2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
33 #include <trace/events/sched.h>
38 * Targeted preemption latency for CPU-bound tasks:
39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41 * NOTE: this latency value is not the same as the concept of
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
65 * Minimal preemption granularity for CPU-bound tasks:
66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 static unsigned int sched_nr_latency = 8;
77 * After fork, child runs first. If set to 0 (default) then
78 * parent will (try to) run first.
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
83 * SCHED_OTHER wake-up granularity.
84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
96 * The exponential sliding window over which load is averaged for shares
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102 #ifdef CONFIG_CFS_BANDWIDTH
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
111 * default: 5 msec, units: microseconds
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
116 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128 static inline void update_load_set(struct load_weight *lw, unsigned long w)
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
141 * This idea comes from the SD scheduler of Con Kolivas:
143 static int get_update_sysctl_factor(void)
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
152 case SCHED_TUNABLESCALING_LINEAR:
155 case SCHED_TUNABLESCALING_LOG:
157 factor = 1 + ilog2(cpus);
164 static void update_sysctl(void)
166 unsigned int factor = get_update_sysctl_factor();
168 #define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
176 void sched_init_granularity(void)
181 #if BITS_PER_LONG == 32
182 # define WMULT_CONST (~0UL)
184 # define WMULT_CONST (1UL << 32)
187 #define WMULT_SHIFT 32
190 * Shift right and round:
192 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
195 * delta *= weight / lw
198 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
211 tmp = (u64)delta_exec;
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
221 lw->inv_weight = WMULT_CONST / w;
225 * Check whether we'd overflow the 64-bit multiplication:
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
237 const struct sched_class fair_sched_class;
239 /**************************************************************
240 * CFS operations on generic schedulable entities:
243 #ifdef CONFIG_FAIR_GROUP_SCHED
245 /* cpu runqueue to which this cfs_rq is attached */
246 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
251 /* An entity is a task if it doesn't "own" a runqueue */
252 #define entity_is_task(se) (!se->my_q)
254 static inline struct task_struct *task_of(struct sched_entity *se)
256 #ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
259 return container_of(se, struct task_struct, se);
262 /* Walk up scheduling entities hierarchy */
263 #define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
266 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
271 /* runqueue on which this entity is (to be) queued */
272 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
277 /* runqueue "owned" by this group */
278 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
283 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
288 if (!cfs_rq->on_list) {
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
305 /* We should have no load, but we need to update last_decay. */
306 update_cfs_rq_blocked_load(cfs_rq, 0);
310 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
318 /* Iterate thr' all leaf cfs_rq's on a runqueue */
319 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
322 /* Do the two (enqueued) entities belong to the same group ? */
324 is_same_group(struct sched_entity *se, struct sched_entity *pse)
326 if (se->cfs_rq == pse->cfs_rq)
332 static inline struct sched_entity *parent_entity(struct sched_entity *se)
337 /* return depth at which a sched entity is present in the hierarchy */
338 static inline int depth_se(struct sched_entity *se)
342 for_each_sched_entity(se)
349 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
351 int se_depth, pse_depth;
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
364 while (se_depth > pse_depth) {
366 *se = parent_entity(*se);
369 while (pse_depth > se_depth) {
371 *pse = parent_entity(*pse);
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
380 #else /* !CONFIG_FAIR_GROUP_SCHED */
382 static inline struct task_struct *task_of(struct sched_entity *se)
384 return container_of(se, struct task_struct, se);
387 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
389 return container_of(cfs_rq, struct rq, cfs);
392 #define entity_is_task(se) 1
394 #define for_each_sched_entity(se) \
395 for (; se; se = NULL)
397 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
399 return &task_rq(p)->cfs;
402 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
410 /* runqueue "owned" by this group */
411 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
416 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
420 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
424 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
428 is_same_group(struct sched_entity *se, struct sched_entity *pse)
433 static inline struct sched_entity *parent_entity(struct sched_entity *se)
439 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
443 #endif /* CONFIG_FAIR_GROUP_SCHED */
445 static __always_inline
446 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
448 /**************************************************************
449 * Scheduling class tree data structure manipulation methods:
452 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
454 s64 delta = (s64)(vruntime - max_vruntime);
456 max_vruntime = vruntime;
461 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
463 s64 delta = (s64)(vruntime - min_vruntime);
465 min_vruntime = vruntime;
470 static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
473 return (s64)(a->vruntime - b->vruntime) < 0;
476 static void update_min_vruntime(struct cfs_rq *cfs_rq)
478 u64 vruntime = cfs_rq->min_vruntime;
481 vruntime = cfs_rq->curr->vruntime;
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
489 vruntime = se->vruntime;
491 vruntime = min_vruntime(vruntime, se->vruntime);
494 /* ensure we never gain time by being placed backwards. */
495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
503 * Enqueue an entity into the rb-tree:
505 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
513 * Find the right place in the rbtree:
517 entry = rb_entry(parent, struct sched_entity, run_node);
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
522 if (entity_before(se, entry)) {
523 link = &parent->rb_left;
525 link = &parent->rb_right;
531 * Maintain a cache of leftmost tree entries (it is frequently
535 cfs_rq->rb_leftmost = &se->run_node;
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
541 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
553 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
555 struct rb_node *left = cfs_rq->rb_leftmost;
560 return rb_entry(left, struct sched_entity, run_node);
563 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
565 struct rb_node *next = rb_next(&se->run_node);
570 return rb_entry(next, struct sched_entity, run_node);
573 #ifdef CONFIG_SCHED_DEBUG
574 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
581 return rb_entry(last, struct sched_entity, run_node);
584 /**************************************************************
585 * Scheduling class statistics methods:
588 int sched_proc_update_handler(struct ctl_table *table, int write,
589 void __user *buffer, size_t *lenp,
592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
593 int factor = get_update_sysctl_factor();
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
601 #define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
615 static inline unsigned long
616 calc_delta_fair(unsigned long delta, struct sched_entity *se)
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
625 * The idea is to set a period in which each task runs once.
627 * When there are too many tasks (sched_nr_latency) we have to stretch
628 * this period because otherwise the slices get too small.
630 * p = (nr <= nl) ? l : l*nr/nl
632 static u64 __sched_period(unsigned long nr_running)
634 u64 period = sysctl_sched_latency;
635 unsigned long nr_latency = sched_nr_latency;
637 if (unlikely(nr_running > nr_latency)) {
638 period = sysctl_sched_min_granularity;
639 period *= nr_running;
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
651 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
655 for_each_sched_entity(se) {
656 struct load_weight *load;
657 struct load_weight lw;
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
662 if (unlikely(!se->on_rq)) {
665 update_load_add(&lw, se->load.weight);
668 slice = calc_delta_mine(slice, se->load.weight, load);
674 * We calculate the vruntime slice of a to-be-inserted task.
678 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
684 static unsigned long task_h_load(struct task_struct *p);
686 static inline void __update_task_entity_contrib(struct sched_entity *se);
688 /* Give new task start runnable values to heavy its load in infant time */
689 void init_task_runnable_average(struct task_struct *p)
693 p->se.avg.decay_count = 0;
694 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
695 p->se.avg.runnable_avg_sum = slice;
696 p->se.avg.runnable_avg_period = slice;
697 __update_task_entity_contrib(&p->se);
700 void init_task_runnable_average(struct task_struct *p)
706 * Update the current task's runtime statistics. Skip current tasks that
707 * are not in our scheduling class.
710 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
711 unsigned long delta_exec)
713 unsigned long delta_exec_weighted;
715 schedstat_set(curr->statistics.exec_max,
716 max((u64)delta_exec, curr->statistics.exec_max));
718 curr->sum_exec_runtime += delta_exec;
719 schedstat_add(cfs_rq, exec_clock, delta_exec);
720 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
722 curr->vruntime += delta_exec_weighted;
723 update_min_vruntime(cfs_rq);
726 static void update_curr(struct cfs_rq *cfs_rq)
728 struct sched_entity *curr = cfs_rq->curr;
729 u64 now = rq_clock_task(rq_of(cfs_rq));
730 unsigned long delta_exec;
736 * Get the amount of time the current task was running
737 * since the last time we changed load (this cannot
738 * overflow on 32 bits):
740 delta_exec = (unsigned long)(now - curr->exec_start);
744 __update_curr(cfs_rq, curr, delta_exec);
745 curr->exec_start = now;
747 if (entity_is_task(curr)) {
748 struct task_struct *curtask = task_of(curr);
750 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
751 cpuacct_charge(curtask, delta_exec);
752 account_group_exec_runtime(curtask, delta_exec);
755 account_cfs_rq_runtime(cfs_rq, delta_exec);
759 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
761 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
765 * Task is being enqueued - update stats:
767 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
770 * Are we enqueueing a waiting task? (for current tasks
771 * a dequeue/enqueue event is a NOP)
773 if (se != cfs_rq->curr)
774 update_stats_wait_start(cfs_rq, se);
778 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
780 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
781 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
782 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
783 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
784 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
785 #ifdef CONFIG_SCHEDSTATS
786 if (entity_is_task(se)) {
787 trace_sched_stat_wait(task_of(se),
788 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
791 schedstat_set(se->statistics.wait_start, 0);
795 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
798 * Mark the end of the wait period if dequeueing a
801 if (se != cfs_rq->curr)
802 update_stats_wait_end(cfs_rq, se);
806 * We are picking a new current task - update its stats:
809 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
812 * We are starting a new run period:
814 se->exec_start = rq_clock_task(rq_of(cfs_rq));
817 /**************************************************
818 * Scheduling class queueing methods:
821 #ifdef CONFIG_NUMA_BALANCING
823 * Approximate time to scan a full NUMA task in ms. The task scan period is
824 * calculated based on the tasks virtual memory size and
825 * numa_balancing_scan_size.
827 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
828 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
830 /* Portion of address space to scan in MB */
831 unsigned int sysctl_numa_balancing_scan_size = 256;
833 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
834 unsigned int sysctl_numa_balancing_scan_delay = 1000;
837 * After skipping a page migration on a shared page, skip N more numa page
838 * migrations unconditionally. This reduces the number of NUMA migrations
839 * in shared memory workloads, and has the effect of pulling tasks towards
840 * where their memory lives, over pulling the memory towards the task.
842 unsigned int sysctl_numa_balancing_migrate_deferred = 16;
844 static unsigned int task_nr_scan_windows(struct task_struct *p)
846 unsigned long rss = 0;
847 unsigned long nr_scan_pages;
850 * Calculations based on RSS as non-present and empty pages are skipped
851 * by the PTE scanner and NUMA hinting faults should be trapped based
854 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
855 rss = get_mm_rss(p->mm);
859 rss = round_up(rss, nr_scan_pages);
860 return rss / nr_scan_pages;
863 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
864 #define MAX_SCAN_WINDOW 2560
866 static unsigned int task_scan_min(struct task_struct *p)
868 unsigned int scan, floor;
869 unsigned int windows = 1;
871 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
872 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
873 floor = 1000 / windows;
875 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
876 return max_t(unsigned int, floor, scan);
879 static unsigned int task_scan_max(struct task_struct *p)
881 unsigned int smin = task_scan_min(p);
884 /* Watch for min being lower than max due to floor calculations */
885 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
886 return max(smin, smax);
890 * Once a preferred node is selected the scheduler balancer will prefer moving
891 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
892 * scans. This will give the process the chance to accumulate more faults on
893 * the preferred node but still allow the scheduler to move the task again if
894 * the nodes CPUs are overloaded.
896 unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
898 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
900 rq->nr_numa_running += (p->numa_preferred_nid != -1);
901 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
904 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
906 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
907 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
913 spinlock_t lock; /* nr_tasks, tasks */
916 struct list_head task_list;
919 unsigned long total_faults;
920 unsigned long faults[0];
923 pid_t task_numa_group_id(struct task_struct *p)
925 return p->numa_group ? p->numa_group->gid : 0;
928 static inline int task_faults_idx(int nid, int priv)
930 return 2 * nid + priv;
933 static inline unsigned long task_faults(struct task_struct *p, int nid)
938 return p->numa_faults[task_faults_idx(nid, 0)] +
939 p->numa_faults[task_faults_idx(nid, 1)];
942 static inline unsigned long group_faults(struct task_struct *p, int nid)
947 return p->numa_group->faults[2*nid] + p->numa_group->faults[2*nid+1];
951 * These return the fraction of accesses done by a particular task, or
952 * task group, on a particular numa node. The group weight is given a
953 * larger multiplier, in order to group tasks together that are almost
954 * evenly spread out between numa nodes.
956 static inline unsigned long task_weight(struct task_struct *p, int nid)
958 unsigned long total_faults;
963 total_faults = p->total_numa_faults;
968 return 1000 * task_faults(p, nid) / total_faults;
971 static inline unsigned long group_weight(struct task_struct *p, int nid)
973 if (!p->numa_group || !p->numa_group->total_faults)
976 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
979 static unsigned long weighted_cpuload(const int cpu);
980 static unsigned long source_load(int cpu, int type);
981 static unsigned long target_load(int cpu, int type);
982 static unsigned long power_of(int cpu);
983 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
985 /* Cached statistics for all CPUs within a node */
987 unsigned long nr_running;
990 /* Total compute capacity of CPUs on a node */
993 /* Approximate capacity in terms of runnable tasks on a node */
994 unsigned long capacity;
999 * XXX borrowed from update_sg_lb_stats
1001 static void update_numa_stats(struct numa_stats *ns, int nid)
1005 memset(ns, 0, sizeof(*ns));
1006 for_each_cpu(cpu, cpumask_of_node(nid)) {
1007 struct rq *rq = cpu_rq(cpu);
1009 ns->nr_running += rq->nr_running;
1010 ns->load += weighted_cpuload(cpu);
1011 ns->power += power_of(cpu);
1017 * If we raced with hotplug and there are no CPUs left in our mask
1018 * the @ns structure is NULL'ed and task_numa_compare() will
1019 * not find this node attractive.
1021 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
1027 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1028 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1029 ns->has_capacity = (ns->nr_running < ns->capacity);
1032 struct task_numa_env {
1033 struct task_struct *p;
1035 int src_cpu, src_nid;
1036 int dst_cpu, dst_nid;
1038 struct numa_stats src_stats, dst_stats;
1040 int imbalance_pct, idx;
1042 struct task_struct *best_task;
1047 static void task_numa_assign(struct task_numa_env *env,
1048 struct task_struct *p, long imp)
1051 put_task_struct(env->best_task);
1056 env->best_imp = imp;
1057 env->best_cpu = env->dst_cpu;
1061 * This checks if the overall compute and NUMA accesses of the system would
1062 * be improved if the source tasks was migrated to the target dst_cpu taking
1063 * into account that it might be best if task running on the dst_cpu should
1064 * be exchanged with the source task
1066 static void task_numa_compare(struct task_numa_env *env,
1067 long taskimp, long groupimp)
1069 struct rq *src_rq = cpu_rq(env->src_cpu);
1070 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1071 struct task_struct *cur;
1072 long dst_load, src_load;
1074 long imp = (groupimp > 0) ? groupimp : taskimp;
1077 cur = ACCESS_ONCE(dst_rq->curr);
1078 if (cur->pid == 0) /* idle */
1082 * "imp" is the fault differential for the source task between the
1083 * source and destination node. Calculate the total differential for
1084 * the source task and potential destination task. The more negative
1085 * the value is, the more rmeote accesses that would be expected to
1086 * be incurred if the tasks were swapped.
1089 /* Skip this swap candidate if cannot move to the source cpu */
1090 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1094 * If dst and source tasks are in the same NUMA group, or not
1095 * in any group then look only at task weights.
1097 if (cur->numa_group == env->p->numa_group) {
1098 imp = taskimp + task_weight(cur, env->src_nid) -
1099 task_weight(cur, env->dst_nid);
1101 * Add some hysteresis to prevent swapping the
1102 * tasks within a group over tiny differences.
1104 if (cur->numa_group)
1108 * Compare the group weights. If a task is all by
1109 * itself (not part of a group), use the task weight
1112 if (env->p->numa_group)
1117 if (cur->numa_group)
1118 imp += group_weight(cur, env->src_nid) -
1119 group_weight(cur, env->dst_nid);
1121 imp += task_weight(cur, env->src_nid) -
1122 task_weight(cur, env->dst_nid);
1126 if (imp < env->best_imp)
1130 /* Is there capacity at our destination? */
1131 if (env->src_stats.has_capacity &&
1132 !env->dst_stats.has_capacity)
1138 /* Balance doesn't matter much if we're running a task per cpu */
1139 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1143 * In the overloaded case, try and keep the load balanced.
1146 dst_load = env->dst_stats.load;
1147 src_load = env->src_stats.load;
1149 /* XXX missing power terms */
1150 load = task_h_load(env->p);
1155 load = task_h_load(cur);
1160 /* make src_load the smaller */
1161 if (dst_load < src_load)
1162 swap(dst_load, src_load);
1164 if (src_load * env->imbalance_pct < dst_load * 100)
1168 task_numa_assign(env, cur, imp);
1173 static void task_numa_find_cpu(struct task_numa_env *env,
1174 long taskimp, long groupimp)
1178 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1179 /* Skip this CPU if the source task cannot migrate */
1180 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1184 task_numa_compare(env, taskimp, groupimp);
1188 static int task_numa_migrate(struct task_struct *p)
1190 struct task_numa_env env = {
1193 .src_cpu = task_cpu(p),
1194 .src_nid = task_node(p),
1196 .imbalance_pct = 112,
1202 struct sched_domain *sd;
1203 unsigned long taskweight, groupweight;
1205 long taskimp, groupimp;
1208 * Pick the lowest SD_NUMA domain, as that would have the smallest
1209 * imbalance and would be the first to start moving tasks about.
1211 * And we want to avoid any moving of tasks about, as that would create
1212 * random movement of tasks -- counter the numa conditions we're trying
1216 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1218 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1222 * Cpusets can break the scheduler domain tree into smaller
1223 * balance domains, some of which do not cross NUMA boundaries.
1224 * Tasks that are "trapped" in such domains cannot be migrated
1225 * elsewhere, so there is no point in (re)trying.
1227 if (unlikely(!sd)) {
1228 p->numa_preferred_nid = cpu_to_node(task_cpu(p));
1232 taskweight = task_weight(p, env.src_nid);
1233 groupweight = group_weight(p, env.src_nid);
1234 update_numa_stats(&env.src_stats, env.src_nid);
1235 env.dst_nid = p->numa_preferred_nid;
1236 taskimp = task_weight(p, env.dst_nid) - taskweight;
1237 groupimp = group_weight(p, env.dst_nid) - groupweight;
1238 update_numa_stats(&env.dst_stats, env.dst_nid);
1240 /* If the preferred nid has capacity, try to use it. */
1241 if (env.dst_stats.has_capacity)
1242 task_numa_find_cpu(&env, taskimp, groupimp);
1244 /* No space available on the preferred nid. Look elsewhere. */
1245 if (env.best_cpu == -1) {
1246 for_each_online_node(nid) {
1247 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1250 /* Only consider nodes where both task and groups benefit */
1251 taskimp = task_weight(p, nid) - taskweight;
1252 groupimp = group_weight(p, nid) - groupweight;
1253 if (taskimp < 0 && groupimp < 0)
1257 update_numa_stats(&env.dst_stats, env.dst_nid);
1258 task_numa_find_cpu(&env, taskimp, groupimp);
1262 /* No better CPU than the current one was found. */
1263 if (env.best_cpu == -1)
1266 sched_setnuma(p, env.dst_nid);
1269 * Reset the scan period if the task is being rescheduled on an
1270 * alternative node to recheck if the tasks is now properly placed.
1272 p->numa_scan_period = task_scan_min(p);
1274 if (env.best_task == NULL) {
1275 int ret = migrate_task_to(p, env.best_cpu);
1279 ret = migrate_swap(p, env.best_task);
1280 put_task_struct(env.best_task);
1284 /* Attempt to migrate a task to a CPU on the preferred node. */
1285 static void numa_migrate_preferred(struct task_struct *p)
1287 /* This task has no NUMA fault statistics yet */
1288 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1291 /* Periodically retry migrating the task to the preferred node */
1292 p->numa_migrate_retry = jiffies + HZ;
1294 /* Success if task is already running on preferred CPU */
1295 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid)
1298 /* Otherwise, try migrate to a CPU on the preferred node */
1299 task_numa_migrate(p);
1303 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1304 * increments. The more local the fault statistics are, the higher the scan
1305 * period will be for the next scan window. If local/remote ratio is below
1306 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1307 * scan period will decrease
1309 #define NUMA_PERIOD_SLOTS 10
1310 #define NUMA_PERIOD_THRESHOLD 3
1313 * Increase the scan period (slow down scanning) if the majority of
1314 * our memory is already on our local node, or if the majority of
1315 * the page accesses are shared with other processes.
1316 * Otherwise, decrease the scan period.
1318 static void update_task_scan_period(struct task_struct *p,
1319 unsigned long shared, unsigned long private)
1321 unsigned int period_slot;
1325 unsigned long remote = p->numa_faults_locality[0];
1326 unsigned long local = p->numa_faults_locality[1];
1329 * If there were no record hinting faults then either the task is
1330 * completely idle or all activity is areas that are not of interest
1331 * to automatic numa balancing. Scan slower
1333 if (local + shared == 0) {
1334 p->numa_scan_period = min(p->numa_scan_period_max,
1335 p->numa_scan_period << 1);
1337 p->mm->numa_next_scan = jiffies +
1338 msecs_to_jiffies(p->numa_scan_period);
1344 * Prepare to scale scan period relative to the current period.
1345 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1346 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1347 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1349 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1350 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1351 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1352 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1355 diff = slot * period_slot;
1357 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1360 * Scale scan rate increases based on sharing. There is an
1361 * inverse relationship between the degree of sharing and
1362 * the adjustment made to the scanning period. Broadly
1363 * speaking the intent is that there is little point
1364 * scanning faster if shared accesses dominate as it may
1365 * simply bounce migrations uselessly
1367 period_slot = DIV_ROUND_UP(diff, NUMA_PERIOD_SLOTS);
1368 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1369 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1372 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1373 task_scan_min(p), task_scan_max(p));
1374 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1377 static void task_numa_placement(struct task_struct *p)
1379 int seq, nid, max_nid = -1, max_group_nid = -1;
1380 unsigned long max_faults = 0, max_group_faults = 0;
1381 unsigned long fault_types[2] = { 0, 0 };
1382 spinlock_t *group_lock = NULL;
1384 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1385 if (p->numa_scan_seq == seq)
1387 p->numa_scan_seq = seq;
1388 p->numa_scan_period_max = task_scan_max(p);
1390 /* If the task is part of a group prevent parallel updates to group stats */
1391 if (p->numa_group) {
1392 group_lock = &p->numa_group->lock;
1393 spin_lock(group_lock);
1396 /* Find the node with the highest number of faults */
1397 for_each_online_node(nid) {
1398 unsigned long faults = 0, group_faults = 0;
1401 for (priv = 0; priv < 2; priv++) {
1404 i = task_faults_idx(nid, priv);
1405 diff = -p->numa_faults[i];
1407 /* Decay existing window, copy faults since last scan */
1408 p->numa_faults[i] >>= 1;
1409 p->numa_faults[i] += p->numa_faults_buffer[i];
1410 fault_types[priv] += p->numa_faults_buffer[i];
1411 p->numa_faults_buffer[i] = 0;
1413 faults += p->numa_faults[i];
1414 diff += p->numa_faults[i];
1415 p->total_numa_faults += diff;
1416 if (p->numa_group) {
1417 /* safe because we can only change our own group */
1418 p->numa_group->faults[i] += diff;
1419 p->numa_group->total_faults += diff;
1420 group_faults += p->numa_group->faults[i];
1424 if (faults > max_faults) {
1425 max_faults = faults;
1429 if (group_faults > max_group_faults) {
1430 max_group_faults = group_faults;
1431 max_group_nid = nid;
1435 update_task_scan_period(p, fault_types[0], fault_types[1]);
1437 if (p->numa_group) {
1439 * If the preferred task and group nids are different,
1440 * iterate over the nodes again to find the best place.
1442 if (max_nid != max_group_nid) {
1443 unsigned long weight, max_weight = 0;
1445 for_each_online_node(nid) {
1446 weight = task_weight(p, nid) + group_weight(p, nid);
1447 if (weight > max_weight) {
1448 max_weight = weight;
1454 spin_unlock(group_lock);
1457 /* Preferred node as the node with the most faults */
1458 if (max_faults && max_nid != p->numa_preferred_nid) {
1459 /* Update the preferred nid and migrate task if possible */
1460 sched_setnuma(p, max_nid);
1461 numa_migrate_preferred(p);
1465 static inline int get_numa_group(struct numa_group *grp)
1467 return atomic_inc_not_zero(&grp->refcount);
1470 static inline void put_numa_group(struct numa_group *grp)
1472 if (atomic_dec_and_test(&grp->refcount))
1473 kfree_rcu(grp, rcu);
1476 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1479 struct numa_group *grp, *my_grp;
1480 struct task_struct *tsk;
1482 int cpu = cpupid_to_cpu(cpupid);
1485 if (unlikely(!p->numa_group)) {
1486 unsigned int size = sizeof(struct numa_group) +
1487 2*nr_node_ids*sizeof(unsigned long);
1489 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1493 atomic_set(&grp->refcount, 1);
1494 spin_lock_init(&grp->lock);
1495 INIT_LIST_HEAD(&grp->task_list);
1498 for (i = 0; i < 2*nr_node_ids; i++)
1499 grp->faults[i] = p->numa_faults[i];
1501 grp->total_faults = p->total_numa_faults;
1503 list_add(&p->numa_entry, &grp->task_list);
1505 rcu_assign_pointer(p->numa_group, grp);
1509 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1511 if (!cpupid_match_pid(tsk, cpupid))
1514 grp = rcu_dereference(tsk->numa_group);
1518 my_grp = p->numa_group;
1523 * Only join the other group if its bigger; if we're the bigger group,
1524 * the other task will join us.
1526 if (my_grp->nr_tasks > grp->nr_tasks)
1530 * Tie-break on the grp address.
1532 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1535 /* Always join threads in the same process. */
1536 if (tsk->mm == current->mm)
1539 /* Simple filter to avoid false positives due to PID collisions */
1540 if (flags & TNF_SHARED)
1543 /* Update priv based on whether false sharing was detected */
1546 if (join && !get_numa_group(grp))
1554 double_lock(&my_grp->lock, &grp->lock);
1556 for (i = 0; i < 2*nr_node_ids; i++) {
1557 my_grp->faults[i] -= p->numa_faults[i];
1558 grp->faults[i] += p->numa_faults[i];
1560 my_grp->total_faults -= p->total_numa_faults;
1561 grp->total_faults += p->total_numa_faults;
1563 list_move(&p->numa_entry, &grp->task_list);
1567 spin_unlock(&my_grp->lock);
1568 spin_unlock(&grp->lock);
1570 rcu_assign_pointer(p->numa_group, grp);
1572 put_numa_group(my_grp);
1580 void task_numa_free(struct task_struct *p)
1582 struct numa_group *grp = p->numa_group;
1584 void *numa_faults = p->numa_faults;
1587 spin_lock(&grp->lock);
1588 for (i = 0; i < 2*nr_node_ids; i++)
1589 grp->faults[i] -= p->numa_faults[i];
1590 grp->total_faults -= p->total_numa_faults;
1592 list_del(&p->numa_entry);
1594 spin_unlock(&grp->lock);
1595 rcu_assign_pointer(p->numa_group, NULL);
1596 put_numa_group(grp);
1599 p->numa_faults = NULL;
1600 p->numa_faults_buffer = NULL;
1605 * Got a PROT_NONE fault for a page on @node.
1607 void task_numa_fault(int last_cpupid, int node, int pages, int flags)
1609 struct task_struct *p = current;
1610 bool migrated = flags & TNF_MIGRATED;
1613 if (!numabalancing_enabled)
1616 /* for example, ksmd faulting in a user's mm */
1620 /* Do not worry about placement if exiting */
1621 if (p->state == TASK_DEAD)
1624 /* Allocate buffer to track faults on a per-node basis */
1625 if (unlikely(!p->numa_faults)) {
1626 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
1628 /* numa_faults and numa_faults_buffer share the allocation */
1629 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
1630 if (!p->numa_faults)
1633 BUG_ON(p->numa_faults_buffer);
1634 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
1635 p->total_numa_faults = 0;
1636 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1640 * First accesses are treated as private, otherwise consider accesses
1641 * to be private if the accessing pid has not changed
1643 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1646 priv = cpupid_match_pid(p, last_cpupid);
1647 if (!priv && !(flags & TNF_NO_GROUP))
1648 task_numa_group(p, last_cpupid, flags, &priv);
1651 task_numa_placement(p);
1654 * Retry task to preferred node migration periodically, in case it
1655 * case it previously failed, or the scheduler moved us.
1657 if (time_after(jiffies, p->numa_migrate_retry))
1658 numa_migrate_preferred(p);
1661 p->numa_pages_migrated += pages;
1663 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
1664 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
1667 static void reset_ptenuma_scan(struct task_struct *p)
1669 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1670 p->mm->numa_scan_offset = 0;
1674 * The expensive part of numa migration is done from task_work context.
1675 * Triggered from task_tick_numa().
1677 void task_numa_work(struct callback_head *work)
1679 unsigned long migrate, next_scan, now = jiffies;
1680 struct task_struct *p = current;
1681 struct mm_struct *mm = p->mm;
1682 struct vm_area_struct *vma;
1683 unsigned long start, end;
1684 unsigned long nr_pte_updates = 0;
1687 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1689 work->next = work; /* protect against double add */
1691 * Who cares about NUMA placement when they're dying.
1693 * NOTE: make sure not to dereference p->mm before this check,
1694 * exit_task_work() happens _after_ exit_mm() so we could be called
1695 * without p->mm even though we still had it when we enqueued this
1698 if (p->flags & PF_EXITING)
1701 if (!mm->numa_next_scan) {
1702 mm->numa_next_scan = now +
1703 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1707 * Enforce maximal scan/migration frequency..
1709 migrate = mm->numa_next_scan;
1710 if (time_before(now, migrate))
1713 if (p->numa_scan_period == 0) {
1714 p->numa_scan_period_max = task_scan_max(p);
1715 p->numa_scan_period = task_scan_min(p);
1718 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1719 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1723 * Delay this task enough that another task of this mm will likely win
1724 * the next time around.
1726 p->node_stamp += 2 * TICK_NSEC;
1728 start = mm->numa_scan_offset;
1729 pages = sysctl_numa_balancing_scan_size;
1730 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1734 down_read(&mm->mmap_sem);
1735 vma = find_vma(mm, start);
1737 reset_ptenuma_scan(p);
1741 for (; vma; vma = vma->vm_next) {
1742 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1746 * Shared library pages mapped by multiple processes are not
1747 * migrated as it is expected they are cache replicated. Avoid
1748 * hinting faults in read-only file-backed mappings or the vdso
1749 * as migrating the pages will be of marginal benefit.
1752 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1756 start = max(start, vma->vm_start);
1757 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1758 end = min(end, vma->vm_end);
1759 nr_pte_updates += change_prot_numa(vma, start, end);
1762 * Scan sysctl_numa_balancing_scan_size but ensure that
1763 * at least one PTE is updated so that unused virtual
1764 * address space is quickly skipped.
1767 pages -= (end - start) >> PAGE_SHIFT;
1772 } while (end != vma->vm_end);
1777 * It is possible to reach the end of the VMA list but the last few
1778 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1779 * would find the !migratable VMA on the next scan but not reset the
1780 * scanner to the start so check it now.
1783 mm->numa_scan_offset = start;
1785 reset_ptenuma_scan(p);
1786 up_read(&mm->mmap_sem);
1790 * Drive the periodic memory faults..
1792 void task_tick_numa(struct rq *rq, struct task_struct *curr)
1794 struct callback_head *work = &curr->numa_work;
1798 * We don't care about NUMA placement if we don't have memory.
1800 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1804 * Using runtime rather than walltime has the dual advantage that
1805 * we (mostly) drive the selection from busy threads and that the
1806 * task needs to have done some actual work before we bother with
1809 now = curr->se.sum_exec_runtime;
1810 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1812 if (now - curr->node_stamp > period) {
1813 if (!curr->node_stamp)
1814 curr->numa_scan_period = task_scan_min(curr);
1815 curr->node_stamp += period;
1817 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1818 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1819 task_work_add(curr, work, true);
1824 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1828 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1832 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1835 #endif /* CONFIG_NUMA_BALANCING */
1838 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1840 update_load_add(&cfs_rq->load, se->load.weight);
1841 if (!parent_entity(se))
1842 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1844 if (entity_is_task(se)) {
1845 struct rq *rq = rq_of(cfs_rq);
1847 account_numa_enqueue(rq, task_of(se));
1848 list_add(&se->group_node, &rq->cfs_tasks);
1851 cfs_rq->nr_running++;
1855 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1857 update_load_sub(&cfs_rq->load, se->load.weight);
1858 if (!parent_entity(se))
1859 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1860 if (entity_is_task(se)) {
1861 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
1862 list_del_init(&se->group_node);
1864 cfs_rq->nr_running--;
1867 #ifdef CONFIG_FAIR_GROUP_SCHED
1869 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1874 * Use this CPU's actual weight instead of the last load_contribution
1875 * to gain a more accurate current total weight. See
1876 * update_cfs_rq_load_contribution().
1878 tg_weight = atomic_long_read(&tg->load_avg);
1879 tg_weight -= cfs_rq->tg_load_contrib;
1880 tg_weight += cfs_rq->load.weight;
1885 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1887 long tg_weight, load, shares;
1889 tg_weight = calc_tg_weight(tg, cfs_rq);
1890 load = cfs_rq->load.weight;
1892 shares = (tg->shares * load);
1894 shares /= tg_weight;
1896 if (shares < MIN_SHARES)
1897 shares = MIN_SHARES;
1898 if (shares > tg->shares)
1899 shares = tg->shares;
1903 # else /* CONFIG_SMP */
1904 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1908 # endif /* CONFIG_SMP */
1909 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1910 unsigned long weight)
1913 /* commit outstanding execution time */
1914 if (cfs_rq->curr == se)
1915 update_curr(cfs_rq);
1916 account_entity_dequeue(cfs_rq, se);
1919 update_load_set(&se->load, weight);
1922 account_entity_enqueue(cfs_rq, se);
1925 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1927 static void update_cfs_shares(struct cfs_rq *cfs_rq)
1929 struct task_group *tg;
1930 struct sched_entity *se;
1934 se = tg->se[cpu_of(rq_of(cfs_rq))];
1935 if (!se || throttled_hierarchy(cfs_rq))
1938 if (likely(se->load.weight == tg->shares))
1941 shares = calc_cfs_shares(cfs_rq, tg);
1943 reweight_entity(cfs_rq_of(se), se, shares);
1945 #else /* CONFIG_FAIR_GROUP_SCHED */
1946 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
1949 #endif /* CONFIG_FAIR_GROUP_SCHED */
1953 * We choose a half-life close to 1 scheduling period.
1954 * Note: The tables below are dependent on this value.
1956 #define LOAD_AVG_PERIOD 32
1957 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1958 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1960 /* Precomputed fixed inverse multiplies for multiplication by y^n */
1961 static const u32 runnable_avg_yN_inv[] = {
1962 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1963 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1964 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1965 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1966 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1967 0x85aac367, 0x82cd8698,
1971 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1972 * over-estimates when re-combining.
1974 static const u32 runnable_avg_yN_sum[] = {
1975 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1976 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1977 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1982 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1984 static __always_inline u64 decay_load(u64 val, u64 n)
1986 unsigned int local_n;
1990 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1993 /* after bounds checking we can collapse to 32-bit */
1997 * As y^PERIOD = 1/2, we can combine
1998 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1999 * With a look-up table which covers k^n (n<PERIOD)
2001 * To achieve constant time decay_load.
2003 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2004 val >>= local_n / LOAD_AVG_PERIOD;
2005 local_n %= LOAD_AVG_PERIOD;
2008 val *= runnable_avg_yN_inv[local_n];
2009 /* We don't use SRR here since we always want to round down. */
2014 * For updates fully spanning n periods, the contribution to runnable
2015 * average will be: \Sum 1024*y^n
2017 * We can compute this reasonably efficiently by combining:
2018 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2020 static u32 __compute_runnable_contrib(u64 n)
2024 if (likely(n <= LOAD_AVG_PERIOD))
2025 return runnable_avg_yN_sum[n];
2026 else if (unlikely(n >= LOAD_AVG_MAX_N))
2027 return LOAD_AVG_MAX;
2029 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2031 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2032 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2034 n -= LOAD_AVG_PERIOD;
2035 } while (n > LOAD_AVG_PERIOD);
2037 contrib = decay_load(contrib, n);
2038 return contrib + runnable_avg_yN_sum[n];
2042 * We can represent the historical contribution to runnable average as the
2043 * coefficients of a geometric series. To do this we sub-divide our runnable
2044 * history into segments of approximately 1ms (1024us); label the segment that
2045 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2047 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2049 * (now) (~1ms ago) (~2ms ago)
2051 * Let u_i denote the fraction of p_i that the entity was runnable.
2053 * We then designate the fractions u_i as our co-efficients, yielding the
2054 * following representation of historical load:
2055 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2057 * We choose y based on the with of a reasonably scheduling period, fixing:
2060 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2061 * approximately half as much as the contribution to load within the last ms
2064 * When a period "rolls over" and we have new u_0`, multiplying the previous
2065 * sum again by y is sufficient to update:
2066 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2067 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2069 static __always_inline int __update_entity_runnable_avg(u64 now,
2070 struct sched_avg *sa,
2074 u32 runnable_contrib;
2075 int delta_w, decayed = 0;
2077 delta = now - sa->last_runnable_update;
2079 * This should only happen when time goes backwards, which it
2080 * unfortunately does during sched clock init when we swap over to TSC.
2082 if ((s64)delta < 0) {
2083 sa->last_runnable_update = now;
2088 * Use 1024ns as the unit of measurement since it's a reasonable
2089 * approximation of 1us and fast to compute.
2094 sa->last_runnable_update = now;
2096 /* delta_w is the amount already accumulated against our next period */
2097 delta_w = sa->runnable_avg_period % 1024;
2098 if (delta + delta_w >= 1024) {
2099 /* period roll-over */
2103 * Now that we know we're crossing a period boundary, figure
2104 * out how much from delta we need to complete the current
2105 * period and accrue it.
2107 delta_w = 1024 - delta_w;
2109 sa->runnable_avg_sum += delta_w;
2110 sa->runnable_avg_period += delta_w;
2114 /* Figure out how many additional periods this update spans */
2115 periods = delta / 1024;
2118 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2120 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2123 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2124 runnable_contrib = __compute_runnable_contrib(periods);
2126 sa->runnable_avg_sum += runnable_contrib;
2127 sa->runnable_avg_period += runnable_contrib;
2130 /* Remainder of delta accrued against u_0` */
2132 sa->runnable_avg_sum += delta;
2133 sa->runnable_avg_period += delta;
2138 /* Synchronize an entity's decay with its parenting cfs_rq.*/
2139 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2141 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2142 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2144 decays -= se->avg.decay_count;
2148 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2149 se->avg.decay_count = 0;
2154 #ifdef CONFIG_FAIR_GROUP_SCHED
2155 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2158 struct task_group *tg = cfs_rq->tg;
2161 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2162 tg_contrib -= cfs_rq->tg_load_contrib;
2164 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2165 atomic_long_add(tg_contrib, &tg->load_avg);
2166 cfs_rq->tg_load_contrib += tg_contrib;
2171 * Aggregate cfs_rq runnable averages into an equivalent task_group
2172 * representation for computing load contributions.
2174 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2175 struct cfs_rq *cfs_rq)
2177 struct task_group *tg = cfs_rq->tg;
2180 /* The fraction of a cpu used by this cfs_rq */
2181 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2182 sa->runnable_avg_period + 1);
2183 contrib -= cfs_rq->tg_runnable_contrib;
2185 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2186 atomic_add(contrib, &tg->runnable_avg);
2187 cfs_rq->tg_runnable_contrib += contrib;
2191 static inline void __update_group_entity_contrib(struct sched_entity *se)
2193 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2194 struct task_group *tg = cfs_rq->tg;
2199 contrib = cfs_rq->tg_load_contrib * tg->shares;
2200 se->avg.load_avg_contrib = div_u64(contrib,
2201 atomic_long_read(&tg->load_avg) + 1);
2204 * For group entities we need to compute a correction term in the case
2205 * that they are consuming <1 cpu so that we would contribute the same
2206 * load as a task of equal weight.
2208 * Explicitly co-ordinating this measurement would be expensive, but
2209 * fortunately the sum of each cpus contribution forms a usable
2210 * lower-bound on the true value.
2212 * Consider the aggregate of 2 contributions. Either they are disjoint
2213 * (and the sum represents true value) or they are disjoint and we are
2214 * understating by the aggregate of their overlap.
2216 * Extending this to N cpus, for a given overlap, the maximum amount we
2217 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2218 * cpus that overlap for this interval and w_i is the interval width.
2220 * On a small machine; the first term is well-bounded which bounds the
2221 * total error since w_i is a subset of the period. Whereas on a
2222 * larger machine, while this first term can be larger, if w_i is the
2223 * of consequential size guaranteed to see n_i*w_i quickly converge to
2224 * our upper bound of 1-cpu.
2226 runnable_avg = atomic_read(&tg->runnable_avg);
2227 if (runnable_avg < NICE_0_LOAD) {
2228 se->avg.load_avg_contrib *= runnable_avg;
2229 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2233 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2234 int force_update) {}
2235 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2236 struct cfs_rq *cfs_rq) {}
2237 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2240 static inline void __update_task_entity_contrib(struct sched_entity *se)
2244 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2245 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2246 contrib /= (se->avg.runnable_avg_period + 1);
2247 se->avg.load_avg_contrib = scale_load(contrib);
2250 /* Compute the current contribution to load_avg by se, return any delta */
2251 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2253 long old_contrib = se->avg.load_avg_contrib;
2255 if (entity_is_task(se)) {
2256 __update_task_entity_contrib(se);
2258 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2259 __update_group_entity_contrib(se);
2262 return se->avg.load_avg_contrib - old_contrib;
2265 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2268 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2269 cfs_rq->blocked_load_avg -= load_contrib;
2271 cfs_rq->blocked_load_avg = 0;
2274 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2276 /* Update a sched_entity's runnable average */
2277 static inline void update_entity_load_avg(struct sched_entity *se,
2280 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2285 * For a group entity we need to use their owned cfs_rq_clock_task() in
2286 * case they are the parent of a throttled hierarchy.
2288 if (entity_is_task(se))
2289 now = cfs_rq_clock_task(cfs_rq);
2291 now = cfs_rq_clock_task(group_cfs_rq(se));
2293 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2296 contrib_delta = __update_entity_load_avg_contrib(se);
2302 cfs_rq->runnable_load_avg += contrib_delta;
2304 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2308 * Decay the load contributed by all blocked children and account this so that
2309 * their contribution may appropriately discounted when they wake up.
2311 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2313 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2316 decays = now - cfs_rq->last_decay;
2317 if (!decays && !force_update)
2320 if (atomic_long_read(&cfs_rq->removed_load)) {
2321 unsigned long removed_load;
2322 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2323 subtract_blocked_load_contrib(cfs_rq, removed_load);
2327 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2329 atomic64_add(decays, &cfs_rq->decay_counter);
2330 cfs_rq->last_decay = now;
2333 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2336 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2338 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2339 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2342 /* Add the load generated by se into cfs_rq's child load-average */
2343 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2344 struct sched_entity *se,
2348 * We track migrations using entity decay_count <= 0, on a wake-up
2349 * migration we use a negative decay count to track the remote decays
2350 * accumulated while sleeping.
2352 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2353 * are seen by enqueue_entity_load_avg() as a migration with an already
2354 * constructed load_avg_contrib.
2356 if (unlikely(se->avg.decay_count <= 0)) {
2357 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2358 if (se->avg.decay_count) {
2360 * In a wake-up migration we have to approximate the
2361 * time sleeping. This is because we can't synchronize
2362 * clock_task between the two cpus, and it is not
2363 * guaranteed to be read-safe. Instead, we can
2364 * approximate this using our carried decays, which are
2365 * explicitly atomically readable.
2367 se->avg.last_runnable_update -= (-se->avg.decay_count)
2369 update_entity_load_avg(se, 0);
2370 /* Indicate that we're now synchronized and on-rq */
2371 se->avg.decay_count = 0;
2376 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2377 * would have made count negative); we must be careful to avoid
2378 * double-accounting blocked time after synchronizing decays.
2380 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2384 /* migrated tasks did not contribute to our blocked load */
2386 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2387 update_entity_load_avg(se, 0);
2390 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2391 /* we force update consideration on load-balancer moves */
2392 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2396 * Remove se's load from this cfs_rq child load-average, if the entity is
2397 * transitioning to a blocked state we track its projected decay using
2400 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2401 struct sched_entity *se,
2404 update_entity_load_avg(se, 1);
2405 /* we force update consideration on load-balancer moves */
2406 update_cfs_rq_blocked_load(cfs_rq, !sleep);
2408 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2410 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2411 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2412 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2416 * Update the rq's load with the elapsed running time before entering
2417 * idle. if the last scheduled task is not a CFS task, idle_enter will
2418 * be the only way to update the runnable statistic.
2420 void idle_enter_fair(struct rq *this_rq)
2422 update_rq_runnable_avg(this_rq, 1);
2426 * Update the rq's load with the elapsed idle time before a task is
2427 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2428 * be the only way to update the runnable statistic.
2430 void idle_exit_fair(struct rq *this_rq)
2432 update_rq_runnable_avg(this_rq, 0);
2436 static inline void update_entity_load_avg(struct sched_entity *se,
2437 int update_cfs_rq) {}
2438 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2439 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2440 struct sched_entity *se,
2442 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2443 struct sched_entity *se,
2445 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2446 int force_update) {}
2449 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2451 #ifdef CONFIG_SCHEDSTATS
2452 struct task_struct *tsk = NULL;
2454 if (entity_is_task(se))
2457 if (se->statistics.sleep_start) {
2458 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2463 if (unlikely(delta > se->statistics.sleep_max))
2464 se->statistics.sleep_max = delta;
2466 se->statistics.sleep_start = 0;
2467 se->statistics.sum_sleep_runtime += delta;
2470 account_scheduler_latency(tsk, delta >> 10, 1);
2471 trace_sched_stat_sleep(tsk, delta);
2474 if (se->statistics.block_start) {
2475 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2480 if (unlikely(delta > se->statistics.block_max))
2481 se->statistics.block_max = delta;
2483 se->statistics.block_start = 0;
2484 se->statistics.sum_sleep_runtime += delta;
2487 if (tsk->in_iowait) {
2488 se->statistics.iowait_sum += delta;
2489 se->statistics.iowait_count++;
2490 trace_sched_stat_iowait(tsk, delta);
2493 trace_sched_stat_blocked(tsk, delta);
2496 * Blocking time is in units of nanosecs, so shift by
2497 * 20 to get a milliseconds-range estimation of the
2498 * amount of time that the task spent sleeping:
2500 if (unlikely(prof_on == SLEEP_PROFILING)) {
2501 profile_hits(SLEEP_PROFILING,
2502 (void *)get_wchan(tsk),
2505 account_scheduler_latency(tsk, delta >> 10, 0);
2511 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2513 #ifdef CONFIG_SCHED_DEBUG
2514 s64 d = se->vruntime - cfs_rq->min_vruntime;
2519 if (d > 3*sysctl_sched_latency)
2520 schedstat_inc(cfs_rq, nr_spread_over);
2525 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2527 u64 vruntime = cfs_rq->min_vruntime;
2530 * The 'current' period is already promised to the current tasks,
2531 * however the extra weight of the new task will slow them down a
2532 * little, place the new task so that it fits in the slot that
2533 * stays open at the end.
2535 if (initial && sched_feat(START_DEBIT))
2536 vruntime += sched_vslice(cfs_rq, se);
2538 /* sleeps up to a single latency don't count. */
2540 unsigned long thresh = sysctl_sched_latency;
2543 * Halve their sleep time's effect, to allow
2544 * for a gentler effect of sleepers:
2546 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2552 /* ensure we never gain time by being placed backwards. */
2553 se->vruntime = max_vruntime(se->vruntime, vruntime);
2556 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2559 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2562 * Update the normalized vruntime before updating min_vruntime
2563 * through calling update_curr().
2565 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2566 se->vruntime += cfs_rq->min_vruntime;
2569 * Update run-time statistics of the 'current'.
2571 update_curr(cfs_rq);
2572 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2573 account_entity_enqueue(cfs_rq, se);
2574 update_cfs_shares(cfs_rq);
2576 if (flags & ENQUEUE_WAKEUP) {
2577 place_entity(cfs_rq, se, 0);
2578 enqueue_sleeper(cfs_rq, se);
2581 update_stats_enqueue(cfs_rq, se);
2582 check_spread(cfs_rq, se);
2583 if (se != cfs_rq->curr)
2584 __enqueue_entity(cfs_rq, se);
2587 if (cfs_rq->nr_running == 1) {
2588 list_add_leaf_cfs_rq(cfs_rq);
2589 check_enqueue_throttle(cfs_rq);
2593 static void __clear_buddies_last(struct sched_entity *se)
2595 for_each_sched_entity(se) {
2596 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2597 if (cfs_rq->last == se)
2598 cfs_rq->last = NULL;
2604 static void __clear_buddies_next(struct sched_entity *se)
2606 for_each_sched_entity(se) {
2607 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2608 if (cfs_rq->next == se)
2609 cfs_rq->next = NULL;
2615 static void __clear_buddies_skip(struct sched_entity *se)
2617 for_each_sched_entity(se) {
2618 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2619 if (cfs_rq->skip == se)
2620 cfs_rq->skip = NULL;
2626 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2628 if (cfs_rq->last == se)
2629 __clear_buddies_last(se);
2631 if (cfs_rq->next == se)
2632 __clear_buddies_next(se);
2634 if (cfs_rq->skip == se)
2635 __clear_buddies_skip(se);
2638 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2641 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2644 * Update run-time statistics of the 'current'.
2646 update_curr(cfs_rq);
2647 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2649 update_stats_dequeue(cfs_rq, se);
2650 if (flags & DEQUEUE_SLEEP) {
2651 #ifdef CONFIG_SCHEDSTATS
2652 if (entity_is_task(se)) {
2653 struct task_struct *tsk = task_of(se);
2655 if (tsk->state & TASK_INTERRUPTIBLE)
2656 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2657 if (tsk->state & TASK_UNINTERRUPTIBLE)
2658 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2663 clear_buddies(cfs_rq, se);
2665 if (se != cfs_rq->curr)
2666 __dequeue_entity(cfs_rq, se);
2668 account_entity_dequeue(cfs_rq, se);
2671 * Normalize the entity after updating the min_vruntime because the
2672 * update can refer to the ->curr item and we need to reflect this
2673 * movement in our normalized position.
2675 if (!(flags & DEQUEUE_SLEEP))
2676 se->vruntime -= cfs_rq->min_vruntime;
2678 /* return excess runtime on last dequeue */
2679 return_cfs_rq_runtime(cfs_rq);
2681 update_min_vruntime(cfs_rq);
2682 update_cfs_shares(cfs_rq);
2686 * Preempt the current task with a newly woken task if needed:
2689 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2691 unsigned long ideal_runtime, delta_exec;
2692 struct sched_entity *se;
2695 ideal_runtime = sched_slice(cfs_rq, curr);
2696 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2697 if (delta_exec > ideal_runtime) {
2698 resched_task(rq_of(cfs_rq)->curr);
2700 * The current task ran long enough, ensure it doesn't get
2701 * re-elected due to buddy favours.
2703 clear_buddies(cfs_rq, curr);
2708 * Ensure that a task that missed wakeup preemption by a
2709 * narrow margin doesn't have to wait for a full slice.
2710 * This also mitigates buddy induced latencies under load.
2712 if (delta_exec < sysctl_sched_min_granularity)
2715 se = __pick_first_entity(cfs_rq);
2716 delta = curr->vruntime - se->vruntime;
2721 if (delta > ideal_runtime)
2722 resched_task(rq_of(cfs_rq)->curr);
2726 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2728 /* 'current' is not kept within the tree. */
2731 * Any task has to be enqueued before it get to execute on
2732 * a CPU. So account for the time it spent waiting on the
2735 update_stats_wait_end(cfs_rq, se);
2736 __dequeue_entity(cfs_rq, se);
2739 update_stats_curr_start(cfs_rq, se);
2741 #ifdef CONFIG_SCHEDSTATS
2743 * Track our maximum slice length, if the CPU's load is at
2744 * least twice that of our own weight (i.e. dont track it
2745 * when there are only lesser-weight tasks around):
2747 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2748 se->statistics.slice_max = max(se->statistics.slice_max,
2749 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2752 se->prev_sum_exec_runtime = se->sum_exec_runtime;
2756 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2759 * Pick the next process, keeping these things in mind, in this order:
2760 * 1) keep things fair between processes/task groups
2761 * 2) pick the "next" process, since someone really wants that to run
2762 * 3) pick the "last" process, for cache locality
2763 * 4) do not run the "skip" process, if something else is available
2765 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
2767 struct sched_entity *se = __pick_first_entity(cfs_rq);
2768 struct sched_entity *left = se;
2771 * Avoid running the skip buddy, if running something else can
2772 * be done without getting too unfair.
2774 if (cfs_rq->skip == se) {
2775 struct sched_entity *second = __pick_next_entity(se);
2776 if (second && wakeup_preempt_entity(second, left) < 1)
2781 * Prefer last buddy, try to return the CPU to a preempted task.
2783 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2787 * Someone really wants this to run. If it's not unfair, run it.
2789 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2792 clear_buddies(cfs_rq, se);
2797 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2799 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
2802 * If still on the runqueue then deactivate_task()
2803 * was not called and update_curr() has to be done:
2806 update_curr(cfs_rq);
2808 /* throttle cfs_rqs exceeding runtime */
2809 check_cfs_rq_runtime(cfs_rq);
2811 check_spread(cfs_rq, prev);
2813 update_stats_wait_start(cfs_rq, prev);
2814 /* Put 'current' back into the tree. */
2815 __enqueue_entity(cfs_rq, prev);
2816 /* in !on_rq case, update occurred at dequeue */
2817 update_entity_load_avg(prev, 1);
2819 cfs_rq->curr = NULL;
2823 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2826 * Update run-time statistics of the 'current'.
2828 update_curr(cfs_rq);
2831 * Ensure that runnable average is periodically updated.
2833 update_entity_load_avg(curr, 1);
2834 update_cfs_rq_blocked_load(cfs_rq, 1);
2835 update_cfs_shares(cfs_rq);
2837 #ifdef CONFIG_SCHED_HRTICK
2839 * queued ticks are scheduled to match the slice, so don't bother
2840 * validating it and just reschedule.
2843 resched_task(rq_of(cfs_rq)->curr);
2847 * don't let the period tick interfere with the hrtick preemption
2849 if (!sched_feat(DOUBLE_TICK) &&
2850 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2854 if (cfs_rq->nr_running > 1)
2855 check_preempt_tick(cfs_rq, curr);
2859 /**************************************************
2860 * CFS bandwidth control machinery
2863 #ifdef CONFIG_CFS_BANDWIDTH
2865 #ifdef HAVE_JUMP_LABEL
2866 static struct static_key __cfs_bandwidth_used;
2868 static inline bool cfs_bandwidth_used(void)
2870 return static_key_false(&__cfs_bandwidth_used);
2873 void cfs_bandwidth_usage_inc(void)
2875 static_key_slow_inc(&__cfs_bandwidth_used);
2878 void cfs_bandwidth_usage_dec(void)
2880 static_key_slow_dec(&__cfs_bandwidth_used);
2882 #else /* HAVE_JUMP_LABEL */
2883 static bool cfs_bandwidth_used(void)
2888 void cfs_bandwidth_usage_inc(void) {}
2889 void cfs_bandwidth_usage_dec(void) {}
2890 #endif /* HAVE_JUMP_LABEL */
2893 * default period for cfs group bandwidth.
2894 * default: 0.1s, units: nanoseconds
2896 static inline u64 default_cfs_period(void)
2898 return 100000000ULL;
2901 static inline u64 sched_cfs_bandwidth_slice(void)
2903 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2907 * Replenish runtime according to assigned quota and update expiration time.
2908 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2909 * additional synchronization around rq->lock.
2911 * requires cfs_b->lock
2913 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
2917 if (cfs_b->quota == RUNTIME_INF)
2920 now = sched_clock_cpu(smp_processor_id());
2921 cfs_b->runtime = cfs_b->quota;
2922 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2925 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2927 return &tg->cfs_bandwidth;
2930 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2931 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2933 if (unlikely(cfs_rq->throttle_count))
2934 return cfs_rq->throttled_clock_task;
2936 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
2939 /* returns 0 on failure to allocate runtime */
2940 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2942 struct task_group *tg = cfs_rq->tg;
2943 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
2944 u64 amount = 0, min_amount, expires;
2946 /* note: this is a positive sum as runtime_remaining <= 0 */
2947 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2949 raw_spin_lock(&cfs_b->lock);
2950 if (cfs_b->quota == RUNTIME_INF)
2951 amount = min_amount;
2954 * If the bandwidth pool has become inactive, then at least one
2955 * period must have elapsed since the last consumption.
2956 * Refresh the global state and ensure bandwidth timer becomes
2959 if (!cfs_b->timer_active) {
2960 __refill_cfs_bandwidth_runtime(cfs_b);
2961 __start_cfs_bandwidth(cfs_b);
2964 if (cfs_b->runtime > 0) {
2965 amount = min(cfs_b->runtime, min_amount);
2966 cfs_b->runtime -= amount;
2970 expires = cfs_b->runtime_expires;
2971 raw_spin_unlock(&cfs_b->lock);
2973 cfs_rq->runtime_remaining += amount;
2975 * we may have advanced our local expiration to account for allowed
2976 * spread between our sched_clock and the one on which runtime was
2979 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2980 cfs_rq->runtime_expires = expires;
2982 return cfs_rq->runtime_remaining > 0;
2986 * Note: This depends on the synchronization provided by sched_clock and the
2987 * fact that rq->clock snapshots this value.
2989 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2991 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2993 /* if the deadline is ahead of our clock, nothing to do */
2994 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
2997 if (cfs_rq->runtime_remaining < 0)
3001 * If the local deadline has passed we have to consider the
3002 * possibility that our sched_clock is 'fast' and the global deadline
3003 * has not truly expired.
3005 * Fortunately we can check determine whether this the case by checking
3006 * whether the global deadline has advanced.
3009 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
3010 /* extend local deadline, drift is bounded above by 2 ticks */
3011 cfs_rq->runtime_expires += TICK_NSEC;
3013 /* global deadline is ahead, expiration has passed */
3014 cfs_rq->runtime_remaining = 0;
3018 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3019 unsigned long delta_exec)
3021 /* dock delta_exec before expiring quota (as it could span periods) */
3022 cfs_rq->runtime_remaining -= delta_exec;
3023 expire_cfs_rq_runtime(cfs_rq);
3025 if (likely(cfs_rq->runtime_remaining > 0))
3029 * if we're unable to extend our runtime we resched so that the active
3030 * hierarchy can be throttled
3032 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3033 resched_task(rq_of(cfs_rq)->curr);
3036 static __always_inline
3037 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
3039 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3042 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3045 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3047 return cfs_bandwidth_used() && cfs_rq->throttled;
3050 /* check whether cfs_rq, or any parent, is throttled */
3051 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3053 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3057 * Ensure that neither of the group entities corresponding to src_cpu or
3058 * dest_cpu are members of a throttled hierarchy when performing group
3059 * load-balance operations.
3061 static inline int throttled_lb_pair(struct task_group *tg,
3062 int src_cpu, int dest_cpu)
3064 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3066 src_cfs_rq = tg->cfs_rq[src_cpu];
3067 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3069 return throttled_hierarchy(src_cfs_rq) ||
3070 throttled_hierarchy(dest_cfs_rq);
3073 /* updated child weight may affect parent so we have to do this bottom up */
3074 static int tg_unthrottle_up(struct task_group *tg, void *data)
3076 struct rq *rq = data;
3077 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3079 cfs_rq->throttle_count--;
3081 if (!cfs_rq->throttle_count) {
3082 /* adjust cfs_rq_clock_task() */
3083 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3084 cfs_rq->throttled_clock_task;
3091 static int tg_throttle_down(struct task_group *tg, void *data)
3093 struct rq *rq = data;
3094 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3096 /* group is entering throttled state, stop time */
3097 if (!cfs_rq->throttle_count)
3098 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3099 cfs_rq->throttle_count++;
3104 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3106 struct rq *rq = rq_of(cfs_rq);
3107 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3108 struct sched_entity *se;
3109 long task_delta, dequeue = 1;
3111 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3113 /* freeze hierarchy runnable averages while throttled */
3115 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3118 task_delta = cfs_rq->h_nr_running;
3119 for_each_sched_entity(se) {
3120 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3121 /* throttled entity or throttle-on-deactivate */
3126 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3127 qcfs_rq->h_nr_running -= task_delta;
3129 if (qcfs_rq->load.weight)
3134 rq->nr_running -= task_delta;
3136 cfs_rq->throttled = 1;
3137 cfs_rq->throttled_clock = rq_clock(rq);
3138 raw_spin_lock(&cfs_b->lock);
3139 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3140 if (!cfs_b->timer_active)
3141 __start_cfs_bandwidth(cfs_b);
3142 raw_spin_unlock(&cfs_b->lock);
3145 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3147 struct rq *rq = rq_of(cfs_rq);
3148 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3149 struct sched_entity *se;
3153 se = cfs_rq->tg->se[cpu_of(rq)];
3155 cfs_rq->throttled = 0;
3157 update_rq_clock(rq);
3159 raw_spin_lock(&cfs_b->lock);
3160 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3161 list_del_rcu(&cfs_rq->throttled_list);
3162 raw_spin_unlock(&cfs_b->lock);
3164 /* update hierarchical throttle state */
3165 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3167 if (!cfs_rq->load.weight)
3170 task_delta = cfs_rq->h_nr_running;
3171 for_each_sched_entity(se) {
3175 cfs_rq = cfs_rq_of(se);
3177 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3178 cfs_rq->h_nr_running += task_delta;
3180 if (cfs_rq_throttled(cfs_rq))
3185 rq->nr_running += task_delta;
3187 /* determine whether we need to wake up potentially idle cpu */
3188 if (rq->curr == rq->idle && rq->cfs.nr_running)
3189 resched_task(rq->curr);
3192 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3193 u64 remaining, u64 expires)
3195 struct cfs_rq *cfs_rq;
3196 u64 runtime = remaining;
3199 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3201 struct rq *rq = rq_of(cfs_rq);
3203 raw_spin_lock(&rq->lock);
3204 if (!cfs_rq_throttled(cfs_rq))
3207 runtime = -cfs_rq->runtime_remaining + 1;
3208 if (runtime > remaining)
3209 runtime = remaining;
3210 remaining -= runtime;
3212 cfs_rq->runtime_remaining += runtime;
3213 cfs_rq->runtime_expires = expires;
3215 /* we check whether we're throttled above */
3216 if (cfs_rq->runtime_remaining > 0)
3217 unthrottle_cfs_rq(cfs_rq);
3220 raw_spin_unlock(&rq->lock);
3231 * Responsible for refilling a task_group's bandwidth and unthrottling its
3232 * cfs_rqs as appropriate. If there has been no activity within the last
3233 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3234 * used to track this state.
3236 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3238 u64 runtime, runtime_expires;
3239 int idle = 1, throttled;
3241 raw_spin_lock(&cfs_b->lock);
3242 /* no need to continue the timer with no bandwidth constraint */
3243 if (cfs_b->quota == RUNTIME_INF)
3246 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3247 /* idle depends on !throttled (for the case of a large deficit) */
3248 idle = cfs_b->idle && !throttled;
3249 cfs_b->nr_periods += overrun;
3251 /* if we're going inactive then everything else can be deferred */
3256 * if we have relooped after returning idle once, we need to update our
3257 * status as actually running, so that other cpus doing
3258 * __start_cfs_bandwidth will stop trying to cancel us.
3260 cfs_b->timer_active = 1;
3262 __refill_cfs_bandwidth_runtime(cfs_b);
3265 /* mark as potentially idle for the upcoming period */
3270 /* account preceding periods in which throttling occurred */
3271 cfs_b->nr_throttled += overrun;
3274 * There are throttled entities so we must first use the new bandwidth
3275 * to unthrottle them before making it generally available. This
3276 * ensures that all existing debts will be paid before a new cfs_rq is
3279 runtime = cfs_b->runtime;
3280 runtime_expires = cfs_b->runtime_expires;
3284 * This check is repeated as we are holding onto the new bandwidth
3285 * while we unthrottle. This can potentially race with an unthrottled
3286 * group trying to acquire new bandwidth from the global pool.
3288 while (throttled && runtime > 0) {
3289 raw_spin_unlock(&cfs_b->lock);
3290 /* we can't nest cfs_b->lock while distributing bandwidth */
3291 runtime = distribute_cfs_runtime(cfs_b, runtime,
3293 raw_spin_lock(&cfs_b->lock);
3295 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3298 /* return (any) remaining runtime */
3299 cfs_b->runtime = runtime;
3301 * While we are ensured activity in the period following an
3302 * unthrottle, this also covers the case in which the new bandwidth is
3303 * insufficient to cover the existing bandwidth deficit. (Forcing the
3304 * timer to remain active while there are any throttled entities.)
3309 cfs_b->timer_active = 0;
3310 raw_spin_unlock(&cfs_b->lock);
3315 /* a cfs_rq won't donate quota below this amount */
3316 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3317 /* minimum remaining period time to redistribute slack quota */
3318 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3319 /* how long we wait to gather additional slack before distributing */
3320 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3323 * Are we near the end of the current quota period?
3325 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3326 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3327 * migrate_hrtimers, base is never cleared, so we are fine.
3329 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3331 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3334 /* if the call-back is running a quota refresh is already occurring */
3335 if (hrtimer_callback_running(refresh_timer))
3338 /* is a quota refresh about to occur? */
3339 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3340 if (remaining < min_expire)
3346 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3348 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3350 /* if there's a quota refresh soon don't bother with slack */
3351 if (runtime_refresh_within(cfs_b, min_left))
3354 start_bandwidth_timer(&cfs_b->slack_timer,
3355 ns_to_ktime(cfs_bandwidth_slack_period));
3358 /* we know any runtime found here is valid as update_curr() precedes return */
3359 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3361 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3362 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3364 if (slack_runtime <= 0)
3367 raw_spin_lock(&cfs_b->lock);
3368 if (cfs_b->quota != RUNTIME_INF &&
3369 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3370 cfs_b->runtime += slack_runtime;
3372 /* we are under rq->lock, defer unthrottling using a timer */
3373 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3374 !list_empty(&cfs_b->throttled_cfs_rq))
3375 start_cfs_slack_bandwidth(cfs_b);
3377 raw_spin_unlock(&cfs_b->lock);
3379 /* even if it's not valid for return we don't want to try again */
3380 cfs_rq->runtime_remaining -= slack_runtime;
3383 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3385 if (!cfs_bandwidth_used())
3388 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3391 __return_cfs_rq_runtime(cfs_rq);
3395 * This is done with a timer (instead of inline with bandwidth return) since
3396 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3398 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3400 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3403 /* confirm we're still not at a refresh boundary */
3404 raw_spin_lock(&cfs_b->lock);
3405 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3406 raw_spin_unlock(&cfs_b->lock);
3410 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3411 runtime = cfs_b->runtime;
3414 expires = cfs_b->runtime_expires;
3415 raw_spin_unlock(&cfs_b->lock);
3420 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3422 raw_spin_lock(&cfs_b->lock);
3423 if (expires == cfs_b->runtime_expires)
3424 cfs_b->runtime = runtime;
3425 raw_spin_unlock(&cfs_b->lock);
3429 * When a group wakes up we want to make sure that its quota is not already
3430 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3431 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3433 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3435 if (!cfs_bandwidth_used())
3438 /* an active group must be handled by the update_curr()->put() path */
3439 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3442 /* ensure the group is not already throttled */
3443 if (cfs_rq_throttled(cfs_rq))
3446 /* update runtime allocation */
3447 account_cfs_rq_runtime(cfs_rq, 0);
3448 if (cfs_rq->runtime_remaining <= 0)
3449 throttle_cfs_rq(cfs_rq);
3452 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3453 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3455 if (!cfs_bandwidth_used())
3458 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3462 * it's possible for a throttled entity to be forced into a running
3463 * state (e.g. set_curr_task), in this case we're finished.
3465 if (cfs_rq_throttled(cfs_rq))
3468 throttle_cfs_rq(cfs_rq);
3471 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3473 struct cfs_bandwidth *cfs_b =
3474 container_of(timer, struct cfs_bandwidth, slack_timer);
3475 do_sched_cfs_slack_timer(cfs_b);
3477 return HRTIMER_NORESTART;
3480 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3482 struct cfs_bandwidth *cfs_b =
3483 container_of(timer, struct cfs_bandwidth, period_timer);
3489 now = hrtimer_cb_get_time(timer);
3490 overrun = hrtimer_forward(timer, now, cfs_b->period);
3495 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3498 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3501 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3503 raw_spin_lock_init(&cfs_b->lock);
3505 cfs_b->quota = RUNTIME_INF;
3506 cfs_b->period = ns_to_ktime(default_cfs_period());
3508 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3509 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3510 cfs_b->period_timer.function = sched_cfs_period_timer;
3511 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3512 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3515 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3517 cfs_rq->runtime_enabled = 0;
3518 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3521 /* requires cfs_b->lock, may release to reprogram timer */
3522 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3525 * The timer may be active because we're trying to set a new bandwidth
3526 * period or because we're racing with the tear-down path
3527 * (timer_active==0 becomes visible before the hrtimer call-back
3528 * terminates). In either case we ensure that it's re-programmed
3530 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3531 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3532 /* bounce the lock to allow do_sched_cfs_period_timer to run */
3533 raw_spin_unlock(&cfs_b->lock);
3535 raw_spin_lock(&cfs_b->lock);
3536 /* if someone else restarted the timer then we're done */
3537 if (cfs_b->timer_active)
3541 cfs_b->timer_active = 1;
3542 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3545 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3547 hrtimer_cancel(&cfs_b->period_timer);
3548 hrtimer_cancel(&cfs_b->slack_timer);
3551 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3553 struct cfs_rq *cfs_rq;
3555 for_each_leaf_cfs_rq(rq, cfs_rq) {
3556 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3558 if (!cfs_rq->runtime_enabled)
3562 * clock_task is not advancing so we just need to make sure
3563 * there's some valid quota amount
3565 cfs_rq->runtime_remaining = cfs_b->quota;
3566 if (cfs_rq_throttled(cfs_rq))
3567 unthrottle_cfs_rq(cfs_rq);
3571 #else /* CONFIG_CFS_BANDWIDTH */
3572 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3574 return rq_clock_task(rq_of(cfs_rq));
3577 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3578 unsigned long delta_exec) {}
3579 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3580 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3581 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3583 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3588 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3593 static inline int throttled_lb_pair(struct task_group *tg,
3594 int src_cpu, int dest_cpu)
3599 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3601 #ifdef CONFIG_FAIR_GROUP_SCHED
3602 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3605 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3609 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3610 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3612 #endif /* CONFIG_CFS_BANDWIDTH */
3614 /**************************************************
3615 * CFS operations on tasks:
3618 #ifdef CONFIG_SCHED_HRTICK
3619 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3621 struct sched_entity *se = &p->se;
3622 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3624 WARN_ON(task_rq(p) != rq);
3626 if (cfs_rq->nr_running > 1) {
3627 u64 slice = sched_slice(cfs_rq, se);
3628 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3629 s64 delta = slice - ran;
3638 * Don't schedule slices shorter than 10000ns, that just
3639 * doesn't make sense. Rely on vruntime for fairness.
3642 delta = max_t(s64, 10000LL, delta);
3644 hrtick_start(rq, delta);
3649 * called from enqueue/dequeue and updates the hrtick when the
3650 * current task is from our class and nr_running is low enough
3653 static void hrtick_update(struct rq *rq)
3655 struct task_struct *curr = rq->curr;
3657 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3660 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3661 hrtick_start_fair(rq, curr);
3663 #else /* !CONFIG_SCHED_HRTICK */
3665 hrtick_start_fair(struct rq *rq, struct task_struct *p)
3669 static inline void hrtick_update(struct rq *rq)
3675 * The enqueue_task method is called before nr_running is
3676 * increased. Here we update the fair scheduling stats and
3677 * then put the task into the rbtree:
3680 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3682 struct cfs_rq *cfs_rq;
3683 struct sched_entity *se = &p->se;
3685 for_each_sched_entity(se) {
3688 cfs_rq = cfs_rq_of(se);
3689 enqueue_entity(cfs_rq, se, flags);
3692 * end evaluation on encountering a throttled cfs_rq
3694 * note: in the case of encountering a throttled cfs_rq we will
3695 * post the final h_nr_running increment below.
3697 if (cfs_rq_throttled(cfs_rq))
3699 cfs_rq->h_nr_running++;
3701 flags = ENQUEUE_WAKEUP;
3704 for_each_sched_entity(se) {
3705 cfs_rq = cfs_rq_of(se);
3706 cfs_rq->h_nr_running++;
3708 if (cfs_rq_throttled(cfs_rq))
3711 update_cfs_shares(cfs_rq);
3712 update_entity_load_avg(se, 1);
3716 update_rq_runnable_avg(rq, rq->nr_running);
3722 static void set_next_buddy(struct sched_entity *se);
3725 * The dequeue_task method is called before nr_running is
3726 * decreased. We remove the task from the rbtree and
3727 * update the fair scheduling stats:
3729 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3731 struct cfs_rq *cfs_rq;
3732 struct sched_entity *se = &p->se;
3733 int task_sleep = flags & DEQUEUE_SLEEP;
3735 for_each_sched_entity(se) {
3736 cfs_rq = cfs_rq_of(se);
3737 dequeue_entity(cfs_rq, se, flags);
3740 * end evaluation on encountering a throttled cfs_rq
3742 * note: in the case of encountering a throttled cfs_rq we will
3743 * post the final h_nr_running decrement below.
3745 if (cfs_rq_throttled(cfs_rq))
3747 cfs_rq->h_nr_running--;
3749 /* Don't dequeue parent if it has other entities besides us */
3750 if (cfs_rq->load.weight) {
3752 * Bias pick_next to pick a task from this cfs_rq, as
3753 * p is sleeping when it is within its sched_slice.
3755 if (task_sleep && parent_entity(se))
3756 set_next_buddy(parent_entity(se));
3758 /* avoid re-evaluating load for this entity */
3759 se = parent_entity(se);
3762 flags |= DEQUEUE_SLEEP;
3765 for_each_sched_entity(se) {
3766 cfs_rq = cfs_rq_of(se);
3767 cfs_rq->h_nr_running--;
3769 if (cfs_rq_throttled(cfs_rq))
3772 update_cfs_shares(cfs_rq);
3773 update_entity_load_avg(se, 1);
3778 update_rq_runnable_avg(rq, 1);
3784 /* Used instead of source_load when we know the type == 0 */
3785 static unsigned long weighted_cpuload(const int cpu)
3787 return cpu_rq(cpu)->cfs.runnable_load_avg;
3791 * Return a low guess at the load of a migration-source cpu weighted
3792 * according to the scheduling class and "nice" value.
3794 * We want to under-estimate the load of migration sources, to
3795 * balance conservatively.
3797 static unsigned long source_load(int cpu, int type)
3799 struct rq *rq = cpu_rq(cpu);
3800 unsigned long total = weighted_cpuload(cpu);
3802 if (type == 0 || !sched_feat(LB_BIAS))
3805 return min(rq->cpu_load[type-1], total);
3809 * Return a high guess at the load of a migration-target cpu weighted
3810 * according to the scheduling class and "nice" value.
3812 static unsigned long target_load(int cpu, int type)
3814 struct rq *rq = cpu_rq(cpu);
3815 unsigned long total = weighted_cpuload(cpu);
3817 if (type == 0 || !sched_feat(LB_BIAS))
3820 return max(rq->cpu_load[type-1], total);
3823 static unsigned long power_of(int cpu)
3825 return cpu_rq(cpu)->cpu_power;
3828 static unsigned long cpu_avg_load_per_task(int cpu)
3830 struct rq *rq = cpu_rq(cpu);
3831 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
3832 unsigned long load_avg = rq->cfs.runnable_load_avg;
3835 return load_avg / nr_running;
3840 static void record_wakee(struct task_struct *p)
3843 * Rough decay (wiping) for cost saving, don't worry
3844 * about the boundary, really active task won't care
3847 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3848 current->wakee_flips = 0;
3849 current->wakee_flip_decay_ts = jiffies;
3852 if (current->last_wakee != p) {
3853 current->last_wakee = p;
3854 current->wakee_flips++;
3858 static void task_waking_fair(struct task_struct *p)
3860 struct sched_entity *se = &p->se;
3861 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3864 #ifndef CONFIG_64BIT
3865 u64 min_vruntime_copy;
3868 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3870 min_vruntime = cfs_rq->min_vruntime;
3871 } while (min_vruntime != min_vruntime_copy);
3873 min_vruntime = cfs_rq->min_vruntime;
3876 se->vruntime -= min_vruntime;
3880 #ifdef CONFIG_FAIR_GROUP_SCHED
3882 * effective_load() calculates the load change as seen from the root_task_group
3884 * Adding load to a group doesn't make a group heavier, but can cause movement
3885 * of group shares between cpus. Assuming the shares were perfectly aligned one
3886 * can calculate the shift in shares.
3888 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3889 * on this @cpu and results in a total addition (subtraction) of @wg to the
3890 * total group weight.
3892 * Given a runqueue weight distribution (rw_i) we can compute a shares
3893 * distribution (s_i) using:
3895 * s_i = rw_i / \Sum rw_j (1)
3897 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3898 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3899 * shares distribution (s_i):
3901 * rw_i = { 2, 4, 1, 0 }
3902 * s_i = { 2/7, 4/7, 1/7, 0 }
3904 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3905 * task used to run on and the CPU the waker is running on), we need to
3906 * compute the effect of waking a task on either CPU and, in case of a sync
3907 * wakeup, compute the effect of the current task going to sleep.
3909 * So for a change of @wl to the local @cpu with an overall group weight change
3910 * of @wl we can compute the new shares distribution (s'_i) using:
3912 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3914 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3915 * differences in waking a task to CPU 0. The additional task changes the
3916 * weight and shares distributions like:
3918 * rw'_i = { 3, 4, 1, 0 }
3919 * s'_i = { 3/8, 4/8, 1/8, 0 }
3921 * We can then compute the difference in effective weight by using:
3923 * dw_i = S * (s'_i - s_i) (3)
3925 * Where 'S' is the group weight as seen by its parent.
3927 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3928 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3929 * 4/7) times the weight of the group.
3931 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3933 struct sched_entity *se = tg->se[cpu];
3935 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
3938 for_each_sched_entity(se) {
3944 * W = @wg + \Sum rw_j
3946 W = wg + calc_tg_weight(tg, se->my_q);
3951 w = se->my_q->load.weight + wl;
3954 * wl = S * s'_i; see (2)
3957 wl = (w * tg->shares) / W;
3962 * Per the above, wl is the new se->load.weight value; since
3963 * those are clipped to [MIN_SHARES, ...) do so now. See
3964 * calc_cfs_shares().
3966 if (wl < MIN_SHARES)
3970 * wl = dw_i = S * (s'_i - s_i); see (3)
3972 wl -= se->load.weight;
3975 * Recursively apply this logic to all parent groups to compute
3976 * the final effective load change on the root group. Since
3977 * only the @tg group gets extra weight, all parent groups can
3978 * only redistribute existing shares. @wl is the shift in shares
3979 * resulting from this level per the above.
3988 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3995 static int wake_wide(struct task_struct *p)
3997 int factor = this_cpu_read(sd_llc_size);
4000 * Yeah, it's the switching-frequency, could means many wakee or
4001 * rapidly switch, use factor here will just help to automatically
4002 * adjust the loose-degree, so bigger node will lead to more pull.
4004 if (p->wakee_flips > factor) {
4006 * wakee is somewhat hot, it needs certain amount of cpu
4007 * resource, so if waker is far more hot, prefer to leave
4010 if (current->wakee_flips > (factor * p->wakee_flips))
4017 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4019 s64 this_load, load;
4020 int idx, this_cpu, prev_cpu;
4021 unsigned long tl_per_task;
4022 struct task_group *tg;
4023 unsigned long weight;
4027 * If we wake multiple tasks be careful to not bounce
4028 * ourselves around too much.
4034 this_cpu = smp_processor_id();
4035 prev_cpu = task_cpu(p);
4036 load = source_load(prev_cpu, idx);
4037 this_load = target_load(this_cpu, idx);
4040 * If sync wakeup then subtract the (maximum possible)
4041 * effect of the currently running task from the load
4042 * of the current CPU:
4045 tg = task_group(current);
4046 weight = current->se.load.weight;
4048 this_load += effective_load(tg, this_cpu, -weight, -weight);
4049 load += effective_load(tg, prev_cpu, 0, -weight);
4053 weight = p->se.load.weight;
4056 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4057 * due to the sync cause above having dropped this_load to 0, we'll
4058 * always have an imbalance, but there's really nothing you can do
4059 * about that, so that's good too.
4061 * Otherwise check if either cpus are near enough in load to allow this
4062 * task to be woken on this_cpu.
4064 if (this_load > 0) {
4065 s64 this_eff_load, prev_eff_load;
4067 this_eff_load = 100;
4068 this_eff_load *= power_of(prev_cpu);
4069 this_eff_load *= this_load +
4070 effective_load(tg, this_cpu, weight, weight);
4072 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4073 prev_eff_load *= power_of(this_cpu);
4074 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4076 balanced = this_eff_load <= prev_eff_load;
4081 * If the currently running task will sleep within
4082 * a reasonable amount of time then attract this newly
4085 if (sync && balanced)
4088 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4089 tl_per_task = cpu_avg_load_per_task(this_cpu);
4092 (this_load <= load &&
4093 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
4095 * This domain has SD_WAKE_AFFINE and
4096 * p is cache cold in this domain, and
4097 * there is no bad imbalance.
4099 schedstat_inc(sd, ttwu_move_affine);
4100 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4108 * find_idlest_group finds and returns the least busy CPU group within the
4111 static struct sched_group *
4112 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4113 int this_cpu, int load_idx)
4115 struct sched_group *idlest = NULL, *group = sd->groups;
4116 unsigned long min_load = ULONG_MAX, this_load = 0;
4117 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4120 unsigned long load, avg_load;
4124 /* Skip over this group if it has no CPUs allowed */
4125 if (!cpumask_intersects(sched_group_cpus(group),
4126 tsk_cpus_allowed(p)))
4129 local_group = cpumask_test_cpu(this_cpu,
4130 sched_group_cpus(group));
4132 /* Tally up the load of all CPUs in the group */
4135 for_each_cpu(i, sched_group_cpus(group)) {
4136 /* Bias balancing toward cpus of our domain */
4138 load = source_load(i, load_idx);
4140 load = target_load(i, load_idx);
4145 /* Adjust by relative CPU power of the group */
4146 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
4149 this_load = avg_load;
4150 } else if (avg_load < min_load) {
4151 min_load = avg_load;
4154 } while (group = group->next, group != sd->groups);
4156 if (!idlest || 100*this_load < imbalance*min_load)
4162 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4165 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4167 unsigned long load, min_load = ULONG_MAX;
4171 /* Traverse only the allowed CPUs */
4172 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4173 load = weighted_cpuload(i);
4175 if (load < min_load || (load == min_load && i == this_cpu)) {
4185 * Try and locate an idle CPU in the sched_domain.
4187 static int select_idle_sibling(struct task_struct *p, int target)
4189 struct sched_domain *sd;
4190 struct sched_group *sg;
4191 int i = task_cpu(p);
4193 if (idle_cpu(target))
4197 * If the prevous cpu is cache affine and idle, don't be stupid.
4199 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4203 * Otherwise, iterate the domains and find an elegible idle cpu.
4205 sd = rcu_dereference(per_cpu(sd_llc, target));
4206 for_each_lower_domain(sd) {
4209 if (!cpumask_intersects(sched_group_cpus(sg),
4210 tsk_cpus_allowed(p)))
4213 for_each_cpu(i, sched_group_cpus(sg)) {
4214 if (i == target || !idle_cpu(i))
4218 target = cpumask_first_and(sched_group_cpus(sg),
4219 tsk_cpus_allowed(p));
4223 } while (sg != sd->groups);
4230 * sched_balance_self: balance the current task (running on cpu) in domains
4231 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4234 * Balance, ie. select the least loaded group.
4236 * Returns the target CPU number, or the same CPU if no balancing is needed.
4238 * preempt must be disabled.
4241 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4243 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4244 int cpu = smp_processor_id();
4246 int want_affine = 0;
4247 int sync = wake_flags & WF_SYNC;
4249 if (p->nr_cpus_allowed == 1)
4252 if (sd_flag & SD_BALANCE_WAKE) {
4253 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
4259 for_each_domain(cpu, tmp) {
4260 if (!(tmp->flags & SD_LOAD_BALANCE))
4264 * If both cpu and prev_cpu are part of this domain,
4265 * cpu is a valid SD_WAKE_AFFINE target.
4267 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4268 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4273 if (tmp->flags & sd_flag)
4278 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4281 new_cpu = select_idle_sibling(p, prev_cpu);
4286 int load_idx = sd->forkexec_idx;
4287 struct sched_group *group;
4290 if (!(sd->flags & sd_flag)) {
4295 if (sd_flag & SD_BALANCE_WAKE)
4296 load_idx = sd->wake_idx;
4298 group = find_idlest_group(sd, p, cpu, load_idx);
4304 new_cpu = find_idlest_cpu(group, p, cpu);
4305 if (new_cpu == -1 || new_cpu == cpu) {
4306 /* Now try balancing at a lower domain level of cpu */
4311 /* Now try balancing at a lower domain level of new_cpu */
4313 weight = sd->span_weight;
4315 for_each_domain(cpu, tmp) {
4316 if (weight <= tmp->span_weight)
4318 if (tmp->flags & sd_flag)
4321 /* while loop will break here if sd == NULL */
4330 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4331 * cfs_rq_of(p) references at time of call are still valid and identify the
4332 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4333 * other assumptions, including the state of rq->lock, should be made.
4336 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4338 struct sched_entity *se = &p->se;
4339 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4342 * Load tracking: accumulate removed load so that it can be processed
4343 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4344 * to blocked load iff they have a positive decay-count. It can never
4345 * be negative here since on-rq tasks have decay-count == 0.
4347 if (se->avg.decay_count) {
4348 se->avg.decay_count = -__synchronize_entity_decay(se);
4349 atomic_long_add(se->avg.load_avg_contrib,
4350 &cfs_rq->removed_load);
4353 #endif /* CONFIG_SMP */
4355 static unsigned long
4356 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4358 unsigned long gran = sysctl_sched_wakeup_granularity;
4361 * Since its curr running now, convert the gran from real-time
4362 * to virtual-time in his units.
4364 * By using 'se' instead of 'curr' we penalize light tasks, so
4365 * they get preempted easier. That is, if 'se' < 'curr' then
4366 * the resulting gran will be larger, therefore penalizing the
4367 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4368 * be smaller, again penalizing the lighter task.
4370 * This is especially important for buddies when the leftmost
4371 * task is higher priority than the buddy.
4373 return calc_delta_fair(gran, se);
4377 * Should 'se' preempt 'curr'.
4391 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4393 s64 gran, vdiff = curr->vruntime - se->vruntime;
4398 gran = wakeup_gran(curr, se);
4405 static void set_last_buddy(struct sched_entity *se)
4407 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4410 for_each_sched_entity(se)
4411 cfs_rq_of(se)->last = se;
4414 static void set_next_buddy(struct sched_entity *se)
4416 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4419 for_each_sched_entity(se)
4420 cfs_rq_of(se)->next = se;
4423 static void set_skip_buddy(struct sched_entity *se)
4425 for_each_sched_entity(se)
4426 cfs_rq_of(se)->skip = se;
4430 * Preempt the current task with a newly woken task if needed:
4432 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4434 struct task_struct *curr = rq->curr;
4435 struct sched_entity *se = &curr->se, *pse = &p->se;
4436 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4437 int scale = cfs_rq->nr_running >= sched_nr_latency;
4438 int next_buddy_marked = 0;
4440 if (unlikely(se == pse))
4444 * This is possible from callers such as move_task(), in which we
4445 * unconditionally check_prempt_curr() after an enqueue (which may have
4446 * lead to a throttle). This both saves work and prevents false
4447 * next-buddy nomination below.
4449 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4452 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4453 set_next_buddy(pse);
4454 next_buddy_marked = 1;
4458 * We can come here with TIF_NEED_RESCHED already set from new task
4461 * Note: this also catches the edge-case of curr being in a throttled
4462 * group (e.g. via set_curr_task), since update_curr() (in the
4463 * enqueue of curr) will have resulted in resched being set. This
4464 * prevents us from potentially nominating it as a false LAST_BUDDY
4467 if (test_tsk_need_resched(curr))
4470 /* Idle tasks are by definition preempted by non-idle tasks. */
4471 if (unlikely(curr->policy == SCHED_IDLE) &&
4472 likely(p->policy != SCHED_IDLE))
4476 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4477 * is driven by the tick):
4479 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4482 find_matching_se(&se, &pse);
4483 update_curr(cfs_rq_of(se));
4485 if (wakeup_preempt_entity(se, pse) == 1) {
4487 * Bias pick_next to pick the sched entity that is
4488 * triggering this preemption.
4490 if (!next_buddy_marked)
4491 set_next_buddy(pse);
4500 * Only set the backward buddy when the current task is still
4501 * on the rq. This can happen when a wakeup gets interleaved
4502 * with schedule on the ->pre_schedule() or idle_balance()
4503 * point, either of which can * drop the rq lock.
4505 * Also, during early boot the idle thread is in the fair class,
4506 * for obvious reasons its a bad idea to schedule back to it.
4508 if (unlikely(!se->on_rq || curr == rq->idle))
4511 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4515 static struct task_struct *pick_next_task_fair(struct rq *rq)
4517 struct task_struct *p;
4518 struct cfs_rq *cfs_rq = &rq->cfs;
4519 struct sched_entity *se;
4521 if (!cfs_rq->nr_running)
4525 se = pick_next_entity(cfs_rq);
4526 set_next_entity(cfs_rq, se);
4527 cfs_rq = group_cfs_rq(se);
4531 if (hrtick_enabled(rq))
4532 hrtick_start_fair(rq, p);
4538 * Account for a descheduled task:
4540 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4542 struct sched_entity *se = &prev->se;
4543 struct cfs_rq *cfs_rq;
4545 for_each_sched_entity(se) {
4546 cfs_rq = cfs_rq_of(se);
4547 put_prev_entity(cfs_rq, se);
4552 * sched_yield() is very simple
4554 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4556 static void yield_task_fair(struct rq *rq)
4558 struct task_struct *curr = rq->curr;
4559 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4560 struct sched_entity *se = &curr->se;
4563 * Are we the only task in the tree?
4565 if (unlikely(rq->nr_running == 1))
4568 clear_buddies(cfs_rq, se);
4570 if (curr->policy != SCHED_BATCH) {
4571 update_rq_clock(rq);
4573 * Update run-time statistics of the 'current'.
4575 update_curr(cfs_rq);
4577 * Tell update_rq_clock() that we've just updated,
4578 * so we don't do microscopic update in schedule()
4579 * and double the fastpath cost.
4581 rq->skip_clock_update = 1;
4587 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4589 struct sched_entity *se = &p->se;
4591 /* throttled hierarchies are not runnable */
4592 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4595 /* Tell the scheduler that we'd really like pse to run next. */
4598 yield_task_fair(rq);
4604 /**************************************************
4605 * Fair scheduling class load-balancing methods.
4609 * The purpose of load-balancing is to achieve the same basic fairness the
4610 * per-cpu scheduler provides, namely provide a proportional amount of compute
4611 * time to each task. This is expressed in the following equation:
4613 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4615 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4616 * W_i,0 is defined as:
4618 * W_i,0 = \Sum_j w_i,j (2)
4620 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4621 * is derived from the nice value as per prio_to_weight[].
4623 * The weight average is an exponential decay average of the instantaneous
4626 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4628 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4629 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4630 * can also include other factors [XXX].
4632 * To achieve this balance we define a measure of imbalance which follows
4633 * directly from (1):
4635 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4637 * We them move tasks around to minimize the imbalance. In the continuous
4638 * function space it is obvious this converges, in the discrete case we get
4639 * a few fun cases generally called infeasible weight scenarios.
4642 * - infeasible weights;
4643 * - local vs global optima in the discrete case. ]
4648 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4649 * for all i,j solution, we create a tree of cpus that follows the hardware
4650 * topology where each level pairs two lower groups (or better). This results
4651 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4652 * tree to only the first of the previous level and we decrease the frequency
4653 * of load-balance at each level inv. proportional to the number of cpus in
4659 * \Sum { --- * --- * 2^i } = O(n) (5)
4661 * `- size of each group
4662 * | | `- number of cpus doing load-balance
4664 * `- sum over all levels
4666 * Coupled with a limit on how many tasks we can migrate every balance pass,
4667 * this makes (5) the runtime complexity of the balancer.
4669 * An important property here is that each CPU is still (indirectly) connected
4670 * to every other cpu in at most O(log n) steps:
4672 * The adjacency matrix of the resulting graph is given by:
4675 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4678 * And you'll find that:
4680 * A^(log_2 n)_i,j != 0 for all i,j (7)
4682 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4683 * The task movement gives a factor of O(m), giving a convergence complexity
4686 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4691 * In order to avoid CPUs going idle while there's still work to do, new idle
4692 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4693 * tree itself instead of relying on other CPUs to bring it work.
4695 * This adds some complexity to both (5) and (8) but it reduces the total idle
4703 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4706 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4711 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4713 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4715 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4718 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4719 * rewrite all of this once again.]
4722 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4724 enum fbq_type { regular, remote, all };
4726 #define LBF_ALL_PINNED 0x01
4727 #define LBF_NEED_BREAK 0x02
4728 #define LBF_DST_PINNED 0x04
4729 #define LBF_SOME_PINNED 0x08
4732 struct sched_domain *sd;
4740 struct cpumask *dst_grpmask;
4742 enum cpu_idle_type idle;
4744 /* The set of CPUs under consideration for load-balancing */
4745 struct cpumask *cpus;
4750 unsigned int loop_break;
4751 unsigned int loop_max;
4753 enum fbq_type fbq_type;
4757 * move_task - move a task from one runqueue to another runqueue.
4758 * Both runqueues must be locked.
4760 static void move_task(struct task_struct *p, struct lb_env *env)
4762 deactivate_task(env->src_rq, p, 0);
4763 set_task_cpu(p, env->dst_cpu);
4764 activate_task(env->dst_rq, p, 0);
4765 check_preempt_curr(env->dst_rq, p, 0);
4769 * Is this task likely cache-hot:
4772 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4776 if (p->sched_class != &fair_sched_class)
4779 if (unlikely(p->policy == SCHED_IDLE))
4783 * Buddy candidates are cache hot:
4785 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4786 (&p->se == cfs_rq_of(&p->se)->next ||
4787 &p->se == cfs_rq_of(&p->se)->last))
4790 if (sysctl_sched_migration_cost == -1)
4792 if (sysctl_sched_migration_cost == 0)
4795 delta = now - p->se.exec_start;
4797 return delta < (s64)sysctl_sched_migration_cost;
4800 #ifdef CONFIG_NUMA_BALANCING
4801 /* Returns true if the destination node has incurred more faults */
4802 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4804 int src_nid, dst_nid;
4806 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4807 !(env->sd->flags & SD_NUMA)) {
4811 src_nid = cpu_to_node(env->src_cpu);
4812 dst_nid = cpu_to_node(env->dst_cpu);
4814 if (src_nid == dst_nid)
4817 /* Always encourage migration to the preferred node. */
4818 if (dst_nid == p->numa_preferred_nid)
4821 /* If both task and group weight improve, this move is a winner. */
4822 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4823 group_weight(p, dst_nid) > group_weight(p, src_nid))
4830 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4832 int src_nid, dst_nid;
4834 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4837 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4840 src_nid = cpu_to_node(env->src_cpu);
4841 dst_nid = cpu_to_node(env->dst_cpu);
4843 if (src_nid == dst_nid)
4846 /* Migrating away from the preferred node is always bad. */
4847 if (src_nid == p->numa_preferred_nid)
4850 /* If either task or group weight get worse, don't do it. */
4851 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4852 group_weight(p, dst_nid) < group_weight(p, src_nid))
4859 static inline bool migrate_improves_locality(struct task_struct *p,
4865 static inline bool migrate_degrades_locality(struct task_struct *p,
4873 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4876 int can_migrate_task(struct task_struct *p, struct lb_env *env)
4878 int tsk_cache_hot = 0;
4880 * We do not migrate tasks that are:
4881 * 1) throttled_lb_pair, or
4882 * 2) cannot be migrated to this CPU due to cpus_allowed, or
4883 * 3) running (obviously), or
4884 * 4) are cache-hot on their current CPU.
4886 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4889 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
4892 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
4894 env->flags |= LBF_SOME_PINNED;
4897 * Remember if this task can be migrated to any other cpu in
4898 * our sched_group. We may want to revisit it if we couldn't
4899 * meet load balance goals by pulling other tasks on src_cpu.
4901 * Also avoid computing new_dst_cpu if we have already computed
4902 * one in current iteration.
4904 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
4907 /* Prevent to re-select dst_cpu via env's cpus */
4908 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4909 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
4910 env->flags |= LBF_DST_PINNED;
4911 env->new_dst_cpu = cpu;
4919 /* Record that we found atleast one task that could run on dst_cpu */
4920 env->flags &= ~LBF_ALL_PINNED;
4922 if (task_running(env->src_rq, p)) {
4923 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
4928 * Aggressive migration if:
4929 * 1) destination numa is preferred
4930 * 2) task is cache cold, or
4931 * 3) too many balance attempts have failed.
4933 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
4935 tsk_cache_hot = migrate_degrades_locality(p, env);
4937 if (migrate_improves_locality(p, env)) {
4938 #ifdef CONFIG_SCHEDSTATS
4939 if (tsk_cache_hot) {
4940 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4941 schedstat_inc(p, se.statistics.nr_forced_migrations);
4947 if (!tsk_cache_hot ||
4948 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4950 if (tsk_cache_hot) {
4951 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4952 schedstat_inc(p, se.statistics.nr_forced_migrations);
4958 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4963 * move_one_task tries to move exactly one task from busiest to this_rq, as
4964 * part of active balancing operations within "domain".
4965 * Returns 1 if successful and 0 otherwise.
4967 * Called with both runqueues locked.
4969 static int move_one_task(struct lb_env *env)
4971 struct task_struct *p, *n;
4973 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
4974 if (!can_migrate_task(p, env))
4979 * Right now, this is only the second place move_task()
4980 * is called, so we can safely collect move_task()
4981 * stats here rather than inside move_task().
4983 schedstat_inc(env->sd, lb_gained[env->idle]);
4989 static const unsigned int sched_nr_migrate_break = 32;
4992 * move_tasks tries to move up to imbalance weighted load from busiest to
4993 * this_rq, as part of a balancing operation within domain "sd".
4994 * Returns 1 if successful and 0 otherwise.
4996 * Called with both runqueues locked.
4998 static int move_tasks(struct lb_env *env)
5000 struct list_head *tasks = &env->src_rq->cfs_tasks;
5001 struct task_struct *p;
5005 if (env->imbalance <= 0)
5008 while (!list_empty(tasks)) {
5009 p = list_first_entry(tasks, struct task_struct, se.group_node);
5012 /* We've more or less seen every task there is, call it quits */
5013 if (env->loop > env->loop_max)
5016 /* take a breather every nr_migrate tasks */
5017 if (env->loop > env->loop_break) {
5018 env->loop_break += sched_nr_migrate_break;
5019 env->flags |= LBF_NEED_BREAK;
5023 if (!can_migrate_task(p, env))
5026 load = task_h_load(p);
5028 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5031 if ((load / 2) > env->imbalance)
5036 env->imbalance -= load;
5038 #ifdef CONFIG_PREEMPT
5040 * NEWIDLE balancing is a source of latency, so preemptible
5041 * kernels will stop after the first task is pulled to minimize
5042 * the critical section.
5044 if (env->idle == CPU_NEWLY_IDLE)
5049 * We only want to steal up to the prescribed amount of
5052 if (env->imbalance <= 0)
5057 list_move_tail(&p->se.group_node, tasks);
5061 * Right now, this is one of only two places move_task() is called,
5062 * so we can safely collect move_task() stats here rather than
5063 * inside move_task().
5065 schedstat_add(env->sd, lb_gained[env->idle], pulled);
5070 #ifdef CONFIG_FAIR_GROUP_SCHED
5072 * update tg->load_weight by folding this cpu's load_avg
5074 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5076 struct sched_entity *se = tg->se[cpu];
5077 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5079 /* throttled entities do not contribute to load */
5080 if (throttled_hierarchy(cfs_rq))
5083 update_cfs_rq_blocked_load(cfs_rq, 1);
5086 update_entity_load_avg(se, 1);
5088 * We pivot on our runnable average having decayed to zero for
5089 * list removal. This generally implies that all our children
5090 * have also been removed (modulo rounding error or bandwidth
5091 * control); however, such cases are rare and we can fix these
5094 * TODO: fix up out-of-order children on enqueue.
5096 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5097 list_del_leaf_cfs_rq(cfs_rq);
5099 struct rq *rq = rq_of(cfs_rq);
5100 update_rq_runnable_avg(rq, rq->nr_running);
5104 static void update_blocked_averages(int cpu)
5106 struct rq *rq = cpu_rq(cpu);
5107 struct cfs_rq *cfs_rq;
5108 unsigned long flags;
5110 raw_spin_lock_irqsave(&rq->lock, flags);
5111 update_rq_clock(rq);
5113 * Iterates the task_group tree in a bottom up fashion, see
5114 * list_add_leaf_cfs_rq() for details.
5116 for_each_leaf_cfs_rq(rq, cfs_rq) {
5118 * Note: We may want to consider periodically releasing
5119 * rq->lock about these updates so that creating many task
5120 * groups does not result in continually extending hold time.
5122 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5125 raw_spin_unlock_irqrestore(&rq->lock, flags);
5129 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5130 * This needs to be done in a top-down fashion because the load of a child
5131 * group is a fraction of its parents load.
5133 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5135 struct rq *rq = rq_of(cfs_rq);
5136 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5137 unsigned long now = jiffies;
5140 if (cfs_rq->last_h_load_update == now)
5143 cfs_rq->h_load_next = NULL;
5144 for_each_sched_entity(se) {
5145 cfs_rq = cfs_rq_of(se);
5146 cfs_rq->h_load_next = se;
5147 if (cfs_rq->last_h_load_update == now)
5152 cfs_rq->h_load = cfs_rq->runnable_load_avg;
5153 cfs_rq->last_h_load_update = now;
5156 while ((se = cfs_rq->h_load_next) != NULL) {
5157 load = cfs_rq->h_load;
5158 load = div64_ul(load * se->avg.load_avg_contrib,
5159 cfs_rq->runnable_load_avg + 1);
5160 cfs_rq = group_cfs_rq(se);
5161 cfs_rq->h_load = load;
5162 cfs_rq->last_h_load_update = now;
5166 static unsigned long task_h_load(struct task_struct *p)
5168 struct cfs_rq *cfs_rq = task_cfs_rq(p);
5170 update_cfs_rq_h_load(cfs_rq);
5171 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5172 cfs_rq->runnable_load_avg + 1);
5175 static inline void update_blocked_averages(int cpu)
5179 static unsigned long task_h_load(struct task_struct *p)
5181 return p->se.avg.load_avg_contrib;
5185 /********** Helpers for find_busiest_group ************************/
5187 * sg_lb_stats - stats of a sched_group required for load_balancing
5189 struct sg_lb_stats {
5190 unsigned long avg_load; /*Avg load across the CPUs of the group */
5191 unsigned long group_load; /* Total load over the CPUs of the group */
5192 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5193 unsigned long load_per_task;
5194 unsigned long group_power;
5195 unsigned int sum_nr_running; /* Nr tasks running in the group */
5196 unsigned int group_capacity;
5197 unsigned int idle_cpus;
5198 unsigned int group_weight;
5199 int group_imb; /* Is there an imbalance in the group ? */
5200 int group_has_capacity; /* Is there extra capacity in the group? */
5201 #ifdef CONFIG_NUMA_BALANCING
5202 unsigned int nr_numa_running;
5203 unsigned int nr_preferred_running;
5208 * sd_lb_stats - Structure to store the statistics of a sched_domain
5209 * during load balancing.
5211 struct sd_lb_stats {
5212 struct sched_group *busiest; /* Busiest group in this sd */
5213 struct sched_group *local; /* Local group in this sd */
5214 unsigned long total_load; /* Total load of all groups in sd */
5215 unsigned long total_pwr; /* Total power of all groups in sd */
5216 unsigned long avg_load; /* Average load across all groups in sd */
5218 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5219 struct sg_lb_stats local_stat; /* Statistics of the local group */
5222 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5225 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5226 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5227 * We must however clear busiest_stat::avg_load because
5228 * update_sd_pick_busiest() reads this before assignment.
5230 *sds = (struct sd_lb_stats){
5242 * get_sd_load_idx - Obtain the load index for a given sched domain.
5243 * @sd: The sched_domain whose load_idx is to be obtained.
5244 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5246 * Return: The load index.
5248 static inline int get_sd_load_idx(struct sched_domain *sd,
5249 enum cpu_idle_type idle)
5255 load_idx = sd->busy_idx;
5258 case CPU_NEWLY_IDLE:
5259 load_idx = sd->newidle_idx;
5262 load_idx = sd->idle_idx;
5269 static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
5271 return SCHED_POWER_SCALE;
5274 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5276 return default_scale_freq_power(sd, cpu);
5279 static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
5281 unsigned long weight = sd->span_weight;
5282 unsigned long smt_gain = sd->smt_gain;
5289 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5291 return default_scale_smt_power(sd, cpu);
5294 static unsigned long scale_rt_power(int cpu)
5296 struct rq *rq = cpu_rq(cpu);
5297 u64 total, available, age_stamp, avg;
5300 * Since we're reading these variables without serialization make sure
5301 * we read them once before doing sanity checks on them.
5303 age_stamp = ACCESS_ONCE(rq->age_stamp);
5304 avg = ACCESS_ONCE(rq->rt_avg);
5306 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
5308 if (unlikely(total < avg)) {
5309 /* Ensures that power won't end up being negative */
5312 available = total - avg;
5315 if (unlikely((s64)total < SCHED_POWER_SCALE))
5316 total = SCHED_POWER_SCALE;
5318 total >>= SCHED_POWER_SHIFT;
5320 return div_u64(available, total);
5323 static void update_cpu_power(struct sched_domain *sd, int cpu)
5325 unsigned long weight = sd->span_weight;
5326 unsigned long power = SCHED_POWER_SCALE;
5327 struct sched_group *sdg = sd->groups;
5329 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5330 if (sched_feat(ARCH_POWER))
5331 power *= arch_scale_smt_power(sd, cpu);
5333 power *= default_scale_smt_power(sd, cpu);
5335 power >>= SCHED_POWER_SHIFT;
5338 sdg->sgp->power_orig = power;
5340 if (sched_feat(ARCH_POWER))
5341 power *= arch_scale_freq_power(sd, cpu);
5343 power *= default_scale_freq_power(sd, cpu);
5345 power >>= SCHED_POWER_SHIFT;
5347 power *= scale_rt_power(cpu);
5348 power >>= SCHED_POWER_SHIFT;
5353 cpu_rq(cpu)->cpu_power = power;
5354 sdg->sgp->power = power;
5357 void update_group_power(struct sched_domain *sd, int cpu)
5359 struct sched_domain *child = sd->child;
5360 struct sched_group *group, *sdg = sd->groups;
5361 unsigned long power, power_orig;
5362 unsigned long interval;
5364 interval = msecs_to_jiffies(sd->balance_interval);
5365 interval = clamp(interval, 1UL, max_load_balance_interval);
5366 sdg->sgp->next_update = jiffies + interval;
5369 update_cpu_power(sd, cpu);
5373 power_orig = power = 0;
5375 if (child->flags & SD_OVERLAP) {
5377 * SD_OVERLAP domains cannot assume that child groups
5378 * span the current group.
5381 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5382 struct sched_group_power *sgp;
5383 struct rq *rq = cpu_rq(cpu);
5386 * build_sched_domains() -> init_sched_groups_power()
5387 * gets here before we've attached the domains to the
5390 * Use power_of(), which is set irrespective of domains
5391 * in update_cpu_power().
5393 * This avoids power/power_orig from being 0 and
5394 * causing divide-by-zero issues on boot.
5396 * Runtime updates will correct power_orig.
5398 if (unlikely(!rq->sd)) {
5399 power_orig += power_of(cpu);
5400 power += power_of(cpu);
5404 sgp = rq->sd->groups->sgp;
5405 power_orig += sgp->power_orig;
5406 power += sgp->power;
5410 * !SD_OVERLAP domains can assume that child groups
5411 * span the current group.
5414 group = child->groups;
5416 power_orig += group->sgp->power_orig;
5417 power += group->sgp->power;
5418 group = group->next;
5419 } while (group != child->groups);
5422 sdg->sgp->power_orig = power_orig;
5423 sdg->sgp->power = power;
5427 * Try and fix up capacity for tiny siblings, this is needed when
5428 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5429 * which on its own isn't powerful enough.
5431 * See update_sd_pick_busiest() and check_asym_packing().
5434 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5437 * Only siblings can have significantly less than SCHED_POWER_SCALE
5439 if (!(sd->flags & SD_SHARE_CPUPOWER))
5443 * If ~90% of the cpu_power is still there, we're good.
5445 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
5452 * Group imbalance indicates (and tries to solve) the problem where balancing
5453 * groups is inadequate due to tsk_cpus_allowed() constraints.
5455 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5456 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5459 * { 0 1 2 3 } { 4 5 6 7 }
5462 * If we were to balance group-wise we'd place two tasks in the first group and
5463 * two tasks in the second group. Clearly this is undesired as it will overload
5464 * cpu 3 and leave one of the cpus in the second group unused.
5466 * The current solution to this issue is detecting the skew in the first group
5467 * by noticing the lower domain failed to reach balance and had difficulty
5468 * moving tasks due to affinity constraints.
5470 * When this is so detected; this group becomes a candidate for busiest; see
5471 * update_sd_pick_busiest(). And calculate_imbalance() and
5472 * find_busiest_group() avoid some of the usual balance conditions to allow it
5473 * to create an effective group imbalance.
5475 * This is a somewhat tricky proposition since the next run might not find the
5476 * group imbalance and decide the groups need to be balanced again. A most
5477 * subtle and fragile situation.
5480 static inline int sg_imbalanced(struct sched_group *group)
5482 return group->sgp->imbalance;
5486 * Compute the group capacity.
5488 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5489 * first dividing out the smt factor and computing the actual number of cores
5490 * and limit power unit capacity with that.
5492 static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5494 unsigned int capacity, smt, cpus;
5495 unsigned int power, power_orig;
5497 power = group->sgp->power;
5498 power_orig = group->sgp->power_orig;
5499 cpus = group->group_weight;
5501 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5502 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5503 capacity = cpus / smt; /* cores */
5505 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
5507 capacity = fix_small_capacity(env->sd, group);
5513 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5514 * @env: The load balancing environment.
5515 * @group: sched_group whose statistics are to be updated.
5516 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5517 * @local_group: Does group contain this_cpu.
5518 * @sgs: variable to hold the statistics for this group.
5520 static inline void update_sg_lb_stats(struct lb_env *env,
5521 struct sched_group *group, int load_idx,
5522 int local_group, struct sg_lb_stats *sgs)
5524 unsigned long nr_running;
5528 memset(sgs, 0, sizeof(*sgs));
5530 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5531 struct rq *rq = cpu_rq(i);
5533 nr_running = rq->nr_running;
5535 /* Bias balancing toward cpus of our domain */
5537 load = target_load(i, load_idx);
5539 load = source_load(i, load_idx);
5541 sgs->group_load += load;
5542 sgs->sum_nr_running += nr_running;
5543 #ifdef CONFIG_NUMA_BALANCING
5544 sgs->nr_numa_running += rq->nr_numa_running;
5545 sgs->nr_preferred_running += rq->nr_preferred_running;
5547 sgs->sum_weighted_load += weighted_cpuload(i);
5552 /* Adjust by relative CPU power of the group */
5553 sgs->group_power = group->sgp->power;
5554 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
5556 if (sgs->sum_nr_running)
5557 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5559 sgs->group_weight = group->group_weight;
5561 sgs->group_imb = sg_imbalanced(group);
5562 sgs->group_capacity = sg_capacity(env, group);
5564 if (sgs->group_capacity > sgs->sum_nr_running)
5565 sgs->group_has_capacity = 1;
5569 * update_sd_pick_busiest - return 1 on busiest group
5570 * @env: The load balancing environment.
5571 * @sds: sched_domain statistics
5572 * @sg: sched_group candidate to be checked for being the busiest
5573 * @sgs: sched_group statistics
5575 * Determine if @sg is a busier group than the previously selected
5578 * Return: %true if @sg is a busier group than the previously selected
5579 * busiest group. %false otherwise.
5581 static bool update_sd_pick_busiest(struct lb_env *env,
5582 struct sd_lb_stats *sds,
5583 struct sched_group *sg,
5584 struct sg_lb_stats *sgs)
5586 if (sgs->avg_load <= sds->busiest_stat.avg_load)
5589 if (sgs->sum_nr_running > sgs->group_capacity)
5596 * ASYM_PACKING needs to move all the work to the lowest
5597 * numbered CPUs in the group, therefore mark all groups
5598 * higher than ourself as busy.
5600 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5601 env->dst_cpu < group_first_cpu(sg)) {
5605 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5612 #ifdef CONFIG_NUMA_BALANCING
5613 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5615 if (sgs->sum_nr_running > sgs->nr_numa_running)
5617 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5622 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5624 if (rq->nr_running > rq->nr_numa_running)
5626 if (rq->nr_running > rq->nr_preferred_running)
5631 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5636 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5640 #endif /* CONFIG_NUMA_BALANCING */
5643 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
5644 * @env: The load balancing environment.
5645 * @sds: variable to hold the statistics for this sched_domain.
5647 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
5649 struct sched_domain *child = env->sd->child;
5650 struct sched_group *sg = env->sd->groups;
5651 struct sg_lb_stats tmp_sgs;
5652 int load_idx, prefer_sibling = 0;
5654 if (child && child->flags & SD_PREFER_SIBLING)
5657 load_idx = get_sd_load_idx(env->sd, env->idle);
5660 struct sg_lb_stats *sgs = &tmp_sgs;
5663 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
5666 sgs = &sds->local_stat;
5668 if (env->idle != CPU_NEWLY_IDLE ||
5669 time_after_eq(jiffies, sg->sgp->next_update))
5670 update_group_power(env->sd, env->dst_cpu);
5673 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
5679 * In case the child domain prefers tasks go to siblings
5680 * first, lower the sg capacity to one so that we'll try
5681 * and move all the excess tasks away. We lower the capacity
5682 * of a group only if the local group has the capacity to fit
5683 * these excess tasks, i.e. nr_running < group_capacity. The
5684 * extra check prevents the case where you always pull from the
5685 * heaviest group when it is already under-utilized (possible
5686 * with a large weight task outweighs the tasks on the system).
5688 if (prefer_sibling && sds->local &&
5689 sds->local_stat.group_has_capacity)
5690 sgs->group_capacity = min(sgs->group_capacity, 1U);
5692 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
5694 sds->busiest_stat = *sgs;
5698 /* Now, start updating sd_lb_stats */
5699 sds->total_load += sgs->group_load;
5700 sds->total_pwr += sgs->group_power;
5703 } while (sg != env->sd->groups);
5705 if (env->sd->flags & SD_NUMA)
5706 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
5710 * check_asym_packing - Check to see if the group is packed into the
5713 * This is primarily intended to used at the sibling level. Some
5714 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5715 * case of POWER7, it can move to lower SMT modes only when higher
5716 * threads are idle. When in lower SMT modes, the threads will
5717 * perform better since they share less core resources. Hence when we
5718 * have idle threads, we want them to be the higher ones.
5720 * This packing function is run on idle threads. It checks to see if
5721 * the busiest CPU in this domain (core in the P7 case) has a higher
5722 * CPU number than the packing function is being run on. Here we are
5723 * assuming lower CPU number will be equivalent to lower a SMT thread
5726 * Return: 1 when packing is required and a task should be moved to
5727 * this CPU. The amount of the imbalance is returned in *imbalance.
5729 * @env: The load balancing environment.
5730 * @sds: Statistics of the sched_domain which is to be packed
5732 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
5736 if (!(env->sd->flags & SD_ASYM_PACKING))
5742 busiest_cpu = group_first_cpu(sds->busiest);
5743 if (env->dst_cpu > busiest_cpu)
5746 env->imbalance = DIV_ROUND_CLOSEST(
5747 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5754 * fix_small_imbalance - Calculate the minor imbalance that exists
5755 * amongst the groups of a sched_domain, during
5757 * @env: The load balancing environment.
5758 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
5761 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5763 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5764 unsigned int imbn = 2;
5765 unsigned long scaled_busy_load_per_task;
5766 struct sg_lb_stats *local, *busiest;
5768 local = &sds->local_stat;
5769 busiest = &sds->busiest_stat;
5771 if (!local->sum_nr_running)
5772 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5773 else if (busiest->load_per_task > local->load_per_task)
5776 scaled_busy_load_per_task =
5777 (busiest->load_per_task * SCHED_POWER_SCALE) /
5778 busiest->group_power;
5780 if (busiest->avg_load + scaled_busy_load_per_task >=
5781 local->avg_load + (scaled_busy_load_per_task * imbn)) {
5782 env->imbalance = busiest->load_per_task;
5787 * OK, we don't have enough imbalance to justify moving tasks,
5788 * however we may be able to increase total CPU power used by
5792 pwr_now += busiest->group_power *
5793 min(busiest->load_per_task, busiest->avg_load);
5794 pwr_now += local->group_power *
5795 min(local->load_per_task, local->avg_load);
5796 pwr_now /= SCHED_POWER_SCALE;
5798 /* Amount of load we'd subtract */
5799 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5800 busiest->group_power;
5801 if (busiest->avg_load > tmp) {
5802 pwr_move += busiest->group_power *
5803 min(busiest->load_per_task,
5804 busiest->avg_load - tmp);
5807 /* Amount of load we'd add */
5808 if (busiest->avg_load * busiest->group_power <
5809 busiest->load_per_task * SCHED_POWER_SCALE) {
5810 tmp = (busiest->avg_load * busiest->group_power) /
5813 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5816 pwr_move += local->group_power *
5817 min(local->load_per_task, local->avg_load + tmp);
5818 pwr_move /= SCHED_POWER_SCALE;
5820 /* Move if we gain throughput */
5821 if (pwr_move > pwr_now)
5822 env->imbalance = busiest->load_per_task;
5826 * calculate_imbalance - Calculate the amount of imbalance present within the
5827 * groups of a given sched_domain during load balance.
5828 * @env: load balance environment
5829 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
5831 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5833 unsigned long max_pull, load_above_capacity = ~0UL;
5834 struct sg_lb_stats *local, *busiest;
5836 local = &sds->local_stat;
5837 busiest = &sds->busiest_stat;
5839 if (busiest->group_imb) {
5841 * In the group_imb case we cannot rely on group-wide averages
5842 * to ensure cpu-load equilibrium, look at wider averages. XXX
5844 busiest->load_per_task =
5845 min(busiest->load_per_task, sds->avg_load);
5849 * In the presence of smp nice balancing, certain scenarios can have
5850 * max load less than avg load(as we skip the groups at or below
5851 * its cpu_power, while calculating max_load..)
5853 if (busiest->avg_load <= sds->avg_load ||
5854 local->avg_load >= sds->avg_load) {
5856 return fix_small_imbalance(env, sds);
5859 if (!busiest->group_imb) {
5861 * Don't want to pull so many tasks that a group would go idle.
5862 * Except of course for the group_imb case, since then we might
5863 * have to drop below capacity to reach cpu-load equilibrium.
5865 load_above_capacity =
5866 (busiest->sum_nr_running - busiest->group_capacity);
5868 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
5869 load_above_capacity /= busiest->group_power;
5873 * We're trying to get all the cpus to the average_load, so we don't
5874 * want to push ourselves above the average load, nor do we wish to
5875 * reduce the max loaded cpu below the average load. At the same time,
5876 * we also don't want to reduce the group load below the group capacity
5877 * (so that we can implement power-savings policies etc). Thus we look
5878 * for the minimum possible imbalance.
5880 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
5882 /* How much load to actually move to equalise the imbalance */
5883 env->imbalance = min(
5884 max_pull * busiest->group_power,
5885 (sds->avg_load - local->avg_load) * local->group_power
5886 ) / SCHED_POWER_SCALE;
5889 * if *imbalance is less than the average load per runnable task
5890 * there is no guarantee that any tasks will be moved so we'll have
5891 * a think about bumping its value to force at least one task to be
5894 if (env->imbalance < busiest->load_per_task)
5895 return fix_small_imbalance(env, sds);
5898 /******* find_busiest_group() helpers end here *********************/
5901 * find_busiest_group - Returns the busiest group within the sched_domain
5902 * if there is an imbalance. If there isn't an imbalance, and
5903 * the user has opted for power-savings, it returns a group whose
5904 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5905 * such a group exists.
5907 * Also calculates the amount of weighted load which should be moved
5908 * to restore balance.
5910 * @env: The load balancing environment.
5912 * Return: - The busiest group if imbalance exists.
5913 * - If no imbalance and user has opted for power-savings balance,
5914 * return the least loaded group whose CPUs can be
5915 * put to idle by rebalancing its tasks onto our group.
5917 static struct sched_group *find_busiest_group(struct lb_env *env)
5919 struct sg_lb_stats *local, *busiest;
5920 struct sd_lb_stats sds;
5922 init_sd_lb_stats(&sds);
5925 * Compute the various statistics relavent for load balancing at
5928 update_sd_lb_stats(env, &sds);
5929 local = &sds.local_stat;
5930 busiest = &sds.busiest_stat;
5932 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5933 check_asym_packing(env, &sds))
5936 /* There is no busy sibling group to pull tasks from */
5937 if (!sds.busiest || busiest->sum_nr_running == 0)
5940 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
5943 * If the busiest group is imbalanced the below checks don't
5944 * work because they assume all things are equal, which typically
5945 * isn't true due to cpus_allowed constraints and the like.
5947 if (busiest->group_imb)
5950 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
5951 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5952 !busiest->group_has_capacity)
5956 * If the local group is more busy than the selected busiest group
5957 * don't try and pull any tasks.
5959 if (local->avg_load >= busiest->avg_load)
5963 * Don't pull any tasks if this group is already above the domain
5966 if (local->avg_load >= sds.avg_load)
5969 if (env->idle == CPU_IDLE) {
5971 * This cpu is idle. If the busiest group load doesn't
5972 * have more tasks than the number of available cpu's and
5973 * there is no imbalance between this and busiest group
5974 * wrt to idle cpu's, it is balanced.
5976 if ((local->idle_cpus < busiest->idle_cpus) &&
5977 busiest->sum_nr_running <= busiest->group_weight)
5981 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5982 * imbalance_pct to be conservative.
5984 if (100 * busiest->avg_load <=
5985 env->sd->imbalance_pct * local->avg_load)
5990 /* Looks like there is an imbalance. Compute it */
5991 calculate_imbalance(env, &sds);
6000 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6002 static struct rq *find_busiest_queue(struct lb_env *env,
6003 struct sched_group *group)
6005 struct rq *busiest = NULL, *rq;
6006 unsigned long busiest_load = 0, busiest_power = 1;
6009 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6010 unsigned long power, capacity, wl;
6014 rt = fbq_classify_rq(rq);
6017 * We classify groups/runqueues into three groups:
6018 * - regular: there are !numa tasks
6019 * - remote: there are numa tasks that run on the 'wrong' node
6020 * - all: there is no distinction
6022 * In order to avoid migrating ideally placed numa tasks,
6023 * ignore those when there's better options.
6025 * If we ignore the actual busiest queue to migrate another
6026 * task, the next balance pass can still reduce the busiest
6027 * queue by moving tasks around inside the node.
6029 * If we cannot move enough load due to this classification
6030 * the next pass will adjust the group classification and
6031 * allow migration of more tasks.
6033 * Both cases only affect the total convergence complexity.
6035 if (rt > env->fbq_type)
6038 power = power_of(i);
6039 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
6041 capacity = fix_small_capacity(env->sd, group);
6043 wl = weighted_cpuload(i);
6046 * When comparing with imbalance, use weighted_cpuload()
6047 * which is not scaled with the cpu power.
6049 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
6053 * For the load comparisons with the other cpu's, consider
6054 * the weighted_cpuload() scaled with the cpu power, so that
6055 * the load can be moved away from the cpu that is potentially
6056 * running at a lower capacity.
6058 * Thus we're looking for max(wl_i / power_i), crosswise
6059 * multiplication to rid ourselves of the division works out
6060 * to: wl_i * power_j > wl_j * power_i; where j is our
6063 if (wl * busiest_power > busiest_load * power) {
6065 busiest_power = power;
6074 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6075 * so long as it is large enough.
6077 #define MAX_PINNED_INTERVAL 512
6079 /* Working cpumask for load_balance and load_balance_newidle. */
6080 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6082 static int need_active_balance(struct lb_env *env)
6084 struct sched_domain *sd = env->sd;
6086 if (env->idle == CPU_NEWLY_IDLE) {
6089 * ASYM_PACKING needs to force migrate tasks from busy but
6090 * higher numbered CPUs in order to pack all tasks in the
6091 * lowest numbered CPUs.
6093 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6097 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6100 static int active_load_balance_cpu_stop(void *data);
6102 static int should_we_balance(struct lb_env *env)
6104 struct sched_group *sg = env->sd->groups;
6105 struct cpumask *sg_cpus, *sg_mask;
6106 int cpu, balance_cpu = -1;
6109 * In the newly idle case, we will allow all the cpu's
6110 * to do the newly idle load balance.
6112 if (env->idle == CPU_NEWLY_IDLE)
6115 sg_cpus = sched_group_cpus(sg);
6116 sg_mask = sched_group_mask(sg);
6117 /* Try to find first idle cpu */
6118 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6119 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6126 if (balance_cpu == -1)
6127 balance_cpu = group_balance_cpu(sg);
6130 * First idle cpu or the first cpu(busiest) in this sched group
6131 * is eligible for doing load balancing at this and above domains.
6133 return balance_cpu == env->dst_cpu;
6137 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6138 * tasks if there is an imbalance.
6140 static int load_balance(int this_cpu, struct rq *this_rq,
6141 struct sched_domain *sd, enum cpu_idle_type idle,
6142 int *continue_balancing)
6144 int ld_moved, cur_ld_moved, active_balance = 0;
6145 struct sched_domain *sd_parent = sd->parent;
6146 struct sched_group *group;
6148 unsigned long flags;
6149 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
6151 struct lb_env env = {
6153 .dst_cpu = this_cpu,
6155 .dst_grpmask = sched_group_cpus(sd->groups),
6157 .loop_break = sched_nr_migrate_break,
6163 * For NEWLY_IDLE load_balancing, we don't need to consider
6164 * other cpus in our group
6166 if (idle == CPU_NEWLY_IDLE)
6167 env.dst_grpmask = NULL;
6169 cpumask_copy(cpus, cpu_active_mask);
6171 schedstat_inc(sd, lb_count[idle]);
6174 if (!should_we_balance(&env)) {
6175 *continue_balancing = 0;
6179 group = find_busiest_group(&env);
6181 schedstat_inc(sd, lb_nobusyg[idle]);
6185 busiest = find_busiest_queue(&env, group);
6187 schedstat_inc(sd, lb_nobusyq[idle]);
6191 BUG_ON(busiest == env.dst_rq);
6193 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6196 if (busiest->nr_running > 1) {
6198 * Attempt to move tasks. If find_busiest_group has found
6199 * an imbalance but busiest->nr_running <= 1, the group is
6200 * still unbalanced. ld_moved simply stays zero, so it is
6201 * correctly treated as an imbalance.
6203 env.flags |= LBF_ALL_PINNED;
6204 env.src_cpu = busiest->cpu;
6205 env.src_rq = busiest;
6206 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
6209 local_irq_save(flags);
6210 double_rq_lock(env.dst_rq, busiest);
6213 * cur_ld_moved - load moved in current iteration
6214 * ld_moved - cumulative load moved across iterations
6216 cur_ld_moved = move_tasks(&env);
6217 ld_moved += cur_ld_moved;
6218 double_rq_unlock(env.dst_rq, busiest);
6219 local_irq_restore(flags);
6222 * some other cpu did the load balance for us.
6224 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6225 resched_cpu(env.dst_cpu);
6227 if (env.flags & LBF_NEED_BREAK) {
6228 env.flags &= ~LBF_NEED_BREAK;
6233 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6234 * us and move them to an alternate dst_cpu in our sched_group
6235 * where they can run. The upper limit on how many times we
6236 * iterate on same src_cpu is dependent on number of cpus in our
6239 * This changes load balance semantics a bit on who can move
6240 * load to a given_cpu. In addition to the given_cpu itself
6241 * (or a ilb_cpu acting on its behalf where given_cpu is
6242 * nohz-idle), we now have balance_cpu in a position to move
6243 * load to given_cpu. In rare situations, this may cause
6244 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6245 * _independently_ and at _same_ time to move some load to
6246 * given_cpu) causing exceess load to be moved to given_cpu.
6247 * This however should not happen so much in practice and
6248 * moreover subsequent load balance cycles should correct the
6249 * excess load moved.
6251 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6253 /* Prevent to re-select dst_cpu via env's cpus */
6254 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6256 env.dst_rq = cpu_rq(env.new_dst_cpu);
6257 env.dst_cpu = env.new_dst_cpu;
6258 env.flags &= ~LBF_DST_PINNED;
6260 env.loop_break = sched_nr_migrate_break;
6263 * Go back to "more_balance" rather than "redo" since we
6264 * need to continue with same src_cpu.
6270 * We failed to reach balance because of affinity.
6273 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6275 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6276 *group_imbalance = 1;
6277 } else if (*group_imbalance)
6278 *group_imbalance = 0;
6281 /* All tasks on this runqueue were pinned by CPU affinity */
6282 if (unlikely(env.flags & LBF_ALL_PINNED)) {
6283 cpumask_clear_cpu(cpu_of(busiest), cpus);
6284 if (!cpumask_empty(cpus)) {
6286 env.loop_break = sched_nr_migrate_break;
6294 schedstat_inc(sd, lb_failed[idle]);
6296 * Increment the failure counter only on periodic balance.
6297 * We do not want newidle balance, which can be very
6298 * frequent, pollute the failure counter causing
6299 * excessive cache_hot migrations and active balances.
6301 if (idle != CPU_NEWLY_IDLE)
6302 sd->nr_balance_failed++;
6304 if (need_active_balance(&env)) {
6305 raw_spin_lock_irqsave(&busiest->lock, flags);
6307 /* don't kick the active_load_balance_cpu_stop,
6308 * if the curr task on busiest cpu can't be
6311 if (!cpumask_test_cpu(this_cpu,
6312 tsk_cpus_allowed(busiest->curr))) {
6313 raw_spin_unlock_irqrestore(&busiest->lock,
6315 env.flags |= LBF_ALL_PINNED;
6316 goto out_one_pinned;
6320 * ->active_balance synchronizes accesses to
6321 * ->active_balance_work. Once set, it's cleared
6322 * only after active load balance is finished.
6324 if (!busiest->active_balance) {
6325 busiest->active_balance = 1;
6326 busiest->push_cpu = this_cpu;
6329 raw_spin_unlock_irqrestore(&busiest->lock, flags);
6331 if (active_balance) {
6332 stop_one_cpu_nowait(cpu_of(busiest),
6333 active_load_balance_cpu_stop, busiest,
6334 &busiest->active_balance_work);
6338 * We've kicked active balancing, reset the failure
6341 sd->nr_balance_failed = sd->cache_nice_tries+1;
6344 sd->nr_balance_failed = 0;
6346 if (likely(!active_balance)) {
6347 /* We were unbalanced, so reset the balancing interval */
6348 sd->balance_interval = sd->min_interval;
6351 * If we've begun active balancing, start to back off. This
6352 * case may not be covered by the all_pinned logic if there
6353 * is only 1 task on the busy runqueue (because we don't call
6356 if (sd->balance_interval < sd->max_interval)
6357 sd->balance_interval *= 2;
6363 schedstat_inc(sd, lb_balanced[idle]);
6365 sd->nr_balance_failed = 0;
6368 /* tune up the balancing interval */
6369 if (((env.flags & LBF_ALL_PINNED) &&
6370 sd->balance_interval < MAX_PINNED_INTERVAL) ||
6371 (sd->balance_interval < sd->max_interval))
6372 sd->balance_interval *= 2;
6380 * idle_balance is called by schedule() if this_cpu is about to become
6381 * idle. Attempts to pull tasks from other CPUs.
6383 void idle_balance(int this_cpu, struct rq *this_rq)
6385 struct sched_domain *sd;
6386 int pulled_task = 0;
6387 unsigned long next_balance = jiffies + HZ;
6390 this_rq->idle_stamp = rq_clock(this_rq);
6392 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6396 * Drop the rq->lock, but keep IRQ/preempt disabled.
6398 raw_spin_unlock(&this_rq->lock);
6400 update_blocked_averages(this_cpu);
6402 for_each_domain(this_cpu, sd) {
6403 unsigned long interval;
6404 int continue_balancing = 1;
6405 u64 t0, domain_cost;
6407 if (!(sd->flags & SD_LOAD_BALANCE))
6410 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6413 if (sd->flags & SD_BALANCE_NEWIDLE) {
6414 t0 = sched_clock_cpu(this_cpu);
6416 /* If we've pulled tasks over stop searching: */
6417 pulled_task = load_balance(this_cpu, this_rq,
6419 &continue_balancing);
6421 domain_cost = sched_clock_cpu(this_cpu) - t0;
6422 if (domain_cost > sd->max_newidle_lb_cost)
6423 sd->max_newidle_lb_cost = domain_cost;
6425 curr_cost += domain_cost;
6428 interval = msecs_to_jiffies(sd->balance_interval);
6429 if (time_after(next_balance, sd->last_balance + interval))
6430 next_balance = sd->last_balance + interval;
6432 this_rq->idle_stamp = 0;
6438 raw_spin_lock(&this_rq->lock);
6440 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6442 * We are going idle. next_balance may be set based on
6443 * a busy processor. So reset next_balance.
6445 this_rq->next_balance = next_balance;
6448 if (curr_cost > this_rq->max_idle_balance_cost)
6449 this_rq->max_idle_balance_cost = curr_cost;
6453 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6454 * running tasks off the busiest CPU onto idle CPUs. It requires at
6455 * least 1 task to be running on each physical CPU where possible, and
6456 * avoids physical / logical imbalances.
6458 static int active_load_balance_cpu_stop(void *data)
6460 struct rq *busiest_rq = data;
6461 int busiest_cpu = cpu_of(busiest_rq);
6462 int target_cpu = busiest_rq->push_cpu;
6463 struct rq *target_rq = cpu_rq(target_cpu);
6464 struct sched_domain *sd;
6466 raw_spin_lock_irq(&busiest_rq->lock);
6468 /* make sure the requested cpu hasn't gone down in the meantime */
6469 if (unlikely(busiest_cpu != smp_processor_id() ||
6470 !busiest_rq->active_balance))
6473 /* Is there any task to move? */
6474 if (busiest_rq->nr_running <= 1)
6478 * This condition is "impossible", if it occurs
6479 * we need to fix it. Originally reported by
6480 * Bjorn Helgaas on a 128-cpu setup.
6482 BUG_ON(busiest_rq == target_rq);
6484 /* move a task from busiest_rq to target_rq */
6485 double_lock_balance(busiest_rq, target_rq);
6487 /* Search for an sd spanning us and the target CPU. */
6489 for_each_domain(target_cpu, sd) {
6490 if ((sd->flags & SD_LOAD_BALANCE) &&
6491 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6496 struct lb_env env = {
6498 .dst_cpu = target_cpu,
6499 .dst_rq = target_rq,
6500 .src_cpu = busiest_rq->cpu,
6501 .src_rq = busiest_rq,
6505 schedstat_inc(sd, alb_count);
6507 if (move_one_task(&env))
6508 schedstat_inc(sd, alb_pushed);
6510 schedstat_inc(sd, alb_failed);
6513 double_unlock_balance(busiest_rq, target_rq);
6515 busiest_rq->active_balance = 0;
6516 raw_spin_unlock_irq(&busiest_rq->lock);
6520 #ifdef CONFIG_NO_HZ_COMMON
6522 * idle load balancing details
6523 * - When one of the busy CPUs notice that there may be an idle rebalancing
6524 * needed, they will kick the idle load balancer, which then does idle
6525 * load balancing for all the idle CPUs.
6528 cpumask_var_t idle_cpus_mask;
6530 unsigned long next_balance; /* in jiffy units */
6531 } nohz ____cacheline_aligned;
6533 static inline int find_new_ilb(int call_cpu)
6535 int ilb = cpumask_first(nohz.idle_cpus_mask);
6537 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6544 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6545 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6546 * CPU (if there is one).
6548 static void nohz_balancer_kick(int cpu)
6552 nohz.next_balance++;
6554 ilb_cpu = find_new_ilb(cpu);
6556 if (ilb_cpu >= nr_cpu_ids)
6559 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
6562 * Use smp_send_reschedule() instead of resched_cpu().
6563 * This way we generate a sched IPI on the target cpu which
6564 * is idle. And the softirq performing nohz idle load balance
6565 * will be run before returning from the IPI.
6567 smp_send_reschedule(ilb_cpu);
6571 static inline void nohz_balance_exit_idle(int cpu)
6573 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6574 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6575 atomic_dec(&nohz.nr_cpus);
6576 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6580 static inline void set_cpu_sd_state_busy(void)
6582 struct sched_domain *sd;
6583 int cpu = smp_processor_id();
6586 sd = rcu_dereference(per_cpu(sd_busy, cpu));
6588 if (!sd || !sd->nohz_idle)
6592 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
6597 void set_cpu_sd_state_idle(void)
6599 struct sched_domain *sd;
6600 int cpu = smp_processor_id();
6603 sd = rcu_dereference(per_cpu(sd_busy, cpu));
6605 if (!sd || sd->nohz_idle)
6609 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
6615 * This routine will record that the cpu is going idle with tick stopped.
6616 * This info will be used in performing idle load balancing in the future.
6618 void nohz_balance_enter_idle(int cpu)
6621 * If this cpu is going down, then nothing needs to be done.
6623 if (!cpu_active(cpu))
6626 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6629 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6630 atomic_inc(&nohz.nr_cpus);
6631 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6634 static int sched_ilb_notifier(struct notifier_block *nfb,
6635 unsigned long action, void *hcpu)
6637 switch (action & ~CPU_TASKS_FROZEN) {
6639 nohz_balance_exit_idle(smp_processor_id());
6647 static DEFINE_SPINLOCK(balancing);
6650 * Scale the max load_balance interval with the number of CPUs in the system.
6651 * This trades load-balance latency on larger machines for less cross talk.
6653 void update_max_interval(void)
6655 max_load_balance_interval = HZ*num_online_cpus()/10;
6659 * It checks each scheduling domain to see if it is due to be balanced,
6660 * and initiates a balancing operation if so.
6662 * Balancing parameters are set up in init_sched_domains.
6664 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6666 int continue_balancing = 1;
6667 struct rq *rq = cpu_rq(cpu);
6668 unsigned long interval;
6669 struct sched_domain *sd;
6670 /* Earliest time when we have to do rebalance again */
6671 unsigned long next_balance = jiffies + 60*HZ;
6672 int update_next_balance = 0;
6673 int need_serialize, need_decay = 0;
6676 update_blocked_averages(cpu);
6679 for_each_domain(cpu, sd) {
6681 * Decay the newidle max times here because this is a regular
6682 * visit to all the domains. Decay ~1% per second.
6684 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6685 sd->max_newidle_lb_cost =
6686 (sd->max_newidle_lb_cost * 253) / 256;
6687 sd->next_decay_max_lb_cost = jiffies + HZ;
6690 max_cost += sd->max_newidle_lb_cost;
6692 if (!(sd->flags & SD_LOAD_BALANCE))
6696 * Stop the load balance at this level. There is another
6697 * CPU in our sched group which is doing load balancing more
6700 if (!continue_balancing) {
6706 interval = sd->balance_interval;
6707 if (idle != CPU_IDLE)
6708 interval *= sd->busy_factor;
6710 /* scale ms to jiffies */
6711 interval = msecs_to_jiffies(interval);
6712 interval = clamp(interval, 1UL, max_load_balance_interval);
6714 need_serialize = sd->flags & SD_SERIALIZE;
6716 if (need_serialize) {
6717 if (!spin_trylock(&balancing))
6721 if (time_after_eq(jiffies, sd->last_balance + interval)) {
6722 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
6724 * The LBF_DST_PINNED logic could have changed
6725 * env->dst_cpu, so we can't know our idle
6726 * state even if we migrated tasks. Update it.
6728 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
6730 sd->last_balance = jiffies;
6733 spin_unlock(&balancing);
6735 if (time_after(next_balance, sd->last_balance + interval)) {
6736 next_balance = sd->last_balance + interval;
6737 update_next_balance = 1;
6742 * Ensure the rq-wide value also decays but keep it at a
6743 * reasonable floor to avoid funnies with rq->avg_idle.
6745 rq->max_idle_balance_cost =
6746 max((u64)sysctl_sched_migration_cost, max_cost);
6751 * next_balance will be updated only when there is a need.
6752 * When the cpu is attached to null domain for ex, it will not be
6755 if (likely(update_next_balance))
6756 rq->next_balance = next_balance;
6759 #ifdef CONFIG_NO_HZ_COMMON
6761 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
6762 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6764 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6766 struct rq *this_rq = cpu_rq(this_cpu);
6770 if (idle != CPU_IDLE ||
6771 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6774 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
6775 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
6779 * If this cpu gets work to do, stop the load balancing
6780 * work being done for other cpus. Next load
6781 * balancing owner will pick it up.
6786 rq = cpu_rq(balance_cpu);
6788 raw_spin_lock_irq(&rq->lock);
6789 update_rq_clock(rq);
6790 update_idle_cpu_load(rq);
6791 raw_spin_unlock_irq(&rq->lock);
6793 rebalance_domains(balance_cpu, CPU_IDLE);
6795 if (time_after(this_rq->next_balance, rq->next_balance))
6796 this_rq->next_balance = rq->next_balance;
6798 nohz.next_balance = this_rq->next_balance;
6800 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
6804 * Current heuristic for kicking the idle load balancer in the presence
6805 * of an idle cpu is the system.
6806 * - This rq has more than one task.
6807 * - At any scheduler domain level, this cpu's scheduler group has multiple
6808 * busy cpu's exceeding the group's power.
6809 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6810 * domain span are idle.
6812 static inline int nohz_kick_needed(struct rq *rq, int cpu)
6814 unsigned long now = jiffies;
6815 struct sched_domain *sd;
6816 struct sched_group_power *sgp;
6819 if (unlikely(idle_cpu(cpu)))
6823 * We may be recently in ticked or tickless idle mode. At the first
6824 * busy tick after returning from idle, we will update the busy stats.
6826 set_cpu_sd_state_busy();
6827 nohz_balance_exit_idle(cpu);
6830 * None are in tickless mode and hence no need for NOHZ idle load
6833 if (likely(!atomic_read(&nohz.nr_cpus)))
6836 if (time_before(now, nohz.next_balance))
6839 if (rq->nr_running >= 2)
6843 sd = rcu_dereference(per_cpu(sd_busy, cpu));
6846 sgp = sd->groups->sgp;
6847 nr_busy = atomic_read(&sgp->nr_busy_cpus);
6850 goto need_kick_unlock;
6853 sd = rcu_dereference(per_cpu(sd_asym, cpu));
6855 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
6856 sched_domain_span(sd)) < cpu))
6857 goto need_kick_unlock;
6868 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6872 * run_rebalance_domains is triggered when needed from the scheduler tick.
6873 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6875 static void run_rebalance_domains(struct softirq_action *h)
6877 int this_cpu = smp_processor_id();
6878 struct rq *this_rq = cpu_rq(this_cpu);
6879 enum cpu_idle_type idle = this_rq->idle_balance ?
6880 CPU_IDLE : CPU_NOT_IDLE;
6882 rebalance_domains(this_cpu, idle);
6885 * If this cpu has a pending nohz_balance_kick, then do the
6886 * balancing on behalf of the other idle cpus whose ticks are
6889 nohz_idle_balance(this_cpu, idle);
6892 static inline int on_null_domain(int cpu)
6894 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
6898 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
6900 void trigger_load_balance(struct rq *rq, int cpu)
6902 /* Don't need to rebalance while attached to NULL domain */
6903 if (time_after_eq(jiffies, rq->next_balance) &&
6904 likely(!on_null_domain(cpu)))
6905 raise_softirq(SCHED_SOFTIRQ);
6906 #ifdef CONFIG_NO_HZ_COMMON
6907 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
6908 nohz_balancer_kick(cpu);
6912 static void rq_online_fair(struct rq *rq)
6917 static void rq_offline_fair(struct rq *rq)
6921 /* Ensure any throttled groups are reachable by pick_next_task */
6922 unthrottle_offline_cfs_rqs(rq);
6925 #endif /* CONFIG_SMP */
6928 * scheduler tick hitting a task of our scheduling class:
6930 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
6932 struct cfs_rq *cfs_rq;
6933 struct sched_entity *se = &curr->se;
6935 for_each_sched_entity(se) {
6936 cfs_rq = cfs_rq_of(se);
6937 entity_tick(cfs_rq, se, queued);
6940 if (numabalancing_enabled)
6941 task_tick_numa(rq, curr);
6943 update_rq_runnable_avg(rq, 1);
6947 * called on fork with the child task as argument from the parent's context
6948 * - child not yet on the tasklist
6949 * - preemption disabled
6951 static void task_fork_fair(struct task_struct *p)
6953 struct cfs_rq *cfs_rq;
6954 struct sched_entity *se = &p->se, *curr;
6955 int this_cpu = smp_processor_id();
6956 struct rq *rq = this_rq();
6957 unsigned long flags;
6959 raw_spin_lock_irqsave(&rq->lock, flags);
6961 update_rq_clock(rq);
6963 cfs_rq = task_cfs_rq(current);
6964 curr = cfs_rq->curr;
6967 * Not only the cpu but also the task_group of the parent might have
6968 * been changed after parent->se.parent,cfs_rq were copied to
6969 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6970 * of child point to valid ones.
6973 __set_task_cpu(p, this_cpu);
6976 update_curr(cfs_rq);
6979 se->vruntime = curr->vruntime;
6980 place_entity(cfs_rq, se, 1);
6982 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
6984 * Upon rescheduling, sched_class::put_prev_task() will place
6985 * 'current' within the tree based on its new key value.
6987 swap(curr->vruntime, se->vruntime);
6988 resched_task(rq->curr);
6991 se->vruntime -= cfs_rq->min_vruntime;
6993 raw_spin_unlock_irqrestore(&rq->lock, flags);
6997 * Priority of the task has changed. Check to see if we preempt
7001 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7007 * Reschedule if we are currently running on this runqueue and
7008 * our priority decreased, or if we are not currently running on
7009 * this runqueue and our priority is higher than the current's
7011 if (rq->curr == p) {
7012 if (p->prio > oldprio)
7013 resched_task(rq->curr);
7015 check_preempt_curr(rq, p, 0);
7018 static void switched_from_fair(struct rq *rq, struct task_struct *p)
7020 struct sched_entity *se = &p->se;
7021 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7024 * Ensure the task's vruntime is normalized, so that when its
7025 * switched back to the fair class the enqueue_entity(.flags=0) will
7026 * do the right thing.
7028 * If it was on_rq, then the dequeue_entity(.flags=0) will already
7029 * have normalized the vruntime, if it was !on_rq, then only when
7030 * the task is sleeping will it still have non-normalized vruntime.
7032 if (!se->on_rq && p->state != TASK_RUNNING) {
7034 * Fix up our vruntime so that the current sleep doesn't
7035 * cause 'unlimited' sleep bonus.
7037 place_entity(cfs_rq, se, 0);
7038 se->vruntime -= cfs_rq->min_vruntime;
7043 * Remove our load from contribution when we leave sched_fair
7044 * and ensure we don't carry in an old decay_count if we
7047 if (se->avg.decay_count) {
7048 __synchronize_entity_decay(se);
7049 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7055 * We switched to the sched_fair class.
7057 static void switched_to_fair(struct rq *rq, struct task_struct *p)
7063 * We were most likely switched from sched_rt, so
7064 * kick off the schedule if running, otherwise just see
7065 * if we can still preempt the current task.
7068 resched_task(rq->curr);
7070 check_preempt_curr(rq, p, 0);
7073 /* Account for a task changing its policy or group.
7075 * This routine is mostly called to set cfs_rq->curr field when a task
7076 * migrates between groups/classes.
7078 static void set_curr_task_fair(struct rq *rq)
7080 struct sched_entity *se = &rq->curr->se;
7082 for_each_sched_entity(se) {
7083 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7085 set_next_entity(cfs_rq, se);
7086 /* ensure bandwidth has been allocated on our new cfs_rq */
7087 account_cfs_rq_runtime(cfs_rq, 0);
7091 void init_cfs_rq(struct cfs_rq *cfs_rq)
7093 cfs_rq->tasks_timeline = RB_ROOT;
7094 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7095 #ifndef CONFIG_64BIT
7096 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7099 atomic64_set(&cfs_rq->decay_counter, 1);
7100 atomic_long_set(&cfs_rq->removed_load, 0);
7104 #ifdef CONFIG_FAIR_GROUP_SCHED
7105 static void task_move_group_fair(struct task_struct *p, int on_rq)
7107 struct cfs_rq *cfs_rq;
7109 * If the task was not on the rq at the time of this cgroup movement
7110 * it must have been asleep, sleeping tasks keep their ->vruntime
7111 * absolute on their old rq until wakeup (needed for the fair sleeper
7112 * bonus in place_entity()).
7114 * If it was on the rq, we've just 'preempted' it, which does convert
7115 * ->vruntime to a relative base.
7117 * Make sure both cases convert their relative position when migrating
7118 * to another cgroup's rq. This does somewhat interfere with the
7119 * fair sleeper stuff for the first placement, but who cares.
7122 * When !on_rq, vruntime of the task has usually NOT been normalized.
7123 * But there are some cases where it has already been normalized:
7125 * - Moving a forked child which is waiting for being woken up by
7126 * wake_up_new_task().
7127 * - Moving a task which has been woken up by try_to_wake_up() and
7128 * waiting for actually being woken up by sched_ttwu_pending().
7130 * To prevent boost or penalty in the new cfs_rq caused by delta
7131 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7133 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7137 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7138 set_task_rq(p, task_cpu(p));
7140 cfs_rq = cfs_rq_of(&p->se);
7141 p->se.vruntime += cfs_rq->min_vruntime;
7144 * migrate_task_rq_fair() will have removed our previous
7145 * contribution, but we must synchronize for ongoing future
7148 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7149 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7154 void free_fair_sched_group(struct task_group *tg)
7158 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7160 for_each_possible_cpu(i) {
7162 kfree(tg->cfs_rq[i]);
7171 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7173 struct cfs_rq *cfs_rq;
7174 struct sched_entity *se;
7177 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7180 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7184 tg->shares = NICE_0_LOAD;
7186 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7188 for_each_possible_cpu(i) {
7189 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7190 GFP_KERNEL, cpu_to_node(i));
7194 se = kzalloc_node(sizeof(struct sched_entity),
7195 GFP_KERNEL, cpu_to_node(i));
7199 init_cfs_rq(cfs_rq);
7200 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7211 void unregister_fair_sched_group(struct task_group *tg, int cpu)
7213 struct rq *rq = cpu_rq(cpu);
7214 unsigned long flags;
7217 * Only empty task groups can be destroyed; so we can speculatively
7218 * check on_list without danger of it being re-added.
7220 if (!tg->cfs_rq[cpu]->on_list)
7223 raw_spin_lock_irqsave(&rq->lock, flags);
7224 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7225 raw_spin_unlock_irqrestore(&rq->lock, flags);
7228 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7229 struct sched_entity *se, int cpu,
7230 struct sched_entity *parent)
7232 struct rq *rq = cpu_rq(cpu);
7236 init_cfs_rq_runtime(cfs_rq);
7238 tg->cfs_rq[cpu] = cfs_rq;
7241 /* se could be NULL for root_task_group */
7246 se->cfs_rq = &rq->cfs;
7248 se->cfs_rq = parent->my_q;
7251 /* guarantee group entities always have weight */
7252 update_load_set(&se->load, NICE_0_LOAD);
7253 se->parent = parent;
7256 static DEFINE_MUTEX(shares_mutex);
7258 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7261 unsigned long flags;
7264 * We can't change the weight of the root cgroup.
7269 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7271 mutex_lock(&shares_mutex);
7272 if (tg->shares == shares)
7275 tg->shares = shares;
7276 for_each_possible_cpu(i) {
7277 struct rq *rq = cpu_rq(i);
7278 struct sched_entity *se;
7281 /* Propagate contribution to hierarchy */
7282 raw_spin_lock_irqsave(&rq->lock, flags);
7284 /* Possible calls to update_curr() need rq clock */
7285 update_rq_clock(rq);
7286 for_each_sched_entity(se)
7287 update_cfs_shares(group_cfs_rq(se));
7288 raw_spin_unlock_irqrestore(&rq->lock, flags);
7292 mutex_unlock(&shares_mutex);
7295 #else /* CONFIG_FAIR_GROUP_SCHED */
7297 void free_fair_sched_group(struct task_group *tg) { }
7299 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7304 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7306 #endif /* CONFIG_FAIR_GROUP_SCHED */
7309 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7311 struct sched_entity *se = &task->se;
7312 unsigned int rr_interval = 0;
7315 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7318 if (rq->cfs.load.weight)
7319 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7325 * All the scheduling class methods:
7327 const struct sched_class fair_sched_class = {
7328 .next = &idle_sched_class,
7329 .enqueue_task = enqueue_task_fair,
7330 .dequeue_task = dequeue_task_fair,
7331 .yield_task = yield_task_fair,
7332 .yield_to_task = yield_to_task_fair,
7334 .check_preempt_curr = check_preempt_wakeup,
7336 .pick_next_task = pick_next_task_fair,
7337 .put_prev_task = put_prev_task_fair,
7340 .select_task_rq = select_task_rq_fair,
7341 .migrate_task_rq = migrate_task_rq_fair,
7343 .rq_online = rq_online_fair,
7344 .rq_offline = rq_offline_fair,
7346 .task_waking = task_waking_fair,
7349 .set_curr_task = set_curr_task_fair,
7350 .task_tick = task_tick_fair,
7351 .task_fork = task_fork_fair,
7353 .prio_changed = prio_changed_fair,
7354 .switched_from = switched_from_fair,
7355 .switched_to = switched_to_fair,
7357 .get_rr_interval = get_rr_interval_fair,
7359 #ifdef CONFIG_FAIR_GROUP_SCHED
7360 .task_move_group = task_move_group_fair,
7364 #ifdef CONFIG_SCHED_DEBUG
7365 void print_cfs_stats(struct seq_file *m, int cpu)
7367 struct cfs_rq *cfs_rq;
7370 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7371 print_cfs_rq(m, cpu, cfs_rq);
7376 __init void init_sched_fair_class(void)
7379 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7381 #ifdef CONFIG_NO_HZ_COMMON
7382 nohz.next_balance = jiffies;
7383 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7384 cpu_notifier(sched_ilb_notifier, 0);