update hdmi driver: support 480p
[firefly-linux-kernel-4.4.55.git] / kernel / sched_rt.c
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5
6 #ifdef CONFIG_RT_GROUP_SCHED
7
8 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
9
10 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
11 {
12 #ifdef CONFIG_SCHED_DEBUG
13         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
14 #endif
15         return container_of(rt_se, struct task_struct, rt);
16 }
17
18 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
19 {
20         return rt_rq->rq;
21 }
22
23 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
24 {
25         return rt_se->rt_rq;
26 }
27
28 #else /* CONFIG_RT_GROUP_SCHED */
29
30 #define rt_entity_is_task(rt_se) (1)
31
32 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
33 {
34         return container_of(rt_se, struct task_struct, rt);
35 }
36
37 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
38 {
39         return container_of(rt_rq, struct rq, rt);
40 }
41
42 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
43 {
44         struct task_struct *p = rt_task_of(rt_se);
45         struct rq *rq = task_rq(p);
46
47         return &rq->rt;
48 }
49
50 #endif /* CONFIG_RT_GROUP_SCHED */
51
52 #ifdef CONFIG_SMP
53
54 static inline int rt_overloaded(struct rq *rq)
55 {
56         return atomic_read(&rq->rd->rto_count);
57 }
58
59 static inline void rt_set_overload(struct rq *rq)
60 {
61         if (!rq->online)
62                 return;
63
64         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
65         /*
66          * Make sure the mask is visible before we set
67          * the overload count. That is checked to determine
68          * if we should look at the mask. It would be a shame
69          * if we looked at the mask, but the mask was not
70          * updated yet.
71          */
72         wmb();
73         atomic_inc(&rq->rd->rto_count);
74 }
75
76 static inline void rt_clear_overload(struct rq *rq)
77 {
78         if (!rq->online)
79                 return;
80
81         /* the order here really doesn't matter */
82         atomic_dec(&rq->rd->rto_count);
83         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
84 }
85
86 static void update_rt_migration(struct rt_rq *rt_rq)
87 {
88         if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
89                 if (!rt_rq->overloaded) {
90                         rt_set_overload(rq_of_rt_rq(rt_rq));
91                         rt_rq->overloaded = 1;
92                 }
93         } else if (rt_rq->overloaded) {
94                 rt_clear_overload(rq_of_rt_rq(rt_rq));
95                 rt_rq->overloaded = 0;
96         }
97 }
98
99 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
100 {
101         if (!rt_entity_is_task(rt_se))
102                 return;
103
104         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
105
106         rt_rq->rt_nr_total++;
107         if (rt_se->nr_cpus_allowed > 1)
108                 rt_rq->rt_nr_migratory++;
109
110         update_rt_migration(rt_rq);
111 }
112
113 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
114 {
115         if (!rt_entity_is_task(rt_se))
116                 return;
117
118         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
119
120         rt_rq->rt_nr_total--;
121         if (rt_se->nr_cpus_allowed > 1)
122                 rt_rq->rt_nr_migratory--;
123
124         update_rt_migration(rt_rq);
125 }
126
127 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
128 {
129         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
130         plist_node_init(&p->pushable_tasks, p->prio);
131         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
132 }
133
134 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
135 {
136         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
137 }
138
139 static inline int has_pushable_tasks(struct rq *rq)
140 {
141         return !plist_head_empty(&rq->rt.pushable_tasks);
142 }
143
144 #else
145
146 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
147 {
148 }
149
150 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
151 {
152 }
153
154 static inline
155 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
156 {
157 }
158
159 static inline
160 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
161 {
162 }
163
164 #endif /* CONFIG_SMP */
165
166 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
167 {
168         return !list_empty(&rt_se->run_list);
169 }
170
171 #ifdef CONFIG_RT_GROUP_SCHED
172
173 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
174 {
175         if (!rt_rq->tg)
176                 return RUNTIME_INF;
177
178         return rt_rq->rt_runtime;
179 }
180
181 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
182 {
183         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
184 }
185
186 #define for_each_leaf_rt_rq(rt_rq, rq) \
187         list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
188
189 #define for_each_sched_rt_entity(rt_se) \
190         for (; rt_se; rt_se = rt_se->parent)
191
192 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
193 {
194         return rt_se->my_q;
195 }
196
197 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
198 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
199
200 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
201 {
202         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
203         struct sched_rt_entity *rt_se = rt_rq->rt_se;
204
205         if (rt_rq->rt_nr_running) {
206                 if (rt_se && !on_rt_rq(rt_se))
207                         enqueue_rt_entity(rt_se, false);
208                 if (rt_rq->highest_prio.curr < curr->prio)
209                         resched_task(curr);
210         }
211 }
212
213 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
214 {
215         struct sched_rt_entity *rt_se = rt_rq->rt_se;
216
217         if (rt_se && on_rt_rq(rt_se))
218                 dequeue_rt_entity(rt_se);
219 }
220
221 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
222 {
223         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
224 }
225
226 static int rt_se_boosted(struct sched_rt_entity *rt_se)
227 {
228         struct rt_rq *rt_rq = group_rt_rq(rt_se);
229         struct task_struct *p;
230
231         if (rt_rq)
232                 return !!rt_rq->rt_nr_boosted;
233
234         p = rt_task_of(rt_se);
235         return p->prio != p->normal_prio;
236 }
237
238 #ifdef CONFIG_SMP
239 static inline const struct cpumask *sched_rt_period_mask(void)
240 {
241         return cpu_rq(smp_processor_id())->rd->span;
242 }
243 #else
244 static inline const struct cpumask *sched_rt_period_mask(void)
245 {
246         return cpu_online_mask;
247 }
248 #endif
249
250 static inline
251 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
252 {
253         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
254 }
255
256 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
257 {
258         return &rt_rq->tg->rt_bandwidth;
259 }
260
261 #else /* !CONFIG_RT_GROUP_SCHED */
262
263 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
264 {
265         return rt_rq->rt_runtime;
266 }
267
268 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
269 {
270         return ktime_to_ns(def_rt_bandwidth.rt_period);
271 }
272
273 #define for_each_leaf_rt_rq(rt_rq, rq) \
274         for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
275
276 #define for_each_sched_rt_entity(rt_se) \
277         for (; rt_se; rt_se = NULL)
278
279 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
280 {
281         return NULL;
282 }
283
284 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
285 {
286         if (rt_rq->rt_nr_running)
287                 resched_task(rq_of_rt_rq(rt_rq)->curr);
288 }
289
290 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
291 {
292 }
293
294 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
295 {
296         return rt_rq->rt_throttled;
297 }
298
299 static inline const struct cpumask *sched_rt_period_mask(void)
300 {
301         return cpu_online_mask;
302 }
303
304 static inline
305 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
306 {
307         return &cpu_rq(cpu)->rt;
308 }
309
310 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
311 {
312         return &def_rt_bandwidth;
313 }
314
315 #endif /* CONFIG_RT_GROUP_SCHED */
316
317 #ifdef CONFIG_SMP
318 /*
319  * We ran out of runtime, see if we can borrow some from our neighbours.
320  */
321 static int do_balance_runtime(struct rt_rq *rt_rq)
322 {
323         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
324         struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
325         int i, weight, more = 0;
326         u64 rt_period;
327
328         weight = cpumask_weight(rd->span);
329
330         spin_lock(&rt_b->rt_runtime_lock);
331         rt_period = ktime_to_ns(rt_b->rt_period);
332         for_each_cpu(i, rd->span) {
333                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
334                 s64 diff;
335
336                 if (iter == rt_rq)
337                         continue;
338
339                 spin_lock(&iter->rt_runtime_lock);
340                 /*
341                  * Either all rqs have inf runtime and there's nothing to steal
342                  * or __disable_runtime() below sets a specific rq to inf to
343                  * indicate its been disabled and disalow stealing.
344                  */
345                 if (iter->rt_runtime == RUNTIME_INF)
346                         goto next;
347
348                 /*
349                  * From runqueues with spare time, take 1/n part of their
350                  * spare time, but no more than our period.
351                  */
352                 diff = iter->rt_runtime - iter->rt_time;
353                 if (diff > 0) {
354                         diff = div_u64((u64)diff, weight);
355                         if (rt_rq->rt_runtime + diff > rt_period)
356                                 diff = rt_period - rt_rq->rt_runtime;
357                         iter->rt_runtime -= diff;
358                         rt_rq->rt_runtime += diff;
359                         more = 1;
360                         if (rt_rq->rt_runtime == rt_period) {
361                                 spin_unlock(&iter->rt_runtime_lock);
362                                 break;
363                         }
364                 }
365 next:
366                 spin_unlock(&iter->rt_runtime_lock);
367         }
368         spin_unlock(&rt_b->rt_runtime_lock);
369
370         return more;
371 }
372
373 /*
374  * Ensure this RQ takes back all the runtime it lend to its neighbours.
375  */
376 static void __disable_runtime(struct rq *rq)
377 {
378         struct root_domain *rd = rq->rd;
379         struct rt_rq *rt_rq;
380
381         if (unlikely(!scheduler_running))
382                 return;
383
384         for_each_leaf_rt_rq(rt_rq, rq) {
385                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
386                 s64 want;
387                 int i;
388
389                 spin_lock(&rt_b->rt_runtime_lock);
390                 spin_lock(&rt_rq->rt_runtime_lock);
391                 /*
392                  * Either we're all inf and nobody needs to borrow, or we're
393                  * already disabled and thus have nothing to do, or we have
394                  * exactly the right amount of runtime to take out.
395                  */
396                 if (rt_rq->rt_runtime == RUNTIME_INF ||
397                                 rt_rq->rt_runtime == rt_b->rt_runtime)
398                         goto balanced;
399                 spin_unlock(&rt_rq->rt_runtime_lock);
400
401                 /*
402                  * Calculate the difference between what we started out with
403                  * and what we current have, that's the amount of runtime
404                  * we lend and now have to reclaim.
405                  */
406                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
407
408                 /*
409                  * Greedy reclaim, take back as much as we can.
410                  */
411                 for_each_cpu(i, rd->span) {
412                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
413                         s64 diff;
414
415                         /*
416                          * Can't reclaim from ourselves or disabled runqueues.
417                          */
418                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
419                                 continue;
420
421                         spin_lock(&iter->rt_runtime_lock);
422                         if (want > 0) {
423                                 diff = min_t(s64, iter->rt_runtime, want);
424                                 iter->rt_runtime -= diff;
425                                 want -= diff;
426                         } else {
427                                 iter->rt_runtime -= want;
428                                 want -= want;
429                         }
430                         spin_unlock(&iter->rt_runtime_lock);
431
432                         if (!want)
433                                 break;
434                 }
435
436                 spin_lock(&rt_rq->rt_runtime_lock);
437                 /*
438                  * We cannot be left wanting - that would mean some runtime
439                  * leaked out of the system.
440                  */
441                 BUG_ON(want);
442 balanced:
443                 /*
444                  * Disable all the borrow logic by pretending we have inf
445                  * runtime - in which case borrowing doesn't make sense.
446                  */
447                 rt_rq->rt_runtime = RUNTIME_INF;
448                 spin_unlock(&rt_rq->rt_runtime_lock);
449                 spin_unlock(&rt_b->rt_runtime_lock);
450         }
451 }
452
453 static void disable_runtime(struct rq *rq)
454 {
455         unsigned long flags;
456
457         spin_lock_irqsave(&rq->lock, flags);
458         __disable_runtime(rq);
459         spin_unlock_irqrestore(&rq->lock, flags);
460 }
461
462 static void __enable_runtime(struct rq *rq)
463 {
464         struct rt_rq *rt_rq;
465
466         if (unlikely(!scheduler_running))
467                 return;
468
469         /*
470          * Reset each runqueue's bandwidth settings
471          */
472         for_each_leaf_rt_rq(rt_rq, rq) {
473                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
474
475                 spin_lock(&rt_b->rt_runtime_lock);
476                 spin_lock(&rt_rq->rt_runtime_lock);
477                 rt_rq->rt_runtime = rt_b->rt_runtime;
478                 rt_rq->rt_time = 0;
479                 rt_rq->rt_throttled = 0;
480                 spin_unlock(&rt_rq->rt_runtime_lock);
481                 spin_unlock(&rt_b->rt_runtime_lock);
482         }
483 }
484
485 static void enable_runtime(struct rq *rq)
486 {
487         unsigned long flags;
488
489         spin_lock_irqsave(&rq->lock, flags);
490         __enable_runtime(rq);
491         spin_unlock_irqrestore(&rq->lock, flags);
492 }
493
494 static int balance_runtime(struct rt_rq *rt_rq)
495 {
496         int more = 0;
497
498         if (rt_rq->rt_time > rt_rq->rt_runtime) {
499                 spin_unlock(&rt_rq->rt_runtime_lock);
500                 more = do_balance_runtime(rt_rq);
501                 spin_lock(&rt_rq->rt_runtime_lock);
502         }
503
504         return more;
505 }
506 #else /* !CONFIG_SMP */
507 static inline int balance_runtime(struct rt_rq *rt_rq)
508 {
509         return 0;
510 }
511 #endif /* CONFIG_SMP */
512
513 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
514 {
515         int i, idle = 1;
516         const struct cpumask *span;
517
518         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
519                 return 1;
520
521         span = sched_rt_period_mask();
522         for_each_cpu(i, span) {
523                 int enqueue = 0;
524                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
525                 struct rq *rq = rq_of_rt_rq(rt_rq);
526
527                 spin_lock(&rq->lock);
528                 if (rt_rq->rt_time) {
529                         u64 runtime;
530
531                         spin_lock(&rt_rq->rt_runtime_lock);
532                         if (rt_rq->rt_throttled)
533                                 balance_runtime(rt_rq);
534                         runtime = rt_rq->rt_runtime;
535                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
536                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
537                                 rt_rq->rt_throttled = 0;
538                                 enqueue = 1;
539                         }
540                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
541                                 idle = 0;
542                         spin_unlock(&rt_rq->rt_runtime_lock);
543                 } else if (rt_rq->rt_nr_running)
544                         idle = 0;
545
546                 if (enqueue)
547                         sched_rt_rq_enqueue(rt_rq);
548                 spin_unlock(&rq->lock);
549         }
550
551         return idle;
552 }
553
554 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
555 {
556 #ifdef CONFIG_RT_GROUP_SCHED
557         struct rt_rq *rt_rq = group_rt_rq(rt_se);
558
559         if (rt_rq)
560                 return rt_rq->highest_prio.curr;
561 #endif
562
563         return rt_task_of(rt_se)->prio;
564 }
565
566 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
567 {
568         u64 runtime = sched_rt_runtime(rt_rq);
569
570         if (rt_rq->rt_throttled)
571                 return rt_rq_throttled(rt_rq);
572
573         if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
574                 return 0;
575
576         balance_runtime(rt_rq);
577         runtime = sched_rt_runtime(rt_rq);
578         if (runtime == RUNTIME_INF)
579                 return 0;
580
581         if (rt_rq->rt_time > runtime) {
582                 rt_rq->rt_throttled = 1;
583                 if (rt_rq_throttled(rt_rq)) {
584                         sched_rt_rq_dequeue(rt_rq);
585                         return 1;
586                 }
587         }
588
589         return 0;
590 }
591
592 /*
593  * Update the current task's runtime statistics. Skip current tasks that
594  * are not in our scheduling class.
595  */
596 static void update_curr_rt(struct rq *rq)
597 {
598         struct task_struct *curr = rq->curr;
599         struct sched_rt_entity *rt_se = &curr->rt;
600         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
601         u64 delta_exec;
602
603         if (!task_has_rt_policy(curr))
604                 return;
605
606         delta_exec = rq->clock - curr->se.exec_start;
607         if (unlikely((s64)delta_exec < 0))
608                 delta_exec = 0;
609
610         schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
611
612         curr->se.sum_exec_runtime += delta_exec;
613         account_group_exec_runtime(curr, delta_exec);
614
615         curr->se.exec_start = rq->clock;
616         cpuacct_charge(curr, delta_exec);
617
618         sched_rt_avg_update(rq, delta_exec);
619
620         if (!rt_bandwidth_enabled())
621                 return;
622
623         for_each_sched_rt_entity(rt_se) {
624                 rt_rq = rt_rq_of_se(rt_se);
625
626                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
627                         spin_lock(&rt_rq->rt_runtime_lock);
628                         rt_rq->rt_time += delta_exec;
629                         if (sched_rt_runtime_exceeded(rt_rq))
630                                 resched_task(curr);
631                         spin_unlock(&rt_rq->rt_runtime_lock);
632                 }
633         }
634 }
635
636 #if defined CONFIG_SMP
637
638 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);
639
640 static inline int next_prio(struct rq *rq)
641 {
642         struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);
643
644         if (next && rt_prio(next->prio))
645                 return next->prio;
646         else
647                 return MAX_RT_PRIO;
648 }
649
650 static void
651 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
652 {
653         struct rq *rq = rq_of_rt_rq(rt_rq);
654
655         if (prio < prev_prio) {
656
657                 /*
658                  * If the new task is higher in priority than anything on the
659                  * run-queue, we know that the previous high becomes our
660                  * next-highest.
661                  */
662                 rt_rq->highest_prio.next = prev_prio;
663
664                 if (rq->online)
665                         cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
666
667         } else if (prio == rt_rq->highest_prio.curr)
668                 /*
669                  * If the next task is equal in priority to the highest on
670                  * the run-queue, then we implicitly know that the next highest
671                  * task cannot be any lower than current
672                  */
673                 rt_rq->highest_prio.next = prio;
674         else if (prio < rt_rq->highest_prio.next)
675                 /*
676                  * Otherwise, we need to recompute next-highest
677                  */
678                 rt_rq->highest_prio.next = next_prio(rq);
679 }
680
681 static void
682 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
683 {
684         struct rq *rq = rq_of_rt_rq(rt_rq);
685
686         if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next))
687                 rt_rq->highest_prio.next = next_prio(rq);
688
689         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
690                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
691 }
692
693 #else /* CONFIG_SMP */
694
695 static inline
696 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
697 static inline
698 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
699
700 #endif /* CONFIG_SMP */
701
702 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
703 static void
704 inc_rt_prio(struct rt_rq *rt_rq, int prio)
705 {
706         int prev_prio = rt_rq->highest_prio.curr;
707
708         if (prio < prev_prio)
709                 rt_rq->highest_prio.curr = prio;
710
711         inc_rt_prio_smp(rt_rq, prio, prev_prio);
712 }
713
714 static void
715 dec_rt_prio(struct rt_rq *rt_rq, int prio)
716 {
717         int prev_prio = rt_rq->highest_prio.curr;
718
719         if (rt_rq->rt_nr_running) {
720
721                 WARN_ON(prio < prev_prio);
722
723                 /*
724                  * This may have been our highest task, and therefore
725                  * we may have some recomputation to do
726                  */
727                 if (prio == prev_prio) {
728                         struct rt_prio_array *array = &rt_rq->active;
729
730                         rt_rq->highest_prio.curr =
731                                 sched_find_first_bit(array->bitmap);
732                 }
733
734         } else
735                 rt_rq->highest_prio.curr = MAX_RT_PRIO;
736
737         dec_rt_prio_smp(rt_rq, prio, prev_prio);
738 }
739
740 #else
741
742 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
743 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
744
745 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
746
747 #ifdef CONFIG_RT_GROUP_SCHED
748
749 static void
750 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
751 {
752         if (rt_se_boosted(rt_se))
753                 rt_rq->rt_nr_boosted++;
754
755         if (rt_rq->tg)
756                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
757 }
758
759 static void
760 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
761 {
762         if (rt_se_boosted(rt_se))
763                 rt_rq->rt_nr_boosted--;
764
765         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
766 }
767
768 #else /* CONFIG_RT_GROUP_SCHED */
769
770 static void
771 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
772 {
773         start_rt_bandwidth(&def_rt_bandwidth);
774 }
775
776 static inline
777 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
778
779 #endif /* CONFIG_RT_GROUP_SCHED */
780
781 static inline
782 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
783 {
784         int prio = rt_se_prio(rt_se);
785
786         WARN_ON(!rt_prio(prio));
787         rt_rq->rt_nr_running++;
788
789         inc_rt_prio(rt_rq, prio);
790         inc_rt_migration(rt_se, rt_rq);
791         inc_rt_group(rt_se, rt_rq);
792 }
793
794 static inline
795 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
796 {
797         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
798         WARN_ON(!rt_rq->rt_nr_running);
799         rt_rq->rt_nr_running--;
800
801         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
802         dec_rt_migration(rt_se, rt_rq);
803         dec_rt_group(rt_se, rt_rq);
804 }
805
806 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
807 {
808         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
809         struct rt_prio_array *array = &rt_rq->active;
810         struct rt_rq *group_rq = group_rt_rq(rt_se);
811         struct list_head *queue = array->queue + rt_se_prio(rt_se);
812
813         /*
814          * Don't enqueue the group if its throttled, or when empty.
815          * The latter is a consequence of the former when a child group
816          * get throttled and the current group doesn't have any other
817          * active members.
818          */
819         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
820                 return;
821
822         if (head)
823                 list_add(&rt_se->run_list, queue);
824         else
825                 list_add_tail(&rt_se->run_list, queue);
826         __set_bit(rt_se_prio(rt_se), array->bitmap);
827
828         inc_rt_tasks(rt_se, rt_rq);
829 }
830
831 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
832 {
833         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
834         struct rt_prio_array *array = &rt_rq->active;
835
836         list_del_init(&rt_se->run_list);
837         if (list_empty(array->queue + rt_se_prio(rt_se)))
838                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
839
840         dec_rt_tasks(rt_se, rt_rq);
841 }
842
843 /*
844  * Because the prio of an upper entry depends on the lower
845  * entries, we must remove entries top - down.
846  */
847 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
848 {
849         struct sched_rt_entity *back = NULL;
850
851         for_each_sched_rt_entity(rt_se) {
852                 rt_se->back = back;
853                 back = rt_se;
854         }
855
856         for (rt_se = back; rt_se; rt_se = rt_se->back) {
857                 if (on_rt_rq(rt_se))
858                         __dequeue_rt_entity(rt_se);
859         }
860 }
861
862 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
863 {
864         dequeue_rt_stack(rt_se);
865         for_each_sched_rt_entity(rt_se)
866                 __enqueue_rt_entity(rt_se, head);
867 }
868
869 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
870 {
871         dequeue_rt_stack(rt_se);
872
873         for_each_sched_rt_entity(rt_se) {
874                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
875
876                 if (rt_rq && rt_rq->rt_nr_running)
877                         __enqueue_rt_entity(rt_se, false);
878         }
879 }
880
881 /*
882  * Adding/removing a task to/from a priority array:
883  */
884 static void
885 enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup, bool head)
886 {
887         struct sched_rt_entity *rt_se = &p->rt;
888
889         if (wakeup)
890                 rt_se->timeout = 0;
891
892         enqueue_rt_entity(rt_se, head);
893
894         if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
895                 enqueue_pushable_task(rq, p);
896 }
897
898 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
899 {
900         struct sched_rt_entity *rt_se = &p->rt;
901
902         update_curr_rt(rq);
903         dequeue_rt_entity(rt_se);
904
905         dequeue_pushable_task(rq, p);
906 }
907
908 /*
909  * Put task to the end of the run list without the overhead of dequeue
910  * followed by enqueue.
911  */
912 static void
913 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
914 {
915         if (on_rt_rq(rt_se)) {
916                 struct rt_prio_array *array = &rt_rq->active;
917                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
918
919                 if (head)
920                         list_move(&rt_se->run_list, queue);
921                 else
922                         list_move_tail(&rt_se->run_list, queue);
923         }
924 }
925
926 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
927 {
928         struct sched_rt_entity *rt_se = &p->rt;
929         struct rt_rq *rt_rq;
930
931         for_each_sched_rt_entity(rt_se) {
932                 rt_rq = rt_rq_of_se(rt_se);
933                 requeue_rt_entity(rt_rq, rt_se, head);
934         }
935 }
936
937 static void yield_task_rt(struct rq *rq)
938 {
939         requeue_task_rt(rq, rq->curr, 0);
940 }
941
942 #ifdef CONFIG_SMP
943 static int find_lowest_rq(struct task_struct *task);
944
945 static int
946 select_task_rq_rt(struct rq *rq, struct task_struct *p, int sd_flag, int flags)
947 {
948         if (sd_flag != SD_BALANCE_WAKE)
949                 return smp_processor_id();
950
951         /*
952          * If the current task is an RT task, then
953          * try to see if we can wake this RT task up on another
954          * runqueue. Otherwise simply start this RT task
955          * on its current runqueue.
956          *
957          * We want to avoid overloading runqueues. Even if
958          * the RT task is of higher priority than the current RT task.
959          * RT tasks behave differently than other tasks. If
960          * one gets preempted, we try to push it off to another queue.
961          * So trying to keep a preempting RT task on the same
962          * cache hot CPU will force the running RT task to
963          * a cold CPU. So we waste all the cache for the lower
964          * RT task in hopes of saving some of a RT task
965          * that is just being woken and probably will have
966          * cold cache anyway.
967          */
968         if (unlikely(rt_task(rq->curr)) &&
969             (p->rt.nr_cpus_allowed > 1)) {
970                 int cpu = find_lowest_rq(p);
971
972                 return (cpu == -1) ? task_cpu(p) : cpu;
973         }
974
975         /*
976          * Otherwise, just let it ride on the affined RQ and the
977          * post-schedule router will push the preempted task away
978          */
979         return task_cpu(p);
980 }
981
982 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
983 {
984         if (rq->curr->rt.nr_cpus_allowed == 1)
985                 return;
986
987         if (p->rt.nr_cpus_allowed != 1
988             && cpupri_find(&rq->rd->cpupri, p, NULL))
989                 return;
990
991         if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
992                 return;
993
994         /*
995          * There appears to be other cpus that can accept
996          * current and none to run 'p', so lets reschedule
997          * to try and push current away:
998          */
999         requeue_task_rt(rq, p, 1);
1000         resched_task(rq->curr);
1001 }
1002
1003 #endif /* CONFIG_SMP */
1004
1005 /*
1006  * Preempt the current task with a newly woken task if needed:
1007  */
1008 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1009 {
1010         if (p->prio < rq->curr->prio) {
1011                 resched_task(rq->curr);
1012                 return;
1013         }
1014
1015 #ifdef CONFIG_SMP
1016         /*
1017          * If:
1018          *
1019          * - the newly woken task is of equal priority to the current task
1020          * - the newly woken task is non-migratable while current is migratable
1021          * - current will be preempted on the next reschedule
1022          *
1023          * we should check to see if current can readily move to a different
1024          * cpu.  If so, we will reschedule to allow the push logic to try
1025          * to move current somewhere else, making room for our non-migratable
1026          * task.
1027          */
1028         if (p->prio == rq->curr->prio && !need_resched())
1029                 check_preempt_equal_prio(rq, p);
1030 #endif
1031 }
1032
1033 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1034                                                    struct rt_rq *rt_rq)
1035 {
1036         struct rt_prio_array *array = &rt_rq->active;
1037         struct sched_rt_entity *next = NULL;
1038         struct list_head *queue;
1039         int idx;
1040
1041         idx = sched_find_first_bit(array->bitmap);
1042         BUG_ON(idx >= MAX_RT_PRIO);
1043
1044         queue = array->queue + idx;
1045         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1046
1047         return next;
1048 }
1049
1050 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1051 {
1052         struct sched_rt_entity *rt_se;
1053         struct task_struct *p;
1054         struct rt_rq *rt_rq;
1055
1056         rt_rq = &rq->rt;
1057
1058         if (unlikely(!rt_rq->rt_nr_running))
1059                 return NULL;
1060
1061         if (rt_rq_throttled(rt_rq))
1062                 return NULL;
1063
1064         do {
1065                 rt_se = pick_next_rt_entity(rq, rt_rq);
1066                 BUG_ON(!rt_se);
1067                 rt_rq = group_rt_rq(rt_se);
1068         } while (rt_rq);
1069
1070         p = rt_task_of(rt_se);
1071         p->se.exec_start = rq->clock;
1072
1073         return p;
1074 }
1075
1076 static struct task_struct *pick_next_task_rt(struct rq *rq)
1077 {
1078         struct task_struct *p = _pick_next_task_rt(rq);
1079
1080         /* The running task is never eligible for pushing */
1081         if (p)
1082                 dequeue_pushable_task(rq, p);
1083
1084 #ifdef CONFIG_SMP
1085         /*
1086          * We detect this state here so that we can avoid taking the RQ
1087          * lock again later if there is no need to push
1088          */
1089         rq->post_schedule = has_pushable_tasks(rq);
1090 #endif
1091
1092         return p;
1093 }
1094
1095 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1096 {
1097         update_curr_rt(rq);
1098         p->se.exec_start = 0;
1099
1100         /*
1101          * The previous task needs to be made eligible for pushing
1102          * if it is still active
1103          */
1104         if (p->se.on_rq && p->rt.nr_cpus_allowed > 1)
1105                 enqueue_pushable_task(rq, p);
1106 }
1107
1108 #ifdef CONFIG_SMP
1109
1110 /* Only try algorithms three times */
1111 #define RT_MAX_TRIES 3
1112
1113 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
1114
1115 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1116 {
1117         if (!task_running(rq, p) &&
1118             (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
1119             (p->rt.nr_cpus_allowed > 1))
1120                 return 1;
1121         return 0;
1122 }
1123
1124 /* Return the second highest RT task, NULL otherwise */
1125 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
1126 {
1127         struct task_struct *next = NULL;
1128         struct sched_rt_entity *rt_se;
1129         struct rt_prio_array *array;
1130         struct rt_rq *rt_rq;
1131         int idx;
1132
1133         for_each_leaf_rt_rq(rt_rq, rq) {
1134                 array = &rt_rq->active;
1135                 idx = sched_find_first_bit(array->bitmap);
1136  next_idx:
1137                 if (idx >= MAX_RT_PRIO)
1138                         continue;
1139                 if (next && next->prio < idx)
1140                         continue;
1141                 list_for_each_entry(rt_se, array->queue + idx, run_list) {
1142                         struct task_struct *p = rt_task_of(rt_se);
1143                         if (pick_rt_task(rq, p, cpu)) {
1144                                 next = p;
1145                                 break;
1146                         }
1147                 }
1148                 if (!next) {
1149                         idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1150                         goto next_idx;
1151                 }
1152         }
1153
1154         return next;
1155 }
1156
1157 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1158
1159 static inline int pick_optimal_cpu(int this_cpu,
1160                                    const struct cpumask *mask)
1161 {
1162         int first;
1163
1164         /* "this_cpu" is cheaper to preempt than a remote processor */
1165         if ((this_cpu != -1) && cpumask_test_cpu(this_cpu, mask))
1166                 return this_cpu;
1167
1168         first = cpumask_first(mask);
1169         if (first < nr_cpu_ids)
1170                 return first;
1171
1172         return -1;
1173 }
1174
1175 static int find_lowest_rq(struct task_struct *task)
1176 {
1177         struct sched_domain *sd;
1178         struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1179         int this_cpu = smp_processor_id();
1180         int cpu      = task_cpu(task);
1181         cpumask_var_t domain_mask;
1182
1183         if (task->rt.nr_cpus_allowed == 1)
1184                 return -1; /* No other targets possible */
1185
1186         if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1187                 return -1; /* No targets found */
1188
1189         /*
1190          * At this point we have built a mask of cpus representing the
1191          * lowest priority tasks in the system.  Now we want to elect
1192          * the best one based on our affinity and topology.
1193          *
1194          * We prioritize the last cpu that the task executed on since
1195          * it is most likely cache-hot in that location.
1196          */
1197         if (cpumask_test_cpu(cpu, lowest_mask))
1198                 return cpu;
1199
1200         /*
1201          * Otherwise, we consult the sched_domains span maps to figure
1202          * out which cpu is logically closest to our hot cache data.
1203          */
1204         if (this_cpu == cpu)
1205                 this_cpu = -1; /* Skip this_cpu opt if the same */
1206
1207         if (alloc_cpumask_var(&domain_mask, GFP_ATOMIC)) {
1208                 for_each_domain(cpu, sd) {
1209                         if (sd->flags & SD_WAKE_AFFINE) {
1210                                 int best_cpu;
1211
1212                                 cpumask_and(domain_mask,
1213                                             sched_domain_span(sd),
1214                                             lowest_mask);
1215
1216                                 best_cpu = pick_optimal_cpu(this_cpu,
1217                                                             domain_mask);
1218
1219                                 if (best_cpu != -1) {
1220                                         free_cpumask_var(domain_mask);
1221                                         return best_cpu;
1222                                 }
1223                         }
1224                 }
1225                 free_cpumask_var(domain_mask);
1226         }
1227
1228         /*
1229          * And finally, if there were no matches within the domains
1230          * just give the caller *something* to work with from the compatible
1231          * locations.
1232          */
1233         return pick_optimal_cpu(this_cpu, lowest_mask);
1234 }
1235
1236 /* Will lock the rq it finds */
1237 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1238 {
1239         struct rq *lowest_rq = NULL;
1240         int tries;
1241         int cpu;
1242
1243         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1244                 cpu = find_lowest_rq(task);
1245
1246                 if ((cpu == -1) || (cpu == rq->cpu))
1247                         break;
1248
1249                 lowest_rq = cpu_rq(cpu);
1250
1251                 /* if the prio of this runqueue changed, try again */
1252                 if (double_lock_balance(rq, lowest_rq)) {
1253                         /*
1254                          * We had to unlock the run queue. In
1255                          * the mean time, task could have
1256                          * migrated already or had its affinity changed.
1257                          * Also make sure that it wasn't scheduled on its rq.
1258                          */
1259                         if (unlikely(task_rq(task) != rq ||
1260                                      !cpumask_test_cpu(lowest_rq->cpu,
1261                                                        &task->cpus_allowed) ||
1262                                      task_running(rq, task) ||
1263                                      !task->se.on_rq)) {
1264
1265                                 spin_unlock(&lowest_rq->lock);
1266                                 lowest_rq = NULL;
1267                                 break;
1268                         }
1269                 }
1270
1271                 /* If this rq is still suitable use it. */
1272                 if (lowest_rq->rt.highest_prio.curr > task->prio)
1273                         break;
1274
1275                 /* try again */
1276                 double_unlock_balance(rq, lowest_rq);
1277                 lowest_rq = NULL;
1278         }
1279
1280         return lowest_rq;
1281 }
1282
1283 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1284 {
1285         struct task_struct *p;
1286
1287         if (!has_pushable_tasks(rq))
1288                 return NULL;
1289
1290         p = plist_first_entry(&rq->rt.pushable_tasks,
1291                               struct task_struct, pushable_tasks);
1292
1293         BUG_ON(rq->cpu != task_cpu(p));
1294         BUG_ON(task_current(rq, p));
1295         BUG_ON(p->rt.nr_cpus_allowed <= 1);
1296
1297         BUG_ON(!p->se.on_rq);
1298         BUG_ON(!rt_task(p));
1299
1300         return p;
1301 }
1302
1303 /*
1304  * If the current CPU has more than one RT task, see if the non
1305  * running task can migrate over to a CPU that is running a task
1306  * of lesser priority.
1307  */
1308 static int push_rt_task(struct rq *rq)
1309 {
1310         struct task_struct *next_task;
1311         struct rq *lowest_rq;
1312
1313         if (!rq->rt.overloaded)
1314                 return 0;
1315
1316         next_task = pick_next_pushable_task(rq);
1317         if (!next_task)
1318                 return 0;
1319
1320  retry:
1321         if (unlikely(next_task == rq->curr)) {
1322                 WARN_ON(1);
1323                 return 0;
1324         }
1325
1326         /*
1327          * It's possible that the next_task slipped in of
1328          * higher priority than current. If that's the case
1329          * just reschedule current.
1330          */
1331         if (unlikely(next_task->prio < rq->curr->prio)) {
1332                 resched_task(rq->curr);
1333                 return 0;
1334         }
1335
1336         /* We might release rq lock */
1337         get_task_struct(next_task);
1338
1339         /* find_lock_lowest_rq locks the rq if found */
1340         lowest_rq = find_lock_lowest_rq(next_task, rq);
1341         if (!lowest_rq) {
1342                 struct task_struct *task;
1343                 /*
1344                  * find lock_lowest_rq releases rq->lock
1345                  * so it is possible that next_task has migrated.
1346                  *
1347                  * We need to make sure that the task is still on the same
1348                  * run-queue and is also still the next task eligible for
1349                  * pushing.
1350                  */
1351                 task = pick_next_pushable_task(rq);
1352                 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1353                         /*
1354                          * If we get here, the task hasnt moved at all, but
1355                          * it has failed to push.  We will not try again,
1356                          * since the other cpus will pull from us when they
1357                          * are ready.
1358                          */
1359                         dequeue_pushable_task(rq, next_task);
1360                         goto out;
1361                 }
1362
1363                 if (!task)
1364                         /* No more tasks, just exit */
1365                         goto out;
1366
1367                 /*
1368                  * Something has shifted, try again.
1369                  */
1370                 put_task_struct(next_task);
1371                 next_task = task;
1372                 goto retry;
1373         }
1374
1375         deactivate_task(rq, next_task, 0);
1376         set_task_cpu(next_task, lowest_rq->cpu);
1377         activate_task(lowest_rq, next_task, 0);
1378
1379         resched_task(lowest_rq->curr);
1380
1381         double_unlock_balance(rq, lowest_rq);
1382
1383 out:
1384         put_task_struct(next_task);
1385
1386         return 1;
1387 }
1388
1389 static void push_rt_tasks(struct rq *rq)
1390 {
1391         /* push_rt_task will return true if it moved an RT */
1392         while (push_rt_task(rq))
1393                 ;
1394 }
1395
1396 static int pull_rt_task(struct rq *this_rq)
1397 {
1398         int this_cpu = this_rq->cpu, ret = 0, cpu;
1399         struct task_struct *p;
1400         struct rq *src_rq;
1401
1402         if (likely(!rt_overloaded(this_rq)))
1403                 return 0;
1404
1405         for_each_cpu(cpu, this_rq->rd->rto_mask) {
1406                 if (this_cpu == cpu)
1407                         continue;
1408
1409                 src_rq = cpu_rq(cpu);
1410
1411                 /*
1412                  * Don't bother taking the src_rq->lock if the next highest
1413                  * task is known to be lower-priority than our current task.
1414                  * This may look racy, but if this value is about to go
1415                  * logically higher, the src_rq will push this task away.
1416                  * And if its going logically lower, we do not care
1417                  */
1418                 if (src_rq->rt.highest_prio.next >=
1419                     this_rq->rt.highest_prio.curr)
1420                         continue;
1421
1422                 /*
1423                  * We can potentially drop this_rq's lock in
1424                  * double_lock_balance, and another CPU could
1425                  * alter this_rq
1426                  */
1427                 double_lock_balance(this_rq, src_rq);
1428
1429                 /*
1430                  * Are there still pullable RT tasks?
1431                  */
1432                 if (src_rq->rt.rt_nr_running <= 1)
1433                         goto skip;
1434
1435                 p = pick_next_highest_task_rt(src_rq, this_cpu);
1436
1437                 /*
1438                  * Do we have an RT task that preempts
1439                  * the to-be-scheduled task?
1440                  */
1441                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1442                         WARN_ON(p == src_rq->curr);
1443                         WARN_ON(!p->se.on_rq);
1444
1445                         /*
1446                          * There's a chance that p is higher in priority
1447                          * than what's currently running on its cpu.
1448                          * This is just that p is wakeing up and hasn't
1449                          * had a chance to schedule. We only pull
1450                          * p if it is lower in priority than the
1451                          * current task on the run queue
1452                          */
1453                         if (p->prio < src_rq->curr->prio)
1454                                 goto skip;
1455
1456                         ret = 1;
1457
1458                         deactivate_task(src_rq, p, 0);
1459                         set_task_cpu(p, this_cpu);
1460                         activate_task(this_rq, p, 0);
1461                         /*
1462                          * We continue with the search, just in
1463                          * case there's an even higher prio task
1464                          * in another runqueue. (low likelyhood
1465                          * but possible)
1466                          */
1467                 }
1468  skip:
1469                 double_unlock_balance(this_rq, src_rq);
1470         }
1471
1472         return ret;
1473 }
1474
1475 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1476 {
1477         /* Try to pull RT tasks here if we lower this rq's prio */
1478         if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
1479                 pull_rt_task(rq);
1480 }
1481
1482 static void post_schedule_rt(struct rq *rq)
1483 {
1484         push_rt_tasks(rq);
1485 }
1486
1487 /*
1488  * If we are not running and we are not going to reschedule soon, we should
1489  * try to push tasks away now
1490  */
1491 static void task_woken_rt(struct rq *rq, struct task_struct *p)
1492 {
1493         if (!task_running(rq, p) &&
1494             !test_tsk_need_resched(rq->curr) &&
1495             has_pushable_tasks(rq) &&
1496             p->rt.nr_cpus_allowed > 1)
1497                 push_rt_tasks(rq);
1498 }
1499
1500 static unsigned long
1501 load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1502                 unsigned long max_load_move,
1503                 struct sched_domain *sd, enum cpu_idle_type idle,
1504                 int *all_pinned, int *this_best_prio)
1505 {
1506         /* don't touch RT tasks */
1507         return 0;
1508 }
1509
1510 static int
1511 move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1512                  struct sched_domain *sd, enum cpu_idle_type idle)
1513 {
1514         /* don't touch RT tasks */
1515         return 0;
1516 }
1517
1518 static void set_cpus_allowed_rt(struct task_struct *p,
1519                                 const struct cpumask *new_mask)
1520 {
1521         int weight = cpumask_weight(new_mask);
1522
1523         BUG_ON(!rt_task(p));
1524
1525         /*
1526          * Update the migration status of the RQ if we have an RT task
1527          * which is running AND changing its weight value.
1528          */
1529         if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1530                 struct rq *rq = task_rq(p);
1531
1532                 if (!task_current(rq, p)) {
1533                         /*
1534                          * Make sure we dequeue this task from the pushable list
1535                          * before going further.  It will either remain off of
1536                          * the list because we are no longer pushable, or it
1537                          * will be requeued.
1538                          */
1539                         if (p->rt.nr_cpus_allowed > 1)
1540                                 dequeue_pushable_task(rq, p);
1541
1542                         /*
1543                          * Requeue if our weight is changing and still > 1
1544                          */
1545                         if (weight > 1)
1546                                 enqueue_pushable_task(rq, p);
1547
1548                 }
1549
1550                 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1551                         rq->rt.rt_nr_migratory++;
1552                 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1553                         BUG_ON(!rq->rt.rt_nr_migratory);
1554                         rq->rt.rt_nr_migratory--;
1555                 }
1556
1557                 update_rt_migration(&rq->rt);
1558         }
1559
1560         cpumask_copy(&p->cpus_allowed, new_mask);
1561         p->rt.nr_cpus_allowed = weight;
1562 }
1563
1564 /* Assumes rq->lock is held */
1565 static void rq_online_rt(struct rq *rq)
1566 {
1567         if (rq->rt.overloaded)
1568                 rt_set_overload(rq);
1569
1570         __enable_runtime(rq);
1571
1572         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1573 }
1574
1575 /* Assumes rq->lock is held */
1576 static void rq_offline_rt(struct rq *rq)
1577 {
1578         if (rq->rt.overloaded)
1579                 rt_clear_overload(rq);
1580
1581         __disable_runtime(rq);
1582
1583         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1584 }
1585
1586 /*
1587  * When switch from the rt queue, we bring ourselves to a position
1588  * that we might want to pull RT tasks from other runqueues.
1589  */
1590 static void switched_from_rt(struct rq *rq, struct task_struct *p,
1591                            int running)
1592 {
1593         /*
1594          * If there are other RT tasks then we will reschedule
1595          * and the scheduling of the other RT tasks will handle
1596          * the balancing. But if we are the last RT task
1597          * we may need to handle the pulling of RT tasks
1598          * now.
1599          */
1600         if (!rq->rt.rt_nr_running)
1601                 pull_rt_task(rq);
1602 }
1603
1604 static inline void init_sched_rt_class(void)
1605 {
1606         unsigned int i;
1607
1608         for_each_possible_cpu(i)
1609                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1610                                         GFP_KERNEL, cpu_to_node(i));
1611 }
1612 #endif /* CONFIG_SMP */
1613
1614 /*
1615  * When switching a task to RT, we may overload the runqueue
1616  * with RT tasks. In this case we try to push them off to
1617  * other runqueues.
1618  */
1619 static void switched_to_rt(struct rq *rq, struct task_struct *p,
1620                            int running)
1621 {
1622         int check_resched = 1;
1623
1624         /*
1625          * If we are already running, then there's nothing
1626          * that needs to be done. But if we are not running
1627          * we may need to preempt the current running task.
1628          * If that current running task is also an RT task
1629          * then see if we can move to another run queue.
1630          */
1631         if (!running) {
1632 #ifdef CONFIG_SMP
1633                 if (rq->rt.overloaded && push_rt_task(rq) &&
1634                     /* Don't resched if we changed runqueues */
1635                     rq != task_rq(p))
1636                         check_resched = 0;
1637 #endif /* CONFIG_SMP */
1638                 if (check_resched && p->prio < rq->curr->prio)
1639                         resched_task(rq->curr);
1640         }
1641 }
1642
1643 /*
1644  * Priority of the task has changed. This may cause
1645  * us to initiate a push or pull.
1646  */
1647 static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1648                             int oldprio, int running)
1649 {
1650         if (running) {
1651 #ifdef CONFIG_SMP
1652                 /*
1653                  * If our priority decreases while running, we
1654                  * may need to pull tasks to this runqueue.
1655                  */
1656                 if (oldprio < p->prio)
1657                         pull_rt_task(rq);
1658                 /*
1659                  * If there's a higher priority task waiting to run
1660                  * then reschedule. Note, the above pull_rt_task
1661                  * can release the rq lock and p could migrate.
1662                  * Only reschedule if p is still on the same runqueue.
1663                  */
1664                 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1665                         resched_task(p);
1666 #else
1667                 /* For UP simply resched on drop of prio */
1668                 if (oldprio < p->prio)
1669                         resched_task(p);
1670 #endif /* CONFIG_SMP */
1671         } else {
1672                 /*
1673                  * This task is not running, but if it is
1674                  * greater than the current running task
1675                  * then reschedule.
1676                  */
1677                 if (p->prio < rq->curr->prio)
1678                         resched_task(rq->curr);
1679         }
1680 }
1681
1682 static void watchdog(struct rq *rq, struct task_struct *p)
1683 {
1684         unsigned long soft, hard;
1685
1686         if (!p->signal)
1687                 return;
1688
1689         soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1690         hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1691
1692         if (soft != RLIM_INFINITY) {
1693                 unsigned long next;
1694
1695                 p->rt.timeout++;
1696                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1697                 if (p->rt.timeout > next)
1698                         p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1699         }
1700 }
1701
1702 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1703 {
1704         update_curr_rt(rq);
1705
1706         watchdog(rq, p);
1707
1708         /*
1709          * RR tasks need a special form of timeslice management.
1710          * FIFO tasks have no timeslices.
1711          */
1712         if (p->policy != SCHED_RR)
1713                 return;
1714
1715         if (--p->rt.time_slice)
1716                 return;
1717
1718         p->rt.time_slice = DEF_TIMESLICE;
1719
1720         /*
1721          * Requeue to the end of queue if we are not the only element
1722          * on the queue:
1723          */
1724         if (p->rt.run_list.prev != p->rt.run_list.next) {
1725                 requeue_task_rt(rq, p, 0);
1726                 set_tsk_need_resched(p);
1727         }
1728 }
1729
1730 static void set_curr_task_rt(struct rq *rq)
1731 {
1732         struct task_struct *p = rq->curr;
1733
1734         p->se.exec_start = rq->clock;
1735
1736         /* The running task is never eligible for pushing */
1737         dequeue_pushable_task(rq, p);
1738 }
1739
1740 unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
1741 {
1742         /*
1743          * Time slice is 0 for SCHED_FIFO tasks
1744          */
1745         if (task->policy == SCHED_RR)
1746                 return DEF_TIMESLICE;
1747         else
1748                 return 0;
1749 }
1750
1751 static const struct sched_class rt_sched_class = {
1752         .next                   = &fair_sched_class,
1753         .enqueue_task           = enqueue_task_rt,
1754         .dequeue_task           = dequeue_task_rt,
1755         .yield_task             = yield_task_rt,
1756
1757         .check_preempt_curr     = check_preempt_curr_rt,
1758
1759         .pick_next_task         = pick_next_task_rt,
1760         .put_prev_task          = put_prev_task_rt,
1761
1762 #ifdef CONFIG_SMP
1763         .select_task_rq         = select_task_rq_rt,
1764
1765         .load_balance           = load_balance_rt,
1766         .move_one_task          = move_one_task_rt,
1767         .set_cpus_allowed       = set_cpus_allowed_rt,
1768         .rq_online              = rq_online_rt,
1769         .rq_offline             = rq_offline_rt,
1770         .pre_schedule           = pre_schedule_rt,
1771         .post_schedule          = post_schedule_rt,
1772         .task_woken             = task_woken_rt,
1773         .switched_from          = switched_from_rt,
1774 #endif
1775
1776         .set_curr_task          = set_curr_task_rt,
1777         .task_tick              = task_tick_rt,
1778
1779         .get_rr_interval        = get_rr_interval_rt,
1780
1781         .prio_changed           = prio_changed_rt,
1782         .switched_to            = switched_to_rt,
1783 };
1784
1785 #ifdef CONFIG_SCHED_DEBUG
1786 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1787
1788 static void print_rt_stats(struct seq_file *m, int cpu)
1789 {
1790         struct rt_rq *rt_rq;
1791
1792         rcu_read_lock();
1793         for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1794                 print_rt_rq(m, cpu, rt_rq);
1795         rcu_read_unlock();
1796 }
1797 #endif /* CONFIG_SCHED_DEBUG */
1798