Merge branch 'libnvdimm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdim...
[firefly-linux-kernel-4.4.55.git] / kernel / sched / stats.h
1
2 #ifdef CONFIG_SCHEDSTATS
3
4 /*
5  * Expects runqueue lock to be held for atomicity of update
6  */
7 static inline void
8 rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
9 {
10         if (rq) {
11                 rq->rq_sched_info.run_delay += delta;
12                 rq->rq_sched_info.pcount++;
13         }
14 }
15
16 /*
17  * Expects runqueue lock to be held for atomicity of update
18  */
19 static inline void
20 rq_sched_info_depart(struct rq *rq, unsigned long long delta)
21 {
22         if (rq)
23                 rq->rq_cpu_time += delta;
24 }
25
26 static inline void
27 rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
28 {
29         if (rq)
30                 rq->rq_sched_info.run_delay += delta;
31 }
32 # define schedstat_inc(rq, field)       do { (rq)->field++; } while (0)
33 # define schedstat_add(rq, field, amt)  do { (rq)->field += (amt); } while (0)
34 # define schedstat_set(var, val)        do { var = (val); } while (0)
35 #else /* !CONFIG_SCHEDSTATS */
36 static inline void
37 rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
38 {}
39 static inline void
40 rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
41 {}
42 static inline void
43 rq_sched_info_depart(struct rq *rq, unsigned long long delta)
44 {}
45 # define schedstat_inc(rq, field)       do { } while (0)
46 # define schedstat_add(rq, field, amt)  do { } while (0)
47 # define schedstat_set(var, val)        do { } while (0)
48 #endif
49
50 #ifdef CONFIG_SCHED_INFO
51 static inline void sched_info_reset_dequeued(struct task_struct *t)
52 {
53         t->sched_info.last_queued = 0;
54 }
55
56 /*
57  * We are interested in knowing how long it was from the *first* time a
58  * task was queued to the time that it finally hit a cpu, we call this routine
59  * from dequeue_task() to account for possible rq->clock skew across cpus. The
60  * delta taken on each cpu would annul the skew.
61  */
62 static inline void sched_info_dequeued(struct rq *rq, struct task_struct *t)
63 {
64         unsigned long long now = rq_clock(rq), delta = 0;
65
66         if (unlikely(sched_info_on()))
67                 if (t->sched_info.last_queued)
68                         delta = now - t->sched_info.last_queued;
69         sched_info_reset_dequeued(t);
70         t->sched_info.run_delay += delta;
71
72         rq_sched_info_dequeued(rq, delta);
73 }
74
75 /*
76  * Called when a task finally hits the cpu.  We can now calculate how
77  * long it was waiting to run.  We also note when it began so that we
78  * can keep stats on how long its timeslice is.
79  */
80 static void sched_info_arrive(struct rq *rq, struct task_struct *t)
81 {
82         unsigned long long now = rq_clock(rq), delta = 0;
83
84         if (t->sched_info.last_queued)
85                 delta = now - t->sched_info.last_queued;
86         sched_info_reset_dequeued(t);
87         t->sched_info.run_delay += delta;
88         t->sched_info.last_arrival = now;
89         t->sched_info.pcount++;
90
91         rq_sched_info_arrive(rq, delta);
92 }
93
94 /*
95  * This function is only called from enqueue_task(), but also only updates
96  * the timestamp if it is already not set.  It's assumed that
97  * sched_info_dequeued() will clear that stamp when appropriate.
98  */
99 static inline void sched_info_queued(struct rq *rq, struct task_struct *t)
100 {
101         if (unlikely(sched_info_on()))
102                 if (!t->sched_info.last_queued)
103                         t->sched_info.last_queued = rq_clock(rq);
104 }
105
106 /*
107  * Called when a process ceases being the active-running process involuntarily
108  * due, typically, to expiring its time slice (this may also be called when
109  * switching to the idle task).  Now we can calculate how long we ran.
110  * Also, if the process is still in the TASK_RUNNING state, call
111  * sched_info_queued() to mark that it has now again started waiting on
112  * the runqueue.
113  */
114 static inline void sched_info_depart(struct rq *rq, struct task_struct *t)
115 {
116         unsigned long long delta = rq_clock(rq) -
117                                         t->sched_info.last_arrival;
118
119         rq_sched_info_depart(rq, delta);
120
121         if (t->state == TASK_RUNNING)
122                 sched_info_queued(rq, t);
123 }
124
125 /*
126  * Called when tasks are switched involuntarily due, typically, to expiring
127  * their time slice.  (This may also be called when switching to or from
128  * the idle task.)  We are only called when prev != next.
129  */
130 static inline void
131 __sched_info_switch(struct rq *rq,
132                     struct task_struct *prev, struct task_struct *next)
133 {
134         /*
135          * prev now departs the cpu.  It's not interesting to record
136          * stats about how efficient we were at scheduling the idle
137          * process, however.
138          */
139         if (prev != rq->idle)
140                 sched_info_depart(rq, prev);
141
142         if (next != rq->idle)
143                 sched_info_arrive(rq, next);
144 }
145 static inline void
146 sched_info_switch(struct rq *rq,
147                   struct task_struct *prev, struct task_struct *next)
148 {
149         if (unlikely(sched_info_on()))
150                 __sched_info_switch(rq, prev, next);
151 }
152 #else
153 #define sched_info_queued(rq, t)                do { } while (0)
154 #define sched_info_reset_dequeued(t)    do { } while (0)
155 #define sched_info_dequeued(rq, t)              do { } while (0)
156 #define sched_info_depart(rq, t)                do { } while (0)
157 #define sched_info_arrive(rq, next)             do { } while (0)
158 #define sched_info_switch(rq, t, next)          do { } while (0)
159 #endif /* CONFIG_SCHED_INFO */
160
161 /*
162  * The following are functions that support scheduler-internal time accounting.
163  * These functions are generally called at the timer tick.  None of this depends
164  * on CONFIG_SCHEDSTATS.
165  */
166
167 /**
168  * cputimer_running - return true if cputimer is running
169  *
170  * @tsk:        Pointer to target task.
171  */
172 static inline bool cputimer_running(struct task_struct *tsk)
173
174 {
175         struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
176
177         /* Check if cputimer isn't running. This is accessed without locking. */
178         if (!READ_ONCE(cputimer->running))
179                 return false;
180
181         /*
182          * After we flush the task's sum_exec_runtime to sig->sum_sched_runtime
183          * in __exit_signal(), we won't account to the signal struct further
184          * cputime consumed by that task, even though the task can still be
185          * ticking after __exit_signal().
186          *
187          * In order to keep a consistent behaviour between thread group cputime
188          * and thread group cputimer accounting, lets also ignore the cputime
189          * elapsing after __exit_signal() in any thread group timer running.
190          *
191          * This makes sure that POSIX CPU clocks and timers are synchronized, so
192          * that a POSIX CPU timer won't expire while the corresponding POSIX CPU
193          * clock delta is behind the expiring timer value.
194          */
195         if (unlikely(!tsk->sighand))
196                 return false;
197
198         return true;
199 }
200
201 /**
202  * account_group_user_time - Maintain utime for a thread group.
203  *
204  * @tsk:        Pointer to task structure.
205  * @cputime:    Time value by which to increment the utime field of the
206  *              thread_group_cputime structure.
207  *
208  * If thread group time is being maintained, get the structure for the
209  * running CPU and update the utime field there.
210  */
211 static inline void account_group_user_time(struct task_struct *tsk,
212                                            cputime_t cputime)
213 {
214         struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
215
216         if (!cputimer_running(tsk))
217                 return;
218
219         atomic64_add(cputime, &cputimer->cputime_atomic.utime);
220 }
221
222 /**
223  * account_group_system_time - Maintain stime for a thread group.
224  *
225  * @tsk:        Pointer to task structure.
226  * @cputime:    Time value by which to increment the stime field of the
227  *              thread_group_cputime structure.
228  *
229  * If thread group time is being maintained, get the structure for the
230  * running CPU and update the stime field there.
231  */
232 static inline void account_group_system_time(struct task_struct *tsk,
233                                              cputime_t cputime)
234 {
235         struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
236
237         if (!cputimer_running(tsk))
238                 return;
239
240         atomic64_add(cputime, &cputimer->cputime_atomic.stime);
241 }
242
243 /**
244  * account_group_exec_runtime - Maintain exec runtime for a thread group.
245  *
246  * @tsk:        Pointer to task structure.
247  * @ns:         Time value by which to increment the sum_exec_runtime field
248  *              of the thread_group_cputime structure.
249  *
250  * If thread group time is being maintained, get the structure for the
251  * running CPU and update the sum_exec_runtime field there.
252  */
253 static inline void account_group_exec_runtime(struct task_struct *tsk,
254                                               unsigned long long ns)
255 {
256         struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
257
258         if (!cputimer_running(tsk))
259                 return;
260
261         atomic64_add(ns, &cputimer->cputime_atomic.sum_exec_runtime);
262 }