4510 struct sched_entity *se;
4512 if (!cfs_rq->nr_running)
4516 se = pick_next_entity(cfs_rq);
4517 set_next_entity(cfs_rq, se);
4518 cfs_rq = group_cfs_rq(se);
4522 if (hrtick_enabled(rq))
4523 hrtick_start_fair(rq, p);
4529 * Account for a descheduled task:
4531 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4533 struct sched_entity *se = &prev->se;
4534 struct cfs_rq *cfs_rq;
4536 for_each_sched_entity(se) {
4537 cfs_rq = cfs_rq_of(se);
4538 put_prev_entity(cfs_rq, se);
4543 * sched_yield() is very simple
4545 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4547 static void yield_task_fair(struct rq *rq)
4549 struct task_struct *curr = rq->curr;
4550 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4551 struct sched_entity *se = &curr->se;
4554 * Are we the only task in the tree?
4556 if (unlikely(rq->nr_running == 1))
4559 clear_buddies(cfs_rq, se);
4561 if (curr->policy != SCHED_BATCH) {
4562 update_rq_clock(rq);
4564 * Update run-time statistics of the 'current'.
4566 update_curr(cfs_rq);
4568 * Tell update_rq_clock() that we've just updated,
4569 * so we don't do microscopic update in schedule()
4570 * and double the fastpath cost.
4572 rq->skip_clock_update = 1;
4578 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4580 struct sched_entity *se = &p->se;
4582 /* throttled hierarchies are not runnable */
4583 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4586 /* Tell the scheduler that we'd really like pse to run next. */
4589 yield_task_fair(rq);
4595 /**************************************************
4596 * Fair scheduling class load-balancing methods.
4600 * The purpose of load-balancing is to achieve the same basic fairness the
4601 * per-cpu scheduler provides, namely provide a proportional amount of compute
4602 * time to each task. This is expressed in the following equation:
4604 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4606 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4607 * W_i,0 is defined as:
4609 * W_i,0 = \Sum_j w_i,j (2)
4611 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4612 * is derived from the nice value as per prio_to_weight[].
4614 * The weight average is an exponential decay average of the instantaneous
4617 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4619 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4620 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4621 * can also include other factors [XXX].
4623 * To achieve this balance we define a measure of imbalance which follows
4624 * directly from (1):
4626 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4628 * We them move tasks around to minimize the imbalance. In the continuous
4629 * function space it is obvious this converges, in the discrete case we get
4630 * a few fun cases generally called infeasible weight scenarios.
4633 * - infeasible weights;
4634 * - local vs global optima in the discrete case. ]
4639 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4640 * for all i,j solution, we create a tree of cpus that follows the hardware
4641 * topology where each level pairs two lower groups (or better). This results
4642 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4643 * tree to only the first of the previous level and we decrease the frequency
4644 * of load-balance at each level inv. proportional to the number of cpus in
4650 * \Sum { --- * --- * 2^i } = O(n) (5)
4652 * `- size of each group
4653 * | | `- number of cpus doing load-balance
4655 * `- sum over all levels
4657 * Coupled with a limit on how many tasks we can migrate every balance pass,
4658 * this makes (5) the runtime complexity of the balancer.
4660 * An important property here is that each CPU is still (indirectly) connected
4661 * to every other cpu in at most O(log n) steps:
4663 * The adjacency matrix of the resulting graph is given by:
4666 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4669 * And you'll find that:
4671 * A^(log_2 n)_i,j != 0 for all i,j (7)
4673 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4674 * The task movement gives a factor of O(m), giving a convergence complexity
4677 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4682 * In order to avoid CPUs going idle while there's still work to do, new idle
4683 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4684 * tree itself instead of relying on other CPUs to bring it work.
4686 * This adds some complexity to both (5) and (8) but it reduces the total idle
4694 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4697 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4702 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4704 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4706 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4709 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4710 * rewrite all of this once again.]
4713 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4715 enum fbq_type { regular, remote, all };
4717 #define LBF_ALL_PINNED 0x01
4718 #define LBF_NEED_BREAK 0x02
4719 #define LBF_DST_PINNED 0x04
4720 #define LBF_SOME_PINNED 0x08
4723 struct sched_domain *sd;
4731 struct cpumask *dst_grpmask;
4733 enum cpu_idle_type idle;
4735 /* The set of CPUs under consideration for load-balancing */
4736 struct cpumask *cpus;
4741 unsigned int loop_break;
4742 unsigned int loop_max;
4744 enum fbq_type fbq_type;
4748 * move_task - move a task from one runqueue to another runqueue.
4749 * Both runqueues must be locked.
4751 static void move_task(struct task_struct *p, struct lb_env *env)
4753 deactivate_task(env->src_rq, p, 0);
4754 set_task_cpu(p, env->dst_cpu);
4755 activate_task(env->dst_rq, p, 0);
4756 check_preempt_curr(env->dst_rq, p, 0);
4760 * Is this task likely cache-hot:
4763 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4767 if (p->sched_class != &fair_sched_class)
4770 if (unlikely(p->policy == SCHED_IDLE))
4774 * Buddy candidates are cache hot:
4776 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4777 (&p->se == cfs_rq_of(&p->se)->next ||
4778 &p->se == cfs_rq_of(&p->se)->last))
4781 if (sysctl_sched_migration_cost == -1)
4783 if (sysctl_sched_migration_cost == 0)
4786 delta = now - p->se.exec_start;
4788 return delta < (s64)sysctl_sched_migration_cost;
4791 #ifdef CONFIG_NUMA_BALANCING
4792 /* Returns true if the destination node has incurred more faults */
4793 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4795 int src_nid, dst_nid;
4797 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4798 !(env->sd->flags & SD_NUMA)) {
4802 src_nid = cpu_to_node(env->src_cpu);
4803 dst_nid = cpu_to_node(env->dst_cpu);
4805 if (src_nid == dst_nid)
4808 /* Always encourage migration to the preferred node. */
4809 if (dst_nid == p->numa_preferred_nid)
4812 /* If both task and group weight improve, this move is a winner. */
4813 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4814 group_weight(p, dst_nid) > group_weight(p, src_nid))
4821 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4823 int src_nid, dst_nid;
4825 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4828 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4831 src_nid = cpu_to_node(env->src_cpu);
4832 dst_nid = cpu_to_node(env->dst_cpu);
4834 if (src_nid == dst_nid)
4837 /* Migrating away from the preferred node is always bad. */
4838 if (src_nid == p->numa_preferred_nid)
4841 /* If either task or group weight get worse, don't do it. */
4842 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4843 group_weight(p, dst_nid) < group_weight(p, src_nid))
4850 static inline bool migrate_improves_locality(struct task_struct *p,
4856 static inline bool migrate_degrades_locality(struct task_struct *p,
4864 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4867 int can_migrate_task(struct task_struct *p, struct lb_env *env)
4869 int tsk_cache_hot = 0;
4871 * We do not migrate tasks that are:
4872 * 1) throttled_lb_pair, or
4873 * 2) cannot be migrated to this CPU due to cpus_allowed, or
4874 * 3) running (obviously), or
4875 * 4) are cache-hot on their current CPU.
4877 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4880 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
4883 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
4885 env->flags |= LBF_SOME_PINNED;
4888 * Remember if this task can be migrated to any other cpu in
4889 * our sched_group. We may want to revisit it if we couldn't
4890 * meet load balance goals by pulling other tasks on src_cpu.
4892 * Also avoid computing new_dst_cpu if we have already computed
4893 * one in current iteration.
4895 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
4898 /* Prevent to re-select dst_cpu via env's cpus */
4899 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4900 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
4901 env->flags |= LBF_DST_PINNED;
4902 env->new_dst_cpu = cpu;
4910 /* Record that we found atleast one task that could run on dst_cpu */
4911 env->flags &= ~LBF_ALL_PINNED;
4913 if (task_running(env->src_rq, p)) {
4914 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
4919 * Aggressive migration if:
4920 * 1) destination numa is preferred
4921 * 2) task is cache cold, or
4922 * 3) too many balance attempts have failed.
4924 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
4926 tsk_cache_hot = migrate_degrades_locality(p, env);
4928 if (migrate_improves_locality(p, env)) {
4929 #ifdef CONFIG_SCHEDSTATS
4930 if (tsk_cache_hot) {
4931 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4932 schedstat_inc(p, se.statistics.nr_forced_migrations);
4938 if (!tsk_cache_hot ||
4939 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4941 if (tsk_cache_hot) {
4942 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4943 schedstat_inc(p, se.statistics.nr_forced_migrations);
4949 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4954 * move_one_task tries to move exactly one task from busiest to this_rq, as
4955 * part of active balancing operations within "domain".
4956 * Returns 1 if successful and 0 otherwise.
4958 * Called with both runqueues locked.
4960 static int move_one_task(struct lb_env *env)
4962 struct task_struct *p, *n;
4964 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
4965 if (!can_migrate_task(p, env))
4970 * Right now, this is only the second place move_task()
4971 * is called, so we can safely collect move_task()
4972 * stats here rather than inside move_task().
4974 schedstat_inc(env->sd, lb_gained[env->idle]);
4980 static const unsigned int sched_nr_migrate_break = 32;
4983 * move_tasks tries to move up to imbalance weighted load from busiest to
4984 * this_rq, as part of a balancing operation within domain "sd".
4985 * Returns 1 if successful and 0 otherwise.
4987 * Called with both runqueues locked.
4989 static int move_tasks(struct lb_env *env)
4991 struct list_head *tasks = &env->src_rq->cfs_tasks;
4992 struct task_struct *p;
4996 if (env->imbalance <= 0)
4999 while (!list_empty(tasks)) {
5000 p = list_first_entry(tasks, struct task_struct, se.group_node);
5003 /* We've more or less seen every task there is, call it quits */
5004 if (env->loop > env->loop_max)
5007 /* take a breather every nr_migrate tasks */
5008 if (env->loop > env->loop_break) {
5009 env->loop_break += sched_nr_migrate_break;
5010 env->flags |= LBF_NEED_BREAK;
5014 if (!can_migrate_task(p, env))
5017 load = task_h_load(p);
5019 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5022 if ((load / 2) > env->imbalance)
5027 env->imbalance -= load;
5029 #ifdef CONFIG_PREEMPT
5031 * NEWIDLE balancing is a source of latency, so preemptible
5032 * kernels will stop after the first task is pulled to minimize
5033 * the critical section.
5035 if (env->idle == CPU_NEWLY_IDLE)
5040 * We only want to steal up to the prescribed amount of
5043 if (env->imbalance <= 0)
5048 list_move_tail(&p->se.group_node, tasks);
5052 * Right now, this is one of only two places move_task() is called,
5053 * so we can safely collect move_task() stats here rather than
5054 * inside move_task().
5056 schedstat_add(env->sd, lb_gained[env->idle], pulled);
5061 #ifdef CONFIG_FAIR_GROUP_SCHED
5063 * update tg->load_weight by folding this cpu's load_avg
5065 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5067 struct sched_entity *se = tg->se[cpu];
5068 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5070 /* throttled entities do not contribute to load */
5071 if (throttled_hierarchy(cfs_rq))
5074 update_cfs_rq_blocked_load(cfs_rq, 1);
5077 update_entity_load_avg(se, 1);
5079 * We pivot on our runnable average having decayed to zero for
5080 * list removal. This generally implies that all our children
5081 * have also been removed (modulo rounding error or bandwidth
5082 * control); however, such cases are rare and we can fix these
5085 * TODO: fix up out-of-order children on enqueue.
5087 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5088 list_del_leaf_cfs_rq(cfs_rq);
5090 struct rq *rq = rq_of(cfs_rq);
5091 update_rq_runnable_avg(rq, rq->nr_running);
5095 static void update_blocked_averages(int cpu)
5097 struct rq *rq = cpu_rq(cpu);
5098 struct cfs_rq *cfs_rq;
5099 unsigned long flags;
5101 raw_spin_lock_irqsave(&rq->lock, flags);
5102 update_rq_clock(rq);
5104 * Iterates the task_group tree in a bottom up fashion, see
5105 * list_add_leaf_cfs_rq() for details.
5107 for_each_leaf_cfs_rq(rq, cfs_rq) {
5109 * Note: We may want to consider periodically releasing
5110 * rq->lock about these updates so that creating many task
5111 * groups does not result in continually extending hold time.
5113 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5116 raw_spin_unlock_irqrestore(&rq->lock, flags);
5120 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5121 * This needs to be done in a top-down fashion because the load of a child
5122 * group is a fraction of its parents load.
5124 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5126 struct rq *rq = rq_of(cfs_rq);
5127 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5128 unsigned long now = jiffies;
5131 if (cfs_rq->last_h_load_update == now)
5134 cfs_rq->h_load_next = NULL;
5135 for_each_sched_entity(se) {
5136 cfs_rq = cfs_rq_of(se);
5137 cfs_rq->h_load_next = se;
5138 if (cfs_rq->last_h_load_update == now)
5143 cfs_rq->h_load = cfs_rq->runnable_load_avg;
5144 cfs_rq->last_h_load_update = now;
5147 while ((se = cfs_rq->h_load_next) != NULL) {
5148 load = cfs_rq->h_load;
5149 load = div64_ul(load * se->avg.load_avg_contrib,
5150 cfs_rq->runnable_load_avg + 1);
5151 cfs_rq = group_cfs_rq(se);
5152 cfs_rq->h_load = load;
5153 cfs_rq->last_h_load_update = now;
5157 static unsigned long task_h_load(struct task_struct *p)
5159 struct cfs_rq *cfs_rq = task_cfs_rq(p);
5161 update_cfs_rq_h_load(cfs_rq);
5162 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5163 cfs_rq->runnable_load_avg + 1);
5166 static inline void update_blocked_averages(int cpu)
5170 static unsigned long task_h_load(struct task_struct *p)
5172 return p->se.avg.load_avg_contrib;
5176 /********** Helpers for find_busiest_group ************************/
5178 * sg_lb_stats - stats of a sched_group required for load_balancing
5180 struct sg_lb_stats {
5181 unsigned long avg_load; /*Avg load across the CPUs of the group */
5182 unsigned long group_load; /* Total load over the CPUs of the group */
5183 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5184 unsigned long load_per_task;
5185 unsigned long group_power;
5186 unsigned int sum_nr_running; /* Nr tasks running in the group */
5187 unsigned int group_capacity;
5188 unsigned int idle_cpus;
5189 unsigned int group_weight;
5190 int group_imb; /* Is there an imbalance in the group ? */
5191 int group_has_capacity; /* Is there extra capacity in the group? */
5192 #ifdef CONFIG_NUMA_BALANCING
5193 unsigned int nr_numa_running;
5194 unsigned int nr_preferred_running;
5199 * sd_lb_stats - Structure to store the statistics of a sched_domain
5200 * during load balancing.
5202 struct sd_lb_stats {
5203 struct sched_group *busiest; /* Busiest group in this sd */
5204 struct sched_group *local; /* Local group in this sd */
5205 unsigned long total_load; /* Total load of all groups in sd */
5206 unsigned long total_pwr; /* Total power of all groups in sd */
5207 unsigned long avg_load; /* Average load across all groups in sd */
5209 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5210 struct sg_lb_stats local_stat; /* Statistics of the local group */
5213 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5216 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5217 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5218 * We must however clear busiest_stat::avg_load because
5219 * update_sd_pick_busiest() reads this before assignment.
5221 *sds = (struct sd_lb_stats){
5233 * get_sd_load_idx - Obtain the load index for a given sched domain.
5234 * @sd: The sched_domain whose load_idx is to be obtained.
5235 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5237 * Return: The load index.
5239 static inline int get_sd_load_idx(struct sched_domain *sd,
5240 enum cpu_idle_type idle)
5246 load_idx = sd->busy_idx;
5249 case CPU_NEWLY_IDLE:
5250 load_idx = sd->newidle_idx;
5253 load_idx = sd->idle_idx;
5260 static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
5262 return SCHED_POWER_SCALE;
5265 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5267 return default_scale_freq_power(sd, cpu);
5270 static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
5272 unsigned long weight = sd->span_weight;
5273 unsigned long smt_gain = sd->smt_gain;
5280 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5282 return default_scale_smt_power(sd, cpu);
5285 static unsigned long scale_rt_power(int cpu)
5287 struct rq *rq = cpu_rq(cpu);
5288 u64 total, available, age_stamp, avg;
5291 * Since we're reading these variables without serialization make sure
5292 * we read them once before doing sanity checks on them.
5294 age_stamp = ACCESS_ONCE(rq->age_stamp);
5295 avg = ACCESS_ONCE(rq->rt_avg);
5297 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
5299 if (unlikely(total < avg)) {
5300 /* Ensures that power won't end up being negative */
5303 available = total - avg;
5306 if (unlikely((s64)total < SCHED_POWER_SCALE))
5307 total = SCHED_POWER_SCALE;
5309 total >>= SCHED_POWER_SHIFT;
5311 return div_u64(available, total);
5314 static void update_cpu_power(struct sched_domain *sd, int cpu)
5316 unsigned long weight = sd->span_weight;
5317 unsigned long power = SCHED_POWER_SCALE;
5318 struct sched_group *sdg = sd->groups;
5320 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5321 if (sched_feat(ARCH_POWER))
5322 power *= arch_scale_smt_power(sd, cpu);
5324 power *= default_scale_smt_power(sd, cpu);
5326 power >>= SCHED_POWER_SHIFT;
5329 sdg->sgp->power_orig = power;
5331 if (sched_feat(ARCH_POWER))
5332 power *= arch_scale_freq_power(sd, cpu);
5334 power *= default_scale_freq_power(sd, cpu);
5336 power >>= SCHED_POWER_SHIFT;
5338 power *= scale_rt_power(cpu);
5339 power >>= SCHED_POWER_SHIFT;
5344 cpu_rq(cpu)->cpu_power = power;
5345 sdg->sgp->power = power;
5348 void update_group_power(struct sched_domain *sd, int cpu)
5350 struct sched_domain *child = sd->child;
5351 struct sched_group *group, *sdg = sd->groups;
5352 unsigned long power, power_orig;
5353 unsigned long interval;
5355 interval = msecs_to_jiffies(sd->balance_interval);
5356 interval = clamp(interval, 1UL, max_load_balance_interval);
5357 sdg->sgp->next_update = jiffies + interval;
5360 update_cpu_power(sd, cpu);
5364 power_orig = power = 0;
5366 if (child->flags & SD_OVERLAP) {
5368 * SD_OVERLAP domains cannot assume that child groups
5369 * span the current group.
5372 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5373 struct sched_group_power *sgp;
5374 struct rq *rq = cpu_rq(cpu);
5377 * build_sched_domains() -> init_sched_groups_power()
5378 * gets here before we've attached the domains to the
5381 * Use power_of(), which is set irrespective of domains
5382 * in update_cpu_power().
5384 * This avoids power/power_orig from being 0 and
5385 * causing divide-by-zero issues on boot.
5387 * Runtime updates will correct power_orig.
5389 if (unlikely(!rq->sd)) {
5390 power_orig += power_of(cpu);
5391 power += power_of(cpu);
5395 sgp = rq->sd->groups->sgp;
5396 power_orig += sgp->power_orig;
5397 power += sgp->power;
5401 * !SD_OVERLAP domains can assume that child groups
5402 * span the current group.
5405 group = child->groups;
5407 power_orig += group->sgp->power_orig;
5408 power += group->sgp->power;
5409 group = group->next;
5410 } while (group != child->groups);
5413 sdg->sgp->power_orig = power_orig;
5414 sdg->sgp->power = power;
5418 * Try and fix up capacity for tiny siblings, this is needed when
5419 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5420 * which on its own isn't powerful enough.
5422 * See update_sd_pick_busiest() and check_asym_packing().
5425 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5428 * Only siblings can have significantly less than SCHED_POWER_SCALE
5430 if (!(sd->flags & SD_SHARE_CPUPOWER))
5434 * If ~90% of the cpu_power is still there, we're good.
5436 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
5443 * Group imbalance indicates (and tries to solve) the problem where balancing
5444 * groups is inadequate due to tsk_cpus_allowed() constraints.
5446 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5447 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5450 * { 0 1 2 3 } { 4 5 6 7 }
5453 * If we were to balance group-wise we'd place two tasks in the first group and
5454 * two tasks in the second group. Clearly this is undesired as it will overload
5455 * cpu 3 and leave one of the cpus in the second group unused.
5457 * The current solution to this issue is detecting the skew in the first group
5458 * by noticing the lower domain failed to reach balance and had difficulty
5459 * moving tasks due to affinity constraints.
5461 * When this is so detected; this group becomes a candidate for busiest; see
5462 * update_sd_pick_busiest(). And calculate_imbalance() and
5463 * find_busiest_group() avoid some of the usual balance conditions to allow it
5464 * to create an effective group imbalance.
5466 * This is a somewhat tricky proposition since the next run might not find the
5467 * group imbalance and decide the groups need to be balanced again. A most
5468 * subtle and fragile situation.
5471 static inline int sg_imbalanced(struct sched_group *group)
5473 return group->sgp->imbalance;
5477 * Compute the group capacity.
5479 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5480 * first dividing out the smt factor and computing the actual number of cores
5481 * and limit power unit capacity with that.
5483 static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5485 unsigned int capacity, smt, cpus;
5486 unsigned int power, power_orig;
5488 power = group->sgp->power;
5489 power_orig = group->sgp->power_orig;
5490 cpus = group->group_weight;
5492 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5493 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5494 capacity = cpus / smt; /* cores */
5496 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
5498 capacity = fix_small_capacity(env->sd, group);
5504 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5505 * @env: The load balancing environment.
5506 * @group: sched_group whose statistics are to be updated.
5507 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5508 * @local_group: Does group contain this_cpu.
5509 * @sgs: variable to hold the statistics for this group.
5511 static inline void update_sg_lb_stats(struct lb_env *env,
5512 struct sched_group *group, int load_idx,
5513 int local_group, struct sg_lb_stats *sgs)
5515 unsigned long nr_running;
5519 memset(sgs, 0, sizeof(*sgs));
5521 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5522 struct rq *rq = cpu_rq(i);
5524 nr_running = rq->nr_running;
5526 /* Bias balancing toward cpus of our domain */
5528 load = target_load(i, load_idx);
5530 load = source_load(i, load_idx);
5532 sgs->group_load += load;
5533 sgs->sum_nr_running += nr_running;
5534 #ifdef CONFIG_NUMA_BALANCING
5535 sgs->nr_numa_running += rq->nr_numa_running;
5536 sgs->nr_preferred_running += rq->nr_preferred_running;
5538 sgs->sum_weighted_load += weighted_cpuload(i);
5543 /* Adjust by relative CPU power of the group */
5544 sgs->group_power = group->sgp->power;
5545 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
5547 if (sgs->sum_nr_running)
5548 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5550 sgs->group_weight = group->group_weight;
5552 sgs->group_imb = sg_imbalanced(group);
5553 sgs->group_capacity = sg_capacity(env, group);
5555 if (sgs->group_capacity > sgs->sum_nr_running)
5556 sgs->group_has_capacity = 1;
5560 * update_sd_pick_busiest - return 1 on busiest group
5561 * @env: The load balancing environment.
5562 * @sds: sched_domain statistics
5563 * @sg: sched_group candidate to be checked for being the busiest
5564 * @sgs: sched_group statistics
5566 * Determine if @sg is a busier group than the previously selected
5569 * Return: %true if @sg is a busier group than the previously selected
5570 * busiest group. %false otherwise.
5572 static bool update_sd_pick_busiest(struct lb_env *env,
5573 struct sd_lb_stats *sds,
5574 struct sched_group *sg,
5575 struct sg_lb_stats *sgs)
5577 if (sgs->avg_load <= sds->busiest_stat.avg_load)
5580 if (sgs->sum_nr_running > sgs->group_capacity)
5587 * ASYM_PACKING needs to move all the work to the lowest
5588 * numbered CPUs in the group, therefore mark all groups
5589 * higher than ourself as busy.
5591 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5592 env->dst_cpu < group_first_cpu(sg)) {
5596 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5603 #ifdef CONFIG_NUMA_BALANCING
5604 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5606 if (sgs->sum_nr_running > sgs->nr_numa_running)
5608 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5613 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5615 if (rq->nr_running > rq->nr_numa_running)
5617 if (rq->nr_running > rq->nr_preferred_running)
5622 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5627 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5631 #endif /* CONFIG_NUMA_BALANCING */
5634 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
5635 * @env: The load balancing environment.
5636 * @sds: variable to hold the statistics for this sched_domain.
5638 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
5640 struct sched_domain *child = env->sd->child;
5641 struct sched_group *sg = env->sd->groups;
5642 struct sg_lb_stats tmp_sgs;
5643 int load_idx, prefer_sibling = 0;
5645 if (child && child->flags & SD_PREFER_SIBLING)
5648 load_idx = get_sd_load_idx(env->sd, env->idle);
5651 struct sg_lb_stats *sgs = &tmp_sgs;
5654 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
5657 sgs = &sds->local_stat;
5659 if (env->idle != CPU_NEWLY_IDLE ||
5660 time_after_eq(jiffies, sg->sgp->next_update))
5661 update_group_power(env->sd, env->dst_cpu);
5664 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
5670 * In case the child domain prefers tasks go to siblings
5671 * first, lower the sg capacity to one so that we'll try
5672 * and move all the excess tasks away. We lower the capacity
5673 * of a group only if the local group has the capacity to fit
5674 * these excess tasks, i.e. nr_running < group_capacity. The
5675 * extra check prevents the case where you always pull from the
5676 * heaviest group when it is already under-utilized (possible
5677 * with a large weight task outweighs the tasks on the system).
5679 if (prefer_sibling && sds->local &&
5680 sds->local_stat.group_has_capacity)
5681 sgs->group_capacity = min(sgs->group_capacity, 1U);
5683 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
5685 sds->busiest_stat = *sgs;
5689 /* Now, start updating sd_lb_stats */
5690 sds->total_load += sgs->group_load;
5691 sds->total_pwr += sgs->group_power;
5694 } while (sg != env->sd->groups);
5696 if (env->sd->flags & SD_NUMA)
5697 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
5701 * check_asym_packing - Check to see if the group is packed into the
5704 * This is primarily intended to used at the sibling level. Some
5705 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5706 * case of POWER7, it can move to lower SMT modes only when higher
5707 * threads are idle. When in lower SMT modes, the threads will
5708 * perform better since they share less core resources. Hence when we
5709 * have idle threads, we want them to be the higher ones.
5711 * This packing function is run on idle threads. It checks to see if
5712 * the busiest CPU in this domain (core in the P7 case) has a higher
5713 * CPU number than the packing function is being run on. Here we are
5714 * assuming lower CPU number will be equivalent to lower a SMT thread
5717 * Return: 1 when packing is required and a task should be moved to
5718 * this CPU. The amount of the imbalance is returned in *imbalance.
5720 * @env: The load balancing environment.
5721 * @sds: Statistics of the sched_domain which is to be packed
5723 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
5727 if (!(env->sd->flags & SD_ASYM_PACKING))
5733 busiest_cpu = group_first_cpu(sds->busiest);
5734 if (env->dst_cpu > busiest_cpu)
5737 env->imbalance = DIV_ROUND_CLOSEST(
5738 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5745 * fix_small_imbalance - Calculate the minor imbalance that exists
5746 * amongst the groups of a sched_domain, during
5748 * @env: The load balancing environment.
5749 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
5752 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5754 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5755 unsigned int imbn = 2;
5756 unsigned long scaled_busy_load_per_task;
5757 struct sg_lb_stats *local, *busiest;
5759 local = &sds->local_stat;
5760 busiest = &sds->busiest_stat;
5762 if (!local->sum_nr_running)
5763 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5764 else if (busiest->load_per_task > local->load_per_task)
5767 scaled_busy_load_per_task =
5768 (busiest->load_per_task * SCHED_POWER_SCALE) /
5769 busiest->group_power;
5771 if (busiest->avg_load + scaled_busy_load_per_task >=
5772 local->avg_load + (scaled_busy_load_per_task * imbn)) {
5773 env->imbalance = busiest->load_per_task;
5778 * OK, we don't have enough imbalance to justify moving tasks,
5779 * however we may be able to increase total CPU power used by
5783 pwr_now += busiest->group_power *
5784 min(busiest->load_per_task, busiest->avg_load);
5785 pwr_now += local->group_power *
5786 min(local->load_per_task, local->avg_load);
5787 pwr_now /= SCHED_POWER_SCALE;
5789 /* Amount of load we'd subtract */
5790 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5791 busiest->group_power;
5792 if (busiest->avg_load > tmp) {
5793 pwr_move += busiest->group_power *
5794 min(busiest->load_per_task,
5795 busiest->avg_load - tmp);
5798 /* Amount of load we'd add */
5799 if (busiest->avg_load * busiest->group_power <
5800 busiest->load_per_task * SCHED_POWER_SCALE) {
5801 tmp = (busiest->avg_load * busiest->group_power) /
5804 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5807 pwr_move += local->group_power *
5808 min(local->load_per_task, local->avg_load + tmp);
5809 pwr_move /= SCHED_POWER_SCALE;
5811 /* Move if we gain throughput */
5812 if (pwr_move > pwr_now)
5813 env->imbalance = busiest->load_per_task;
5817 * calculate_imbalance - Calculate the amount of imbalance present within the
5818 * groups of a given sched_domain during load balance.
5819 * @env: load balance environment
5820 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
5822 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5824 unsigned long max_pull, load_above_capacity = ~0UL;
5825 struct sg_lb_stats *local, *busiest;
5827 local = &sds->local_stat;
5828 busiest = &sds->busiest_stat;
5830 if (busiest->group_imb) {
5832 * In the group_imb case we cannot rely on group-wide averages
5833 * to ensure cpu-load equilibrium, look at wider averages. XXX
5835 busiest->load_per_task =
5836 min(busiest->load_per_task, sds->avg_load);
5840 * In the presence of smp nice balancing, certain scenarios can have
5841 * max load less than avg load(as we skip the groups at or below
5842 * its cpu_power, while calculating max_load..)
5844 if (busiest->avg_load <= sds->avg_load ||
5845 local->avg_load >= sds->avg_load) {
5847 return fix_small_imbalance(env, sds);
5850 if (!busiest->group_imb) {
5852 * Don't want to pull so many tasks that a group would go idle.
5853 * Except of course for the group_imb case, since then we might
5854 * have to drop below capacity to reach cpu-load equilibrium.
5856 load_above_capacity =
5857 (busiest->sum_nr_running - busiest->group_capacity);
5859 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
5860 load_above_capacity /= busiest->group_power;
5864 * We're trying to get all the cpus to the average_load, so we don't
5865 * want to push ourselves above the average load, nor do we wish to
5866 * reduce the max loaded cpu below the average load. At the same time,
5867 * we also don't want to reduce the group load below the group capacity
5868 * (so that we can implement power-savings policies etc). Thus we look
5869 * for the minimum possible imbalance.
5871 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
5873 /* How much load to actually move to equalise the imbalance */
5874 env->imbalance = min(
5875 max_pull * busiest->group_power,
5876 (sds->avg_load - local->avg_load) * local->group_power
5877 ) / SCHED_POWER_SCALE;
5880 * if *imbalance is less than the average load per runnable task
5881 * there is no guarantee that any tasks will be moved so we'll have
5882 * a think about bumping its value to force at least one task to be
5885 if (env->imbalance < busiest->load_per_task)
5886 return fix_small_imbalance(env, sds);
5889 /******* find_busiest_group() helpers end here *********************/
5892 * find_busiest_group - Returns the busiest group within the sched_domain
5893 * if there is an imbalance. If there isn't an imbalance, and
5894 * the user has opted for power-savings, it returns a group whose
5895 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5896 * such a group exists.
5898 * Also calculates the amount of weighted load which should be moved
5899 * to restore balance.
5901 * @env: The load balancing environment.
5903 * Return: - The busiest group if imbalance exists.
5904 * - If no imbalance and user has opted for power-savings balance,
5905 * return the least loaded group whose CPUs can be
5906 * put to idle by rebalancing its tasks onto our group.
5908 static struct sched_group *find_busiest_group(struct lb_env *env)
5910 struct sg_lb_stats *local, *busiest;
5911 struct sd_lb_stats sds;
5913 init_sd_lb_stats(&sds);
5916 * Compute the various statistics relavent for load balancing at
5919 update_sd_lb_stats(env, &sds);
5920 local = &sds.local_stat;
5921 busiest = &sds.busiest_stat;
5923 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5924 check_asym_packing(env, &sds))
5927 /* There is no busy sibling group to pull tasks from */
5928 if (!sds.busiest || busiest->sum_nr_running == 0)
5931 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
5934 * If the busiest group is imbalanced the below checks don't
5935 * work because they assume all things are equal, which typically
5936 * isn't true due to cpus_allowed constraints and the like.
5938 if (busiest->group_imb)
5941 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
5942 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5943 !busiest->group_has_capacity)
5947 * If the local group is more busy than the selected busiest group
5948 * don't try and pull any tasks.
5950 if (local->avg_load >= busiest->avg_load)
5954 * Don't pull any tasks if this group is already above the domain
5957 if (local->avg_load >= sds.avg_load)
5960 if (env->idle == CPU_IDLE) {
5962 * This cpu is idle. If the busiest group load doesn't
5963 * have more tasks than the number of available cpu's and
5964 * there is no imbalance between this and busiest group
5965 * wrt to idle cpu's, it is balanced.
5967 if ((local->idle_cpus < busiest->idle_cpus) &&
5968 busiest->sum_nr_running <= busiest->group_weight)
5972 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5973 * imbalance_pct to be conservative.
5975 if (100 * busiest->avg_load <=
5976 env->sd->imbalance_pct * local->avg_load)
5981 /* Looks like there is an imbalance. Compute it */
5982 calculate_imbalance(env, &sds);
5991 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5993 static struct rq *find_busiest_queue(struct lb_env *env,
5994 struct sched_group *group)
5996 struct rq *busiest = NULL, *rq;
5997 unsigned long busiest_load = 0, busiest_power = 1;
6000 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6001 unsigned long power, capacity, wl;
6005 rt = fbq_classify_rq(rq);
6008 * We classify groups/runqueues into three groups:
6009 * - regular: there are !numa tasks
6010 * - remote: there are numa tasks that run on the 'wrong' node
6011 * - all: there is no distinction
6013 * In order to avoid migrating ideally placed numa tasks,
6014 * ignore those when there's better options.
6016 * If we ignore the actual busiest queue to migrate another
6017 * task, the next balance pass can still reduce the busiest
6018 * queue by moving tasks around inside the node.
6020 * If we cannot move enough load due to this classification
6021 * the next pass will adjust the group classification and
6022 * allow migration of more tasks.
6024 * Both cases only affect the total convergence complexity.
6026 if (rt > env->fbq_type)
6029 power = power_of(i);
6030 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
6032 capacity = fix_small_capacity(env->sd, group);
6034 wl = weighted_cpuload(i);
6037 * When comparing with imbalance, use weighted_cpuload()
6038 * which is not scaled with the cpu power.
6040 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
6044 * For the load comparisons with the other cpu's, consider
6045 * the weighted_cpuload() scaled with the cpu power, so that
6046 * the load can be moved away from the cpu that is potentially
6047 * running at a lower capacity.
6049 * Thus we're looking for max(wl_i / power_i), crosswise
6050 * multiplication to rid ourselves of the division works out
6051 * to: wl_i * power_j > wl_j * power_i; where j is our
6054 if (wl * busiest_power > busiest_load * power) {
6056 busiest_power = power;
6065 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6066 * so long as it is large enough.
6068 #define MAX_PINNED_INTERVAL 512
6070 /* Working cpumask for load_balance and load_balance_newidle. */
6071 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6073 static int need_active_balance(struct lb_env *env)
6075 struct sched_domain *sd = env->sd;
6077 if (env->idle == CPU_NEWLY_IDLE) {
6080 * ASYM_PACKING needs to force migrate tasks from busy but
6081 * higher numbered CPUs in order to pack all tasks in the
6082 * lowest numbered CPUs.
6084 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6088 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6091 static int active_load_balance_cpu_stop(void *data);
6093 static int should_we_balance(struct lb_env *env)
6095 struct sched_group *sg = env->sd->groups;
6096 struct cpumask *sg_cpus, *sg_mask;
6097 int cpu, balance_cpu = -1;
6100 * In the newly idle case, we will allow all the cpu's
6101 * to do the newly idle load balance.
6103 if (env->idle == CPU_NEWLY_IDLE)
6106 sg_cpus = sched_group_cpus(sg);
6107 sg_mask = sched_group_mask(sg);
6108 /* Try to find first idle cpu */
6109 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6110 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6117 if (balance_cpu == -1)
6118 balance_cpu = group_balance_cpu(sg);
6121 * First idle cpu or the first cpu(busiest) in this sched group
6122 * is eligible for doing load balancing at this and above domains.
6124 return balance_cpu == env->dst_cpu;
6128 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6129 * tasks if there is an imbalance.
6131 static int load_balance(int this_cpu, struct rq *this_rq,
6132 struct sched_domain *sd, enum cpu_idle_type idle,
6133 int *continue_balancing)
6135 int ld_moved, cur_ld_moved, active_balance = 0;
6136 struct sched_domain *sd_parent = sd->parent;
6137 struct sched_group *group;
6139 unsigned long flags;
6140 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
6142 struct lb_env env = {
6144 .dst_cpu = this_cpu,
6146 .dst_grpmask = sched_group_cpus(sd->groups),
6148 .loop_break = sched_nr_migrate_break,
6154 * For NEWLY_IDLE load_balancing, we don't need to consider
6155 * other cpus in our group
6157 if (idle == CPU_NEWLY_IDLE)
6158 env.dst_grpmask = NULL;
6160 cpumask_copy(cpus, cpu_active_mask);
6162 schedstat_inc(sd, lb_count[idle]);
6165 if (!should_we_balance(&env)) {
6166 *continue_balancing = 0;
6170 group = find_busiest_group(&env);
6172 schedstat_inc(sd, lb_nobusyg[idle]);
6176 busiest = find_busiest_queue(&env, group);
6178 schedstat_inc(sd, lb_nobusyq[idle]);
6182 BUG_ON(busiest == env.dst_rq);
6184 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6187 if (busiest->nr_running > 1) {
6189 * Attempt to move tasks. If find_busiest_group has found
6190 * an imbalance but busiest->nr_running <= 1, the group is
6191 * still unbalanced. ld_moved simply stays zero, so it is
6192 * correctly treated as an imbalance.
6194 env.flags |= LBF_ALL_PINNED;
6195 env.src_cpu = busiest->cpu;
6196 env.src_rq = busiest;
6197 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
6200 local_irq_save(flags);
6201 double_rq_lock(env.dst_rq, busiest);
6204 * cur_ld_moved - load moved in current iteration
6205 * ld_moved - cumulative load moved across iterations
6207 cur_ld_moved = move_tasks(&env);
6208 ld_moved += cur_ld_moved;
6209 double_rq_unlock(env.dst_rq, busiest);
6210 local_irq_restore(flags);
6213 * some other cpu did the load balance for us.
6215 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6216 resched_cpu(env.dst_cpu);
6218 if (env.flags & LBF_NEED_BREAK) {
6219 env.flags &= ~LBF_NEED_BREAK;
6224 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6225 * us and move them to an alternate dst_cpu in our sched_group
6226 * where they can run. The upper limit on how many times we
6227 * iterate on same src_cpu is dependent on number of cpus in our
6230 * This changes load balance semantics a bit on who can move
6231 * load to a given_cpu. In addition to the given_cpu itself
6232 * (or a ilb_cpu acting on its behalf where given_cpu is
6233 * nohz-idle), we now have balance_cpu in a position to move
6234 * load to given_cpu. In rare situations, this may cause
6235 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6236 * _independently_ and at _same_ time to move some load to
6237 * given_cpu) causing exceess load to be moved to given_cpu.
6238 * This however should not happen so much in practice and
6239 * moreover subsequent load balance cycles should correct the
6240 * excess load moved.
6242 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6244 /* Prevent to re-select dst_cpu via env's cpus */
6245 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6247 env.dst_rq = cpu_rq(env.new_dst_cpu);
6248 env.dst_cpu = env.new_dst_cpu;
6249 env.flags &= ~LBF_DST_PINNED;
6251 env.loop_break = sched_nr_migrate_break;
6254 * Go back to "more_balance" rather than "redo" since we
6255 * need to continue with same src_cpu.
6261 * We failed to reach balance because of affinity.
6264 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6266 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6267 *group_imbalance = 1;
6268 } else if (*group_imbalance)
6269 *group_imbalance = 0;
6272 /* All tasks on this runqueue were pinned by CPU affinity */
6273 if (unlikely(env.flags & LBF_ALL_PINNED)) {
6274 cpumask_clear_cpu(cpu_of(busiest), cpus);
6275 if (!cpumask_empty(cpus)) {
6277 env.loop_break = sched_nr_migrate_break;
6285 schedstat_inc(sd, lb_failed[idle]);
6287 * Increment the failure counter only on periodic balance.
6288 * We do not want newidle balance, which can be very
6289 * frequent, pollute the failure counter causing
6290 * excessive cache_hot migrations and active balances.
6292 if (idle != CPU_NEWLY_IDLE)
6293 sd->nr_balance_failed++;
6295 if (need_active_balance(&env)) {
6296 raw_spin_lock_irqsave(&busiest->lock, flags);
6298 /* don't kick the active_load_balance_cpu_stop,
6299 * if the curr task on busiest cpu can't be
6302 if (!cpumask_test_cpu(this_cpu,
6303 tsk_cpus_allowed(busiest->curr))) {
6304 raw_spin_unlock_irqrestore(&busiest->lock,
6306 env.flags |= LBF_ALL_PINNED;
6307 goto out_one_pinned;
6311 * ->active_balance synchronizes accesses to
6312 * ->active_balance_work. Once set, it's cleared
6313 * only after active load balance is finished.
6315 if (!busiest->active_balance) {
6316 busiest->active_balance = 1;
6317 busiest->push_cpu = this_cpu;
6320 raw_spin_unlock_irqrestore(&busiest->lock, flags);
6322 if (active_balance) {
6323 stop_one_cpu_nowait(cpu_of(busiest),
6324 active_load_balance_cpu_stop, busiest,
6325 &busiest->active_balance_work);
6329 * We've kicked active balancing, reset the failure
6332 sd->nr_balance_failed = sd->cache_nice_tries+1;
6335 sd->nr_balance_failed = 0;
6337 if (likely(!active_balance)) {
6338 /* We were unbalanced, so reset the balancing interval */
6339 sd->balance_interval = sd->min_interval;
6342 * If we've begun active balancing, start to back off. This
6343 * case may not be covered by the all_pinned logic if there
6344 * is only 1 task on the busy runqueue (because we don't call
6347 if (sd->balance_interval < sd->max_interval)
6348 sd->balance_interval *= 2;
6354 schedstat_inc(sd, lb_balanced[idle]);
6356 sd->nr_balance_failed = 0;
6359 /* tune up the balancing interval */
6360 if (((env.flags & LBF_ALL_PINNED) &&
6361 sd->balance_interval < MAX_PINNED_INTERVAL) ||
6362 (sd->balance_interval < sd->max_interval))
6363 sd->balance_interval *= 2;
6371 * idle_balance is called by schedule() if this_cpu is about to become
6372 * idle. Attempts to pull tasks from other CPUs.
6374 void idle_balance(int this_cpu, struct rq *this_rq)
6376 struct sched_domain *sd;
6377 int pulled_task = 0;
6378 unsigned long next_balance = jiffies + HZ;
6381 this_rq->idle_stamp = rq_clock(this_rq);
6383 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6387 * Drop the rq->lock, but keep IRQ/preempt disabled.
6389 raw_spin_unlock(&this_rq->lock);
6391 update_blocked_averages(this_cpu);
6393 for_each_domain(this_cpu, sd) {
6394 unsigned long interval;
6395 int continue_balancing = 1;
6396 u64 t0, domain_cost;
6398 if (!(sd->flags & SD_LOAD_BALANCE))
6401 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6404 if (sd->flags & SD_BALANCE_NEWIDLE) {
6405 t0 = sched_clock_cpu(this_cpu);
6407 /* If we've pulled tasks over stop searching: */
6408 pulled_task = load_balance(this_cpu, this_rq,
6410 &continue_balancing);
6412 domain_cost = sched_clock_cpu(this_cpu) - t0;
6413 if (domain_cost > sd->max_newidle_lb_cost)
6414 sd->max_newidle_lb_cost = domain_cost;
6416 curr_cost += domain_cost;
6419 interval = msecs_to_jiffies(sd->balance_interval);
6420 if (time_after(next_balance, sd->last_balance + interval))
6421 next_balance = sd->last_balance + interval;
6423 this_rq->idle_stamp = 0;
6429 raw_spin_lock(&this_rq->lock);
6431 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6433 * We are going idle. next_balance may be set based on
6434 * a busy processor. So reset next_balance.
6436 this_rq->next_balance = next_balance;
6439 if (curr_cost > this_rq->max_idle_balance_cost)
6440 this_rq->max_idle_balance_cost = curr_cost;
6444 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6445 * running tasks off the busiest CPU onto idle CPUs. It requires at
6446 * least 1 task to be running on each physical CPU where possible, and
6447 * avoids physical / logical imbalances.
6449 static int active_load_balance_cpu_stop(void *data)
6451 struct rq *busiest_rq = data;
6452 int busiest_cpu = cpu_of(busiest_rq);
6453 int target_cpu = busiest_rq->push_cpu;
6454 struct rq *target_rq = cpu_rq(target_cpu);
6455 struct sched_domain *sd;
6457 raw_spin_lock_irq(&busiest_rq->lock);
6459 /* make sure the requested cpu hasn't gone down in the meantime */
6460 if (unlikely(busiest_cpu != smp_processor_id() ||
6461 !busiest_rq->active_balance))
6464 /* Is there any task to move? */
6465 if (busiest_rq->nr_running <= 1)
6469 * This condition is "impossible", if it occurs
6470 * we need to fix it. Originally reported by
6471 * Bjorn Helgaas on a 128-cpu setup.
6473 BUG_ON(busiest_rq == target_rq);
6475 /* move a task from busiest_rq to target_rq */
6476 double_lock_balance(busiest_rq, target_rq);
6478 /* Search for an sd spanning us and the target CPU. */
6480 for_each_domain(target_cpu, sd) {
6481 if ((sd->flags & SD_LOAD_BALANCE) &&
6482 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6487 struct lb_env env = {
6489 .dst_cpu = target_cpu,
6490 .dst_rq = target_rq,
6491 .src_cpu = busiest_rq->cpu,
6492 .src_rq = busiest_rq,
6496 schedstat_inc(sd, alb_count);
6498 if (move_one_task(&env))
6499 schedstat_inc(sd, alb_pushed);
6501 schedstat_inc(sd, alb_failed);
6504 double_unlock_balance(busiest_rq, target_rq);
6506 busiest_rq->active_balance = 0;
6507 raw_spin_unlock_irq(&busiest_rq->lock);
6511 #ifdef CONFIG_NO_HZ_COMMON
6513 * idle load balancing details
6514 * - When one of the busy CPUs notice that there may be an idle rebalancing
6515 * needed, they will kick the idle load balancer, which then does idle
6516 * load balancing for all the idle CPUs.
6519 cpumask_var_t idle_cpus_mask;
6521 unsigned long next_balance; /* in jiffy units */
6522 } nohz ____cacheline_aligned;
6524 static inline int find_new_ilb(int call_cpu)
6526 int ilb = cpumask_first(nohz.idle_cpus_mask);
6528 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6535 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6536 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6537 * CPU (if there is one).
6539 static void nohz_balancer_kick(int cpu)
6543 nohz.next_balance++;
6545 ilb_cpu = find_new_ilb(cpu);
6547 if (ilb_cpu >= nr_cpu_ids)
6550 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
6553 * Use smp_send_reschedule() instead of resched_cpu().
6554 * This way we generate a sched IPI on the target cpu which
6555 * is idle. And the softirq performing nohz idle load balance
6556 * will be run before returning from the IPI.
6558 smp_send_reschedule(ilb_cpu);
6562 static inline void nohz_balance_exit_idle(int cpu)
6564 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6565 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6566 atomic_dec(&nohz.nr_cpus);
6567 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6571 static inline void set_cpu_sd_state_busy(void)
6573 struct sched_domain *sd;
6574 int cpu = smp_processor_id();
6577 sd = rcu_dereference(per_cpu(sd_busy, cpu));
6579 if (!sd || !sd->nohz_idle)
6583 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
6588 void set_cpu_sd_state_idle(void)
6590 struct sched_domain *sd;
6591 int cpu = smp_processor_id();
6594 sd = rcu_dereference(per_cpu(sd_busy, cpu));
6596 if (!sd || sd->nohz_idle)
6600 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
6606 * This routine will record that the cpu is going idle with tick stopped.
6607 * This info will be used in performing idle load balancing in the future.
6609 void nohz_balance_enter_idle(int cpu)
6612 * If this cpu is going down, then nothing needs to be done.
6614 if (!cpu_active(cpu))
6617 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6620 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6621 atomic_inc(&nohz.nr_cpus);
6622 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6625 static int sched_ilb_notifier(struct notifier_block *nfb,
6626 unsigned long action, void *hcpu)
6628 switch (action & ~CPU_TASKS_FROZEN) {
6630 nohz_balance_exit_idle(smp_processor_id());
6638 static DEFINE_SPINLOCK(balancing);
6641 * Scale the max load_balance interval with the number of CPUs in the system.
6642 * This trades load-balance latency on larger machines for less cross talk.
6644 void update_max_interval(void)
6646 max_load_balance_interval = HZ*num_online_cpus()/10;
6650 * It checks each scheduling domain to see if it is due to be balanced,
6651 * and initiates a balancing operation if so.
6653 * Balancing parameters are set up in init_sched_domains.
6655 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6657 int continue_balancing = 1;
6658 struct rq *rq = cpu_rq(cpu);
6659 unsigned long interval;
6660 struct sched_domain *sd;
6661 /* Earliest time when we have to do rebalance again */
6662 unsigned long next_balance = jiffies + 60*HZ;
6663 int update_next_balance = 0;
6664 int need_serialize, need_decay = 0;
6667 update_blocked_averages(cpu);
6670 for_each_domain(cpu, sd) {
6672 * Decay the newidle max times here because this is a regular
6673 * visit to all the domains. Decay ~1% per second.
6675 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6676 sd->max_newidle_lb_cost =
6677 (sd->max_newidle_lb_cost * 253) / 256;
6678 sd->next_decay_max_lb_cost = jiffies + HZ;
6681 max_cost += sd->max_newidle_lb_cost;
6683 if (!(sd->flags & SD_LOAD_BALANCE))
6687 * Stop the load balance at this level. There is another
6688 * CPU in our sched group which is doing load balancing more
6691 if (!continue_balancing) {
6697 interval = sd->balance_interval;
6698 if (idle != CPU_IDLE)
6699 interval *= sd->busy_factor;
6701 /* scale ms to jiffies */
6702 interval = msecs_to_jiffies(interval);
6703 interval = clamp(interval, 1UL, max_load_balance_interval);
6705 need_serialize = sd->flags & SD_SERIALIZE;
6707 if (need_serialize) {
6708 if (!spin_trylock(&balancing))
6712 if (time_after_eq(jiffies, sd->last_balance + interval)) {
6713 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
6715 * The LBF_DST_PINNED logic could have changed
6716 * env->dst_cpu, so we can't know our idle
6717 * state even if we migrated tasks. Update it.
6719 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
6721 sd->last_balance = jiffies;
6724 spin_unlock(&balancing);
6726 if (time_after(next_balance, sd->last_balance + interval)) {
6727 next_balance = sd->last_balance + interval;
6728 update_next_balance = 1;
6733 * Ensure the rq-wide value also decays but keep it at a
6734 * reasonable floor to avoid funnies with rq->avg_idle.
6736 rq->max_idle_balance_cost =
6737 max((u64)sysctl_sched_migration_cost, max_cost);
6742 * next_balance will be updated only when there is a need.
6743 * When the cpu is attached to null domain for ex, it will not be
6746 if (likely(update_next_balance))
6747 rq->next_balance = next_balance;
6750 #ifdef CONFIG_NO_HZ_COMMON
6752 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
6753 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6755 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6757 struct rq *this_rq = cpu_rq(this_cpu);
6761 if (idle != CPU_IDLE ||
6762 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6765 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
6766 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
6770 * If this cpu gets work to do, stop the load balancing
6771 * work being done for other cpus. Next load
6772 * balancing owner will pick it up.
6777 rq = cpu_rq(balance_cpu);
6779 raw_spin_lock_irq(&rq->lock);
6780 update_rq_clock(rq);
6781 update_idle_cpu_load(rq);
6782 raw_spin_unlock_irq(&rq->lock);
6784 rebalance_domains(balance_cpu, CPU_IDLE);
6786 if (time_after(this_rq->next_balance, rq->next_balance))
6787 this_rq->next_balance = rq->next_balance;
6789 nohz.next_balance = this_rq->next_balance;
6791 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
6795 * Current heuristic for kicking the idle load balancer in the presence
6796 * of an idle cpu is the system.
6797 * - This rq has more than one task.
6798 * - At any scheduler domain level, this cpu's scheduler group has multiple
6799 * busy cpu's exceeding the group's power.
6800 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6801 * domain span are idle.
6803 static inline int nohz_kick_needed(struct rq *rq, int cpu)
6805 unsigned long now = jiffies;
6806 struct sched_domain *sd;
6807 struct sched_group_power *sgp;
6810 if (unlikely(idle_cpu(cpu)))
6814 * We may be recently in ticked or tickless idle mode. At the first
6815 * busy tick after returning from idle, we will update the busy stats.
6817 set_cpu_sd_state_busy();
6818 nohz_balance_exit_idle(cpu);
6821 * None are in tickless mode and hence no need for NOHZ idle load
6824 if (likely(!atomic_read(&nohz.nr_cpus)))
6827 if (time_before(now, nohz.next_balance))
6830 if (rq->nr_running >= 2)
6834 sd = rcu_dereference(per_cpu(sd_busy, cpu));
6837 sgp = sd->groups->sgp;
6838 nr_busy = atomic_read(&sgp->nr_busy_cpus);
6841 goto need_kick_unlock;
6844 sd = rcu_dereference(per_cpu(sd_asym, cpu));
6846 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
6847 sched_domain_span(sd)) < cpu))
6848 goto need_kick_unlock;
6859 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6863 * run_rebalance_domains is triggered when needed from the scheduler tick.
6864 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6866 static void run_rebalance_domains(struct softirq_action *h)
6868 int this_cpu = smp_processor_id();
6869 struct rq *this_rq = cpu_rq(this_cpu);
6870 enum cpu_idle_type idle = this_rq->idle_balance ?
6871 CPU_IDLE : CPU_NOT_IDLE;
6873 rebalance_domains(this_cpu, idle);
6876 * If this cpu has a pending nohz_balance_kick, then do the
6877 * balancing on behalf of the other idle cpus whose ticks are
6880 nohz_idle_balance(this_cpu, idle);
6883 static inline int on_null_domain(int cpu)
6885 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
6889 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
6891 void trigger_load_balance(struct rq *rq, int cpu)
6893 /* Don't need to rebalance while attached to NULL domain */
6894 if (time_after_eq(jiffies, rq->next_balance) &&
6895 likely(!on_null_domain(cpu)))
6896 raise_softirq(SCHED_SOFTIRQ);
6897 #ifdef CONFIG_NO_HZ_COMMON
6898 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
6899 nohz_balancer_kick(cpu);
6903 static void rq_online_fair(struct rq *rq)
6908 static void rq_offline_fair(struct rq *rq)
6912 /* Ensure any throttled groups are reachable by pick_next_task */
6913 unthrottle_offline_cfs_rqs(rq);
6916 #endif /* CONFIG_SMP */
6919 * scheduler tick hitting a task of our scheduling class:
6921 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
6923 struct cfs_rq *cfs_rq;
6924 struct sched_entity *se = &curr->se;
6926 for_each_sched_entity(se) {
6927 cfs_rq = cfs_rq_of(se);
6928 entity_tick(cfs_rq, se, queued);
6931 if (numabalancing_enabled)
6932 task_tick_numa(rq, curr);
6934 update_rq_runnable_avg(rq, 1);
6938 * called on fork with the child task as argument from the parent's context
6939 * - child not yet on the tasklist
6940 * - preemption disabled
6942 static void task_fork_fair(struct task_struct *p)
6944 struct cfs_rq *cfs_rq;
6945 struct sched_entity *se = &p->se, *curr;
6946 int this_cpu = smp_processor_id();
6947 struct rq *rq = this_rq();
6948 unsigned long flags;
6950 raw_spin_lock_irqsave(&rq->lock, flags);
6952 update_rq_clock(rq);
6954 cfs_rq = task_cfs_rq(current);
6955 curr = cfs_rq->curr;
6958 * Not only the cpu but also the task_group of the parent might have
6959 * been changed after parent->se.parent,cfs_rq were copied to
6960 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6961 * of child point to valid ones.
6964 __set_task_cpu(p, this_cpu);
6967 update_curr(cfs_rq);
6970 se->vruntime = curr->vruntime;
6971 place_entity(cfs_rq, se, 1);
6973 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
6975 * Upon rescheduling, sched_class::put_prev_task() will place
6976 * 'current' within the tree based on its new key value.
6978 swap(curr->vruntime, se->vruntime);
6979 resched_task(rq->curr);
6982 se->vruntime -= cfs_rq->min_vruntime;
6984 raw_spin_unlock_irqrestore(&rq->lock, flags);
6988 * Priority of the task has changed. Check to see if we preempt
6992 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
6998 * Reschedule if we are currently running on this runqueue and
6999 * our priority decreased, or if we are not currently running on
7000 * this runqueue and our priority is higher than the current's
7002 if (rq->curr == p) {
7003 if (p->prio > oldprio)
7004 resched_task(rq->curr);
7006 check_preempt_curr(rq, p, 0);
7009 static void switched_from_fair(struct rq *rq, struct task_struct *p)
7011 struct sched_entity *se = &p->se;
7012 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7015 * Ensure the task's vruntime is normalized, so that when its
7016 * switched back to the fair class the enqueue_entity(.flags=0) will
7017 * do the right thing.
7019 * If it was on_rq, then the dequeue_entity(.flags=0) will already
7020 * have normalized the vruntime, if it was !on_rq, then only when
7021 * the task is sleeping will it still have non-normalized vruntime.
7023 if (!se->on_rq && p->state != TASK_RUNNING) {
7025 * Fix up our vruntime so that the current sleep doesn't
7026 * cause 'unlimited' sleep bonus.
7028 place_entity(cfs_rq, se, 0);
7029 se->vruntime -= cfs_rq->min_vruntime;
7034 * Remove our load from contribution when we leave sched_fair
7035 * and ensure we don't carry in an old decay_count if we
7038 if (se->avg.decay_count) {
7039 __synchronize_entity_decay(se);
7040 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7046 * We switched to the sched_fair class.
7048 static void switched_to_fair(struct rq *rq, struct task_struct *p)
7054 * We were most likely switched from sched_rt, so
7055 * kick off the schedule if running, otherwise just see
7056 * if we can still preempt the current task.
7059 resched_task(rq->curr);
7061 check_preempt_curr(rq, p, 0);
7064 /* Account for a task changing its policy or group.
7066 * This routine is mostly called to set cfs_rq->curr field when a task
7067 * migrates between groups/classes.
7069 static void set_curr_task_fair(struct rq *rq)
7071 struct sched_entity *se = &rq->curr->se;
7073 for_each_sched_entity(se) {
7074 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7076 set_next_entity(cfs_rq, se);
7077 /* ensure bandwidth has been allocated on our new cfs_rq */
7078 account_cfs_rq_runtime(cfs_rq, 0);
7082 void init_cfs_rq(struct cfs_rq *cfs_rq)
7084 cfs_rq->tasks_timeline = RB_ROOT;
7085 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7086 #ifndef CONFIG_64BIT
7087 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7090 atomic64_set(&cfs_rq->decay_counter, 1);
7091 atomic_long_set(&cfs_rq->removed_load, 0);
7095 #ifdef CONFIG_FAIR_GROUP_SCHED
7096 static void task_move_group_fair(struct task_struct *p, int on_rq)
7098 struct cfs_rq *cfs_rq;
7100 * If the task was not on the rq at the time of this cgroup movement
7101 * it must have been asleep, sleeping tasks keep their ->vruntime
7102 * absolute on their old rq until wakeup (needed for the fair sleeper
7103 * bonus in place_entity()).
7105 * If it was on the rq, we've just 'preempted' it, which does convert
7106 * ->vruntime to a relative base.
7108 * Make sure both cases convert their relative position when migrating
7109 * to another cgroup's rq. This does somewhat interfere with the
7110 * fair sleeper stuff for the first placement, but who cares.
7113 * When !on_rq, vruntime of the task has usually NOT been normalized.
7114 * But there are some cases where it has already been normalized:
7116 * - Moving a forked child which is waiting for being woken up by
7117 * wake_up_new_task().
7118 * - Moving a task which has been woken up by try_to_wake_up() and
7119 * waiting for actually being woken up by sched_ttwu_pending().
7121 * To prevent boost or penalty in the new cfs_rq caused by delta
7122 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7124 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7128 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7129 set_task_rq(p, task_cpu(p));
7131 cfs_rq = cfs_rq_of(&p->se);
7132 p->se.vruntime += cfs_rq->min_vruntime;
7135 * migrate_task_rq_fair() will have removed our previous
7136 * contribution, but we must synchronize for ongoing future
7139 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7140 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7145 void free_fair_sched_group(struct task_group *tg)
7149 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7151 for_each_possible_cpu(i) {
7153 kfree(tg->cfs_rq[i]);
7162 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7164 struct cfs_rq *cfs_rq;
7165 struct sched_entity *se;
7168 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7171 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7175 tg->shares = NICE_0_LOAD;
7177 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7179 for_each_possible_cpu(i) {
7180 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7181 GFP_KERNEL, cpu_to_node(i));
7185 se = kzalloc_node(sizeof(struct sched_entity),
7186 GFP_KERNEL, cpu_to_node(i));
7190 init_cfs_rq(cfs_rq);
7191 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7202 void unregister_fair_sched_group(struct task_group *tg, int cpu)
7204 struct rq *rq = cpu_rq(cpu);
7205 unsigned long flags;
7208 * Only empty task groups can be destroyed; so we can speculatively
7209 * check on_list without danger of it being re-added.
7211 if (!tg->cfs_rq[cpu]->on_list)
7214 raw_spin_lock_irqsave(&rq->lock, flags);
7215 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7216 raw_spin_unlock_irqrestore(&rq->lock, flags);
7219 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7220 struct sched_entity *se, int cpu,
7221 struct sched_entity *parent)
7223 struct rq *rq = cpu_rq(cpu);
7227 init_cfs_rq_runtime(cfs_rq);
7229 tg->cfs_rq[cpu] = cfs_rq;
7232 /* se could be NULL for root_task_group */
7237 se->cfs_rq = &rq->cfs;
7239 se->cfs_rq = parent->my_q;
7242 /* guarantee group entities always have weight */
7243 update_load_set(&se->load, NICE_0_LOAD);
7244 se->parent = parent;
7247 static DEFINE_MUTEX(shares_mutex);
7249 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7252 unsigned long flags;
7255 * We can't change the weight of the root cgroup.
7260 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7262 mutex_lock(&shares_mutex);
7263 if (tg->shares == shares)
7266 tg->shares = shares;
7267 for_each_possible_cpu(i) {
7268 struct rq *rq = cpu_rq(i);
7269 struct sched_entity *se;
7272 /* Propagate contribution to hierarchy */
7273 raw_spin_lock_irqsave(&rq->lock, flags);
7275 /* Possible calls to update_curr() need rq clock */
7276 update_rq_clock(rq);
7277 for_each_sched_entity(se)
7278 update_cfs_shares(group_cfs_rq(se));
7279 raw_spin_unlock_irqrestore(&rq->lock, flags);
7283 mutex_unlock(&shares_mutex);
7286 #else /* CONFIG_FAIR_GROUP_SCHED */
7288 void free_fair_sched_group(struct task_group *tg) { }
7290 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7295 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7297 #endif /* CONFIG_FAIR_GROUP_SCHED */
7300 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7302 struct sched_entity *se = &task->se;
7303 unsigned int rr_interval = 0;
7306 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7309 if (rq->cfs.load.weight)
7310 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7316 * All the scheduling class methods:
7318 const struct sched_class fair_sched_class = {
7319 .next = &idle_sched_class,
7320 .enqueue_task = enqueue_task_fair,
7321 .dequeue_task = dequeue_task_fair,
7322 .yield_task = yield_task_fair,
7323 .yield_to_task = yield_to_task_fair,
7325 .check_preempt_curr = check_preempt_wakeup,
7327 .pick_next_task = pick_next_task_fair,
7328 .put_prev_task = put_prev_task_fair,
7331 .select_task_rq = select_task_rq_fair,
7332 .migrate_task_rq = migrate_task_rq_fair,
7334 .rq_online = rq_online_fair,
7335 .rq_offline = rq_offline_fair,
7337 .task_waking = task_waking_fair,
7340 .set_curr_task = set_curr_task_fair,
7341 .task_tick = task_tick_fair,
7342 .task_fork = task_fork_fair,
7344 .prio_changed = prio_changed_fair,
7345 .switched_from = switched_from_fair,
7346 .switched_to = switched_to_fair,
7348 .get_rr_interval = get_rr_interval_fair,
7350 #ifdef CONFIG_FAIR_GROUP_SCHED
7351 .task_move_group = task_move_group_fair,
7355 #ifdef CONFIG_SCHED_DEBUG
7356 void print_cfs_stats(struct seq_file *m, int cpu)
7358 struct cfs_rq *cfs_rq;
7361 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7362 print_cfs_rq(m, cpu, cfs_rq);
7367 __init void init_sched_fair_class(void)
7370 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7372 #ifdef CONFIG_NO_HZ_COMMON
7373 nohz.next_balance = jiffies;
7374 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7375 cpu_notifier(sched_ilb_notifier, 0);