2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
34 #include <trace/events/sched.h>
39 * Targeted preemption latency for CPU-bound tasks:
40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
42 * NOTE: this latency value is not the same as the concept of
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
50 unsigned int sysctl_sched_latency = 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
66 * Minimal preemption granularity for CPU-bound tasks:
67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
69 unsigned int sysctl_sched_min_granularity = 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
75 static unsigned int sched_nr_latency = 8;
78 * After fork, child runs first. If set to 0 (default) then
79 * parent will (try to) run first.
81 unsigned int sysctl_sched_child_runs_first __read_mostly;
84 * SCHED_OTHER wake-up granularity.
85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
97 * The exponential sliding window over which load is averaged for shares
101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
103 #ifdef CONFIG_CFS_BANDWIDTH
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
112 * default: 5 msec, units: microseconds
114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
117 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
129 static inline void update_load_set(struct load_weight *lw, unsigned long w)
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
142 * This idea comes from the SD scheduler of Con Kolivas:
144 static unsigned int get_update_sysctl_factor(void)
146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
153 case SCHED_TUNABLESCALING_LINEAR:
156 case SCHED_TUNABLESCALING_LOG:
158 factor = 1 + ilog2(cpus);
165 static void update_sysctl(void)
167 unsigned int factor = get_update_sysctl_factor();
169 #define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
177 void sched_init_granularity(void)
182 #define WMULT_CONST (~0U)
183 #define WMULT_SHIFT 32
185 static void __update_inv_weight(struct load_weight *lw)
189 if (likely(lw->inv_weight))
192 w = scale_load_down(lw->weight);
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
199 lw->inv_weight = WMULT_CONST / w;
203 * delta_exec * weight / lw.weight
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
219 __update_inv_weight(lw);
221 if (unlikely(fact >> 32)) {
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
236 return mul_u64_u32_shr(delta_exec, fact, shift);
240 const struct sched_class fair_sched_class;
242 /**************************************************************
243 * CFS operations on generic schedulable entities:
246 #ifdef CONFIG_FAIR_GROUP_SCHED
248 /* cpu runqueue to which this cfs_rq is attached */
249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
254 /* An entity is a task if it doesn't "own" a runqueue */
255 #define entity_is_task(se) (!se->my_q)
257 static inline struct task_struct *task_of(struct sched_entity *se)
259 #ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
262 return container_of(se, struct task_struct, se);
265 /* Walk up scheduling entities hierarchy */
266 #define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
274 /* runqueue on which this entity is (to be) queued */
275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
280 /* runqueue "owned" by this group */
281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
288 if (!cfs_rq->on_list) {
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
308 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 /* Iterate thr' all leaf cfs_rq's on a runqueue */
317 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
320 /* Do the two (enqueued) entities belong to the same group ? */
321 static inline struct cfs_rq *
322 is_same_group(struct sched_entity *se, struct sched_entity *pse)
324 if (se->cfs_rq == pse->cfs_rq)
330 static inline struct sched_entity *parent_entity(struct sched_entity *se)
336 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
338 int se_depth, pse_depth;
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
347 /* First walk up until both entities are at same depth */
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
351 while (se_depth > pse_depth) {
353 *se = parent_entity(*se);
356 while (pse_depth > se_depth) {
358 *pse = parent_entity(*pse);
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
367 #else /* !CONFIG_FAIR_GROUP_SCHED */
369 static inline struct task_struct *task_of(struct sched_entity *se)
371 return container_of(se, struct task_struct, se);
374 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
376 return container_of(cfs_rq, struct rq, cfs);
379 #define entity_is_task(se) 1
381 #define for_each_sched_entity(se) \
382 for (; se; se = NULL)
384 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
386 return &task_rq(p)->cfs;
389 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
397 /* runqueue "owned" by this group */
398 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
407 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
411 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
414 static inline struct sched_entity *parent_entity(struct sched_entity *se)
420 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
424 #endif /* CONFIG_FAIR_GROUP_SCHED */
426 static __always_inline
427 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
429 /**************************************************************
430 * Scheduling class tree data structure manipulation methods:
433 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
435 s64 delta = (s64)(vruntime - max_vruntime);
437 max_vruntime = vruntime;
442 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
444 s64 delta = (s64)(vruntime - min_vruntime);
446 min_vruntime = vruntime;
451 static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
454 return (s64)(a->vruntime - b->vruntime) < 0;
457 static void update_min_vruntime(struct cfs_rq *cfs_rq)
459 u64 vruntime = cfs_rq->min_vruntime;
462 vruntime = cfs_rq->curr->vruntime;
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
470 vruntime = se->vruntime;
472 vruntime = min_vruntime(vruntime, se->vruntime);
475 /* ensure we never gain time by being placed backwards. */
476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
484 * Enqueue an entity into the rb-tree:
486 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
494 * Find the right place in the rbtree:
498 entry = rb_entry(parent, struct sched_entity, run_node);
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
503 if (entity_before(se, entry)) {
504 link = &parent->rb_left;
506 link = &parent->rb_right;
512 * Maintain a cache of leftmost tree entries (it is frequently
516 cfs_rq->rb_leftmost = &se->run_node;
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
522 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
534 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
536 struct rb_node *left = cfs_rq->rb_leftmost;
541 return rb_entry(left, struct sched_entity, run_node);
544 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
546 struct rb_node *next = rb_next(&se->run_node);
551 return rb_entry(next, struct sched_entity, run_node);
554 #ifdef CONFIG_SCHED_DEBUG
555 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
562 return rb_entry(last, struct sched_entity, run_node);
565 /**************************************************************
566 * Scheduling class statistics methods:
569 int sched_proc_update_handler(struct ctl_table *table, int write,
570 void __user *buffer, size_t *lenp,
573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
574 unsigned int factor = get_update_sysctl_factor();
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
582 #define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
596 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
598 if (unlikely(se->load.weight != NICE_0_LOAD))
599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
605 * The idea is to set a period in which each task runs once.
607 * When there are too many tasks (sched_nr_latency) we have to stretch
608 * this period because otherwise the slices get too small.
610 * p = (nr <= nl) ? l : l*nr/nl
612 static u64 __sched_period(unsigned long nr_running)
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
617 return sysctl_sched_latency;
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
626 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
630 for_each_sched_entity(se) {
631 struct load_weight *load;
632 struct load_weight lw;
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
637 if (unlikely(!se->on_rq)) {
640 update_load_add(&lw, se->load.weight);
643 slice = __calc_delta(slice, se->load.weight, load);
649 * We calculate the vruntime slice of a to-be-inserted task.
653 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
659 static int select_idle_sibling(struct task_struct *p, int cpu);
660 static unsigned long task_h_load(struct task_struct *p);
663 * We choose a half-life close to 1 scheduling period.
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
667 #define LOAD_AVG_PERIOD 32
668 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
669 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
671 /* Give new sched_entity start runnable values to heavy its load in infant time */
672 void init_entity_runnable_average(struct sched_entity *se)
674 struct sched_avg *sa = &se->avg;
676 sa->last_update_time = 0;
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
682 sa->period_contrib = 1023;
683 sa->load_avg = scale_load_down(se->load.weight);
684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
685 sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
686 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
687 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
690 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
691 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
693 void init_entity_runnable_average(struct sched_entity *se)
699 * Update the current task's runtime statistics.
701 static void update_curr(struct cfs_rq *cfs_rq)
703 struct sched_entity *curr = cfs_rq->curr;
704 u64 now = rq_clock_task(rq_of(cfs_rq));
710 delta_exec = now - curr->exec_start;
711 if (unlikely((s64)delta_exec <= 0))
714 curr->exec_start = now;
716 schedstat_set(curr->statistics.exec_max,
717 max(delta_exec, curr->statistics.exec_max));
719 curr->sum_exec_runtime += delta_exec;
720 schedstat_add(cfs_rq, exec_clock, delta_exec);
722 curr->vruntime += calc_delta_fair(delta_exec, curr);
723 update_min_vruntime(cfs_rq);
725 if (entity_is_task(curr)) {
726 struct task_struct *curtask = task_of(curr);
728 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
729 cpuacct_charge(curtask, delta_exec);
730 account_group_exec_runtime(curtask, delta_exec);
733 account_cfs_rq_runtime(cfs_rq, delta_exec);
736 static void update_curr_fair(struct rq *rq)
738 update_curr(cfs_rq_of(&rq->curr->se));
742 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
744 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
748 * Task is being enqueued - update stats:
750 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
753 * Are we enqueueing a waiting task? (for current tasks
754 * a dequeue/enqueue event is a NOP)
756 if (se != cfs_rq->curr)
757 update_stats_wait_start(cfs_rq, se);
761 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
763 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
764 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
765 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
766 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
767 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768 #ifdef CONFIG_SCHEDSTATS
769 if (entity_is_task(se)) {
770 trace_sched_stat_wait(task_of(se),
771 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
774 schedstat_set(se->statistics.wait_start, 0);
778 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
781 * Mark the end of the wait period if dequeueing a
784 if (se != cfs_rq->curr)
785 update_stats_wait_end(cfs_rq, se);
789 * We are picking a new current task - update its stats:
792 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
795 * We are starting a new run period:
797 se->exec_start = rq_clock_task(rq_of(cfs_rq));
800 /**************************************************
801 * Scheduling class queueing methods:
804 #ifdef CONFIG_NUMA_BALANCING
806 * Approximate time to scan a full NUMA task in ms. The task scan period is
807 * calculated based on the tasks virtual memory size and
808 * numa_balancing_scan_size.
810 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
811 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
813 /* Portion of address space to scan in MB */
814 unsigned int sysctl_numa_balancing_scan_size = 256;
816 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
817 unsigned int sysctl_numa_balancing_scan_delay = 1000;
819 static unsigned int task_nr_scan_windows(struct task_struct *p)
821 unsigned long rss = 0;
822 unsigned long nr_scan_pages;
825 * Calculations based on RSS as non-present and empty pages are skipped
826 * by the PTE scanner and NUMA hinting faults should be trapped based
829 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
830 rss = get_mm_rss(p->mm);
834 rss = round_up(rss, nr_scan_pages);
835 return rss / nr_scan_pages;
838 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
839 #define MAX_SCAN_WINDOW 2560
841 static unsigned int task_scan_min(struct task_struct *p)
843 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
844 unsigned int scan, floor;
845 unsigned int windows = 1;
847 if (scan_size < MAX_SCAN_WINDOW)
848 windows = MAX_SCAN_WINDOW / scan_size;
849 floor = 1000 / windows;
851 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
852 return max_t(unsigned int, floor, scan);
855 static unsigned int task_scan_max(struct task_struct *p)
857 unsigned int smin = task_scan_min(p);
860 /* Watch for min being lower than max due to floor calculations */
861 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
862 return max(smin, smax);
865 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
867 rq->nr_numa_running += (p->numa_preferred_nid != -1);
868 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
871 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
873 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
874 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
880 spinlock_t lock; /* nr_tasks, tasks */
885 nodemask_t active_nodes;
886 unsigned long total_faults;
888 * Faults_cpu is used to decide whether memory should move
889 * towards the CPU. As a consequence, these stats are weighted
890 * more by CPU use than by memory faults.
892 unsigned long *faults_cpu;
893 unsigned long faults[0];
896 /* Shared or private faults. */
897 #define NR_NUMA_HINT_FAULT_TYPES 2
899 /* Memory and CPU locality */
900 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
902 /* Averaged statistics, and temporary buffers. */
903 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
905 pid_t task_numa_group_id(struct task_struct *p)
907 return p->numa_group ? p->numa_group->gid : 0;
911 * The averaged statistics, shared & private, memory & cpu,
912 * occupy the first half of the array. The second half of the
913 * array is for current counters, which are averaged into the
914 * first set by task_numa_placement.
916 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
918 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
921 static inline unsigned long task_faults(struct task_struct *p, int nid)
926 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
927 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
930 static inline unsigned long group_faults(struct task_struct *p, int nid)
935 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
936 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
939 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
941 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
942 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
945 /* Handle placement on systems where not all nodes are directly connected. */
946 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
947 int maxdist, bool task)
949 unsigned long score = 0;
953 * All nodes are directly connected, and the same distance
954 * from each other. No need for fancy placement algorithms.
956 if (sched_numa_topology_type == NUMA_DIRECT)
960 * This code is called for each node, introducing N^2 complexity,
961 * which should be ok given the number of nodes rarely exceeds 8.
963 for_each_online_node(node) {
964 unsigned long faults;
965 int dist = node_distance(nid, node);
968 * The furthest away nodes in the system are not interesting
969 * for placement; nid was already counted.
971 if (dist == sched_max_numa_distance || node == nid)
975 * On systems with a backplane NUMA topology, compare groups
976 * of nodes, and move tasks towards the group with the most
977 * memory accesses. When comparing two nodes at distance
978 * "hoplimit", only nodes closer by than "hoplimit" are part
979 * of each group. Skip other nodes.
981 if (sched_numa_topology_type == NUMA_BACKPLANE &&
985 /* Add up the faults from nearby nodes. */
987 faults = task_faults(p, node);
989 faults = group_faults(p, node);
992 * On systems with a glueless mesh NUMA topology, there are
993 * no fixed "groups of nodes". Instead, nodes that are not
994 * directly connected bounce traffic through intermediate
995 * nodes; a numa_group can occupy any set of nodes.
996 * The further away a node is, the less the faults count.
997 * This seems to result in good task placement.
999 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1000 faults *= (sched_max_numa_distance - dist);
1001 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1011 * These return the fraction of accesses done by a particular task, or
1012 * task group, on a particular numa node. The group weight is given a
1013 * larger multiplier, in order to group tasks together that are almost
1014 * evenly spread out between numa nodes.
1016 static inline unsigned long task_weight(struct task_struct *p, int nid,
1019 unsigned long faults, total_faults;
1021 if (!p->numa_faults)
1024 total_faults = p->total_numa_faults;
1029 faults = task_faults(p, nid);
1030 faults += score_nearby_nodes(p, nid, dist, true);
1032 return 1000 * faults / total_faults;
1035 static inline unsigned long group_weight(struct task_struct *p, int nid,
1038 unsigned long faults, total_faults;
1043 total_faults = p->numa_group->total_faults;
1048 faults = group_faults(p, nid);
1049 faults += score_nearby_nodes(p, nid, dist, false);
1051 return 1000 * faults / total_faults;
1054 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1055 int src_nid, int dst_cpu)
1057 struct numa_group *ng = p->numa_group;
1058 int dst_nid = cpu_to_node(dst_cpu);
1059 int last_cpupid, this_cpupid;
1061 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1064 * Multi-stage node selection is used in conjunction with a periodic
1065 * migration fault to build a temporal task<->page relation. By using
1066 * a two-stage filter we remove short/unlikely relations.
1068 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1069 * a task's usage of a particular page (n_p) per total usage of this
1070 * page (n_t) (in a given time-span) to a probability.
1072 * Our periodic faults will sample this probability and getting the
1073 * same result twice in a row, given these samples are fully
1074 * independent, is then given by P(n)^2, provided our sample period
1075 * is sufficiently short compared to the usage pattern.
1077 * This quadric squishes small probabilities, making it less likely we
1078 * act on an unlikely task<->page relation.
1080 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1081 if (!cpupid_pid_unset(last_cpupid) &&
1082 cpupid_to_nid(last_cpupid) != dst_nid)
1085 /* Always allow migrate on private faults */
1086 if (cpupid_match_pid(p, last_cpupid))
1089 /* A shared fault, but p->numa_group has not been set up yet. */
1094 * Do not migrate if the destination is not a node that
1095 * is actively used by this numa group.
1097 if (!node_isset(dst_nid, ng->active_nodes))
1101 * Source is a node that is not actively used by this
1102 * numa group, while the destination is. Migrate.
1104 if (!node_isset(src_nid, ng->active_nodes))
1108 * Both source and destination are nodes in active
1109 * use by this numa group. Maximize memory bandwidth
1110 * by migrating from more heavily used groups, to less
1111 * heavily used ones, spreading the load around.
1112 * Use a 1/4 hysteresis to avoid spurious page movement.
1114 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1117 static unsigned long weighted_cpuload(const int cpu);
1118 static unsigned long source_load(int cpu, int type);
1119 static unsigned long target_load(int cpu, int type);
1120 static unsigned long capacity_of(int cpu);
1121 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1123 /* Cached statistics for all CPUs within a node */
1125 unsigned long nr_running;
1128 /* Total compute capacity of CPUs on a node */
1129 unsigned long compute_capacity;
1131 /* Approximate capacity in terms of runnable tasks on a node */
1132 unsigned long task_capacity;
1133 int has_free_capacity;
1137 * XXX borrowed from update_sg_lb_stats
1139 static void update_numa_stats(struct numa_stats *ns, int nid)
1141 int smt, cpu, cpus = 0;
1142 unsigned long capacity;
1144 memset(ns, 0, sizeof(*ns));
1145 for_each_cpu(cpu, cpumask_of_node(nid)) {
1146 struct rq *rq = cpu_rq(cpu);
1148 ns->nr_running += rq->nr_running;
1149 ns->load += weighted_cpuload(cpu);
1150 ns->compute_capacity += capacity_of(cpu);
1156 * If we raced with hotplug and there are no CPUs left in our mask
1157 * the @ns structure is NULL'ed and task_numa_compare() will
1158 * not find this node attractive.
1160 * We'll either bail at !has_free_capacity, or we'll detect a huge
1161 * imbalance and bail there.
1166 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1167 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1168 capacity = cpus / smt; /* cores */
1170 ns->task_capacity = min_t(unsigned, capacity,
1171 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1172 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1175 struct task_numa_env {
1176 struct task_struct *p;
1178 int src_cpu, src_nid;
1179 int dst_cpu, dst_nid;
1181 struct numa_stats src_stats, dst_stats;
1186 struct task_struct *best_task;
1191 static void task_numa_assign(struct task_numa_env *env,
1192 struct task_struct *p, long imp)
1195 put_task_struct(env->best_task);
1200 env->best_imp = imp;
1201 env->best_cpu = env->dst_cpu;
1204 static bool load_too_imbalanced(long src_load, long dst_load,
1205 struct task_numa_env *env)
1208 long orig_src_load, orig_dst_load;
1209 long src_capacity, dst_capacity;
1212 * The load is corrected for the CPU capacity available on each node.
1215 * ------------ vs ---------
1216 * src_capacity dst_capacity
1218 src_capacity = env->src_stats.compute_capacity;
1219 dst_capacity = env->dst_stats.compute_capacity;
1221 /* We care about the slope of the imbalance, not the direction. */
1222 if (dst_load < src_load)
1223 swap(dst_load, src_load);
1225 /* Is the difference below the threshold? */
1226 imb = dst_load * src_capacity * 100 -
1227 src_load * dst_capacity * env->imbalance_pct;
1232 * The imbalance is above the allowed threshold.
1233 * Compare it with the old imbalance.
1235 orig_src_load = env->src_stats.load;
1236 orig_dst_load = env->dst_stats.load;
1238 if (orig_dst_load < orig_src_load)
1239 swap(orig_dst_load, orig_src_load);
1241 old_imb = orig_dst_load * src_capacity * 100 -
1242 orig_src_load * dst_capacity * env->imbalance_pct;
1244 /* Would this change make things worse? */
1245 return (imb > old_imb);
1249 * This checks if the overall compute and NUMA accesses of the system would
1250 * be improved if the source tasks was migrated to the target dst_cpu taking
1251 * into account that it might be best if task running on the dst_cpu should
1252 * be exchanged with the source task
1254 static void task_numa_compare(struct task_numa_env *env,
1255 long taskimp, long groupimp)
1257 struct rq *src_rq = cpu_rq(env->src_cpu);
1258 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1259 struct task_struct *cur;
1260 long src_load, dst_load;
1262 long imp = env->p->numa_group ? groupimp : taskimp;
1264 int dist = env->dist;
1268 raw_spin_lock_irq(&dst_rq->lock);
1271 * No need to move the exiting task, and this ensures that ->curr
1272 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1273 * is safe under RCU read lock.
1274 * Note that rcu_read_lock() itself can't protect from the final
1275 * put_task_struct() after the last schedule().
1277 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1279 raw_spin_unlock_irq(&dst_rq->lock);
1282 * Because we have preemption enabled we can get migrated around and
1283 * end try selecting ourselves (current == env->p) as a swap candidate.
1289 * "imp" is the fault differential for the source task between the
1290 * source and destination node. Calculate the total differential for
1291 * the source task and potential destination task. The more negative
1292 * the value is, the more rmeote accesses that would be expected to
1293 * be incurred if the tasks were swapped.
1296 /* Skip this swap candidate if cannot move to the source cpu */
1297 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1301 * If dst and source tasks are in the same NUMA group, or not
1302 * in any group then look only at task weights.
1304 if (cur->numa_group == env->p->numa_group) {
1305 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1306 task_weight(cur, env->dst_nid, dist);
1308 * Add some hysteresis to prevent swapping the
1309 * tasks within a group over tiny differences.
1311 if (cur->numa_group)
1315 * Compare the group weights. If a task is all by
1316 * itself (not part of a group), use the task weight
1319 if (cur->numa_group)
1320 imp += group_weight(cur, env->src_nid, dist) -
1321 group_weight(cur, env->dst_nid, dist);
1323 imp += task_weight(cur, env->src_nid, dist) -
1324 task_weight(cur, env->dst_nid, dist);
1328 if (imp <= env->best_imp && moveimp <= env->best_imp)
1332 /* Is there capacity at our destination? */
1333 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1334 !env->dst_stats.has_free_capacity)
1340 /* Balance doesn't matter much if we're running a task per cpu */
1341 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1342 dst_rq->nr_running == 1)
1346 * In the overloaded case, try and keep the load balanced.
1349 load = task_h_load(env->p);
1350 dst_load = env->dst_stats.load + load;
1351 src_load = env->src_stats.load - load;
1353 if (moveimp > imp && moveimp > env->best_imp) {
1355 * If the improvement from just moving env->p direction is
1356 * better than swapping tasks around, check if a move is
1357 * possible. Store a slightly smaller score than moveimp,
1358 * so an actually idle CPU will win.
1360 if (!load_too_imbalanced(src_load, dst_load, env)) {
1367 if (imp <= env->best_imp)
1371 load = task_h_load(cur);
1376 if (load_too_imbalanced(src_load, dst_load, env))
1380 * One idle CPU per node is evaluated for a task numa move.
1381 * Call select_idle_sibling to maybe find a better one.
1384 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1387 task_numa_assign(env, cur, imp);
1392 static void task_numa_find_cpu(struct task_numa_env *env,
1393 long taskimp, long groupimp)
1397 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1398 /* Skip this CPU if the source task cannot migrate */
1399 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1403 task_numa_compare(env, taskimp, groupimp);
1407 /* Only move tasks to a NUMA node less busy than the current node. */
1408 static bool numa_has_capacity(struct task_numa_env *env)
1410 struct numa_stats *src = &env->src_stats;
1411 struct numa_stats *dst = &env->dst_stats;
1413 if (src->has_free_capacity && !dst->has_free_capacity)
1417 * Only consider a task move if the source has a higher load
1418 * than the destination, corrected for CPU capacity on each node.
1420 * src->load dst->load
1421 * --------------------- vs ---------------------
1422 * src->compute_capacity dst->compute_capacity
1424 if (src->load * dst->compute_capacity * env->imbalance_pct >
1426 dst->load * src->compute_capacity * 100)
1432 static int task_numa_migrate(struct task_struct *p)
1434 struct task_numa_env env = {
1437 .src_cpu = task_cpu(p),
1438 .src_nid = task_node(p),
1440 .imbalance_pct = 112,
1446 struct sched_domain *sd;
1447 unsigned long taskweight, groupweight;
1449 long taskimp, groupimp;
1452 * Pick the lowest SD_NUMA domain, as that would have the smallest
1453 * imbalance and would be the first to start moving tasks about.
1455 * And we want to avoid any moving of tasks about, as that would create
1456 * random movement of tasks -- counter the numa conditions we're trying
1460 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1462 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1466 * Cpusets can break the scheduler domain tree into smaller
1467 * balance domains, some of which do not cross NUMA boundaries.
1468 * Tasks that are "trapped" in such domains cannot be migrated
1469 * elsewhere, so there is no point in (re)trying.
1471 if (unlikely(!sd)) {
1472 p->numa_preferred_nid = task_node(p);
1476 env.dst_nid = p->numa_preferred_nid;
1477 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1478 taskweight = task_weight(p, env.src_nid, dist);
1479 groupweight = group_weight(p, env.src_nid, dist);
1480 update_numa_stats(&env.src_stats, env.src_nid);
1481 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1482 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1483 update_numa_stats(&env.dst_stats, env.dst_nid);
1485 /* Try to find a spot on the preferred nid. */
1486 if (numa_has_capacity(&env))
1487 task_numa_find_cpu(&env, taskimp, groupimp);
1490 * Look at other nodes in these cases:
1491 * - there is no space available on the preferred_nid
1492 * - the task is part of a numa_group that is interleaved across
1493 * multiple NUMA nodes; in order to better consolidate the group,
1494 * we need to check other locations.
1496 if (env.best_cpu == -1 || (p->numa_group &&
1497 nodes_weight(p->numa_group->active_nodes) > 1)) {
1498 for_each_online_node(nid) {
1499 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1502 dist = node_distance(env.src_nid, env.dst_nid);
1503 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1505 taskweight = task_weight(p, env.src_nid, dist);
1506 groupweight = group_weight(p, env.src_nid, dist);
1509 /* Only consider nodes where both task and groups benefit */
1510 taskimp = task_weight(p, nid, dist) - taskweight;
1511 groupimp = group_weight(p, nid, dist) - groupweight;
1512 if (taskimp < 0 && groupimp < 0)
1517 update_numa_stats(&env.dst_stats, env.dst_nid);
1518 if (numa_has_capacity(&env))
1519 task_numa_find_cpu(&env, taskimp, groupimp);
1524 * If the task is part of a workload that spans multiple NUMA nodes,
1525 * and is migrating into one of the workload's active nodes, remember
1526 * this node as the task's preferred numa node, so the workload can
1528 * A task that migrated to a second choice node will be better off
1529 * trying for a better one later. Do not set the preferred node here.
1531 if (p->numa_group) {
1532 if (env.best_cpu == -1)
1537 if (node_isset(nid, p->numa_group->active_nodes))
1538 sched_setnuma(p, env.dst_nid);
1541 /* No better CPU than the current one was found. */
1542 if (env.best_cpu == -1)
1546 * Reset the scan period if the task is being rescheduled on an
1547 * alternative node to recheck if the tasks is now properly placed.
1549 p->numa_scan_period = task_scan_min(p);
1551 if (env.best_task == NULL) {
1552 ret = migrate_task_to(p, env.best_cpu);
1554 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1558 ret = migrate_swap(p, env.best_task);
1560 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1561 put_task_struct(env.best_task);
1565 /* Attempt to migrate a task to a CPU on the preferred node. */
1566 static void numa_migrate_preferred(struct task_struct *p)
1568 unsigned long interval = HZ;
1570 /* This task has no NUMA fault statistics yet */
1571 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1574 /* Periodically retry migrating the task to the preferred node */
1575 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1576 p->numa_migrate_retry = jiffies + interval;
1578 /* Success if task is already running on preferred CPU */
1579 if (task_node(p) == p->numa_preferred_nid)
1582 /* Otherwise, try migrate to a CPU on the preferred node */
1583 task_numa_migrate(p);
1587 * Find the nodes on which the workload is actively running. We do this by
1588 * tracking the nodes from which NUMA hinting faults are triggered. This can
1589 * be different from the set of nodes where the workload's memory is currently
1592 * The bitmask is used to make smarter decisions on when to do NUMA page
1593 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1594 * are added when they cause over 6/16 of the maximum number of faults, but
1595 * only removed when they drop below 3/16.
1597 static void update_numa_active_node_mask(struct numa_group *numa_group)
1599 unsigned long faults, max_faults = 0;
1602 for_each_online_node(nid) {
1603 faults = group_faults_cpu(numa_group, nid);
1604 if (faults > max_faults)
1605 max_faults = faults;
1608 for_each_online_node(nid) {
1609 faults = group_faults_cpu(numa_group, nid);
1610 if (!node_isset(nid, numa_group->active_nodes)) {
1611 if (faults > max_faults * 6 / 16)
1612 node_set(nid, numa_group->active_nodes);
1613 } else if (faults < max_faults * 3 / 16)
1614 node_clear(nid, numa_group->active_nodes);
1619 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1620 * increments. The more local the fault statistics are, the higher the scan
1621 * period will be for the next scan window. If local/(local+remote) ratio is
1622 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1623 * the scan period will decrease. Aim for 70% local accesses.
1625 #define NUMA_PERIOD_SLOTS 10
1626 #define NUMA_PERIOD_THRESHOLD 7
1629 * Increase the scan period (slow down scanning) if the majority of
1630 * our memory is already on our local node, or if the majority of
1631 * the page accesses are shared with other processes.
1632 * Otherwise, decrease the scan period.
1634 static void update_task_scan_period(struct task_struct *p,
1635 unsigned long shared, unsigned long private)
1637 unsigned int period_slot;
1641 unsigned long remote = p->numa_faults_locality[0];
1642 unsigned long local = p->numa_faults_locality[1];
1645 * If there were no record hinting faults then either the task is
1646 * completely idle or all activity is areas that are not of interest
1647 * to automatic numa balancing. Related to that, if there were failed
1648 * migration then it implies we are migrating too quickly or the local
1649 * node is overloaded. In either case, scan slower
1651 if (local + shared == 0 || p->numa_faults_locality[2]) {
1652 p->numa_scan_period = min(p->numa_scan_period_max,
1653 p->numa_scan_period << 1);
1655 p->mm->numa_next_scan = jiffies +
1656 msecs_to_jiffies(p->numa_scan_period);
1662 * Prepare to scale scan period relative to the current period.
1663 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1664 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1665 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1667 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1668 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1669 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1670 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1673 diff = slot * period_slot;
1675 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1678 * Scale scan rate increases based on sharing. There is an
1679 * inverse relationship between the degree of sharing and
1680 * the adjustment made to the scanning period. Broadly
1681 * speaking the intent is that there is little point
1682 * scanning faster if shared accesses dominate as it may
1683 * simply bounce migrations uselessly
1685 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1686 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1689 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1690 task_scan_min(p), task_scan_max(p));
1691 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1695 * Get the fraction of time the task has been running since the last
1696 * NUMA placement cycle. The scheduler keeps similar statistics, but
1697 * decays those on a 32ms period, which is orders of magnitude off
1698 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1699 * stats only if the task is so new there are no NUMA statistics yet.
1701 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1703 u64 runtime, delta, now;
1704 /* Use the start of this time slice to avoid calculations. */
1705 now = p->se.exec_start;
1706 runtime = p->se.sum_exec_runtime;
1708 if (p->last_task_numa_placement) {
1709 delta = runtime - p->last_sum_exec_runtime;
1710 *period = now - p->last_task_numa_placement;
1712 delta = p->se.avg.load_sum / p->se.load.weight;
1713 *period = LOAD_AVG_MAX;
1716 p->last_sum_exec_runtime = runtime;
1717 p->last_task_numa_placement = now;
1723 * Determine the preferred nid for a task in a numa_group. This needs to
1724 * be done in a way that produces consistent results with group_weight,
1725 * otherwise workloads might not converge.
1727 static int preferred_group_nid(struct task_struct *p, int nid)
1732 /* Direct connections between all NUMA nodes. */
1733 if (sched_numa_topology_type == NUMA_DIRECT)
1737 * On a system with glueless mesh NUMA topology, group_weight
1738 * scores nodes according to the number of NUMA hinting faults on
1739 * both the node itself, and on nearby nodes.
1741 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1742 unsigned long score, max_score = 0;
1743 int node, max_node = nid;
1745 dist = sched_max_numa_distance;
1747 for_each_online_node(node) {
1748 score = group_weight(p, node, dist);
1749 if (score > max_score) {
1758 * Finding the preferred nid in a system with NUMA backplane
1759 * interconnect topology is more involved. The goal is to locate
1760 * tasks from numa_groups near each other in the system, and
1761 * untangle workloads from different sides of the system. This requires
1762 * searching down the hierarchy of node groups, recursively searching
1763 * inside the highest scoring group of nodes. The nodemask tricks
1764 * keep the complexity of the search down.
1766 nodes = node_online_map;
1767 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1768 unsigned long max_faults = 0;
1769 nodemask_t max_group = NODE_MASK_NONE;
1772 /* Are there nodes at this distance from each other? */
1773 if (!find_numa_distance(dist))
1776 for_each_node_mask(a, nodes) {
1777 unsigned long faults = 0;
1778 nodemask_t this_group;
1779 nodes_clear(this_group);
1781 /* Sum group's NUMA faults; includes a==b case. */
1782 for_each_node_mask(b, nodes) {
1783 if (node_distance(a, b) < dist) {
1784 faults += group_faults(p, b);
1785 node_set(b, this_group);
1786 node_clear(b, nodes);
1790 /* Remember the top group. */
1791 if (faults > max_faults) {
1792 max_faults = faults;
1793 max_group = this_group;
1795 * subtle: at the smallest distance there is
1796 * just one node left in each "group", the
1797 * winner is the preferred nid.
1802 /* Next round, evaluate the nodes within max_group. */
1810 static void task_numa_placement(struct task_struct *p)
1812 int seq, nid, max_nid = -1, max_group_nid = -1;
1813 unsigned long max_faults = 0, max_group_faults = 0;
1814 unsigned long fault_types[2] = { 0, 0 };
1815 unsigned long total_faults;
1816 u64 runtime, period;
1817 spinlock_t *group_lock = NULL;
1820 * The p->mm->numa_scan_seq field gets updated without
1821 * exclusive access. Use READ_ONCE() here to ensure
1822 * that the field is read in a single access:
1824 seq = READ_ONCE(p->mm->numa_scan_seq);
1825 if (p->numa_scan_seq == seq)
1827 p->numa_scan_seq = seq;
1828 p->numa_scan_period_max = task_scan_max(p);
1830 total_faults = p->numa_faults_locality[0] +
1831 p->numa_faults_locality[1];
1832 runtime = numa_get_avg_runtime(p, &period);
1834 /* If the task is part of a group prevent parallel updates to group stats */
1835 if (p->numa_group) {
1836 group_lock = &p->numa_group->lock;
1837 spin_lock_irq(group_lock);
1840 /* Find the node with the highest number of faults */
1841 for_each_online_node(nid) {
1842 /* Keep track of the offsets in numa_faults array */
1843 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1844 unsigned long faults = 0, group_faults = 0;
1847 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1848 long diff, f_diff, f_weight;
1850 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1851 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1852 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1853 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1855 /* Decay existing window, copy faults since last scan */
1856 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1857 fault_types[priv] += p->numa_faults[membuf_idx];
1858 p->numa_faults[membuf_idx] = 0;
1861 * Normalize the faults_from, so all tasks in a group
1862 * count according to CPU use, instead of by the raw
1863 * number of faults. Tasks with little runtime have
1864 * little over-all impact on throughput, and thus their
1865 * faults are less important.
1867 f_weight = div64_u64(runtime << 16, period + 1);
1868 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1870 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1871 p->numa_faults[cpubuf_idx] = 0;
1873 p->numa_faults[mem_idx] += diff;
1874 p->numa_faults[cpu_idx] += f_diff;
1875 faults += p->numa_faults[mem_idx];
1876 p->total_numa_faults += diff;
1877 if (p->numa_group) {
1879 * safe because we can only change our own group
1881 * mem_idx represents the offset for a given
1882 * nid and priv in a specific region because it
1883 * is at the beginning of the numa_faults array.
1885 p->numa_group->faults[mem_idx] += diff;
1886 p->numa_group->faults_cpu[mem_idx] += f_diff;
1887 p->numa_group->total_faults += diff;
1888 group_faults += p->numa_group->faults[mem_idx];
1892 if (faults > max_faults) {
1893 max_faults = faults;
1897 if (group_faults > max_group_faults) {
1898 max_group_faults = group_faults;
1899 max_group_nid = nid;
1903 update_task_scan_period(p, fault_types[0], fault_types[1]);
1905 if (p->numa_group) {
1906 update_numa_active_node_mask(p->numa_group);
1907 spin_unlock_irq(group_lock);
1908 max_nid = preferred_group_nid(p, max_group_nid);
1912 /* Set the new preferred node */
1913 if (max_nid != p->numa_preferred_nid)
1914 sched_setnuma(p, max_nid);
1916 if (task_node(p) != p->numa_preferred_nid)
1917 numa_migrate_preferred(p);
1921 static inline int get_numa_group(struct numa_group *grp)
1923 return atomic_inc_not_zero(&grp->refcount);
1926 static inline void put_numa_group(struct numa_group *grp)
1928 if (atomic_dec_and_test(&grp->refcount))
1929 kfree_rcu(grp, rcu);
1932 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1935 struct numa_group *grp, *my_grp;
1936 struct task_struct *tsk;
1938 int cpu = cpupid_to_cpu(cpupid);
1941 if (unlikely(!p->numa_group)) {
1942 unsigned int size = sizeof(struct numa_group) +
1943 4*nr_node_ids*sizeof(unsigned long);
1945 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1949 atomic_set(&grp->refcount, 1);
1950 spin_lock_init(&grp->lock);
1952 /* Second half of the array tracks nids where faults happen */
1953 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1956 node_set(task_node(current), grp->active_nodes);
1958 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1959 grp->faults[i] = p->numa_faults[i];
1961 grp->total_faults = p->total_numa_faults;
1964 rcu_assign_pointer(p->numa_group, grp);
1968 tsk = READ_ONCE(cpu_rq(cpu)->curr);
1970 if (!cpupid_match_pid(tsk, cpupid))
1973 grp = rcu_dereference(tsk->numa_group);
1977 my_grp = p->numa_group;
1982 * Only join the other group if its bigger; if we're the bigger group,
1983 * the other task will join us.
1985 if (my_grp->nr_tasks > grp->nr_tasks)
1989 * Tie-break on the grp address.
1991 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1994 /* Always join threads in the same process. */
1995 if (tsk->mm == current->mm)
1998 /* Simple filter to avoid false positives due to PID collisions */
1999 if (flags & TNF_SHARED)
2002 /* Update priv based on whether false sharing was detected */
2005 if (join && !get_numa_group(grp))
2013 BUG_ON(irqs_disabled());
2014 double_lock_irq(&my_grp->lock, &grp->lock);
2016 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2017 my_grp->faults[i] -= p->numa_faults[i];
2018 grp->faults[i] += p->numa_faults[i];
2020 my_grp->total_faults -= p->total_numa_faults;
2021 grp->total_faults += p->total_numa_faults;
2026 spin_unlock(&my_grp->lock);
2027 spin_unlock_irq(&grp->lock);
2029 rcu_assign_pointer(p->numa_group, grp);
2031 put_numa_group(my_grp);
2039 void task_numa_free(struct task_struct *p)
2041 struct numa_group *grp = p->numa_group;
2042 void *numa_faults = p->numa_faults;
2043 unsigned long flags;
2047 spin_lock_irqsave(&grp->lock, flags);
2048 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2049 grp->faults[i] -= p->numa_faults[i];
2050 grp->total_faults -= p->total_numa_faults;
2053 spin_unlock_irqrestore(&grp->lock, flags);
2054 RCU_INIT_POINTER(p->numa_group, NULL);
2055 put_numa_group(grp);
2058 p->numa_faults = NULL;
2063 * Got a PROT_NONE fault for a page on @node.
2065 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2067 struct task_struct *p = current;
2068 bool migrated = flags & TNF_MIGRATED;
2069 int cpu_node = task_node(current);
2070 int local = !!(flags & TNF_FAULT_LOCAL);
2073 if (!static_branch_likely(&sched_numa_balancing))
2076 /* for example, ksmd faulting in a user's mm */
2080 /* Allocate buffer to track faults on a per-node basis */
2081 if (unlikely(!p->numa_faults)) {
2082 int size = sizeof(*p->numa_faults) *
2083 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2085 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2086 if (!p->numa_faults)
2089 p->total_numa_faults = 0;
2090 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2094 * First accesses are treated as private, otherwise consider accesses
2095 * to be private if the accessing pid has not changed
2097 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2100 priv = cpupid_match_pid(p, last_cpupid);
2101 if (!priv && !(flags & TNF_NO_GROUP))
2102 task_numa_group(p, last_cpupid, flags, &priv);
2106 * If a workload spans multiple NUMA nodes, a shared fault that
2107 * occurs wholly within the set of nodes that the workload is
2108 * actively using should be counted as local. This allows the
2109 * scan rate to slow down when a workload has settled down.
2111 if (!priv && !local && p->numa_group &&
2112 node_isset(cpu_node, p->numa_group->active_nodes) &&
2113 node_isset(mem_node, p->numa_group->active_nodes))
2116 task_numa_placement(p);
2119 * Retry task to preferred node migration periodically, in case it
2120 * case it previously failed, or the scheduler moved us.
2122 if (time_after(jiffies, p->numa_migrate_retry))
2123 numa_migrate_preferred(p);
2126 p->numa_pages_migrated += pages;
2127 if (flags & TNF_MIGRATE_FAIL)
2128 p->numa_faults_locality[2] += pages;
2130 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2131 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2132 p->numa_faults_locality[local] += pages;
2135 static void reset_ptenuma_scan(struct task_struct *p)
2138 * We only did a read acquisition of the mmap sem, so
2139 * p->mm->numa_scan_seq is written to without exclusive access
2140 * and the update is not guaranteed to be atomic. That's not
2141 * much of an issue though, since this is just used for
2142 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2143 * expensive, to avoid any form of compiler optimizations:
2145 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2146 p->mm->numa_scan_offset = 0;
2150 * The expensive part of numa migration is done from task_work context.
2151 * Triggered from task_tick_numa().
2153 void task_numa_work(struct callback_head *work)
2155 unsigned long migrate, next_scan, now = jiffies;
2156 struct task_struct *p = current;
2157 struct mm_struct *mm = p->mm;
2158 struct vm_area_struct *vma;
2159 unsigned long start, end;
2160 unsigned long nr_pte_updates = 0;
2161 long pages, virtpages;
2163 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2165 work->next = work; /* protect against double add */
2167 * Who cares about NUMA placement when they're dying.
2169 * NOTE: make sure not to dereference p->mm before this check,
2170 * exit_task_work() happens _after_ exit_mm() so we could be called
2171 * without p->mm even though we still had it when we enqueued this
2174 if (p->flags & PF_EXITING)
2177 if (!mm->numa_next_scan) {
2178 mm->numa_next_scan = now +
2179 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2183 * Enforce maximal scan/migration frequency..
2185 migrate = mm->numa_next_scan;
2186 if (time_before(now, migrate))
2189 if (p->numa_scan_period == 0) {
2190 p->numa_scan_period_max = task_scan_max(p);
2191 p->numa_scan_period = task_scan_min(p);
2194 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2195 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2199 * Delay this task enough that another task of this mm will likely win
2200 * the next time around.
2202 p->node_stamp += 2 * TICK_NSEC;
2204 start = mm->numa_scan_offset;
2205 pages = sysctl_numa_balancing_scan_size;
2206 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2207 virtpages = pages * 8; /* Scan up to this much virtual space */
2212 down_read(&mm->mmap_sem);
2213 vma = find_vma(mm, start);
2215 reset_ptenuma_scan(p);
2219 for (; vma; vma = vma->vm_next) {
2220 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2221 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2226 * Shared library pages mapped by multiple processes are not
2227 * migrated as it is expected they are cache replicated. Avoid
2228 * hinting faults in read-only file-backed mappings or the vdso
2229 * as migrating the pages will be of marginal benefit.
2232 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2236 * Skip inaccessible VMAs to avoid any confusion between
2237 * PROT_NONE and NUMA hinting ptes
2239 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2243 start = max(start, vma->vm_start);
2244 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2245 end = min(end, vma->vm_end);
2246 nr_pte_updates = change_prot_numa(vma, start, end);
2249 * Try to scan sysctl_numa_balancing_size worth of
2250 * hpages that have at least one present PTE that
2251 * is not already pte-numa. If the VMA contains
2252 * areas that are unused or already full of prot_numa
2253 * PTEs, scan up to virtpages, to skip through those
2257 pages -= (end - start) >> PAGE_SHIFT;
2258 virtpages -= (end - start) >> PAGE_SHIFT;
2261 if (pages <= 0 || virtpages <= 0)
2265 } while (end != vma->vm_end);
2270 * It is possible to reach the end of the VMA list but the last few
2271 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2272 * would find the !migratable VMA on the next scan but not reset the
2273 * scanner to the start so check it now.
2276 mm->numa_scan_offset = start;
2278 reset_ptenuma_scan(p);
2279 up_read(&mm->mmap_sem);
2283 * Drive the periodic memory faults..
2285 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2287 struct callback_head *work = &curr->numa_work;
2291 * We don't care about NUMA placement if we don't have memory.
2293 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2297 * Using runtime rather than walltime has the dual advantage that
2298 * we (mostly) drive the selection from busy threads and that the
2299 * task needs to have done some actual work before we bother with
2302 now = curr->se.sum_exec_runtime;
2303 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2305 if (now > curr->node_stamp + period) {
2306 if (!curr->node_stamp)
2307 curr->numa_scan_period = task_scan_min(curr);
2308 curr->node_stamp += period;
2310 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2311 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2312 task_work_add(curr, work, true);
2317 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2321 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2325 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2328 #endif /* CONFIG_NUMA_BALANCING */
2331 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2333 update_load_add(&cfs_rq->load, se->load.weight);
2334 if (!parent_entity(se))
2335 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2337 if (entity_is_task(se)) {
2338 struct rq *rq = rq_of(cfs_rq);
2340 account_numa_enqueue(rq, task_of(se));
2341 list_add(&se->group_node, &rq->cfs_tasks);
2344 cfs_rq->nr_running++;
2348 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2350 update_load_sub(&cfs_rq->load, se->load.weight);
2351 if (!parent_entity(se))
2352 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2353 if (entity_is_task(se)) {
2354 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2355 list_del_init(&se->group_node);
2357 cfs_rq->nr_running--;
2360 #ifdef CONFIG_FAIR_GROUP_SCHED
2362 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2367 * Use this CPU's real-time load instead of the last load contribution
2368 * as the updating of the contribution is delayed, and we will use the
2369 * the real-time load to calc the share. See update_tg_load_avg().
2371 tg_weight = atomic_long_read(&tg->load_avg);
2372 tg_weight -= cfs_rq->tg_load_avg_contrib;
2373 tg_weight += cfs_rq->load.weight;
2378 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2380 long tg_weight, load, shares;
2382 tg_weight = calc_tg_weight(tg, cfs_rq);
2383 load = cfs_rq->load.weight;
2385 shares = (tg->shares * load);
2387 shares /= tg_weight;
2389 if (shares < MIN_SHARES)
2390 shares = MIN_SHARES;
2391 if (shares > tg->shares)
2392 shares = tg->shares;
2396 # else /* CONFIG_SMP */
2397 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2401 # endif /* CONFIG_SMP */
2402 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2403 unsigned long weight)
2406 /* commit outstanding execution time */
2407 if (cfs_rq->curr == se)
2408 update_curr(cfs_rq);
2409 account_entity_dequeue(cfs_rq, se);
2412 update_load_set(&se->load, weight);
2415 account_entity_enqueue(cfs_rq, se);
2418 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2420 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2422 struct task_group *tg;
2423 struct sched_entity *se;
2427 se = tg->se[cpu_of(rq_of(cfs_rq))];
2428 if (!se || throttled_hierarchy(cfs_rq))
2431 if (likely(se->load.weight == tg->shares))
2434 shares = calc_cfs_shares(cfs_rq, tg);
2436 reweight_entity(cfs_rq_of(se), se, shares);
2438 #else /* CONFIG_FAIR_GROUP_SCHED */
2439 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2442 #endif /* CONFIG_FAIR_GROUP_SCHED */
2445 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2446 static const u32 runnable_avg_yN_inv[] = {
2447 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2448 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2449 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2450 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2451 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2452 0x85aac367, 0x82cd8698,
2456 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2457 * over-estimates when re-combining.
2459 static const u32 runnable_avg_yN_sum[] = {
2460 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2461 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2462 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2467 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2469 static __always_inline u64 decay_load(u64 val, u64 n)
2471 unsigned int local_n;
2475 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2478 /* after bounds checking we can collapse to 32-bit */
2482 * As y^PERIOD = 1/2, we can combine
2483 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2484 * With a look-up table which covers y^n (n<PERIOD)
2486 * To achieve constant time decay_load.
2488 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2489 val >>= local_n / LOAD_AVG_PERIOD;
2490 local_n %= LOAD_AVG_PERIOD;
2493 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2498 * For updates fully spanning n periods, the contribution to runnable
2499 * average will be: \Sum 1024*y^n
2501 * We can compute this reasonably efficiently by combining:
2502 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2504 static u32 __compute_runnable_contrib(u64 n)
2508 if (likely(n <= LOAD_AVG_PERIOD))
2509 return runnable_avg_yN_sum[n];
2510 else if (unlikely(n >= LOAD_AVG_MAX_N))
2511 return LOAD_AVG_MAX;
2513 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2515 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2516 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2518 n -= LOAD_AVG_PERIOD;
2519 } while (n > LOAD_AVG_PERIOD);
2521 contrib = decay_load(contrib, n);
2522 return contrib + runnable_avg_yN_sum[n];
2525 #if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT != 10
2526 #error "load tracking assumes 2^10 as unit"
2529 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2532 * We can represent the historical contribution to runnable average as the
2533 * coefficients of a geometric series. To do this we sub-divide our runnable
2534 * history into segments of approximately 1ms (1024us); label the segment that
2535 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2537 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2539 * (now) (~1ms ago) (~2ms ago)
2541 * Let u_i denote the fraction of p_i that the entity was runnable.
2543 * We then designate the fractions u_i as our co-efficients, yielding the
2544 * following representation of historical load:
2545 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2547 * We choose y based on the with of a reasonably scheduling period, fixing:
2550 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2551 * approximately half as much as the contribution to load within the last ms
2554 * When a period "rolls over" and we have new u_0`, multiplying the previous
2555 * sum again by y is sufficient to update:
2556 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2557 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2559 static __always_inline int
2560 __update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2561 unsigned long weight, int running, struct cfs_rq *cfs_rq)
2563 u64 delta, scaled_delta, periods;
2565 unsigned int delta_w, scaled_delta_w, decayed = 0;
2566 unsigned long scale_freq, scale_cpu;
2568 delta = now - sa->last_update_time;
2570 * This should only happen when time goes backwards, which it
2571 * unfortunately does during sched clock init when we swap over to TSC.
2573 if ((s64)delta < 0) {
2574 sa->last_update_time = now;
2579 * Use 1024ns as the unit of measurement since it's a reasonable
2580 * approximation of 1us and fast to compute.
2585 sa->last_update_time = now;
2587 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2588 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2590 /* delta_w is the amount already accumulated against our next period */
2591 delta_w = sa->period_contrib;
2592 if (delta + delta_w >= 1024) {
2595 /* how much left for next period will start over, we don't know yet */
2596 sa->period_contrib = 0;
2599 * Now that we know we're crossing a period boundary, figure
2600 * out how much from delta we need to complete the current
2601 * period and accrue it.
2603 delta_w = 1024 - delta_w;
2604 scaled_delta_w = cap_scale(delta_w, scale_freq);
2606 sa->load_sum += weight * scaled_delta_w;
2608 cfs_rq->runnable_load_sum +=
2609 weight * scaled_delta_w;
2613 sa->util_sum += scaled_delta_w * scale_cpu;
2617 /* Figure out how many additional periods this update spans */
2618 periods = delta / 1024;
2621 sa->load_sum = decay_load(sa->load_sum, periods + 1);
2623 cfs_rq->runnable_load_sum =
2624 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2626 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2628 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2629 contrib = __compute_runnable_contrib(periods);
2630 contrib = cap_scale(contrib, scale_freq);
2632 sa->load_sum += weight * contrib;
2634 cfs_rq->runnable_load_sum += weight * contrib;
2637 sa->util_sum += contrib * scale_cpu;
2640 /* Remainder of delta accrued against u_0` */
2641 scaled_delta = cap_scale(delta, scale_freq);
2643 sa->load_sum += weight * scaled_delta;
2645 cfs_rq->runnable_load_sum += weight * scaled_delta;
2648 sa->util_sum += scaled_delta * scale_cpu;
2650 sa->period_contrib += delta;
2653 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2655 cfs_rq->runnable_load_avg =
2656 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2658 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2664 #ifdef CONFIG_FAIR_GROUP_SCHED
2666 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2667 * and effective_load (which is not done because it is too costly).
2669 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2671 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2673 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2674 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2675 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2679 #else /* CONFIG_FAIR_GROUP_SCHED */
2680 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
2681 #endif /* CONFIG_FAIR_GROUP_SCHED */
2683 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2685 /* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2686 static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2688 struct sched_avg *sa = &cfs_rq->avg;
2689 int decayed, removed = 0;
2691 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2692 long r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2693 sa->load_avg = max_t(long, sa->load_avg - r, 0);
2694 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
2698 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2699 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2700 sa->util_avg = max_t(long, sa->util_avg - r, 0);
2701 sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
2704 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2705 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
2707 #ifndef CONFIG_64BIT
2709 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2712 return decayed || removed;
2715 /* Update task and its cfs_rq load average */
2716 static inline void update_load_avg(struct sched_entity *se, int update_tg)
2718 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2719 u64 now = cfs_rq_clock_task(cfs_rq);
2720 int cpu = cpu_of(rq_of(cfs_rq));
2723 * Track task load average for carrying it to new CPU after migrated, and
2724 * track group sched_entity load average for task_h_load calc in migration
2726 __update_load_avg(now, cpu, &se->avg,
2727 se->on_rq * scale_load_down(se->load.weight),
2728 cfs_rq->curr == se, NULL);
2730 if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
2731 update_tg_load_avg(cfs_rq, 0);
2734 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2736 if (!sched_feat(ATTACH_AGE_LOAD))
2740 * If we got migrated (either between CPUs or between cgroups) we'll
2741 * have aged the average right before clearing @last_update_time.
2743 if (se->avg.last_update_time) {
2744 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2745 &se->avg, 0, 0, NULL);
2748 * XXX: we could have just aged the entire load away if we've been
2749 * absent from the fair class for too long.
2754 se->avg.last_update_time = cfs_rq->avg.last_update_time;
2755 cfs_rq->avg.load_avg += se->avg.load_avg;
2756 cfs_rq->avg.load_sum += se->avg.load_sum;
2757 cfs_rq->avg.util_avg += se->avg.util_avg;
2758 cfs_rq->avg.util_sum += se->avg.util_sum;
2761 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2763 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2764 &se->avg, se->on_rq * scale_load_down(se->load.weight),
2765 cfs_rq->curr == se, NULL);
2767 cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
2768 cfs_rq->avg.load_sum = max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
2769 cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
2770 cfs_rq->avg.util_sum = max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
2773 /* Add the load generated by se into cfs_rq's load average */
2775 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2777 struct sched_avg *sa = &se->avg;
2778 u64 now = cfs_rq_clock_task(cfs_rq);
2779 int migrated, decayed;
2781 migrated = !sa->last_update_time;
2783 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2784 se->on_rq * scale_load_down(se->load.weight),
2785 cfs_rq->curr == se, NULL);
2788 decayed = update_cfs_rq_load_avg(now, cfs_rq);
2790 cfs_rq->runnable_load_avg += sa->load_avg;
2791 cfs_rq->runnable_load_sum += sa->load_sum;
2794 attach_entity_load_avg(cfs_rq, se);
2796 if (decayed || migrated)
2797 update_tg_load_avg(cfs_rq, 0);
2800 /* Remove the runnable load generated by se from cfs_rq's runnable load average */
2802 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2804 update_load_avg(se, 1);
2806 cfs_rq->runnable_load_avg =
2807 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
2808 cfs_rq->runnable_load_sum =
2809 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
2813 * Task first catches up with cfs_rq, and then subtract
2814 * itself from the cfs_rq (task must be off the queue now).
2816 void remove_entity_load_avg(struct sched_entity *se)
2818 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2819 u64 last_update_time;
2821 #ifndef CONFIG_64BIT
2822 u64 last_update_time_copy;
2825 last_update_time_copy = cfs_rq->load_last_update_time_copy;
2827 last_update_time = cfs_rq->avg.last_update_time;
2828 } while (last_update_time != last_update_time_copy);
2830 last_update_time = cfs_rq->avg.last_update_time;
2833 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
2834 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
2835 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2839 * Update the rq's load with the elapsed running time before entering
2840 * idle. if the last scheduled task is not a CFS task, idle_enter will
2841 * be the only way to update the runnable statistic.
2843 void idle_enter_fair(struct rq *this_rq)
2848 * Update the rq's load with the elapsed idle time before a task is
2849 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2850 * be the only way to update the runnable statistic.
2852 void idle_exit_fair(struct rq *this_rq)
2856 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
2858 return cfs_rq->runnable_load_avg;
2861 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
2863 return cfs_rq->avg.load_avg;
2866 static int idle_balance(struct rq *this_rq);
2868 #else /* CONFIG_SMP */
2870 static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
2872 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2874 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2875 static inline void remove_entity_load_avg(struct sched_entity *se) {}
2878 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2880 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2882 static inline int idle_balance(struct rq *rq)
2887 #endif /* CONFIG_SMP */
2889 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2891 #ifdef CONFIG_SCHEDSTATS
2892 struct task_struct *tsk = NULL;
2894 if (entity_is_task(se))
2897 if (se->statistics.sleep_start) {
2898 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2903 if (unlikely(delta > se->statistics.sleep_max))
2904 se->statistics.sleep_max = delta;
2906 se->statistics.sleep_start = 0;
2907 se->statistics.sum_sleep_runtime += delta;
2910 account_scheduler_latency(tsk, delta >> 10, 1);
2911 trace_sched_stat_sleep(tsk, delta);
2914 if (se->statistics.block_start) {
2915 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2920 if (unlikely(delta > se->statistics.block_max))
2921 se->statistics.block_max = delta;
2923 se->statistics.block_start = 0;
2924 se->statistics.sum_sleep_runtime += delta;
2927 if (tsk->in_iowait) {
2928 se->statistics.iowait_sum += delta;
2929 se->statistics.iowait_count++;
2930 trace_sched_stat_iowait(tsk, delta);
2933 trace_sched_stat_blocked(tsk, delta);
2936 * Blocking time is in units of nanosecs, so shift by
2937 * 20 to get a milliseconds-range estimation of the
2938 * amount of time that the task spent sleeping:
2940 if (unlikely(prof_on == SLEEP_PROFILING)) {
2941 profile_hits(SLEEP_PROFILING,
2942 (void *)get_wchan(tsk),
2945 account_scheduler_latency(tsk, delta >> 10, 0);
2951 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2953 #ifdef CONFIG_SCHED_DEBUG
2954 s64 d = se->vruntime - cfs_rq->min_vruntime;
2959 if (d > 3*sysctl_sched_latency)
2960 schedstat_inc(cfs_rq, nr_spread_over);
2965 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2967 u64 vruntime = cfs_rq->min_vruntime;
2970 * The 'current' period is already promised to the current tasks,
2971 * however the extra weight of the new task will slow them down a
2972 * little, place the new task so that it fits in the slot that
2973 * stays open at the end.
2975 if (initial && sched_feat(START_DEBIT))
2976 vruntime += sched_vslice(cfs_rq, se);
2978 /* sleeps up to a single latency don't count. */
2980 unsigned long thresh = sysctl_sched_latency;
2983 * Halve their sleep time's effect, to allow
2984 * for a gentler effect of sleepers:
2986 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2992 /* ensure we never gain time by being placed backwards. */
2993 se->vruntime = max_vruntime(se->vruntime, vruntime);
2996 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2999 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3002 * Update the normalized vruntime before updating min_vruntime
3003 * through calling update_curr().
3005 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
3006 se->vruntime += cfs_rq->min_vruntime;
3009 * Update run-time statistics of the 'current'.
3011 update_curr(cfs_rq);
3012 enqueue_entity_load_avg(cfs_rq, se);
3013 account_entity_enqueue(cfs_rq, se);
3014 update_cfs_shares(cfs_rq);
3016 if (flags & ENQUEUE_WAKEUP) {
3017 place_entity(cfs_rq, se, 0);
3018 enqueue_sleeper(cfs_rq, se);
3021 update_stats_enqueue(cfs_rq, se);
3022 check_spread(cfs_rq, se);
3023 if (se != cfs_rq->curr)
3024 __enqueue_entity(cfs_rq, se);
3027 if (cfs_rq->nr_running == 1) {
3028 list_add_leaf_cfs_rq(cfs_rq);
3029 check_enqueue_throttle(cfs_rq);
3033 static void __clear_buddies_last(struct sched_entity *se)
3035 for_each_sched_entity(se) {
3036 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3037 if (cfs_rq->last != se)
3040 cfs_rq->last = NULL;
3044 static void __clear_buddies_next(struct sched_entity *se)
3046 for_each_sched_entity(se) {
3047 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3048 if (cfs_rq->next != se)
3051 cfs_rq->next = NULL;
3055 static void __clear_buddies_skip(struct sched_entity *se)
3057 for_each_sched_entity(se) {
3058 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3059 if (cfs_rq->skip != se)
3062 cfs_rq->skip = NULL;
3066 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3068 if (cfs_rq->last == se)
3069 __clear_buddies_last(se);
3071 if (cfs_rq->next == se)
3072 __clear_buddies_next(se);
3074 if (cfs_rq->skip == se)
3075 __clear_buddies_skip(se);
3078 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3081 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3084 * Update run-time statistics of the 'current'.
3086 update_curr(cfs_rq);
3087 dequeue_entity_load_avg(cfs_rq, se);
3089 update_stats_dequeue(cfs_rq, se);
3090 if (flags & DEQUEUE_SLEEP) {
3091 #ifdef CONFIG_SCHEDSTATS
3092 if (entity_is_task(se)) {
3093 struct task_struct *tsk = task_of(se);
3095 if (tsk->state & TASK_INTERRUPTIBLE)
3096 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
3097 if (tsk->state & TASK_UNINTERRUPTIBLE)
3098 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
3103 clear_buddies(cfs_rq, se);
3105 if (se != cfs_rq->curr)
3106 __dequeue_entity(cfs_rq, se);
3108 account_entity_dequeue(cfs_rq, se);
3111 * Normalize the entity after updating the min_vruntime because the
3112 * update can refer to the ->curr item and we need to reflect this
3113 * movement in our normalized position.
3115 if (!(flags & DEQUEUE_SLEEP))
3116 se->vruntime -= cfs_rq->min_vruntime;
3118 /* return excess runtime on last dequeue */
3119 return_cfs_rq_runtime(cfs_rq);
3121 update_min_vruntime(cfs_rq);
3122 update_cfs_shares(cfs_rq);
3126 * Preempt the current task with a newly woken task if needed:
3129 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3131 unsigned long ideal_runtime, delta_exec;
3132 struct sched_entity *se;
3135 ideal_runtime = sched_slice(cfs_rq, curr);
3136 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3137 if (delta_exec > ideal_runtime) {
3138 resched_curr(rq_of(cfs_rq));
3140 * The current task ran long enough, ensure it doesn't get
3141 * re-elected due to buddy favours.
3143 clear_buddies(cfs_rq, curr);
3148 * Ensure that a task that missed wakeup preemption by a
3149 * narrow margin doesn't have to wait for a full slice.
3150 * This also mitigates buddy induced latencies under load.
3152 if (delta_exec < sysctl_sched_min_granularity)
3155 se = __pick_first_entity(cfs_rq);
3156 delta = curr->vruntime - se->vruntime;
3161 if (delta > ideal_runtime)
3162 resched_curr(rq_of(cfs_rq));
3166 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3168 /* 'current' is not kept within the tree. */
3171 * Any task has to be enqueued before it get to execute on
3172 * a CPU. So account for the time it spent waiting on the
3175 update_stats_wait_end(cfs_rq, se);
3176 __dequeue_entity(cfs_rq, se);
3177 update_load_avg(se, 1);
3180 update_stats_curr_start(cfs_rq, se);
3182 #ifdef CONFIG_SCHEDSTATS
3184 * Track our maximum slice length, if the CPU's load is at
3185 * least twice that of our own weight (i.e. dont track it
3186 * when there are only lesser-weight tasks around):
3188 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3189 se->statistics.slice_max = max(se->statistics.slice_max,
3190 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3193 se->prev_sum_exec_runtime = se->sum_exec_runtime;
3197 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3200 * Pick the next process, keeping these things in mind, in this order:
3201 * 1) keep things fair between processes/task groups
3202 * 2) pick the "next" process, since someone really wants that to run
3203 * 3) pick the "last" process, for cache locality
3204 * 4) do not run the "skip" process, if something else is available
3206 static struct sched_entity *
3207 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3209 struct sched_entity *left = __pick_first_entity(cfs_rq);
3210 struct sched_entity *se;
3213 * If curr is set we have to see if its left of the leftmost entity
3214 * still in the tree, provided there was anything in the tree at all.
3216 if (!left || (curr && entity_before(curr, left)))
3219 se = left; /* ideally we run the leftmost entity */
3222 * Avoid running the skip buddy, if running something else can
3223 * be done without getting too unfair.
3225 if (cfs_rq->skip == se) {
3226 struct sched_entity *second;
3229 second = __pick_first_entity(cfs_rq);
3231 second = __pick_next_entity(se);
3232 if (!second || (curr && entity_before(curr, second)))
3236 if (second && wakeup_preempt_entity(second, left) < 1)
3241 * Prefer last buddy, try to return the CPU to a preempted task.
3243 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3247 * Someone really wants this to run. If it's not unfair, run it.
3249 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3252 clear_buddies(cfs_rq, se);
3257 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3259 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3262 * If still on the runqueue then deactivate_task()
3263 * was not called and update_curr() has to be done:
3266 update_curr(cfs_rq);
3268 /* throttle cfs_rqs exceeding runtime */
3269 check_cfs_rq_runtime(cfs_rq);
3271 check_spread(cfs_rq, prev);
3273 update_stats_wait_start(cfs_rq, prev);
3274 /* Put 'current' back into the tree. */
3275 __enqueue_entity(cfs_rq, prev);
3276 /* in !on_rq case, update occurred at dequeue */
3277 update_load_avg(prev, 0);
3279 cfs_rq->curr = NULL;
3283 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3286 * Update run-time statistics of the 'current'.
3288 update_curr(cfs_rq);
3291 * Ensure that runnable average is periodically updated.
3293 update_load_avg(curr, 1);
3294 update_cfs_shares(cfs_rq);
3296 #ifdef CONFIG_SCHED_HRTICK
3298 * queued ticks are scheduled to match the slice, so don't bother
3299 * validating it and just reschedule.
3302 resched_curr(rq_of(cfs_rq));
3306 * don't let the period tick interfere with the hrtick preemption
3308 if (!sched_feat(DOUBLE_TICK) &&
3309 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3313 if (cfs_rq->nr_running > 1)
3314 check_preempt_tick(cfs_rq, curr);
3318 /**************************************************
3319 * CFS bandwidth control machinery
3322 #ifdef CONFIG_CFS_BANDWIDTH
3324 #ifdef HAVE_JUMP_LABEL
3325 static struct static_key __cfs_bandwidth_used;
3327 static inline bool cfs_bandwidth_used(void)
3329 return static_key_false(&__cfs_bandwidth_used);
3332 void cfs_bandwidth_usage_inc(void)
3334 static_key_slow_inc(&__cfs_bandwidth_used);
3337 void cfs_bandwidth_usage_dec(void)
3339 static_key_slow_dec(&__cfs_bandwidth_used);
3341 #else /* HAVE_JUMP_LABEL */
3342 static bool cfs_bandwidth_used(void)
3347 void cfs_bandwidth_usage_inc(void) {}
3348 void cfs_bandwidth_usage_dec(void) {}
3349 #endif /* HAVE_JUMP_LABEL */
3352 * default period for cfs group bandwidth.
3353 * default: 0.1s, units: nanoseconds
3355 static inline u64 default_cfs_period(void)
3357 return 100000000ULL;
3360 static inline u64 sched_cfs_bandwidth_slice(void)
3362 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3366 * Replenish runtime according to assigned quota and update expiration time.
3367 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3368 * additional synchronization around rq->lock.
3370 * requires cfs_b->lock
3372 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3376 if (cfs_b->quota == RUNTIME_INF)
3379 now = sched_clock_cpu(smp_processor_id());
3380 cfs_b->runtime = cfs_b->quota;
3381 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3384 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3386 return &tg->cfs_bandwidth;
3389 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3390 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3392 if (unlikely(cfs_rq->throttle_count))
3393 return cfs_rq->throttled_clock_task;
3395 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3398 /* returns 0 on failure to allocate runtime */
3399 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3401 struct task_group *tg = cfs_rq->tg;
3402 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3403 u64 amount = 0, min_amount, expires;
3405 /* note: this is a positive sum as runtime_remaining <= 0 */
3406 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3408 raw_spin_lock(&cfs_b->lock);
3409 if (cfs_b->quota == RUNTIME_INF)
3410 amount = min_amount;
3412 start_cfs_bandwidth(cfs_b);
3414 if (cfs_b->runtime > 0) {
3415 amount = min(cfs_b->runtime, min_amount);
3416 cfs_b->runtime -= amount;
3420 expires = cfs_b->runtime_expires;
3421 raw_spin_unlock(&cfs_b->lock);
3423 cfs_rq->runtime_remaining += amount;
3425 * we may have advanced our local expiration to account for allowed
3426 * spread between our sched_clock and the one on which runtime was
3429 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3430 cfs_rq->runtime_expires = expires;
3432 return cfs_rq->runtime_remaining > 0;
3436 * Note: This depends on the synchronization provided by sched_clock and the
3437 * fact that rq->clock snapshots this value.
3439 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3441 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3443 /* if the deadline is ahead of our clock, nothing to do */
3444 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3447 if (cfs_rq->runtime_remaining < 0)
3451 * If the local deadline has passed we have to consider the
3452 * possibility that our sched_clock is 'fast' and the global deadline
3453 * has not truly expired.
3455 * Fortunately we can check determine whether this the case by checking
3456 * whether the global deadline has advanced. It is valid to compare
3457 * cfs_b->runtime_expires without any locks since we only care about
3458 * exact equality, so a partial write will still work.
3461 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3462 /* extend local deadline, drift is bounded above by 2 ticks */
3463 cfs_rq->runtime_expires += TICK_NSEC;
3465 /* global deadline is ahead, expiration has passed */
3466 cfs_rq->runtime_remaining = 0;
3470 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3472 /* dock delta_exec before expiring quota (as it could span periods) */
3473 cfs_rq->runtime_remaining -= delta_exec;
3474 expire_cfs_rq_runtime(cfs_rq);
3476 if (likely(cfs_rq->runtime_remaining > 0))
3480 * if we're unable to extend our runtime we resched so that the active
3481 * hierarchy can be throttled
3483 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3484 resched_curr(rq_of(cfs_rq));
3487 static __always_inline
3488 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3490 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3493 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3496 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3498 return cfs_bandwidth_used() && cfs_rq->throttled;
3501 /* check whether cfs_rq, or any parent, is throttled */
3502 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3504 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3508 * Ensure that neither of the group entities corresponding to src_cpu or
3509 * dest_cpu are members of a throttled hierarchy when performing group
3510 * load-balance operations.
3512 static inline int throttled_lb_pair(struct task_group *tg,
3513 int src_cpu, int dest_cpu)
3515 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3517 src_cfs_rq = tg->cfs_rq[src_cpu];
3518 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3520 return throttled_hierarchy(src_cfs_rq) ||
3521 throttled_hierarchy(dest_cfs_rq);
3524 /* updated child weight may affect parent so we have to do this bottom up */
3525 static int tg_unthrottle_up(struct task_group *tg, void *data)
3527 struct rq *rq = data;
3528 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3530 cfs_rq->throttle_count--;
3532 if (!cfs_rq->throttle_count) {
3533 /* adjust cfs_rq_clock_task() */
3534 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3535 cfs_rq->throttled_clock_task;
3542 static int tg_throttle_down(struct task_group *tg, void *data)
3544 struct rq *rq = data;
3545 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3547 /* group is entering throttled state, stop time */
3548 if (!cfs_rq->throttle_count)
3549 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3550 cfs_rq->throttle_count++;
3555 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3557 struct rq *rq = rq_of(cfs_rq);
3558 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3559 struct sched_entity *se;
3560 long task_delta, dequeue = 1;
3563 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3565 /* freeze hierarchy runnable averages while throttled */
3567 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3570 task_delta = cfs_rq->h_nr_running;
3571 for_each_sched_entity(se) {
3572 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3573 /* throttled entity or throttle-on-deactivate */
3578 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3579 qcfs_rq->h_nr_running -= task_delta;
3581 if (qcfs_rq->load.weight)
3586 sub_nr_running(rq, task_delta);
3588 cfs_rq->throttled = 1;
3589 cfs_rq->throttled_clock = rq_clock(rq);
3590 raw_spin_lock(&cfs_b->lock);
3591 empty = list_empty(&cfs_b->throttled_cfs_rq);
3594 * Add to the _head_ of the list, so that an already-started
3595 * distribute_cfs_runtime will not see us
3597 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3600 * If we're the first throttled task, make sure the bandwidth
3604 start_cfs_bandwidth(cfs_b);
3606 raw_spin_unlock(&cfs_b->lock);
3609 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3611 struct rq *rq = rq_of(cfs_rq);
3612 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3613 struct sched_entity *se;
3617 se = cfs_rq->tg->se[cpu_of(rq)];
3619 cfs_rq->throttled = 0;
3621 update_rq_clock(rq);
3623 raw_spin_lock(&cfs_b->lock);
3624 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3625 list_del_rcu(&cfs_rq->throttled_list);
3626 raw_spin_unlock(&cfs_b->lock);
3628 /* update hierarchical throttle state */
3629 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3631 if (!cfs_rq->load.weight)
3634 task_delta = cfs_rq->h_nr_running;
3635 for_each_sched_entity(se) {
3639 cfs_rq = cfs_rq_of(se);
3641 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3642 cfs_rq->h_nr_running += task_delta;
3644 if (cfs_rq_throttled(cfs_rq))
3649 add_nr_running(rq, task_delta);
3651 /* determine whether we need to wake up potentially idle cpu */
3652 if (rq->curr == rq->idle && rq->cfs.nr_running)
3656 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3657 u64 remaining, u64 expires)
3659 struct cfs_rq *cfs_rq;
3661 u64 starting_runtime = remaining;
3664 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3666 struct rq *rq = rq_of(cfs_rq);
3668 raw_spin_lock(&rq->lock);
3669 if (!cfs_rq_throttled(cfs_rq))
3672 runtime = -cfs_rq->runtime_remaining + 1;
3673 if (runtime > remaining)
3674 runtime = remaining;
3675 remaining -= runtime;
3677 cfs_rq->runtime_remaining += runtime;
3678 cfs_rq->runtime_expires = expires;
3680 /* we check whether we're throttled above */
3681 if (cfs_rq->runtime_remaining > 0)
3682 unthrottle_cfs_rq(cfs_rq);
3685 raw_spin_unlock(&rq->lock);
3692 return starting_runtime - remaining;
3696 * Responsible for refilling a task_group's bandwidth and unthrottling its
3697 * cfs_rqs as appropriate. If there has been no activity within the last
3698 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3699 * used to track this state.
3701 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3703 u64 runtime, runtime_expires;
3706 /* no need to continue the timer with no bandwidth constraint */
3707 if (cfs_b->quota == RUNTIME_INF)
3708 goto out_deactivate;
3710 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3711 cfs_b->nr_periods += overrun;
3714 * idle depends on !throttled (for the case of a large deficit), and if
3715 * we're going inactive then everything else can be deferred
3717 if (cfs_b->idle && !throttled)
3718 goto out_deactivate;
3720 __refill_cfs_bandwidth_runtime(cfs_b);
3723 /* mark as potentially idle for the upcoming period */
3728 /* account preceding periods in which throttling occurred */
3729 cfs_b->nr_throttled += overrun;
3731 runtime_expires = cfs_b->runtime_expires;
3734 * This check is repeated as we are holding onto the new bandwidth while
3735 * we unthrottle. This can potentially race with an unthrottled group
3736 * trying to acquire new bandwidth from the global pool. This can result
3737 * in us over-using our runtime if it is all used during this loop, but
3738 * only by limited amounts in that extreme case.
3740 while (throttled && cfs_b->runtime > 0) {
3741 runtime = cfs_b->runtime;
3742 raw_spin_unlock(&cfs_b->lock);
3743 /* we can't nest cfs_b->lock while distributing bandwidth */
3744 runtime = distribute_cfs_runtime(cfs_b, runtime,
3746 raw_spin_lock(&cfs_b->lock);
3748 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3750 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3754 * While we are ensured activity in the period following an
3755 * unthrottle, this also covers the case in which the new bandwidth is
3756 * insufficient to cover the existing bandwidth deficit. (Forcing the
3757 * timer to remain active while there are any throttled entities.)
3767 /* a cfs_rq won't donate quota below this amount */
3768 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3769 /* minimum remaining period time to redistribute slack quota */
3770 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3771 /* how long we wait to gather additional slack before distributing */
3772 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3775 * Are we near the end of the current quota period?
3777 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3778 * hrtimer base being cleared by hrtimer_start. In the case of
3779 * migrate_hrtimers, base is never cleared, so we are fine.
3781 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3783 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3786 /* if the call-back is running a quota refresh is already occurring */
3787 if (hrtimer_callback_running(refresh_timer))
3790 /* is a quota refresh about to occur? */
3791 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3792 if (remaining < min_expire)
3798 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3800 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3802 /* if there's a quota refresh soon don't bother with slack */
3803 if (runtime_refresh_within(cfs_b, min_left))
3806 hrtimer_start(&cfs_b->slack_timer,
3807 ns_to_ktime(cfs_bandwidth_slack_period),
3811 /* we know any runtime found here is valid as update_curr() precedes return */
3812 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3814 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3815 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3817 if (slack_runtime <= 0)
3820 raw_spin_lock(&cfs_b->lock);
3821 if (cfs_b->quota != RUNTIME_INF &&
3822 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3823 cfs_b->runtime += slack_runtime;
3825 /* we are under rq->lock, defer unthrottling using a timer */
3826 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3827 !list_empty(&cfs_b->throttled_cfs_rq))
3828 start_cfs_slack_bandwidth(cfs_b);
3830 raw_spin_unlock(&cfs_b->lock);
3832 /* even if it's not valid for return we don't want to try again */
3833 cfs_rq->runtime_remaining -= slack_runtime;
3836 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3838 if (!cfs_bandwidth_used())
3841 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3844 __return_cfs_rq_runtime(cfs_rq);
3848 * This is done with a timer (instead of inline with bandwidth return) since
3849 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3851 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3853 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3856 /* confirm we're still not at a refresh boundary */
3857 raw_spin_lock(&cfs_b->lock);
3858 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3859 raw_spin_unlock(&cfs_b->lock);
3863 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3864 runtime = cfs_b->runtime;
3866 expires = cfs_b->runtime_expires;
3867 raw_spin_unlock(&cfs_b->lock);
3872 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3874 raw_spin_lock(&cfs_b->lock);
3875 if (expires == cfs_b->runtime_expires)
3876 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3877 raw_spin_unlock(&cfs_b->lock);
3881 * When a group wakes up we want to make sure that its quota is not already
3882 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3883 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3885 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3887 if (!cfs_bandwidth_used())
3890 /* an active group must be handled by the update_curr()->put() path */
3891 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3894 /* ensure the group is not already throttled */
3895 if (cfs_rq_throttled(cfs_rq))
3898 /* update runtime allocation */
3899 account_cfs_rq_runtime(cfs_rq, 0);
3900 if (cfs_rq->runtime_remaining <= 0)
3901 throttle_cfs_rq(cfs_rq);
3904 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3905 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3907 if (!cfs_bandwidth_used())
3910 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3914 * it's possible for a throttled entity to be forced into a running
3915 * state (e.g. set_curr_task), in this case we're finished.
3917 if (cfs_rq_throttled(cfs_rq))
3920 throttle_cfs_rq(cfs_rq);
3924 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3926 struct cfs_bandwidth *cfs_b =
3927 container_of(timer, struct cfs_bandwidth, slack_timer);
3929 do_sched_cfs_slack_timer(cfs_b);
3931 return HRTIMER_NORESTART;
3934 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3936 struct cfs_bandwidth *cfs_b =
3937 container_of(timer, struct cfs_bandwidth, period_timer);
3941 raw_spin_lock(&cfs_b->lock);
3943 overrun = hrtimer_forward_now(timer, cfs_b->period);
3947 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3950 cfs_b->period_active = 0;
3951 raw_spin_unlock(&cfs_b->lock);
3953 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3956 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3958 raw_spin_lock_init(&cfs_b->lock);
3960 cfs_b->quota = RUNTIME_INF;
3961 cfs_b->period = ns_to_ktime(default_cfs_period());
3963 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3964 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
3965 cfs_b->period_timer.function = sched_cfs_period_timer;
3966 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3967 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3970 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3972 cfs_rq->runtime_enabled = 0;
3973 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3976 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3978 lockdep_assert_held(&cfs_b->lock);
3980 if (!cfs_b->period_active) {
3981 cfs_b->period_active = 1;
3982 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
3983 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
3987 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3989 /* init_cfs_bandwidth() was not called */
3990 if (!cfs_b->throttled_cfs_rq.next)
3993 hrtimer_cancel(&cfs_b->period_timer);
3994 hrtimer_cancel(&cfs_b->slack_timer);
3997 static void __maybe_unused update_runtime_enabled(struct rq *rq)
3999 struct cfs_rq *cfs_rq;
4001 for_each_leaf_cfs_rq(rq, cfs_rq) {
4002 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4004 raw_spin_lock(&cfs_b->lock);
4005 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4006 raw_spin_unlock(&cfs_b->lock);
4010 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4012 struct cfs_rq *cfs_rq;
4014 for_each_leaf_cfs_rq(rq, cfs_rq) {
4015 if (!cfs_rq->runtime_enabled)
4019 * clock_task is not advancing so we just need to make sure
4020 * there's some valid quota amount
4022 cfs_rq->runtime_remaining = 1;
4024 * Offline rq is schedulable till cpu is completely disabled
4025 * in take_cpu_down(), so we prevent new cfs throttling here.
4027 cfs_rq->runtime_enabled = 0;
4029 if (cfs_rq_throttled(cfs_rq))
4030 unthrottle_cfs_rq(cfs_rq);
4034 #else /* CONFIG_CFS_BANDWIDTH */
4035 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4037 return rq_clock_task(rq_of(cfs_rq));
4040 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4041 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4042 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4043 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4045 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4050 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4055 static inline int throttled_lb_pair(struct task_group *tg,
4056 int src_cpu, int dest_cpu)
4061 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4063 #ifdef CONFIG_FAIR_GROUP_SCHED
4064 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4067 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4071 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4072 static inline void update_runtime_enabled(struct rq *rq) {}
4073 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4075 #endif /* CONFIG_CFS_BANDWIDTH */
4077 /**************************************************
4078 * CFS operations on tasks:
4081 #ifdef CONFIG_SCHED_HRTICK
4082 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4084 struct sched_entity *se = &p->se;
4085 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4087 WARN_ON(task_rq(p) != rq);
4089 if (cfs_rq->nr_running > 1) {
4090 u64 slice = sched_slice(cfs_rq, se);
4091 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4092 s64 delta = slice - ran;
4099 hrtick_start(rq, delta);
4104 * called from enqueue/dequeue and updates the hrtick when the
4105 * current task is from our class and nr_running is low enough
4108 static void hrtick_update(struct rq *rq)
4110 struct task_struct *curr = rq->curr;
4112 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4115 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4116 hrtick_start_fair(rq, curr);
4118 #else /* !CONFIG_SCHED_HRTICK */
4120 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4124 static inline void hrtick_update(struct rq *rq)
4130 * The enqueue_task method is called before nr_running is
4131 * increased. Here we update the fair scheduling stats and
4132 * then put the task into the rbtree:
4135 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4137 struct cfs_rq *cfs_rq;
4138 struct sched_entity *se = &p->se;
4140 for_each_sched_entity(se) {
4143 cfs_rq = cfs_rq_of(se);
4144 enqueue_entity(cfs_rq, se, flags);
4147 * end evaluation on encountering a throttled cfs_rq
4149 * note: in the case of encountering a throttled cfs_rq we will
4150 * post the final h_nr_running increment below.
4152 if (cfs_rq_throttled(cfs_rq))
4154 cfs_rq->h_nr_running++;
4156 flags = ENQUEUE_WAKEUP;
4159 for_each_sched_entity(se) {
4160 cfs_rq = cfs_rq_of(se);
4161 cfs_rq->h_nr_running++;
4163 if (cfs_rq_throttled(cfs_rq))
4166 update_load_avg(se, 1);
4167 update_cfs_shares(cfs_rq);
4171 add_nr_running(rq, 1);
4176 static void set_next_buddy(struct sched_entity *se);
4179 * The dequeue_task method is called before nr_running is
4180 * decreased. We remove the task from the rbtree and
4181 * update the fair scheduling stats:
4183 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4185 struct cfs_rq *cfs_rq;
4186 struct sched_entity *se = &p->se;
4187 int task_sleep = flags & DEQUEUE_SLEEP;
4189 for_each_sched_entity(se) {
4190 cfs_rq = cfs_rq_of(se);
4191 dequeue_entity(cfs_rq, se, flags);
4194 * end evaluation on encountering a throttled cfs_rq
4196 * note: in the case of encountering a throttled cfs_rq we will
4197 * post the final h_nr_running decrement below.
4199 if (cfs_rq_throttled(cfs_rq))
4201 cfs_rq->h_nr_running--;
4203 /* Don't dequeue parent if it has other entities besides us */
4204 if (cfs_rq->load.weight) {
4206 * Bias pick_next to pick a task from this cfs_rq, as
4207 * p is sleeping when it is within its sched_slice.
4209 if (task_sleep && parent_entity(se))
4210 set_next_buddy(parent_entity(se));
4212 /* avoid re-evaluating load for this entity */
4213 se = parent_entity(se);
4216 flags |= DEQUEUE_SLEEP;
4219 for_each_sched_entity(se) {
4220 cfs_rq = cfs_rq_of(se);
4221 cfs_rq->h_nr_running--;
4223 if (cfs_rq_throttled(cfs_rq))
4226 update_load_avg(se, 1);
4227 update_cfs_shares(cfs_rq);
4231 sub_nr_running(rq, 1);
4239 * per rq 'load' arrray crap; XXX kill this.
4243 * The exact cpuload at various idx values, calculated at every tick would be
4244 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
4246 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
4247 * on nth tick when cpu may be busy, then we have:
4248 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4249 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
4251 * decay_load_missed() below does efficient calculation of
4252 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4253 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
4255 * The calculation is approximated on a 128 point scale.
4256 * degrade_zero_ticks is the number of ticks after which load at any
4257 * particular idx is approximated to be zero.
4258 * degrade_factor is a precomputed table, a row for each load idx.
4259 * Each column corresponds to degradation factor for a power of two ticks,
4260 * based on 128 point scale.
4262 * row 2, col 3 (=12) says that the degradation at load idx 2 after
4263 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
4265 * With this power of 2 load factors, we can degrade the load n times
4266 * by looking at 1 bits in n and doing as many mult/shift instead of
4267 * n mult/shifts needed by the exact degradation.
4269 #define DEGRADE_SHIFT 7
4270 static const unsigned char
4271 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4272 static const unsigned char
4273 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4274 {0, 0, 0, 0, 0, 0, 0, 0},
4275 {64, 32, 8, 0, 0, 0, 0, 0},
4276 {96, 72, 40, 12, 1, 0, 0},
4277 {112, 98, 75, 43, 15, 1, 0},
4278 {120, 112, 98, 76, 45, 16, 2} };
4281 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4282 * would be when CPU is idle and so we just decay the old load without
4283 * adding any new load.
4285 static unsigned long
4286 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4290 if (!missed_updates)
4293 if (missed_updates >= degrade_zero_ticks[idx])
4297 return load >> missed_updates;
4299 while (missed_updates) {
4300 if (missed_updates % 2)
4301 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4303 missed_updates >>= 1;
4310 * Update rq->cpu_load[] statistics. This function is usually called every
4311 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
4312 * every tick. We fix it up based on jiffies.
4314 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4315 unsigned long pending_updates)
4319 this_rq->nr_load_updates++;
4321 /* Update our load: */
4322 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4323 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4324 unsigned long old_load, new_load;
4326 /* scale is effectively 1 << i now, and >> i divides by scale */
4328 old_load = this_rq->cpu_load[i];
4329 old_load = decay_load_missed(old_load, pending_updates - 1, i);
4330 new_load = this_load;
4332 * Round up the averaging division if load is increasing. This
4333 * prevents us from getting stuck on 9 if the load is 10, for
4336 if (new_load > old_load)
4337 new_load += scale - 1;
4339 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4342 sched_avg_update(this_rq);
4345 /* Used instead of source_load when we know the type == 0 */
4346 static unsigned long weighted_cpuload(const int cpu)
4348 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4351 #ifdef CONFIG_NO_HZ_COMMON
4353 * There is no sane way to deal with nohz on smp when using jiffies because the
4354 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4355 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4357 * Therefore we cannot use the delta approach from the regular tick since that
4358 * would seriously skew the load calculation. However we'll make do for those
4359 * updates happening while idle (nohz_idle_balance) or coming out of idle
4360 * (tick_nohz_idle_exit).
4362 * This means we might still be one tick off for nohz periods.
4366 * Called from nohz_idle_balance() to update the load ratings before doing the
4369 static void update_idle_cpu_load(struct rq *this_rq)
4371 unsigned long curr_jiffies = READ_ONCE(jiffies);
4372 unsigned long load = weighted_cpuload(cpu_of(this_rq));
4373 unsigned long pending_updates;
4376 * bail if there's load or we're actually up-to-date.
4378 if (load || curr_jiffies == this_rq->last_load_update_tick)
4381 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4382 this_rq->last_load_update_tick = curr_jiffies;
4384 __update_cpu_load(this_rq, load, pending_updates);
4388 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4390 void update_cpu_load_nohz(void)
4392 struct rq *this_rq = this_rq();
4393 unsigned long curr_jiffies = READ_ONCE(jiffies);
4394 unsigned long pending_updates;
4396 if (curr_jiffies == this_rq->last_load_update_tick)
4399 raw_spin_lock(&this_rq->lock);
4400 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4401 if (pending_updates) {
4402 this_rq->last_load_update_tick = curr_jiffies;
4404 * We were idle, this means load 0, the current load might be
4405 * !0 due to remote wakeups and the sort.
4407 __update_cpu_load(this_rq, 0, pending_updates);
4409 raw_spin_unlock(&this_rq->lock);
4411 #endif /* CONFIG_NO_HZ */
4414 * Called from scheduler_tick()
4416 void update_cpu_load_active(struct rq *this_rq)
4418 unsigned long load = weighted_cpuload(cpu_of(this_rq));
4420 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
4422 this_rq->last_load_update_tick = jiffies;
4423 __update_cpu_load(this_rq, load, 1);
4427 * Return a low guess at the load of a migration-source cpu weighted
4428 * according to the scheduling class and "nice" value.
4430 * We want to under-estimate the load of migration sources, to
4431 * balance conservatively.
4433 static unsigned long source_load(int cpu, int type)
4435 struct rq *rq = cpu_rq(cpu);
4436 unsigned long total = weighted_cpuload(cpu);
4438 if (type == 0 || !sched_feat(LB_BIAS))
4441 return min(rq->cpu_load[type-1], total);
4445 * Return a high guess at the load of a migration-target cpu weighted
4446 * according to the scheduling class and "nice" value.
4448 static unsigned long target_load(int cpu, int type)
4450 struct rq *rq = cpu_rq(cpu);
4451 unsigned long total = weighted_cpuload(cpu);
4453 if (type == 0 || !sched_feat(LB_BIAS))
4456 return max(rq->cpu_load[type-1], total);
4459 static unsigned long capacity_of(int cpu)
4461 return cpu_rq(cpu)->cpu_capacity;
4464 static unsigned long capacity_orig_of(int cpu)
4466 return cpu_rq(cpu)->cpu_capacity_orig;
4469 static unsigned long cpu_avg_load_per_task(int cpu)
4471 struct rq *rq = cpu_rq(cpu);
4472 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4473 unsigned long load_avg = weighted_cpuload(cpu);
4476 return load_avg / nr_running;
4481 static void record_wakee(struct task_struct *p)
4484 * Rough decay (wiping) for cost saving, don't worry
4485 * about the boundary, really active task won't care
4488 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4489 current->wakee_flips >>= 1;
4490 current->wakee_flip_decay_ts = jiffies;
4493 if (current->last_wakee != p) {
4494 current->last_wakee = p;
4495 current->wakee_flips++;
4499 static void task_waking_fair(struct task_struct *p)
4501 struct sched_entity *se = &p->se;
4502 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4505 #ifndef CONFIG_64BIT
4506 u64 min_vruntime_copy;
4509 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4511 min_vruntime = cfs_rq->min_vruntime;
4512 } while (min_vruntime != min_vruntime_copy);
4514 min_vruntime = cfs_rq->min_vruntime;
4517 se->vruntime -= min_vruntime;
4521 #ifdef CONFIG_FAIR_GROUP_SCHED
4523 * effective_load() calculates the load change as seen from the root_task_group
4525 * Adding load to a group doesn't make a group heavier, but can cause movement
4526 * of group shares between cpus. Assuming the shares were perfectly aligned one
4527 * can calculate the shift in shares.
4529 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4530 * on this @cpu and results in a total addition (subtraction) of @wg to the
4531 * total group weight.
4533 * Given a runqueue weight distribution (rw_i) we can compute a shares
4534 * distribution (s_i) using:
4536 * s_i = rw_i / \Sum rw_j (1)
4538 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4539 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4540 * shares distribution (s_i):
4542 * rw_i = { 2, 4, 1, 0 }
4543 * s_i = { 2/7, 4/7, 1/7, 0 }
4545 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4546 * task used to run on and the CPU the waker is running on), we need to
4547 * compute the effect of waking a task on either CPU and, in case of a sync
4548 * wakeup, compute the effect of the current task going to sleep.
4550 * So for a change of @wl to the local @cpu with an overall group weight change
4551 * of @wl we can compute the new shares distribution (s'_i) using:
4553 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4555 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4556 * differences in waking a task to CPU 0. The additional task changes the
4557 * weight and shares distributions like:
4559 * rw'_i = { 3, 4, 1, 0 }
4560 * s'_i = { 3/8, 4/8, 1/8, 0 }
4562 * We can then compute the difference in effective weight by using:
4564 * dw_i = S * (s'_i - s_i) (3)
4566 * Where 'S' is the group weight as seen by its parent.
4568 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4569 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4570 * 4/7) times the weight of the group.
4572 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4574 struct sched_entity *se = tg->se[cpu];
4576 if (!tg->parent) /* the trivial, non-cgroup case */
4579 for_each_sched_entity(se) {
4585 * W = @wg + \Sum rw_j
4587 W = wg + calc_tg_weight(tg, se->my_q);
4592 w = cfs_rq_load_avg(se->my_q) + wl;
4595 * wl = S * s'_i; see (2)
4598 wl = (w * (long)tg->shares) / W;
4603 * Per the above, wl is the new se->load.weight value; since
4604 * those are clipped to [MIN_SHARES, ...) do so now. See
4605 * calc_cfs_shares().
4607 if (wl < MIN_SHARES)
4611 * wl = dw_i = S * (s'_i - s_i); see (3)
4613 wl -= se->avg.load_avg;
4616 * Recursively apply this logic to all parent groups to compute
4617 * the final effective load change on the root group. Since
4618 * only the @tg group gets extra weight, all parent groups can
4619 * only redistribute existing shares. @wl is the shift in shares
4620 * resulting from this level per the above.
4629 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4637 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4638 * A waker of many should wake a different task than the one last awakened
4639 * at a frequency roughly N times higher than one of its wakees. In order
4640 * to determine whether we should let the load spread vs consolodating to
4641 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4642 * partner, and a factor of lls_size higher frequency in the other. With
4643 * both conditions met, we can be relatively sure that the relationship is
4644 * non-monogamous, with partner count exceeding socket size. Waker/wakee
4645 * being client/server, worker/dispatcher, interrupt source or whatever is
4646 * irrelevant, spread criteria is apparent partner count exceeds socket size.
4648 static int wake_wide(struct task_struct *p)
4650 unsigned int master = current->wakee_flips;
4651 unsigned int slave = p->wakee_flips;
4652 int factor = this_cpu_read(sd_llc_size);
4655 swap(master, slave);
4656 if (slave < factor || master < slave * factor)
4661 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4663 s64 this_load, load;
4664 s64 this_eff_load, prev_eff_load;
4665 int idx, this_cpu, prev_cpu;
4666 struct task_group *tg;
4667 unsigned long weight;
4671 this_cpu = smp_processor_id();
4672 prev_cpu = task_cpu(p);
4673 load = source_load(prev_cpu, idx);
4674 this_load = target_load(this_cpu, idx);
4677 * If sync wakeup then subtract the (maximum possible)
4678 * effect of the currently running task from the load
4679 * of the current CPU:
4682 tg = task_group(current);
4683 weight = current->se.avg.load_avg;
4685 this_load += effective_load(tg, this_cpu, -weight, -weight);
4686 load += effective_load(tg, prev_cpu, 0, -weight);
4690 weight = p->se.avg.load_avg;
4693 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4694 * due to the sync cause above having dropped this_load to 0, we'll
4695 * always have an imbalance, but there's really nothing you can do
4696 * about that, so that's good too.
4698 * Otherwise check if either cpus are near enough in load to allow this
4699 * task to be woken on this_cpu.
4701 this_eff_load = 100;
4702 this_eff_load *= capacity_of(prev_cpu);
4704 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4705 prev_eff_load *= capacity_of(this_cpu);
4707 if (this_load > 0) {
4708 this_eff_load *= this_load +
4709 effective_load(tg, this_cpu, weight, weight);
4711 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4714 balanced = this_eff_load <= prev_eff_load;
4716 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4721 schedstat_inc(sd, ttwu_move_affine);
4722 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4728 * find_idlest_group finds and returns the least busy CPU group within the
4731 static struct sched_group *
4732 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4733 int this_cpu, int sd_flag)
4735 struct sched_group *idlest = NULL, *group = sd->groups;
4736 unsigned long min_load = ULONG_MAX, this_load = 0;
4737 int load_idx = sd->forkexec_idx;
4738 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4740 if (sd_flag & SD_BALANCE_WAKE)
4741 load_idx = sd->wake_idx;
4744 unsigned long load, avg_load;
4748 /* Skip over this group if it has no CPUs allowed */
4749 if (!cpumask_intersects(sched_group_cpus(group),
4750 tsk_cpus_allowed(p)))
4753 local_group = cpumask_test_cpu(this_cpu,
4754 sched_group_cpus(group));
4756 /* Tally up the load of all CPUs in the group */
4759 for_each_cpu(i, sched_group_cpus(group)) {
4760 /* Bias balancing toward cpus of our domain */
4762 load = source_load(i, load_idx);
4764 load = target_load(i, load_idx);
4769 /* Adjust by relative CPU capacity of the group */
4770 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4773 this_load = avg_load;
4774 } else if (avg_load < min_load) {
4775 min_load = avg_load;
4778 } while (group = group->next, group != sd->groups);
4780 if (!idlest || 100*this_load < imbalance*min_load)
4786 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4789 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4791 unsigned long load, min_load = ULONG_MAX;
4792 unsigned int min_exit_latency = UINT_MAX;
4793 u64 latest_idle_timestamp = 0;
4794 int least_loaded_cpu = this_cpu;
4795 int shallowest_idle_cpu = -1;
4798 /* Traverse only the allowed CPUs */
4799 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4801 struct rq *rq = cpu_rq(i);
4802 struct cpuidle_state *idle = idle_get_state(rq);
4803 if (idle && idle->exit_latency < min_exit_latency) {
4805 * We give priority to a CPU whose idle state
4806 * has the smallest exit latency irrespective
4807 * of any idle timestamp.
4809 min_exit_latency = idle->exit_latency;
4810 latest_idle_timestamp = rq->idle_stamp;
4811 shallowest_idle_cpu = i;
4812 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4813 rq->idle_stamp > latest_idle_timestamp) {
4815 * If equal or no active idle state, then
4816 * the most recently idled CPU might have
4819 latest_idle_timestamp = rq->idle_stamp;
4820 shallowest_idle_cpu = i;
4822 } else if (shallowest_idle_cpu == -1) {
4823 load = weighted_cpuload(i);
4824 if (load < min_load || (load == min_load && i == this_cpu)) {
4826 least_loaded_cpu = i;
4831 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
4835 * Try and locate an idle CPU in the sched_domain.
4837 static int select_idle_sibling(struct task_struct *p, int target)
4839 struct sched_domain *sd;
4840 struct sched_group *sg;
4841 int i = task_cpu(p);
4843 if (idle_cpu(target))
4847 * If the prevous cpu is cache affine and idle, don't be stupid.
4849 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4853 * Otherwise, iterate the domains and find an elegible idle cpu.
4855 sd = rcu_dereference(per_cpu(sd_llc, target));
4856 for_each_lower_domain(sd) {
4859 if (!cpumask_intersects(sched_group_cpus(sg),
4860 tsk_cpus_allowed(p)))
4863 for_each_cpu(i, sched_group_cpus(sg)) {
4864 if (i == target || !idle_cpu(i))
4868 target = cpumask_first_and(sched_group_cpus(sg),
4869 tsk_cpus_allowed(p));
4873 } while (sg != sd->groups);
4880 * cpu_util returns the amount of capacity of a CPU that is used by CFS
4881 * tasks. The unit of the return value must be the one of capacity so we can
4882 * compare the utilization with the capacity of the CPU that is available for
4883 * CFS task (ie cpu_capacity).
4885 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
4886 * recent utilization of currently non-runnable tasks on a CPU. It represents
4887 * the amount of utilization of a CPU in the range [0..capacity_orig] where
4888 * capacity_orig is the cpu_capacity available at the highest frequency
4889 * (arch_scale_freq_capacity()).
4890 * The utilization of a CPU converges towards a sum equal to or less than the
4891 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
4892 * the running time on this CPU scaled by capacity_curr.
4894 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
4895 * higher than capacity_orig because of unfortunate rounding in
4896 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
4897 * the average stabilizes with the new running time. We need to check that the
4898 * utilization stays within the range of [0..capacity_orig] and cap it if
4899 * necessary. Without utilization capping, a group could be seen as overloaded
4900 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
4901 * available capacity. We allow utilization to overshoot capacity_curr (but not
4902 * capacity_orig) as it useful for predicting the capacity required after task
4903 * migrations (scheduler-driven DVFS).
4905 static int cpu_util(int cpu)
4907 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
4908 unsigned long capacity = capacity_orig_of(cpu);
4910 return (util >= capacity) ? capacity : util;
4914 * select_task_rq_fair: Select target runqueue for the waking task in domains
4915 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4916 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4918 * Balances load by selecting the idlest cpu in the idlest group, or under
4919 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4921 * Returns the target cpu number.
4923 * preempt must be disabled.
4926 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4928 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4929 int cpu = smp_processor_id();
4930 int new_cpu = prev_cpu;
4931 int want_affine = 0;
4932 int sync = wake_flags & WF_SYNC;
4934 if (sd_flag & SD_BALANCE_WAKE)
4935 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
4938 for_each_domain(cpu, tmp) {
4939 if (!(tmp->flags & SD_LOAD_BALANCE))
4943 * If both cpu and prev_cpu are part of this domain,
4944 * cpu is a valid SD_WAKE_AFFINE target.
4946 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4947 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4952 if (tmp->flags & sd_flag)
4954 else if (!want_affine)
4959 sd = NULL; /* Prefer wake_affine over balance flags */
4960 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4965 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
4966 new_cpu = select_idle_sibling(p, new_cpu);
4969 struct sched_group *group;
4972 if (!(sd->flags & sd_flag)) {
4977 group = find_idlest_group(sd, p, cpu, sd_flag);
4983 new_cpu = find_idlest_cpu(group, p, cpu);
4984 if (new_cpu == -1 || new_cpu == cpu) {
4985 /* Now try balancing at a lower domain level of cpu */
4990 /* Now try balancing at a lower domain level of new_cpu */
4992 weight = sd->span_weight;
4994 for_each_domain(cpu, tmp) {
4995 if (weight <= tmp->span_weight)
4997 if (tmp->flags & sd_flag)
5000 /* while loop will break here if sd == NULL */
5008 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5009 * cfs_rq_of(p) references at time of call are still valid and identify the
5010 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
5011 * other assumptions, including the state of rq->lock, should be made.
5013 static void migrate_task_rq_fair(struct task_struct *p)
5016 * We are supposed to update the task to "current" time, then its up to date
5017 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5018 * what current time is, so simply throw away the out-of-date time. This
5019 * will result in the wakee task is less decayed, but giving the wakee more
5020 * load sounds not bad.
5022 remove_entity_load_avg(&p->se);
5024 /* Tell new CPU we are migrated */
5025 p->se.avg.last_update_time = 0;
5027 /* We have migrated, no longer consider this task hot */
5028 p->se.exec_start = 0;
5031 static void task_dead_fair(struct task_struct *p)
5033 remove_entity_load_avg(&p->se);
5035 #endif /* CONFIG_SMP */
5037 static unsigned long
5038 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
5040 unsigned long gran = sysctl_sched_wakeup_granularity;
5043 * Since its curr running now, convert the gran from real-time
5044 * to virtual-time in his units.
5046 * By using 'se' instead of 'curr' we penalize light tasks, so
5047 * they get preempted easier. That is, if 'se' < 'curr' then
5048 * the resulting gran will be larger, therefore penalizing the
5049 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5050 * be smaller, again penalizing the lighter task.
5052 * This is especially important for buddies when the leftmost
5053 * task is higher priority than the buddy.
5055 return calc_delta_fair(gran, se);
5059 * Should 'se' preempt 'curr'.
5073 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5075 s64 gran, vdiff = curr->vruntime - se->vruntime;
5080 gran = wakeup_gran(curr, se);
5087 static void set_last_buddy(struct sched_entity *se)
5089 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5092 for_each_sched_entity(se)
5093 cfs_rq_of(se)->last = se;
5096 static void set_next_buddy(struct sched_entity *se)
5098 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5101 for_each_sched_entity(se)
5102 cfs_rq_of(se)->next = se;
5105 static void set_skip_buddy(struct sched_entity *se)
5107 for_each_sched_entity(se)
5108 cfs_rq_of(se)->skip = se;
5112 * Preempt the current task with a newly woken task if needed:
5114 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5116 struct task_struct *curr = rq->curr;
5117 struct sched_entity *se = &curr->se, *pse = &p->se;
5118 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5119 int scale = cfs_rq->nr_running >= sched_nr_latency;
5120 int next_buddy_marked = 0;
5122 if (unlikely(se == pse))
5126 * This is possible from callers such as attach_tasks(), in which we
5127 * unconditionally check_prempt_curr() after an enqueue (which may have
5128 * lead to a throttle). This both saves work and prevents false
5129 * next-buddy nomination below.
5131 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5134 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
5135 set_next_buddy(pse);
5136 next_buddy_marked = 1;
5140 * We can come here with TIF_NEED_RESCHED already set from new task
5143 * Note: this also catches the edge-case of curr being in a throttled
5144 * group (e.g. via set_curr_task), since update_curr() (in the
5145 * enqueue of curr) will have resulted in resched being set. This
5146 * prevents us from potentially nominating it as a false LAST_BUDDY
5149 if (test_tsk_need_resched(curr))
5152 /* Idle tasks are by definition preempted by non-idle tasks. */
5153 if (unlikely(curr->policy == SCHED_IDLE) &&
5154 likely(p->policy != SCHED_IDLE))
5158 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5159 * is driven by the tick):
5161 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5164 find_matching_se(&se, &pse);
5165 update_curr(cfs_rq_of(se));
5167 if (wakeup_preempt_entity(se, pse) == 1) {
5169 * Bias pick_next to pick the sched entity that is
5170 * triggering this preemption.
5172 if (!next_buddy_marked)
5173 set_next_buddy(pse);
5182 * Only set the backward buddy when the current task is still
5183 * on the rq. This can happen when a wakeup gets interleaved
5184 * with schedule on the ->pre_schedule() or idle_balance()
5185 * point, either of which can * drop the rq lock.
5187 * Also, during early boot the idle thread is in the fair class,
5188 * for obvious reasons its a bad idea to schedule back to it.
5190 if (unlikely(!se->on_rq || curr == rq->idle))
5193 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5197 static struct task_struct *
5198 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
5200 struct cfs_rq *cfs_rq = &rq->cfs;
5201 struct sched_entity *se;
5202 struct task_struct *p;
5206 #ifdef CONFIG_FAIR_GROUP_SCHED
5207 if (!cfs_rq->nr_running)
5210 if (prev->sched_class != &fair_sched_class)
5214 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5215 * likely that a next task is from the same cgroup as the current.
5217 * Therefore attempt to avoid putting and setting the entire cgroup
5218 * hierarchy, only change the part that actually changes.
5222 struct sched_entity *curr = cfs_rq->curr;
5225 * Since we got here without doing put_prev_entity() we also
5226 * have to consider cfs_rq->curr. If it is still a runnable
5227 * entity, update_curr() will update its vruntime, otherwise
5228 * forget we've ever seen it.
5232 update_curr(cfs_rq);
5237 * This call to check_cfs_rq_runtime() will do the
5238 * throttle and dequeue its entity in the parent(s).
5239 * Therefore the 'simple' nr_running test will indeed
5242 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5246 se = pick_next_entity(cfs_rq, curr);
5247 cfs_rq = group_cfs_rq(se);
5253 * Since we haven't yet done put_prev_entity and if the selected task
5254 * is a different task than we started out with, try and touch the
5255 * least amount of cfs_rqs.
5258 struct sched_entity *pse = &prev->se;
5260 while (!(cfs_rq = is_same_group(se, pse))) {
5261 int se_depth = se->depth;
5262 int pse_depth = pse->depth;
5264 if (se_depth <= pse_depth) {
5265 put_prev_entity(cfs_rq_of(pse), pse);
5266 pse = parent_entity(pse);
5268 if (se_depth >= pse_depth) {
5269 set_next_entity(cfs_rq_of(se), se);
5270 se = parent_entity(se);
5274 put_prev_entity(cfs_rq, pse);
5275 set_next_entity(cfs_rq, se);
5278 if (hrtick_enabled(rq))
5279 hrtick_start_fair(rq, p);
5286 if (!cfs_rq->nr_running)
5289 put_prev_task(rq, prev);
5292 se = pick_next_entity(cfs_rq, NULL);
5293 set_next_entity(cfs_rq, se);
5294 cfs_rq = group_cfs_rq(se);
5299 if (hrtick_enabled(rq))
5300 hrtick_start_fair(rq, p);
5306 * This is OK, because current is on_cpu, which avoids it being picked
5307 * for load-balance and preemption/IRQs are still disabled avoiding
5308 * further scheduler activity on it and we're being very careful to
5309 * re-start the picking loop.
5311 lockdep_unpin_lock(&rq->lock);
5312 new_tasks = idle_balance(rq);
5313 lockdep_pin_lock(&rq->lock);
5315 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5316 * possible for any higher priority task to appear. In that case we
5317 * must re-start the pick_next_entity() loop.
5329 * Account for a descheduled task:
5331 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5333 struct sched_entity *se = &prev->se;
5334 struct cfs_rq *cfs_rq;
5336 for_each_sched_entity(se) {
5337 cfs_rq = cfs_rq_of(se);
5338 put_prev_entity(cfs_rq, se);
5343 * sched_yield() is very simple
5345 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5347 static void yield_task_fair(struct rq *rq)
5349 struct task_struct *curr = rq->curr;
5350 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5351 struct sched_entity *se = &curr->se;
5354 * Are we the only task in the tree?
5356 if (unlikely(rq->nr_running == 1))
5359 clear_buddies(cfs_rq, se);
5361 if (curr->policy != SCHED_BATCH) {
5362 update_rq_clock(rq);
5364 * Update run-time statistics of the 'current'.
5366 update_curr(cfs_rq);
5368 * Tell update_rq_clock() that we've just updated,
5369 * so we don't do microscopic update in schedule()
5370 * and double the fastpath cost.
5372 rq_clock_skip_update(rq, true);
5378 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5380 struct sched_entity *se = &p->se;
5382 /* throttled hierarchies are not runnable */
5383 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5386 /* Tell the scheduler that we'd really like pse to run next. */
5389 yield_task_fair(rq);
5395 /**************************************************
5396 * Fair scheduling class load-balancing methods.
5400 * The purpose of load-balancing is to achieve the same basic fairness the
5401 * per-cpu scheduler provides, namely provide a proportional amount of compute
5402 * time to each task. This is expressed in the following equation:
5404 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5406 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5407 * W_i,0 is defined as:
5409 * W_i,0 = \Sum_j w_i,j (2)
5411 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5412 * is derived from the nice value as per prio_to_weight[].
5414 * The weight average is an exponential decay average of the instantaneous
5417 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5419 * C_i is the compute capacity of cpu i, typically it is the
5420 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5421 * can also include other factors [XXX].
5423 * To achieve this balance we define a measure of imbalance which follows
5424 * directly from (1):
5426 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
5428 * We them move tasks around to minimize the imbalance. In the continuous
5429 * function space it is obvious this converges, in the discrete case we get
5430 * a few fun cases generally called infeasible weight scenarios.
5433 * - infeasible weights;
5434 * - local vs global optima in the discrete case. ]
5439 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5440 * for all i,j solution, we create a tree of cpus that follows the hardware
5441 * topology where each level pairs two lower groups (or better). This results
5442 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5443 * tree to only the first of the previous level and we decrease the frequency
5444 * of load-balance at each level inv. proportional to the number of cpus in
5450 * \Sum { --- * --- * 2^i } = O(n) (5)
5452 * `- size of each group
5453 * | | `- number of cpus doing load-balance
5455 * `- sum over all levels
5457 * Coupled with a limit on how many tasks we can migrate every balance pass,
5458 * this makes (5) the runtime complexity of the balancer.
5460 * An important property here is that each CPU is still (indirectly) connected
5461 * to every other cpu in at most O(log n) steps:
5463 * The adjacency matrix of the resulting graph is given by:
5466 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5469 * And you'll find that:
5471 * A^(log_2 n)_i,j != 0 for all i,j (7)
5473 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5474 * The task movement gives a factor of O(m), giving a convergence complexity
5477 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5482 * In order to avoid CPUs going idle while there's still work to do, new idle
5483 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5484 * tree itself instead of relying on other CPUs to bring it work.
5486 * This adds some complexity to both (5) and (8) but it reduces the total idle
5494 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5497 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5502 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5504 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5506 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5509 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5510 * rewrite all of this once again.]
5513 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5515 enum fbq_type { regular, remote, all };
5517 #define LBF_ALL_PINNED 0x01
5518 #define LBF_NEED_BREAK 0x02
5519 #define LBF_DST_PINNED 0x04
5520 #define LBF_SOME_PINNED 0x08
5523 struct sched_domain *sd;
5531 struct cpumask *dst_grpmask;
5533 enum cpu_idle_type idle;
5535 /* The set of CPUs under consideration for load-balancing */
5536 struct cpumask *cpus;
5541 unsigned int loop_break;
5542 unsigned int loop_max;
5544 enum fbq_type fbq_type;
5545 struct list_head tasks;
5549 * Is this task likely cache-hot:
5551 static int task_hot(struct task_struct *p, struct lb_env *env)
5555 lockdep_assert_held(&env->src_rq->lock);
5557 if (p->sched_class != &fair_sched_class)
5560 if (unlikely(p->policy == SCHED_IDLE))
5564 * Buddy candidates are cache hot:
5566 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5567 (&p->se == cfs_rq_of(&p->se)->next ||
5568 &p->se == cfs_rq_of(&p->se)->last))
5571 if (sysctl_sched_migration_cost == -1)
5573 if (sysctl_sched_migration_cost == 0)
5576 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5578 return delta < (s64)sysctl_sched_migration_cost;
5581 #ifdef CONFIG_NUMA_BALANCING
5583 * Returns 1, if task migration degrades locality
5584 * Returns 0, if task migration improves locality i.e migration preferred.
5585 * Returns -1, if task migration is not affected by locality.
5587 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5589 struct numa_group *numa_group = rcu_dereference(p->numa_group);
5590 unsigned long src_faults, dst_faults;
5591 int src_nid, dst_nid;
5593 if (!static_branch_likely(&sched_numa_balancing))
5596 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5599 src_nid = cpu_to_node(env->src_cpu);
5600 dst_nid = cpu_to_node(env->dst_cpu);
5602 if (src_nid == dst_nid)
5605 /* Migrating away from the preferred node is always bad. */
5606 if (src_nid == p->numa_preferred_nid) {
5607 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5613 /* Encourage migration to the preferred node. */
5614 if (dst_nid == p->numa_preferred_nid)
5618 src_faults = group_faults(p, src_nid);
5619 dst_faults = group_faults(p, dst_nid);
5621 src_faults = task_faults(p, src_nid);
5622 dst_faults = task_faults(p, dst_nid);
5625 return dst_faults < src_faults;
5629 static inline int migrate_degrades_locality(struct task_struct *p,
5637 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5640 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5644 lockdep_assert_held(&env->src_rq->lock);
5647 * We do not migrate tasks that are:
5648 * 1) throttled_lb_pair, or
5649 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5650 * 3) running (obviously), or
5651 * 4) are cache-hot on their current CPU.
5653 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5656 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5659 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5661 env->flags |= LBF_SOME_PINNED;
5664 * Remember if this task can be migrated to any other cpu in
5665 * our sched_group. We may want to revisit it if we couldn't
5666 * meet load balance goals by pulling other tasks on src_cpu.
5668 * Also avoid computing new_dst_cpu if we have already computed
5669 * one in current iteration.
5671 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5674 /* Prevent to re-select dst_cpu via env's cpus */
5675 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5676 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5677 env->flags |= LBF_DST_PINNED;
5678 env->new_dst_cpu = cpu;
5686 /* Record that we found atleast one task that could run on dst_cpu */
5687 env->flags &= ~LBF_ALL_PINNED;
5689 if (task_running(env->src_rq, p)) {
5690 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5695 * Aggressive migration if:
5696 * 1) destination numa is preferred
5697 * 2) task is cache cold, or
5698 * 3) too many balance attempts have failed.
5700 tsk_cache_hot = migrate_degrades_locality(p, env);
5701 if (tsk_cache_hot == -1)
5702 tsk_cache_hot = task_hot(p, env);
5704 if (tsk_cache_hot <= 0 ||
5705 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5706 if (tsk_cache_hot == 1) {
5707 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5708 schedstat_inc(p, se.statistics.nr_forced_migrations);
5713 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5718 * detach_task() -- detach the task for the migration specified in env
5720 static void detach_task(struct task_struct *p, struct lb_env *env)
5722 lockdep_assert_held(&env->src_rq->lock);
5724 deactivate_task(env->src_rq, p, 0);
5725 p->on_rq = TASK_ON_RQ_MIGRATING;
5726 set_task_cpu(p, env->dst_cpu);
5730 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5731 * part of active balancing operations within "domain".
5733 * Returns a task if successful and NULL otherwise.
5735 static struct task_struct *detach_one_task(struct lb_env *env)
5737 struct task_struct *p, *n;
5739 lockdep_assert_held(&env->src_rq->lock);
5741 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5742 if (!can_migrate_task(p, env))
5745 detach_task(p, env);
5748 * Right now, this is only the second place where
5749 * lb_gained[env->idle] is updated (other is detach_tasks)
5750 * so we can safely collect stats here rather than
5751 * inside detach_tasks().
5753 schedstat_inc(env->sd, lb_gained[env->idle]);
5759 static const unsigned int sched_nr_migrate_break = 32;
5762 * detach_tasks() -- tries to detach up to imbalance weighted load from
5763 * busiest_rq, as part of a balancing operation within domain "sd".
5765 * Returns number of detached tasks if successful and 0 otherwise.
5767 static int detach_tasks(struct lb_env *env)
5769 struct list_head *tasks = &env->src_rq->cfs_tasks;
5770 struct task_struct *p;
5774 lockdep_assert_held(&env->src_rq->lock);
5776 if (env->imbalance <= 0)
5779 while (!list_empty(tasks)) {
5781 * We don't want to steal all, otherwise we may be treated likewise,
5782 * which could at worst lead to a livelock crash.
5784 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
5787 p = list_first_entry(tasks, struct task_struct, se.group_node);
5790 /* We've more or less seen every task there is, call it quits */
5791 if (env->loop > env->loop_max)
5794 /* take a breather every nr_migrate tasks */
5795 if (env->loop > env->loop_break) {
5796 env->loop_break += sched_nr_migrate_break;
5797 env->flags |= LBF_NEED_BREAK;
5801 if (!can_migrate_task(p, env))
5804 load = task_h_load(p);
5806 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5809 if ((load / 2) > env->imbalance)
5812 detach_task(p, env);
5813 list_add(&p->se.group_node, &env->tasks);
5816 env->imbalance -= load;
5818 #ifdef CONFIG_PREEMPT
5820 * NEWIDLE balancing is a source of latency, so preemptible
5821 * kernels will stop after the first task is detached to minimize
5822 * the critical section.
5824 if (env->idle == CPU_NEWLY_IDLE)
5829 * We only want to steal up to the prescribed amount of
5832 if (env->imbalance <= 0)
5837 list_move_tail(&p->se.group_node, tasks);
5841 * Right now, this is one of only two places we collect this stat
5842 * so we can safely collect detach_one_task() stats here rather
5843 * than inside detach_one_task().
5845 schedstat_add(env->sd, lb_gained[env->idle], detached);
5851 * attach_task() -- attach the task detached by detach_task() to its new rq.
5853 static void attach_task(struct rq *rq, struct task_struct *p)
5855 lockdep_assert_held(&rq->lock);
5857 BUG_ON(task_rq(p) != rq);
5858 p->on_rq = TASK_ON_RQ_QUEUED;
5859 activate_task(rq, p, 0);
5860 check_preempt_curr(rq, p, 0);
5864 * attach_one_task() -- attaches the task returned from detach_one_task() to
5867 static void attach_one_task(struct rq *rq, struct task_struct *p)
5869 raw_spin_lock(&rq->lock);
5871 raw_spin_unlock(&rq->lock);
5875 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5878 static void attach_tasks(struct lb_env *env)
5880 struct list_head *tasks = &env->tasks;
5881 struct task_struct *p;
5883 raw_spin_lock(&env->dst_rq->lock);
5885 while (!list_empty(tasks)) {
5886 p = list_first_entry(tasks, struct task_struct, se.group_node);
5887 list_del_init(&p->se.group_node);
5889 attach_task(env->dst_rq, p);
5892 raw_spin_unlock(&env->dst_rq->lock);
5895 #ifdef CONFIG_FAIR_GROUP_SCHED
5896 static void update_blocked_averages(int cpu)
5898 struct rq *rq = cpu_rq(cpu);
5899 struct cfs_rq *cfs_rq;
5900 unsigned long flags;
5902 raw_spin_lock_irqsave(&rq->lock, flags);
5903 update_rq_clock(rq);
5906 * Iterates the task_group tree in a bottom up fashion, see
5907 * list_add_leaf_cfs_rq() for details.
5909 for_each_leaf_cfs_rq(rq, cfs_rq) {
5910 /* throttled entities do not contribute to load */
5911 if (throttled_hierarchy(cfs_rq))
5914 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
5915 update_tg_load_avg(cfs_rq, 0);
5917 raw_spin_unlock_irqrestore(&rq->lock, flags);
5921 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5922 * This needs to be done in a top-down fashion because the load of a child
5923 * group is a fraction of its parents load.
5925 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5927 struct rq *rq = rq_of(cfs_rq);
5928 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5929 unsigned long now = jiffies;
5932 if (cfs_rq->last_h_load_update == now)
5935 cfs_rq->h_load_next = NULL;
5936 for_each_sched_entity(se) {
5937 cfs_rq = cfs_rq_of(se);
5938 cfs_rq->h_load_next = se;
5939 if (cfs_rq->last_h_load_update == now)
5944 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
5945 cfs_rq->last_h_load_update = now;
5948 while ((se = cfs_rq->h_load_next) != NULL) {
5949 load = cfs_rq->h_load;
5950 load = div64_ul(load * se->avg.load_avg,
5951 cfs_rq_load_avg(cfs_rq) + 1);
5952 cfs_rq = group_cfs_rq(se);
5953 cfs_rq->h_load = load;
5954 cfs_rq->last_h_load_update = now;
5958 static unsigned long task_h_load(struct task_struct *p)
5960 struct cfs_rq *cfs_rq = task_cfs_rq(p);
5962 update_cfs_rq_h_load(cfs_rq);
5963 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
5964 cfs_rq_load_avg(cfs_rq) + 1);
5967 static inline void update_blocked_averages(int cpu)
5969 struct rq *rq = cpu_rq(cpu);
5970 struct cfs_rq *cfs_rq = &rq->cfs;
5971 unsigned long flags;
5973 raw_spin_lock_irqsave(&rq->lock, flags);
5974 update_rq_clock(rq);
5975 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
5976 raw_spin_unlock_irqrestore(&rq->lock, flags);
5979 static unsigned long task_h_load(struct task_struct *p)
5981 return p->se.avg.load_avg;
5985 /********** Helpers for find_busiest_group ************************/
5994 * sg_lb_stats - stats of a sched_group required for load_balancing
5996 struct sg_lb_stats {
5997 unsigned long avg_load; /*Avg load across the CPUs of the group */
5998 unsigned long group_load; /* Total load over the CPUs of the group */
5999 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
6000 unsigned long load_per_task;
6001 unsigned long group_capacity;
6002 unsigned long group_util; /* Total utilization of the group */
6003 unsigned int sum_nr_running; /* Nr tasks running in the group */
6004 unsigned int idle_cpus;
6005 unsigned int group_weight;
6006 enum group_type group_type;
6007 int group_no_capacity;
6008 #ifdef CONFIG_NUMA_BALANCING
6009 unsigned int nr_numa_running;
6010 unsigned int nr_preferred_running;
6015 * sd_lb_stats - Structure to store the statistics of a sched_domain
6016 * during load balancing.
6018 struct sd_lb_stats {
6019 struct sched_group *busiest; /* Busiest group in this sd */
6020 struct sched_group *local; /* Local group in this sd */
6021 unsigned long total_load; /* Total load of all groups in sd */
6022 unsigned long total_capacity; /* Total capacity of all groups in sd */
6023 unsigned long avg_load; /* Average load across all groups in sd */
6025 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
6026 struct sg_lb_stats local_stat; /* Statistics of the local group */
6029 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6032 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6033 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6034 * We must however clear busiest_stat::avg_load because
6035 * update_sd_pick_busiest() reads this before assignment.
6037 *sds = (struct sd_lb_stats){
6041 .total_capacity = 0UL,
6044 .sum_nr_running = 0,
6045 .group_type = group_other,
6051 * get_sd_load_idx - Obtain the load index for a given sched domain.
6052 * @sd: The sched_domain whose load_idx is to be obtained.
6053 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6055 * Return: The load index.
6057 static inline int get_sd_load_idx(struct sched_domain *sd,
6058 enum cpu_idle_type idle)
6064 load_idx = sd->busy_idx;
6067 case CPU_NEWLY_IDLE:
6068 load_idx = sd->newidle_idx;
6071 load_idx = sd->idle_idx;
6078 static unsigned long scale_rt_capacity(int cpu)
6080 struct rq *rq = cpu_rq(cpu);
6081 u64 total, used, age_stamp, avg;
6085 * Since we're reading these variables without serialization make sure
6086 * we read them once before doing sanity checks on them.
6088 age_stamp = READ_ONCE(rq->age_stamp);
6089 avg = READ_ONCE(rq->rt_avg);
6090 delta = __rq_clock_broken(rq) - age_stamp;
6092 if (unlikely(delta < 0))
6095 total = sched_avg_period() + delta;
6097 used = div_u64(avg, total);
6099 if (likely(used < SCHED_CAPACITY_SCALE))
6100 return SCHED_CAPACITY_SCALE - used;
6105 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6107 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
6108 struct sched_group *sdg = sd->groups;
6110 cpu_rq(cpu)->cpu_capacity_orig = capacity;
6112 capacity *= scale_rt_capacity(cpu);
6113 capacity >>= SCHED_CAPACITY_SHIFT;
6118 cpu_rq(cpu)->cpu_capacity = capacity;
6119 sdg->sgc->capacity = capacity;
6122 void update_group_capacity(struct sched_domain *sd, int cpu)
6124 struct sched_domain *child = sd->child;
6125 struct sched_group *group, *sdg = sd->groups;
6126 unsigned long capacity;
6127 unsigned long interval;
6129 interval = msecs_to_jiffies(sd->balance_interval);
6130 interval = clamp(interval, 1UL, max_load_balance_interval);
6131 sdg->sgc->next_update = jiffies + interval;
6134 update_cpu_capacity(sd, cpu);
6140 if (child->flags & SD_OVERLAP) {
6142 * SD_OVERLAP domains cannot assume that child groups
6143 * span the current group.
6146 for_each_cpu(cpu, sched_group_cpus(sdg)) {
6147 struct sched_group_capacity *sgc;
6148 struct rq *rq = cpu_rq(cpu);
6151 * build_sched_domains() -> init_sched_groups_capacity()
6152 * gets here before we've attached the domains to the
6155 * Use capacity_of(), which is set irrespective of domains
6156 * in update_cpu_capacity().
6158 * This avoids capacity from being 0 and
6159 * causing divide-by-zero issues on boot.
6161 if (unlikely(!rq->sd)) {
6162 capacity += capacity_of(cpu);
6166 sgc = rq->sd->groups->sgc;
6167 capacity += sgc->capacity;
6171 * !SD_OVERLAP domains can assume that child groups
6172 * span the current group.
6175 group = child->groups;
6177 capacity += group->sgc->capacity;
6178 group = group->next;
6179 } while (group != child->groups);
6182 sdg->sgc->capacity = capacity;
6186 * Check whether the capacity of the rq has been noticeably reduced by side
6187 * activity. The imbalance_pct is used for the threshold.
6188 * Return true is the capacity is reduced
6191 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6193 return ((rq->cpu_capacity * sd->imbalance_pct) <
6194 (rq->cpu_capacity_orig * 100));
6198 * Group imbalance indicates (and tries to solve) the problem where balancing
6199 * groups is inadequate due to tsk_cpus_allowed() constraints.
6201 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6202 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6205 * { 0 1 2 3 } { 4 5 6 7 }
6208 * If we were to balance group-wise we'd place two tasks in the first group and
6209 * two tasks in the second group. Clearly this is undesired as it will overload
6210 * cpu 3 and leave one of the cpus in the second group unused.
6212 * The current solution to this issue is detecting the skew in the first group
6213 * by noticing the lower domain failed to reach balance and had difficulty
6214 * moving tasks due to affinity constraints.
6216 * When this is so detected; this group becomes a candidate for busiest; see
6217 * update_sd_pick_busiest(). And calculate_imbalance() and
6218 * find_busiest_group() avoid some of the usual balance conditions to allow it
6219 * to create an effective group imbalance.
6221 * This is a somewhat tricky proposition since the next run might not find the
6222 * group imbalance and decide the groups need to be balanced again. A most
6223 * subtle and fragile situation.
6226 static inline int sg_imbalanced(struct sched_group *group)
6228 return group->sgc->imbalance;
6232 * group_has_capacity returns true if the group has spare capacity that could
6233 * be used by some tasks.
6234 * We consider that a group has spare capacity if the * number of task is
6235 * smaller than the number of CPUs or if the utilization is lower than the
6236 * available capacity for CFS tasks.
6237 * For the latter, we use a threshold to stabilize the state, to take into
6238 * account the variance of the tasks' load and to return true if the available
6239 * capacity in meaningful for the load balancer.
6240 * As an example, an available capacity of 1% can appear but it doesn't make
6241 * any benefit for the load balance.
6244 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6246 if (sgs->sum_nr_running < sgs->group_weight)
6249 if ((sgs->group_capacity * 100) >
6250 (sgs->group_util * env->sd->imbalance_pct))
6257 * group_is_overloaded returns true if the group has more tasks than it can
6259 * group_is_overloaded is not equals to !group_has_capacity because a group
6260 * with the exact right number of tasks, has no more spare capacity but is not
6261 * overloaded so both group_has_capacity and group_is_overloaded return
6265 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6267 if (sgs->sum_nr_running <= sgs->group_weight)
6270 if ((sgs->group_capacity * 100) <
6271 (sgs->group_util * env->sd->imbalance_pct))
6278 group_type group_classify(struct sched_group *group,
6279 struct sg_lb_stats *sgs)
6281 if (sgs->group_no_capacity)
6282 return group_overloaded;
6284 if (sg_imbalanced(group))
6285 return group_imbalanced;
6291 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6292 * @env: The load balancing environment.
6293 * @group: sched_group whose statistics are to be updated.
6294 * @load_idx: Load index of sched_domain of this_cpu for load calc.
6295 * @local_group: Does group contain this_cpu.
6296 * @sgs: variable to hold the statistics for this group.
6297 * @overload: Indicate more than one runnable task for any CPU.
6299 static inline void update_sg_lb_stats(struct lb_env *env,
6300 struct sched_group *group, int load_idx,
6301 int local_group, struct sg_lb_stats *sgs,
6307 memset(sgs, 0, sizeof(*sgs));
6309 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6310 struct rq *rq = cpu_rq(i);
6312 /* Bias balancing toward cpus of our domain */
6314 load = target_load(i, load_idx);
6316 load = source_load(i, load_idx);
6318 sgs->group_load += load;
6319 sgs->group_util += cpu_util(i);
6320 sgs->sum_nr_running += rq->cfs.h_nr_running;
6322 if (rq->nr_running > 1)
6325 #ifdef CONFIG_NUMA_BALANCING
6326 sgs->nr_numa_running += rq->nr_numa_running;
6327 sgs->nr_preferred_running += rq->nr_preferred_running;
6329 sgs->sum_weighted_load += weighted_cpuload(i);
6334 /* Adjust by relative CPU capacity of the group */
6335 sgs->group_capacity = group->sgc->capacity;
6336 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6338 if (sgs->sum_nr_running)
6339 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6341 sgs->group_weight = group->group_weight;
6343 sgs->group_no_capacity = group_is_overloaded(env, sgs);
6344 sgs->group_type = group_classify(group, sgs);
6348 * update_sd_pick_busiest - return 1 on busiest group
6349 * @env: The load balancing environment.
6350 * @sds: sched_domain statistics
6351 * @sg: sched_group candidate to be checked for being the busiest
6352 * @sgs: sched_group statistics
6354 * Determine if @sg is a busier group than the previously selected
6357 * Return: %true if @sg is a busier group than the previously selected
6358 * busiest group. %false otherwise.
6360 static bool update_sd_pick_busiest(struct lb_env *env,
6361 struct sd_lb_stats *sds,
6362 struct sched_group *sg,
6363 struct sg_lb_stats *sgs)
6365 struct sg_lb_stats *busiest = &sds->busiest_stat;
6367 if (sgs->group_type > busiest->group_type)
6370 if (sgs->group_type < busiest->group_type)
6373 if (sgs->avg_load <= busiest->avg_load)
6376 /* This is the busiest node in its class. */
6377 if (!(env->sd->flags & SD_ASYM_PACKING))
6381 * ASYM_PACKING needs to move all the work to the lowest
6382 * numbered CPUs in the group, therefore mark all groups
6383 * higher than ourself as busy.
6385 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6389 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6396 #ifdef CONFIG_NUMA_BALANCING
6397 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6399 if (sgs->sum_nr_running > sgs->nr_numa_running)
6401 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6406 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6408 if (rq->nr_running > rq->nr_numa_running)
6410 if (rq->nr_running > rq->nr_preferred_running)
6415 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6420 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6424 #endif /* CONFIG_NUMA_BALANCING */
6427 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6428 * @env: The load balancing environment.
6429 * @sds: variable to hold the statistics for this sched_domain.
6431 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6433 struct sched_domain *child = env->sd->child;
6434 struct sched_group *sg = env->sd->groups;
6435 struct sg_lb_stats tmp_sgs;
6436 int load_idx, prefer_sibling = 0;
6437 bool overload = false;
6439 if (child && child->flags & SD_PREFER_SIBLING)
6442 load_idx = get_sd_load_idx(env->sd, env->idle);
6445 struct sg_lb_stats *sgs = &tmp_sgs;
6448 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6451 sgs = &sds->local_stat;
6453 if (env->idle != CPU_NEWLY_IDLE ||
6454 time_after_eq(jiffies, sg->sgc->next_update))
6455 update_group_capacity(env->sd, env->dst_cpu);
6458 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6465 * In case the child domain prefers tasks go to siblings
6466 * first, lower the sg capacity so that we'll try
6467 * and move all the excess tasks away. We lower the capacity
6468 * of a group only if the local group has the capacity to fit
6469 * these excess tasks. The extra check prevents the case where
6470 * you always pull from the heaviest group when it is already
6471 * under-utilized (possible with a large weight task outweighs
6472 * the tasks on the system).
6474 if (prefer_sibling && sds->local &&
6475 group_has_capacity(env, &sds->local_stat) &&
6476 (sgs->sum_nr_running > 1)) {
6477 sgs->group_no_capacity = 1;
6478 sgs->group_type = group_classify(sg, sgs);
6481 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6483 sds->busiest_stat = *sgs;
6487 /* Now, start updating sd_lb_stats */
6488 sds->total_load += sgs->group_load;
6489 sds->total_capacity += sgs->group_capacity;
6492 } while (sg != env->sd->groups);
6494 if (env->sd->flags & SD_NUMA)
6495 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6497 if (!env->sd->parent) {
6498 /* update overload indicator if we are at root domain */
6499 if (env->dst_rq->rd->overload != overload)
6500 env->dst_rq->rd->overload = overload;
6506 * check_asym_packing - Check to see if the group is packed into the
6509 * This is primarily intended to used at the sibling level. Some
6510 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6511 * case of POWER7, it can move to lower SMT modes only when higher
6512 * threads are idle. When in lower SMT modes, the threads will
6513 * perform better since they share less core resources. Hence when we
6514 * have idle threads, we want them to be the higher ones.
6516 * This packing function is run on idle threads. It checks to see if
6517 * the busiest CPU in this domain (core in the P7 case) has a higher
6518 * CPU number than the packing function is being run on. Here we are
6519 * assuming lower CPU number will be equivalent to lower a SMT thread
6522 * Return: 1 when packing is required and a task should be moved to
6523 * this CPU. The amount of the imbalance is returned in *imbalance.
6525 * @env: The load balancing environment.
6526 * @sds: Statistics of the sched_domain which is to be packed
6528 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6532 if (!(env->sd->flags & SD_ASYM_PACKING))
6538 busiest_cpu = group_first_cpu(sds->busiest);
6539 if (env->dst_cpu > busiest_cpu)
6542 env->imbalance = DIV_ROUND_CLOSEST(
6543 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6544 SCHED_CAPACITY_SCALE);
6550 * fix_small_imbalance - Calculate the minor imbalance that exists
6551 * amongst the groups of a sched_domain, during
6553 * @env: The load balancing environment.
6554 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6557 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6559 unsigned long tmp, capa_now = 0, capa_move = 0;
6560 unsigned int imbn = 2;
6561 unsigned long scaled_busy_load_per_task;
6562 struct sg_lb_stats *local, *busiest;
6564 local = &sds->local_stat;
6565 busiest = &sds->busiest_stat;
6567 if (!local->sum_nr_running)
6568 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6569 else if (busiest->load_per_task > local->load_per_task)
6572 scaled_busy_load_per_task =
6573 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6574 busiest->group_capacity;
6576 if (busiest->avg_load + scaled_busy_load_per_task >=
6577 local->avg_load + (scaled_busy_load_per_task * imbn)) {
6578 env->imbalance = busiest->load_per_task;
6583 * OK, we don't have enough imbalance to justify moving tasks,
6584 * however we may be able to increase total CPU capacity used by
6588 capa_now += busiest->group_capacity *
6589 min(busiest->load_per_task, busiest->avg_load);
6590 capa_now += local->group_capacity *
6591 min(local->load_per_task, local->avg_load);
6592 capa_now /= SCHED_CAPACITY_SCALE;
6594 /* Amount of load we'd subtract */
6595 if (busiest->avg_load > scaled_busy_load_per_task) {
6596 capa_move += busiest->group_capacity *
6597 min(busiest->load_per_task,
6598 busiest->avg_load - scaled_busy_load_per_task);
6601 /* Amount of load we'd add */
6602 if (busiest->avg_load * busiest->group_capacity <
6603 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6604 tmp = (busiest->avg_load * busiest->group_capacity) /
6605 local->group_capacity;
6607 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6608 local->group_capacity;
6610 capa_move += local->group_capacity *
6611 min(local->load_per_task, local->avg_load + tmp);
6612 capa_move /= SCHED_CAPACITY_SCALE;
6614 /* Move if we gain throughput */
6615 if (capa_move > capa_now)
6616 env->imbalance = busiest->load_per_task;
6620 * calculate_imbalance - Calculate the amount of imbalance present within the
6621 * groups of a given sched_domain during load balance.
6622 * @env: load balance environment
6623 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6625 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6627 unsigned long max_pull, load_above_capacity = ~0UL;
6628 struct sg_lb_stats *local, *busiest;
6630 local = &sds->local_stat;
6631 busiest = &sds->busiest_stat;
6633 if (busiest->group_type == group_imbalanced) {
6635 * In the group_imb case we cannot rely on group-wide averages
6636 * to ensure cpu-load equilibrium, look at wider averages. XXX
6638 busiest->load_per_task =
6639 min(busiest->load_per_task, sds->avg_load);
6643 * In the presence of smp nice balancing, certain scenarios can have
6644 * max load less than avg load(as we skip the groups at or below
6645 * its cpu_capacity, while calculating max_load..)
6647 if (busiest->avg_load <= sds->avg_load ||
6648 local->avg_load >= sds->avg_load) {
6650 return fix_small_imbalance(env, sds);
6654 * If there aren't any idle cpus, avoid creating some.
6656 if (busiest->group_type == group_overloaded &&
6657 local->group_type == group_overloaded) {
6658 load_above_capacity = busiest->sum_nr_running *
6660 if (load_above_capacity > busiest->group_capacity)
6661 load_above_capacity -= busiest->group_capacity;
6663 load_above_capacity = ~0UL;
6667 * We're trying to get all the cpus to the average_load, so we don't
6668 * want to push ourselves above the average load, nor do we wish to
6669 * reduce the max loaded cpu below the average load. At the same time,
6670 * we also don't want to reduce the group load below the group capacity
6671 * (so that we can implement power-savings policies etc). Thus we look
6672 * for the minimum possible imbalance.
6674 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6676 /* How much load to actually move to equalise the imbalance */
6677 env->imbalance = min(
6678 max_pull * busiest->group_capacity,
6679 (sds->avg_load - local->avg_load) * local->group_capacity
6680 ) / SCHED_CAPACITY_SCALE;
6683 * if *imbalance is less than the average load per runnable task
6684 * there is no guarantee that any tasks will be moved so we'll have
6685 * a think about bumping its value to force at least one task to be
6688 if (env->imbalance < busiest->load_per_task)
6689 return fix_small_imbalance(env, sds);
6692 /******* find_busiest_group() helpers end here *********************/
6695 * find_busiest_group - Returns the busiest group within the sched_domain
6696 * if there is an imbalance. If there isn't an imbalance, and
6697 * the user has opted for power-savings, it returns a group whose
6698 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6699 * such a group exists.
6701 * Also calculates the amount of weighted load which should be moved
6702 * to restore balance.
6704 * @env: The load balancing environment.
6706 * Return: - The busiest group if imbalance exists.
6707 * - If no imbalance and user has opted for power-savings balance,
6708 * return the least loaded group whose CPUs can be
6709 * put to idle by rebalancing its tasks onto our group.
6711 static struct sched_group *find_busiest_group(struct lb_env *env)
6713 struct sg_lb_stats *local, *busiest;
6714 struct sd_lb_stats sds;
6716 init_sd_lb_stats(&sds);
6719 * Compute the various statistics relavent for load balancing at
6722 update_sd_lb_stats(env, &sds);
6723 local = &sds.local_stat;
6724 busiest = &sds.busiest_stat;
6726 /* ASYM feature bypasses nice load balance check */
6727 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6728 check_asym_packing(env, &sds))
6731 /* There is no busy sibling group to pull tasks from */
6732 if (!sds.busiest || busiest->sum_nr_running == 0)
6735 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6736 / sds.total_capacity;
6739 * If the busiest group is imbalanced the below checks don't
6740 * work because they assume all things are equal, which typically
6741 * isn't true due to cpus_allowed constraints and the like.
6743 if (busiest->group_type == group_imbalanced)
6746 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6747 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6748 busiest->group_no_capacity)
6752 * If the local group is busier than the selected busiest group
6753 * don't try and pull any tasks.
6755 if (local->avg_load >= busiest->avg_load)
6759 * Don't pull any tasks if this group is already above the domain
6762 if (local->avg_load >= sds.avg_load)
6765 if (env->idle == CPU_IDLE) {
6767 * This cpu is idle. If the busiest group is not overloaded
6768 * and there is no imbalance between this and busiest group
6769 * wrt idle cpus, it is balanced. The imbalance becomes
6770 * significant if the diff is greater than 1 otherwise we
6771 * might end up to just move the imbalance on another group
6773 if ((busiest->group_type != group_overloaded) &&
6774 (local->idle_cpus <= (busiest->idle_cpus + 1)))
6778 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6779 * imbalance_pct to be conservative.
6781 if (100 * busiest->avg_load <=
6782 env->sd->imbalance_pct * local->avg_load)
6787 /* Looks like there is an imbalance. Compute it */
6788 calculate_imbalance(env, &sds);
6797 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6799 static struct rq *find_busiest_queue(struct lb_env *env,
6800 struct sched_group *group)
6802 struct rq *busiest = NULL, *rq;
6803 unsigned long busiest_load = 0, busiest_capacity = 1;
6806 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6807 unsigned long capacity, wl;
6811 rt = fbq_classify_rq(rq);
6814 * We classify groups/runqueues into three groups:
6815 * - regular: there are !numa tasks
6816 * - remote: there are numa tasks that run on the 'wrong' node
6817 * - all: there is no distinction
6819 * In order to avoid migrating ideally placed numa tasks,
6820 * ignore those when there's better options.
6822 * If we ignore the actual busiest queue to migrate another
6823 * task, the next balance pass can still reduce the busiest
6824 * queue by moving tasks around inside the node.
6826 * If we cannot move enough load due to this classification
6827 * the next pass will adjust the group classification and
6828 * allow migration of more tasks.
6830 * Both cases only affect the total convergence complexity.
6832 if (rt > env->fbq_type)
6835 capacity = capacity_of(i);
6837 wl = weighted_cpuload(i);
6840 * When comparing with imbalance, use weighted_cpuload()
6841 * which is not scaled with the cpu capacity.
6844 if (rq->nr_running == 1 && wl > env->imbalance &&
6845 !check_cpu_capacity(rq, env->sd))
6849 * For the load comparisons with the other cpu's, consider
6850 * the weighted_cpuload() scaled with the cpu capacity, so
6851 * that the load can be moved away from the cpu that is
6852 * potentially running at a lower capacity.
6854 * Thus we're looking for max(wl_i / capacity_i), crosswise
6855 * multiplication to rid ourselves of the division works out
6856 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6857 * our previous maximum.
6859 if (wl * busiest_capacity > busiest_load * capacity) {
6861 busiest_capacity = capacity;
6870 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6871 * so long as it is large enough.
6873 #define MAX_PINNED_INTERVAL 512
6875 /* Working cpumask for load_balance and load_balance_newidle. */
6876 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6878 static int need_active_balance(struct lb_env *env)
6880 struct sched_domain *sd = env->sd;
6882 if (env->idle == CPU_NEWLY_IDLE) {
6885 * ASYM_PACKING needs to force migrate tasks from busy but
6886 * higher numbered CPUs in order to pack all tasks in the
6887 * lowest numbered CPUs.
6889 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6894 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
6895 * It's worth migrating the task if the src_cpu's capacity is reduced
6896 * because of other sched_class or IRQs if more capacity stays
6897 * available on dst_cpu.
6899 if ((env->idle != CPU_NOT_IDLE) &&
6900 (env->src_rq->cfs.h_nr_running == 1)) {
6901 if ((check_cpu_capacity(env->src_rq, sd)) &&
6902 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
6906 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6909 static int active_load_balance_cpu_stop(void *data);
6911 static int should_we_balance(struct lb_env *env)
6913 struct sched_group *sg = env->sd->groups;
6914 struct cpumask *sg_cpus, *sg_mask;
6915 int cpu, balance_cpu = -1;
6918 * In the newly idle case, we will allow all the cpu's
6919 * to do the newly idle load balance.
6921 if (env->idle == CPU_NEWLY_IDLE)
6924 sg_cpus = sched_group_cpus(sg);
6925 sg_mask = sched_group_mask(sg);
6926 /* Try to find first idle cpu */
6927 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6928 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6935 if (balance_cpu == -1)
6936 balance_cpu = group_balance_cpu(sg);
6939 * First idle cpu or the first cpu(busiest) in this sched group
6940 * is eligible for doing load balancing at this and above domains.
6942 return balance_cpu == env->dst_cpu;
6946 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6947 * tasks if there is an imbalance.
6949 static int load_balance(int this_cpu, struct rq *this_rq,
6950 struct sched_domain *sd, enum cpu_idle_type idle,
6951 int *continue_balancing)
6953 int ld_moved, cur_ld_moved, active_balance = 0;
6954 struct sched_domain *sd_parent = sd->parent;
6955 struct sched_group *group;
6957 unsigned long flags;
6958 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
6960 struct lb_env env = {
6962 .dst_cpu = this_cpu,
6964 .dst_grpmask = sched_group_cpus(sd->groups),
6966 .loop_break = sched_nr_migrate_break,
6969 .tasks = LIST_HEAD_INIT(env.tasks),
6973 * For NEWLY_IDLE load_balancing, we don't need to consider
6974 * other cpus in our group
6976 if (idle == CPU_NEWLY_IDLE)
6977 env.dst_grpmask = NULL;
6979 cpumask_copy(cpus, cpu_active_mask);
6981 schedstat_inc(sd, lb_count[idle]);
6984 if (!should_we_balance(&env)) {
6985 *continue_balancing = 0;
6989 group = find_busiest_group(&env);
6991 schedstat_inc(sd, lb_nobusyg[idle]);
6995 busiest = find_busiest_queue(&env, group);
6997 schedstat_inc(sd, lb_nobusyq[idle]);
7001 BUG_ON(busiest == env.dst_rq);
7003 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
7005 env.src_cpu = busiest->cpu;
7006 env.src_rq = busiest;
7009 if (busiest->nr_running > 1) {
7011 * Attempt to move tasks. If find_busiest_group has found
7012 * an imbalance but busiest->nr_running <= 1, the group is
7013 * still unbalanced. ld_moved simply stays zero, so it is
7014 * correctly treated as an imbalance.
7016 env.flags |= LBF_ALL_PINNED;
7017 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
7020 raw_spin_lock_irqsave(&busiest->lock, flags);
7023 * cur_ld_moved - load moved in current iteration
7024 * ld_moved - cumulative load moved across iterations
7026 cur_ld_moved = detach_tasks(&env);
7029 * We've detached some tasks from busiest_rq. Every
7030 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7031 * unlock busiest->lock, and we are able to be sure
7032 * that nobody can manipulate the tasks in parallel.
7033 * See task_rq_lock() family for the details.
7036 raw_spin_unlock(&busiest->lock);
7040 ld_moved += cur_ld_moved;
7043 local_irq_restore(flags);
7045 if (env.flags & LBF_NEED_BREAK) {
7046 env.flags &= ~LBF_NEED_BREAK;
7051 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7052 * us and move them to an alternate dst_cpu in our sched_group
7053 * where they can run. The upper limit on how many times we
7054 * iterate on same src_cpu is dependent on number of cpus in our
7057 * This changes load balance semantics a bit on who can move
7058 * load to a given_cpu. In addition to the given_cpu itself
7059 * (or a ilb_cpu acting on its behalf where given_cpu is
7060 * nohz-idle), we now have balance_cpu in a position to move
7061 * load to given_cpu. In rare situations, this may cause
7062 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7063 * _independently_ and at _same_ time to move some load to
7064 * given_cpu) causing exceess load to be moved to given_cpu.
7065 * This however should not happen so much in practice and
7066 * moreover subsequent load balance cycles should correct the
7067 * excess load moved.
7069 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7071 /* Prevent to re-select dst_cpu via env's cpus */
7072 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7074 env.dst_rq = cpu_rq(env.new_dst_cpu);
7075 env.dst_cpu = env.new_dst_cpu;
7076 env.flags &= ~LBF_DST_PINNED;
7078 env.loop_break = sched_nr_migrate_break;
7081 * Go back to "more_balance" rather than "redo" since we
7082 * need to continue with same src_cpu.
7088 * We failed to reach balance because of affinity.
7091 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7093 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7094 *group_imbalance = 1;
7097 /* All tasks on this runqueue were pinned by CPU affinity */
7098 if (unlikely(env.flags & LBF_ALL_PINNED)) {
7099 cpumask_clear_cpu(cpu_of(busiest), cpus);
7100 if (!cpumask_empty(cpus)) {
7102 env.loop_break = sched_nr_migrate_break;
7105 goto out_all_pinned;
7110 schedstat_inc(sd, lb_failed[idle]);
7112 * Increment the failure counter only on periodic balance.
7113 * We do not want newidle balance, which can be very
7114 * frequent, pollute the failure counter causing
7115 * excessive cache_hot migrations and active balances.
7117 if (idle != CPU_NEWLY_IDLE)
7118 sd->nr_balance_failed++;
7120 if (need_active_balance(&env)) {
7121 raw_spin_lock_irqsave(&busiest->lock, flags);
7123 /* don't kick the active_load_balance_cpu_stop,
7124 * if the curr task on busiest cpu can't be
7127 if (!cpumask_test_cpu(this_cpu,
7128 tsk_cpus_allowed(busiest->curr))) {
7129 raw_spin_unlock_irqrestore(&busiest->lock,
7131 env.flags |= LBF_ALL_PINNED;
7132 goto out_one_pinned;
7136 * ->active_balance synchronizes accesses to
7137 * ->active_balance_work. Once set, it's cleared
7138 * only after active load balance is finished.
7140 if (!busiest->active_balance) {
7141 busiest->active_balance = 1;
7142 busiest->push_cpu = this_cpu;
7145 raw_spin_unlock_irqrestore(&busiest->lock, flags);
7147 if (active_balance) {
7148 stop_one_cpu_nowait(cpu_of(busiest),
7149 active_load_balance_cpu_stop, busiest,
7150 &busiest->active_balance_work);
7154 * We've kicked active balancing, reset the failure
7157 sd->nr_balance_failed = sd->cache_nice_tries+1;
7160 sd->nr_balance_failed = 0;
7162 if (likely(!active_balance)) {
7163 /* We were unbalanced, so reset the balancing interval */
7164 sd->balance_interval = sd->min_interval;
7167 * If we've begun active balancing, start to back off. This
7168 * case may not be covered by the all_pinned logic if there
7169 * is only 1 task on the busy runqueue (because we don't call
7172 if (sd->balance_interval < sd->max_interval)
7173 sd->balance_interval *= 2;
7180 * We reach balance although we may have faced some affinity
7181 * constraints. Clear the imbalance flag if it was set.
7184 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7186 if (*group_imbalance)
7187 *group_imbalance = 0;
7192 * We reach balance because all tasks are pinned at this level so
7193 * we can't migrate them. Let the imbalance flag set so parent level
7194 * can try to migrate them.
7196 schedstat_inc(sd, lb_balanced[idle]);
7198 sd->nr_balance_failed = 0;
7201 /* tune up the balancing interval */
7202 if (((env.flags & LBF_ALL_PINNED) &&
7203 sd->balance_interval < MAX_PINNED_INTERVAL) ||
7204 (sd->balance_interval < sd->max_interval))
7205 sd->balance_interval *= 2;
7212 static inline unsigned long
7213 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7215 unsigned long interval = sd->balance_interval;
7218 interval *= sd->busy_factor;
7220 /* scale ms to jiffies */
7221 interval = msecs_to_jiffies(interval);
7222 interval = clamp(interval, 1UL, max_load_balance_interval);
7228 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7230 unsigned long interval, next;
7232 interval = get_sd_balance_interval(sd, cpu_busy);
7233 next = sd->last_balance + interval;
7235 if (time_after(*next_balance, next))
7236 *next_balance = next;
7240 * idle_balance is called by schedule() if this_cpu is about to become
7241 * idle. Attempts to pull tasks from other CPUs.
7243 static int idle_balance(struct rq *this_rq)
7245 unsigned long next_balance = jiffies + HZ;
7246 int this_cpu = this_rq->cpu;
7247 struct sched_domain *sd;
7248 int pulled_task = 0;
7251 idle_enter_fair(this_rq);
7254 * We must set idle_stamp _before_ calling idle_balance(), such that we
7255 * measure the duration of idle_balance() as idle time.
7257 this_rq->idle_stamp = rq_clock(this_rq);
7259 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7260 !this_rq->rd->overload) {
7262 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7264 update_next_balance(sd, 0, &next_balance);
7270 raw_spin_unlock(&this_rq->lock);
7272 update_blocked_averages(this_cpu);
7274 for_each_domain(this_cpu, sd) {
7275 int continue_balancing = 1;
7276 u64 t0, domain_cost;
7278 if (!(sd->flags & SD_LOAD_BALANCE))
7281 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7282 update_next_balance(sd, 0, &next_balance);
7286 if (sd->flags & SD_BALANCE_NEWIDLE) {
7287 t0 = sched_clock_cpu(this_cpu);
7289 pulled_task = load_balance(this_cpu, this_rq,
7291 &continue_balancing);
7293 domain_cost = sched_clock_cpu(this_cpu) - t0;
7294 if (domain_cost > sd->max_newidle_lb_cost)
7295 sd->max_newidle_lb_cost = domain_cost;
7297 curr_cost += domain_cost;
7300 update_next_balance(sd, 0, &next_balance);
7303 * Stop searching for tasks to pull if there are
7304 * now runnable tasks on this rq.
7306 if (pulled_task || this_rq->nr_running > 0)
7311 raw_spin_lock(&this_rq->lock);
7313 if (curr_cost > this_rq->max_idle_balance_cost)
7314 this_rq->max_idle_balance_cost = curr_cost;
7317 * While browsing the domains, we released the rq lock, a task could
7318 * have been enqueued in the meantime. Since we're not going idle,
7319 * pretend we pulled a task.
7321 if (this_rq->cfs.h_nr_running && !pulled_task)
7325 /* Move the next balance forward */
7326 if (time_after(this_rq->next_balance, next_balance))
7327 this_rq->next_balance = next_balance;
7329 /* Is there a task of a high priority class? */
7330 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7334 idle_exit_fair(this_rq);
7335 this_rq->idle_stamp = 0;
7342 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7343 * running tasks off the busiest CPU onto idle CPUs. It requires at
7344 * least 1 task to be running on each physical CPU where possible, and
7345 * avoids physical / logical imbalances.
7347 static int active_load_balance_cpu_stop(void *data)
7349 struct rq *busiest_rq = data;
7350 int busiest_cpu = cpu_of(busiest_rq);
7351 int target_cpu = busiest_rq->push_cpu;
7352 struct rq *target_rq = cpu_rq(target_cpu);
7353 struct sched_domain *sd;
7354 struct task_struct *p = NULL;
7356 raw_spin_lock_irq(&busiest_rq->lock);
7358 /* make sure the requested cpu hasn't gone down in the meantime */
7359 if (unlikely(busiest_cpu != smp_processor_id() ||
7360 !busiest_rq->active_balance))
7363 /* Is there any task to move? */
7364 if (busiest_rq->nr_running <= 1)
7368 * This condition is "impossible", if it occurs
7369 * we need to fix it. Originally reported by
7370 * Bjorn Helgaas on a 128-cpu setup.
7372 BUG_ON(busiest_rq == target_rq);
7374 /* Search for an sd spanning us and the target CPU. */
7376 for_each_domain(target_cpu, sd) {
7377 if ((sd->flags & SD_LOAD_BALANCE) &&
7378 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7383 struct lb_env env = {
7385 .dst_cpu = target_cpu,
7386 .dst_rq = target_rq,
7387 .src_cpu = busiest_rq->cpu,
7388 .src_rq = busiest_rq,
7392 schedstat_inc(sd, alb_count);
7394 p = detach_one_task(&env);
7396 schedstat_inc(sd, alb_pushed);
7398 schedstat_inc(sd, alb_failed);
7402 busiest_rq->active_balance = 0;
7403 raw_spin_unlock(&busiest_rq->lock);
7406 attach_one_task(target_rq, p);
7413 static inline int on_null_domain(struct rq *rq)
7415 return unlikely(!rcu_dereference_sched(rq->sd));
7418 #ifdef CONFIG_NO_HZ_COMMON
7420 * idle load balancing details
7421 * - When one of the busy CPUs notice that there may be an idle rebalancing
7422 * needed, they will kick the idle load balancer, which then does idle
7423 * load balancing for all the idle CPUs.
7426 cpumask_var_t idle_cpus_mask;
7428 unsigned long next_balance; /* in jiffy units */
7429 } nohz ____cacheline_aligned;
7431 static inline int find_new_ilb(void)
7433 int ilb = cpumask_first(nohz.idle_cpus_mask);
7435 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7442 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7443 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7444 * CPU (if there is one).
7446 static void nohz_balancer_kick(void)
7450 nohz.next_balance++;
7452 ilb_cpu = find_new_ilb();
7454 if (ilb_cpu >= nr_cpu_ids)
7457 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7460 * Use smp_send_reschedule() instead of resched_cpu().
7461 * This way we generate a sched IPI on the target cpu which
7462 * is idle. And the softirq performing nohz idle load balance
7463 * will be run before returning from the IPI.
7465 smp_send_reschedule(ilb_cpu);
7469 static inline void nohz_balance_exit_idle(int cpu)
7471 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7473 * Completely isolated CPUs don't ever set, so we must test.
7475 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7476 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7477 atomic_dec(&nohz.nr_cpus);
7479 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7483 static inline void set_cpu_sd_state_busy(void)
7485 struct sched_domain *sd;
7486 int cpu = smp_processor_id();
7489 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7491 if (!sd || !sd->nohz_idle)
7495 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7500 void set_cpu_sd_state_idle(void)
7502 struct sched_domain *sd;
7503 int cpu = smp_processor_id();
7506 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7508 if (!sd || sd->nohz_idle)
7512 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7518 * This routine will record that the cpu is going idle with tick stopped.
7519 * This info will be used in performing idle load balancing in the future.
7521 void nohz_balance_enter_idle(int cpu)
7524 * If this cpu is going down, then nothing needs to be done.
7526 if (!cpu_active(cpu))
7529 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7533 * If we're a completely isolated CPU, we don't play.
7535 if (on_null_domain(cpu_rq(cpu)))
7538 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7539 atomic_inc(&nohz.nr_cpus);
7540 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7543 static int sched_ilb_notifier(struct notifier_block *nfb,
7544 unsigned long action, void *hcpu)
7546 switch (action & ~CPU_TASKS_FROZEN) {
7548 nohz_balance_exit_idle(smp_processor_id());
7556 static DEFINE_SPINLOCK(balancing);
7559 * Scale the max load_balance interval with the number of CPUs in the system.
7560 * This trades load-balance latency on larger machines for less cross talk.
7562 void update_max_interval(void)
7564 max_load_balance_interval = HZ*num_online_cpus()/10;
7568 * It checks each scheduling domain to see if it is due to be balanced,
7569 * and initiates a balancing operation if so.
7571 * Balancing parameters are set up in init_sched_domains.
7573 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7575 int continue_balancing = 1;
7577 unsigned long interval;
7578 struct sched_domain *sd;
7579 /* Earliest time when we have to do rebalance again */
7580 unsigned long next_balance = jiffies + 60*HZ;
7581 int update_next_balance = 0;
7582 int need_serialize, need_decay = 0;
7585 update_blocked_averages(cpu);
7588 for_each_domain(cpu, sd) {
7590 * Decay the newidle max times here because this is a regular
7591 * visit to all the domains. Decay ~1% per second.
7593 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7594 sd->max_newidle_lb_cost =
7595 (sd->max_newidle_lb_cost * 253) / 256;
7596 sd->next_decay_max_lb_cost = jiffies + HZ;
7599 max_cost += sd->max_newidle_lb_cost;
7601 if (!(sd->flags & SD_LOAD_BALANCE))
7605 * Stop the load balance at this level. There is another
7606 * CPU in our sched group which is doing load balancing more
7609 if (!continue_balancing) {
7615 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7617 need_serialize = sd->flags & SD_SERIALIZE;
7618 if (need_serialize) {
7619 if (!spin_trylock(&balancing))
7623 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7624 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7626 * The LBF_DST_PINNED logic could have changed
7627 * env->dst_cpu, so we can't know our idle
7628 * state even if we migrated tasks. Update it.
7630 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7632 sd->last_balance = jiffies;
7633 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7636 spin_unlock(&balancing);
7638 if (time_after(next_balance, sd->last_balance + interval)) {
7639 next_balance = sd->last_balance + interval;
7640 update_next_balance = 1;
7645 * Ensure the rq-wide value also decays but keep it at a
7646 * reasonable floor to avoid funnies with rq->avg_idle.
7648 rq->max_idle_balance_cost =
7649 max((u64)sysctl_sched_migration_cost, max_cost);
7654 * next_balance will be updated only when there is a need.
7655 * When the cpu is attached to null domain for ex, it will not be
7658 if (likely(update_next_balance)) {
7659 rq->next_balance = next_balance;
7661 #ifdef CONFIG_NO_HZ_COMMON
7663 * If this CPU has been elected to perform the nohz idle
7664 * balance. Other idle CPUs have already rebalanced with
7665 * nohz_idle_balance() and nohz.next_balance has been
7666 * updated accordingly. This CPU is now running the idle load
7667 * balance for itself and we need to update the
7668 * nohz.next_balance accordingly.
7670 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
7671 nohz.next_balance = rq->next_balance;
7676 #ifdef CONFIG_NO_HZ_COMMON
7678 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7679 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7681 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7683 int this_cpu = this_rq->cpu;
7686 /* Earliest time when we have to do rebalance again */
7687 unsigned long next_balance = jiffies + 60*HZ;
7688 int update_next_balance = 0;
7690 if (idle != CPU_IDLE ||
7691 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7694 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7695 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7699 * If this cpu gets work to do, stop the load balancing
7700 * work being done for other cpus. Next load
7701 * balancing owner will pick it up.
7706 rq = cpu_rq(balance_cpu);
7709 * If time for next balance is due,
7712 if (time_after_eq(jiffies, rq->next_balance)) {
7713 raw_spin_lock_irq(&rq->lock);
7714 update_rq_clock(rq);
7715 update_idle_cpu_load(rq);
7716 raw_spin_unlock_irq(&rq->lock);
7717 rebalance_domains(rq, CPU_IDLE);
7720 if (time_after(next_balance, rq->next_balance)) {
7721 next_balance = rq->next_balance;
7722 update_next_balance = 1;
7727 * next_balance will be updated only when there is a need.
7728 * When the CPU is attached to null domain for ex, it will not be
7731 if (likely(update_next_balance))
7732 nohz.next_balance = next_balance;
7734 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7738 * Current heuristic for kicking the idle load balancer in the presence
7739 * of an idle cpu in the system.
7740 * - This rq has more than one task.
7741 * - This rq has at least one CFS task and the capacity of the CPU is
7742 * significantly reduced because of RT tasks or IRQs.
7743 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7744 * multiple busy cpu.
7745 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7746 * domain span are idle.
7748 static inline bool nohz_kick_needed(struct rq *rq)
7750 unsigned long now = jiffies;
7751 struct sched_domain *sd;
7752 struct sched_group_capacity *sgc;
7753 int nr_busy, cpu = rq->cpu;
7756 if (unlikely(rq->idle_balance))
7760 * We may be recently in ticked or tickless idle mode. At the first
7761 * busy tick after returning from idle, we will update the busy stats.
7763 set_cpu_sd_state_busy();
7764 nohz_balance_exit_idle(cpu);
7767 * None are in tickless mode and hence no need for NOHZ idle load
7770 if (likely(!atomic_read(&nohz.nr_cpus)))
7773 if (time_before(now, nohz.next_balance))
7776 if (rq->nr_running >= 2)
7780 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7782 sgc = sd->groups->sgc;
7783 nr_busy = atomic_read(&sgc->nr_busy_cpus);
7792 sd = rcu_dereference(rq->sd);
7794 if ((rq->cfs.h_nr_running >= 1) &&
7795 check_cpu_capacity(rq, sd)) {
7801 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7802 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7803 sched_domain_span(sd)) < cpu)) {
7813 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7817 * run_rebalance_domains is triggered when needed from the scheduler tick.
7818 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7820 static void run_rebalance_domains(struct softirq_action *h)
7822 struct rq *this_rq = this_rq();
7823 enum cpu_idle_type idle = this_rq->idle_balance ?
7824 CPU_IDLE : CPU_NOT_IDLE;
7827 * If this cpu has a pending nohz_balance_kick, then do the
7828 * balancing on behalf of the other idle cpus whose ticks are
7829 * stopped. Do nohz_idle_balance *before* rebalance_domains to
7830 * give the idle cpus a chance to load balance. Else we may
7831 * load balance only within the local sched_domain hierarchy
7832 * and abort nohz_idle_balance altogether if we pull some load.
7834 nohz_idle_balance(this_rq, idle);
7835 rebalance_domains(this_rq, idle);
7839 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7841 void trigger_load_balance(struct rq *rq)
7843 /* Don't need to rebalance while attached to NULL domain */
7844 if (unlikely(on_null_domain(rq)))
7847 if (time_after_eq(jiffies, rq->next_balance))
7848 raise_softirq(SCHED_SOFTIRQ);
7849 #ifdef CONFIG_NO_HZ_COMMON
7850 if (nohz_kick_needed(rq))
7851 nohz_balancer_kick();
7855 static void rq_online_fair(struct rq *rq)
7859 update_runtime_enabled(rq);
7862 static void rq_offline_fair(struct rq *rq)
7866 /* Ensure any throttled groups are reachable by pick_next_task */
7867 unthrottle_offline_cfs_rqs(rq);
7870 #endif /* CONFIG_SMP */
7873 * scheduler tick hitting a task of our scheduling class:
7875 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7877 struct cfs_rq *cfs_rq;
7878 struct sched_entity *se = &curr->se;
7880 for_each_sched_entity(se) {
7881 cfs_rq = cfs_rq_of(se);
7882 entity_tick(cfs_rq, se, queued);
7885 if (static_branch_unlikely(&sched_numa_balancing))
7886 task_tick_numa(rq, curr);
7890 * called on fork with the child task as argument from the parent's context
7891 * - child not yet on the tasklist
7892 * - preemption disabled
7894 static void task_fork_fair(struct task_struct *p)
7896 struct cfs_rq *cfs_rq;
7897 struct sched_entity *se = &p->se, *curr;
7898 int this_cpu = smp_processor_id();
7899 struct rq *rq = this_rq();
7900 unsigned long flags;
7902 raw_spin_lock_irqsave(&rq->lock, flags);
7904 update_rq_clock(rq);
7906 cfs_rq = task_cfs_rq(current);
7907 curr = cfs_rq->curr;
7910 * Not only the cpu but also the task_group of the parent might have
7911 * been changed after parent->se.parent,cfs_rq were copied to
7912 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7913 * of child point to valid ones.
7916 __set_task_cpu(p, this_cpu);
7919 update_curr(cfs_rq);
7922 se->vruntime = curr->vruntime;
7923 place_entity(cfs_rq, se, 1);
7925 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7927 * Upon rescheduling, sched_class::put_prev_task() will place
7928 * 'current' within the tree based on its new key value.
7930 swap(curr->vruntime, se->vruntime);
7934 se->vruntime -= cfs_rq->min_vruntime;
7936 raw_spin_unlock_irqrestore(&rq->lock, flags);
7940 * Priority of the task has changed. Check to see if we preempt
7944 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7946 if (!task_on_rq_queued(p))
7950 * Reschedule if we are currently running on this runqueue and
7951 * our priority decreased, or if we are not currently running on
7952 * this runqueue and our priority is higher than the current's
7954 if (rq->curr == p) {
7955 if (p->prio > oldprio)
7958 check_preempt_curr(rq, p, 0);
7961 static inline bool vruntime_normalized(struct task_struct *p)
7963 struct sched_entity *se = &p->se;
7966 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
7967 * the dequeue_entity(.flags=0) will already have normalized the
7974 * When !on_rq, vruntime of the task has usually NOT been normalized.
7975 * But there are some cases where it has already been normalized:
7977 * - A forked child which is waiting for being woken up by
7978 * wake_up_new_task().
7979 * - A task which has been woken up by try_to_wake_up() and
7980 * waiting for actually being woken up by sched_ttwu_pending().
7982 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
7988 static void detach_task_cfs_rq(struct task_struct *p)
7990 struct sched_entity *se = &p->se;
7991 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7993 if (!vruntime_normalized(p)) {
7995 * Fix up our vruntime so that the current sleep doesn't
7996 * cause 'unlimited' sleep bonus.
7998 place_entity(cfs_rq, se, 0);
7999 se->vruntime -= cfs_rq->min_vruntime;
8002 /* Catch up with the cfs_rq and remove our load when we leave */
8003 detach_entity_load_avg(cfs_rq, se);
8006 static void attach_task_cfs_rq(struct task_struct *p)
8008 struct sched_entity *se = &p->se;
8009 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8011 #ifdef CONFIG_FAIR_GROUP_SCHED
8013 * Since the real-depth could have been changed (only FAIR
8014 * class maintain depth value), reset depth properly.
8016 se->depth = se->parent ? se->parent->depth + 1 : 0;
8019 /* Synchronize task with its cfs_rq */
8020 attach_entity_load_avg(cfs_rq, se);
8022 if (!vruntime_normalized(p))
8023 se->vruntime += cfs_rq->min_vruntime;
8026 static void switched_from_fair(struct rq *rq, struct task_struct *p)
8028 detach_task_cfs_rq(p);
8031 static void switched_to_fair(struct rq *rq, struct task_struct *p)
8033 attach_task_cfs_rq(p);
8035 if (task_on_rq_queued(p)) {
8037 * We were most likely switched from sched_rt, so
8038 * kick off the schedule if running, otherwise just see
8039 * if we can still preempt the current task.
8044 check_preempt_curr(rq, p, 0);
8048 /* Account for a task changing its policy or group.
8050 * This routine is mostly called to set cfs_rq->curr field when a task
8051 * migrates between groups/classes.
8053 static void set_curr_task_fair(struct rq *rq)
8055 struct sched_entity *se = &rq->curr->se;
8057 for_each_sched_entity(se) {
8058 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8060 set_next_entity(cfs_rq, se);
8061 /* ensure bandwidth has been allocated on our new cfs_rq */
8062 account_cfs_rq_runtime(cfs_rq, 0);
8066 void init_cfs_rq(struct cfs_rq *cfs_rq)
8068 cfs_rq->tasks_timeline = RB_ROOT;
8069 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8070 #ifndef CONFIG_64BIT
8071 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8074 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8075 atomic_long_set(&cfs_rq->removed_util_avg, 0);
8079 #ifdef CONFIG_FAIR_GROUP_SCHED
8080 static void task_move_group_fair(struct task_struct *p)
8082 detach_task_cfs_rq(p);
8083 set_task_rq(p, task_cpu(p));
8086 /* Tell se's cfs_rq has been changed -- migrated */
8087 p->se.avg.last_update_time = 0;
8089 attach_task_cfs_rq(p);
8092 void free_fair_sched_group(struct task_group *tg)
8096 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8098 for_each_possible_cpu(i) {
8100 kfree(tg->cfs_rq[i]);
8103 remove_entity_load_avg(tg->se[i]);
8112 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8114 struct cfs_rq *cfs_rq;
8115 struct sched_entity *se;
8118 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8121 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8125 tg->shares = NICE_0_LOAD;
8127 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8129 for_each_possible_cpu(i) {
8130 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8131 GFP_KERNEL, cpu_to_node(i));
8135 se = kzalloc_node(sizeof(struct sched_entity),
8136 GFP_KERNEL, cpu_to_node(i));
8140 init_cfs_rq(cfs_rq);
8141 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8142 init_entity_runnable_average(se);
8153 void unregister_fair_sched_group(struct task_group *tg, int cpu)
8155 struct rq *rq = cpu_rq(cpu);
8156 unsigned long flags;
8159 * Only empty task groups can be destroyed; so we can speculatively
8160 * check on_list without danger of it being re-added.
8162 if (!tg->cfs_rq[cpu]->on_list)
8165 raw_spin_lock_irqsave(&rq->lock, flags);
8166 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8167 raw_spin_unlock_irqrestore(&rq->lock, flags);
8170 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8171 struct sched_entity *se, int cpu,
8172 struct sched_entity *parent)
8174 struct rq *rq = cpu_rq(cpu);
8178 init_cfs_rq_runtime(cfs_rq);
8180 tg->cfs_rq[cpu] = cfs_rq;
8183 /* se could be NULL for root_task_group */
8188 se->cfs_rq = &rq->cfs;
8191 se->cfs_rq = parent->my_q;
8192 se->depth = parent->depth + 1;
8196 /* guarantee group entities always have weight */
8197 update_load_set(&se->load, NICE_0_LOAD);
8198 se->parent = parent;
8201 static DEFINE_MUTEX(shares_mutex);
8203 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8206 unsigned long flags;
8209 * We can't change the weight of the root cgroup.
8214 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8216 mutex_lock(&shares_mutex);
8217 if (tg->shares == shares)
8220 tg->shares = shares;
8221 for_each_possible_cpu(i) {
8222 struct rq *rq = cpu_rq(i);
8223 struct sched_entity *se;
8226 /* Propagate contribution to hierarchy */
8227 raw_spin_lock_irqsave(&rq->lock, flags);
8229 /* Possible calls to update_curr() need rq clock */
8230 update_rq_clock(rq);
8231 for_each_sched_entity(se)
8232 update_cfs_shares(group_cfs_rq(se));
8233 raw_spin_unlock_irqrestore(&rq->lock, flags);
8237 mutex_unlock(&shares_mutex);
8240 #else /* CONFIG_FAIR_GROUP_SCHED */
8242 void free_fair_sched_group(struct task_group *tg) { }
8244 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8249 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8251 #endif /* CONFIG_FAIR_GROUP_SCHED */
8254 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8256 struct sched_entity *se = &task->se;
8257 unsigned int rr_interval = 0;
8260 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8263 if (rq->cfs.load.weight)
8264 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8270 * All the scheduling class methods:
8272 const struct sched_class fair_sched_class = {
8273 .next = &idle_sched_class,
8274 .enqueue_task = enqueue_task_fair,
8275 .dequeue_task = dequeue_task_fair,
8276 .yield_task = yield_task_fair,
8277 .yield_to_task = yield_to_task_fair,
8279 .check_preempt_curr = check_preempt_wakeup,
8281 .pick_next_task = pick_next_task_fair,
8282 .put_prev_task = put_prev_task_fair,
8285 .select_task_rq = select_task_rq_fair,
8286 .migrate_task_rq = migrate_task_rq_fair,
8288 .rq_online = rq_online_fair,
8289 .rq_offline = rq_offline_fair,
8291 .task_waking = task_waking_fair,
8292 .task_dead = task_dead_fair,
8293 .set_cpus_allowed = set_cpus_allowed_common,
8296 .set_curr_task = set_curr_task_fair,
8297 .task_tick = task_tick_fair,
8298 .task_fork = task_fork_fair,
8300 .prio_changed = prio_changed_fair,
8301 .switched_from = switched_from_fair,
8302 .switched_to = switched_to_fair,
8304 .get_rr_interval = get_rr_interval_fair,
8306 .update_curr = update_curr_fair,
8308 #ifdef CONFIG_FAIR_GROUP_SCHED
8309 .task_move_group = task_move_group_fair,
8313 #ifdef CONFIG_SCHED_DEBUG
8314 void print_cfs_stats(struct seq_file *m, int cpu)
8316 struct cfs_rq *cfs_rq;
8319 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8320 print_cfs_rq(m, cpu, cfs_rq);
8324 #ifdef CONFIG_NUMA_BALANCING
8325 void show_numa_stats(struct task_struct *p, struct seq_file *m)
8328 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8330 for_each_online_node(node) {
8331 if (p->numa_faults) {
8332 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8333 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8335 if (p->numa_group) {
8336 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8337 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8339 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8342 #endif /* CONFIG_NUMA_BALANCING */
8343 #endif /* CONFIG_SCHED_DEBUG */
8345 __init void init_sched_fair_class(void)
8348 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8350 #ifdef CONFIG_NO_HZ_COMMON
8351 nohz.next_balance = jiffies;
8352 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8353 cpu_notifier(sched_ilb_notifier, 0);