Merge remote-tracking branch 'stable/linux-3.0.y' into develop-3.0
[firefly-linux-kernel-4.4.55.git] / kernel / sys.c
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/notifier.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
15 #include <linux/fs.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/gfp.h>
40 #include <linux/syscore_ops.h>
41 #include <linux/version.h>
42 #include <linux/ctype.h>
43
44 #include <linux/compat.h>
45 #include <linux/syscalls.h>
46 #include <linux/kprobes.h>
47 #include <linux/user_namespace.h>
48
49 #include <linux/kmsg_dump.h>
50 /* Move somewhere else to avoid recompiling? */
51 #include <generated/utsrelease.h>
52
53 #include <asm/uaccess.h>
54 #include <asm/io.h>
55 #include <asm/unistd.h>
56 /***************
57 *        DEBUG
58 ****************/
59 #define RESTART_DEBUG
60 #ifdef RESTART_DEBUG
61 #define restart_dbg(format, arg...) \
62         printk("RESTART_DEBUG : " format "\n" , ## arg)
63 #else
64 #define restart_dbg(format, arg...) do {} while (0)
65 #endif
66
67
68
69 #ifndef SET_UNALIGN_CTL
70 # define SET_UNALIGN_CTL(a,b)   (-EINVAL)
71 #endif
72 #ifndef GET_UNALIGN_CTL
73 # define GET_UNALIGN_CTL(a,b)   (-EINVAL)
74 #endif
75 #ifndef SET_FPEMU_CTL
76 # define SET_FPEMU_CTL(a,b)     (-EINVAL)
77 #endif
78 #ifndef GET_FPEMU_CTL
79 # define GET_FPEMU_CTL(a,b)     (-EINVAL)
80 #endif
81 #ifndef SET_FPEXC_CTL
82 # define SET_FPEXC_CTL(a,b)     (-EINVAL)
83 #endif
84 #ifndef GET_FPEXC_CTL
85 # define GET_FPEXC_CTL(a,b)     (-EINVAL)
86 #endif
87 #ifndef GET_ENDIAN
88 # define GET_ENDIAN(a,b)        (-EINVAL)
89 #endif
90 #ifndef SET_ENDIAN
91 # define SET_ENDIAN(a,b)        (-EINVAL)
92 #endif
93 #ifndef GET_TSC_CTL
94 # define GET_TSC_CTL(a)         (-EINVAL)
95 #endif
96 #ifndef SET_TSC_CTL
97 # define SET_TSC_CTL(a)         (-EINVAL)
98 #endif
99
100 /*
101  * this is where the system-wide overflow UID and GID are defined, for
102  * architectures that now have 32-bit UID/GID but didn't in the past
103  */
104
105 int overflowuid = DEFAULT_OVERFLOWUID;
106 int overflowgid = DEFAULT_OVERFLOWGID;
107
108 #ifdef CONFIG_UID16
109 EXPORT_SYMBOL(overflowuid);
110 EXPORT_SYMBOL(overflowgid);
111 #endif
112
113 /*
114  * the same as above, but for filesystems which can only store a 16-bit
115  * UID and GID. as such, this is needed on all architectures
116  */
117
118 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
119 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
120
121 EXPORT_SYMBOL(fs_overflowuid);
122 EXPORT_SYMBOL(fs_overflowgid);
123
124 /*
125  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
126  */
127
128 int C_A_D = 1;
129 struct pid *cad_pid;
130 EXPORT_SYMBOL(cad_pid);
131
132 /*
133  * If set, this is used for preparing the system to power off.
134  */
135
136 void (*pm_power_off_prepare)(void);
137
138 /*
139  * Returns true if current's euid is same as p's uid or euid,
140  * or has CAP_SYS_NICE to p's user_ns.
141  *
142  * Called with rcu_read_lock, creds are safe
143  */
144 static bool set_one_prio_perm(struct task_struct *p)
145 {
146         const struct cred *cred = current_cred(), *pcred = __task_cred(p);
147
148         if (pcred->user->user_ns == cred->user->user_ns &&
149             (pcred->uid  == cred->euid ||
150              pcred->euid == cred->euid))
151                 return true;
152         if (ns_capable(pcred->user->user_ns, CAP_SYS_NICE))
153                 return true;
154         return false;
155 }
156
157 /*
158  * set the priority of a task
159  * - the caller must hold the RCU read lock
160  */
161 static int set_one_prio(struct task_struct *p, int niceval, int error)
162 {
163         int no_nice;
164
165         if (!set_one_prio_perm(p)) {
166                 error = -EPERM;
167                 goto out;
168         }
169         if (niceval < task_nice(p) && !can_nice(p, niceval)) {
170                 error = -EACCES;
171                 goto out;
172         }
173         no_nice = security_task_setnice(p, niceval);
174         if (no_nice) {
175                 error = no_nice;
176                 goto out;
177         }
178         if (error == -ESRCH)
179                 error = 0;
180         set_user_nice(p, niceval);
181 out:
182         return error;
183 }
184
185 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
186 {
187         struct task_struct *g, *p;
188         struct user_struct *user;
189         const struct cred *cred = current_cred();
190         int error = -EINVAL;
191         struct pid *pgrp;
192
193         if (which > PRIO_USER || which < PRIO_PROCESS)
194                 goto out;
195
196         /* normalize: avoid signed division (rounding problems) */
197         error = -ESRCH;
198         if (niceval < -20)
199                 niceval = -20;
200         if (niceval > 19)
201                 niceval = 19;
202
203         rcu_read_lock();
204         read_lock(&tasklist_lock);
205         switch (which) {
206                 case PRIO_PROCESS:
207                         if (who)
208                                 p = find_task_by_vpid(who);
209                         else
210                                 p = current;
211                         if (p)
212                                 error = set_one_prio(p, niceval, error);
213                         break;
214                 case PRIO_PGRP:
215                         if (who)
216                                 pgrp = find_vpid(who);
217                         else
218                                 pgrp = task_pgrp(current);
219                         do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
220                                 error = set_one_prio(p, niceval, error);
221                         } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
222                         break;
223                 case PRIO_USER:
224                         user = (struct user_struct *) cred->user;
225                         if (!who)
226                                 who = cred->uid;
227                         else if ((who != cred->uid) &&
228                                  !(user = find_user(who)))
229                                 goto out_unlock;        /* No processes for this user */
230
231                         do_each_thread(g, p) {
232                                 if (__task_cred(p)->uid == who)
233                                         error = set_one_prio(p, niceval, error);
234                         } while_each_thread(g, p);
235                         if (who != cred->uid)
236                                 free_uid(user);         /* For find_user() */
237                         break;
238         }
239 out_unlock:
240         read_unlock(&tasklist_lock);
241         rcu_read_unlock();
242 out:
243         return error;
244 }
245
246 /*
247  * Ugh. To avoid negative return values, "getpriority()" will
248  * not return the normal nice-value, but a negated value that
249  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
250  * to stay compatible.
251  */
252 SYSCALL_DEFINE2(getpriority, int, which, int, who)
253 {
254         struct task_struct *g, *p;
255         struct user_struct *user;
256         const struct cred *cred = current_cred();
257         long niceval, retval = -ESRCH;
258         struct pid *pgrp;
259
260         if (which > PRIO_USER || which < PRIO_PROCESS)
261                 return -EINVAL;
262
263         rcu_read_lock();
264         read_lock(&tasklist_lock);
265         switch (which) {
266                 case PRIO_PROCESS:
267                         if (who)
268                                 p = find_task_by_vpid(who);
269                         else
270                                 p = current;
271                         if (p) {
272                                 niceval = 20 - task_nice(p);
273                                 if (niceval > retval)
274                                         retval = niceval;
275                         }
276                         break;
277                 case PRIO_PGRP:
278                         if (who)
279                                 pgrp = find_vpid(who);
280                         else
281                                 pgrp = task_pgrp(current);
282                         do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
283                                 niceval = 20 - task_nice(p);
284                                 if (niceval > retval)
285                                         retval = niceval;
286                         } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
287                         break;
288                 case PRIO_USER:
289                         user = (struct user_struct *) cred->user;
290                         if (!who)
291                                 who = cred->uid;
292                         else if ((who != cred->uid) &&
293                                  !(user = find_user(who)))
294                                 goto out_unlock;        /* No processes for this user */
295
296                         do_each_thread(g, p) {
297                                 if (__task_cred(p)->uid == who) {
298                                         niceval = 20 - task_nice(p);
299                                         if (niceval > retval)
300                                                 retval = niceval;
301                                 }
302                         } while_each_thread(g, p);
303                         if (who != cred->uid)
304                                 free_uid(user);         /* for find_user() */
305                         break;
306         }
307 out_unlock:
308         read_unlock(&tasklist_lock);
309         rcu_read_unlock();
310
311         return retval;
312 }
313
314 /**
315  *      emergency_restart - reboot the system
316  *
317  *      Without shutting down any hardware or taking any locks
318  *      reboot the system.  This is called when we know we are in
319  *      trouble so this is our best effort to reboot.  This is
320  *      safe to call in interrupt context.
321  */
322 void emergency_restart(void)
323 {
324         kmsg_dump(KMSG_DUMP_EMERG);
325         machine_emergency_restart();
326 }
327 EXPORT_SYMBOL_GPL(emergency_restart);
328
329 void kernel_restart_prepare(char *cmd)
330 {
331         blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
332         system_state = SYSTEM_RESTART;
333         usermodehelper_disable();
334         device_shutdown();
335         syscore_shutdown();
336 }
337
338 /**
339  *      kernel_restart - reboot the system
340  *      @cmd: pointer to buffer containing command to execute for restart
341  *              or %NULL
342  *
343  *      Shutdown everything and perform a clean reboot.
344  *      This is not safe to call in interrupt context.
345  */
346 void kernel_restart(char *cmd)
347 {
348         /*
349         *  debug trace
350         */
351         restart_dbg("%s->%d->cmd=%s",__FUNCTION__,__LINE__,cmd);
352         
353         kernel_restart_prepare(cmd);
354         disable_nonboot_cpus();
355         if (!cmd)
356                 printk(KERN_EMERG "Restarting system.\n");
357         else
358                 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
359         kmsg_dump(KMSG_DUMP_RESTART);
360         machine_restart(cmd);
361 }
362 EXPORT_SYMBOL_GPL(kernel_restart);
363
364 static void kernel_shutdown_prepare(enum system_states state)
365 {
366         blocking_notifier_call_chain(&reboot_notifier_list,
367                 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
368         system_state = state;
369         usermodehelper_disable();
370         device_shutdown();
371 }
372 /**
373  *      kernel_halt - halt the system
374  *
375  *      Shutdown everything and perform a clean system halt.
376  */
377 void kernel_halt(void)
378 {
379         kernel_shutdown_prepare(SYSTEM_HALT);
380         syscore_shutdown();
381         printk(KERN_EMERG "System halted.\n");
382         kmsg_dump(KMSG_DUMP_HALT);
383         machine_halt();
384 }
385
386 EXPORT_SYMBOL_GPL(kernel_halt);
387
388 /**
389  *      kernel_power_off - power_off the system
390  *
391  *      Shutdown everything and perform a clean system power_off.
392  */
393 void kernel_power_off(void)
394 {
395         kernel_shutdown_prepare(SYSTEM_POWER_OFF);
396         if (pm_power_off_prepare)
397                 pm_power_off_prepare();
398         disable_nonboot_cpus();
399         syscore_shutdown();
400         printk(KERN_EMERG "Power down.\n");
401         kmsg_dump(KMSG_DUMP_POWEROFF);
402         machine_power_off();
403 }
404 EXPORT_SYMBOL_GPL(kernel_power_off);
405
406 static DEFINE_MUTEX(reboot_mutex);
407
408 /*
409  * Reboot system call: for obvious reasons only root may call it,
410  * and even root needs to set up some magic numbers in the registers
411  * so that some mistake won't make this reboot the whole machine.
412  * You can also set the meaning of the ctrl-alt-del-key here.
413  *
414  * reboot doesn't sync: do that yourself before calling this.
415  */
416 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
417                 void __user *, arg)
418 {
419         char buffer[256];
420         int ret = 0;
421
422         /* We only trust the superuser with rebooting the system. */
423         if (!capable(CAP_SYS_BOOT))
424                 return -EPERM;
425
426         /* For safety, we require "magic" arguments. */
427         if (magic1 != LINUX_REBOOT_MAGIC1 ||
428             (magic2 != LINUX_REBOOT_MAGIC2 &&
429                         magic2 != LINUX_REBOOT_MAGIC2A &&
430                         magic2 != LINUX_REBOOT_MAGIC2B &&
431                         magic2 != LINUX_REBOOT_MAGIC2C))
432                 return -EINVAL;
433
434         /* Instead of trying to make the power_off code look like
435          * halt when pm_power_off is not set do it the easy way.
436          */
437         if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
438                 cmd = LINUX_REBOOT_CMD_HALT;
439
440         mutex_lock(&reboot_mutex);
441         switch (cmd) {
442         case LINUX_REBOOT_CMD_RESTART:
443                 /*
444                 *  debug trace
445                 */
446                 restart_dbg("%s->%d->cmd=%x",__FUNCTION__,__LINE__,cmd);
447                 
448                 kernel_restart(NULL);
449                 break;
450
451         case LINUX_REBOOT_CMD_CAD_ON:
452                 C_A_D = 1;
453                 break;
454
455         case LINUX_REBOOT_CMD_CAD_OFF:
456                 C_A_D = 0;
457                 break;
458
459         case LINUX_REBOOT_CMD_HALT:
460                 kernel_halt();
461                 do_exit(0);
462                 panic("cannot halt");
463
464         case LINUX_REBOOT_CMD_POWER_OFF:
465                 /*
466                 *  debug trace
467                 */
468                 restart_dbg("%s->%d->cmd=%x",__FUNCTION__,__LINE__,cmd);
469                 
470                 kernel_power_off();
471                 do_exit(0);
472                 break;
473
474         case LINUX_REBOOT_CMD_RESTART2:
475                 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
476                         ret = -EFAULT;
477                         break;
478                 }
479                 buffer[sizeof(buffer) - 1] = '\0';
480                 /*
481                 *  debug trace
482                 */
483                 restart_dbg("%s->%d->cmd=%x args=%s",__FUNCTION__,__LINE__,cmd,buffer);
484                 
485                 kernel_restart(buffer);
486                 break;
487
488 #ifdef CONFIG_KEXEC
489         case LINUX_REBOOT_CMD_KEXEC:
490                 ret = kernel_kexec();
491                 break;
492 #endif
493
494 #ifdef CONFIG_HIBERNATION
495         case LINUX_REBOOT_CMD_SW_SUSPEND:
496                 ret = hibernate();
497                 break;
498 #endif
499
500         default:
501                 ret = -EINVAL;
502                 break;
503         }
504         mutex_unlock(&reboot_mutex);
505         return ret;
506 }
507
508 static void deferred_cad(struct work_struct *dummy)
509 {
510         kernel_restart(NULL);
511 }
512
513 /*
514  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
515  * As it's called within an interrupt, it may NOT sync: the only choice
516  * is whether to reboot at once, or just ignore the ctrl-alt-del.
517  */
518 void ctrl_alt_del(void)
519 {
520         static DECLARE_WORK(cad_work, deferred_cad);
521
522         if (C_A_D)
523                 schedule_work(&cad_work);
524         else
525                 kill_cad_pid(SIGINT, 1);
526 }
527         
528 /*
529  * Unprivileged users may change the real gid to the effective gid
530  * or vice versa.  (BSD-style)
531  *
532  * If you set the real gid at all, or set the effective gid to a value not
533  * equal to the real gid, then the saved gid is set to the new effective gid.
534  *
535  * This makes it possible for a setgid program to completely drop its
536  * privileges, which is often a useful assertion to make when you are doing
537  * a security audit over a program.
538  *
539  * The general idea is that a program which uses just setregid() will be
540  * 100% compatible with BSD.  A program which uses just setgid() will be
541  * 100% compatible with POSIX with saved IDs. 
542  *
543  * SMP: There are not races, the GIDs are checked only by filesystem
544  *      operations (as far as semantic preservation is concerned).
545  */
546 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
547 {
548         const struct cred *old;
549         struct cred *new;
550         int retval;
551
552         new = prepare_creds();
553         if (!new)
554                 return -ENOMEM;
555         old = current_cred();
556
557         retval = -EPERM;
558         if (rgid != (gid_t) -1) {
559                 if (old->gid == rgid ||
560                     old->egid == rgid ||
561                     nsown_capable(CAP_SETGID))
562                         new->gid = rgid;
563                 else
564                         goto error;
565         }
566         if (egid != (gid_t) -1) {
567                 if (old->gid == egid ||
568                     old->egid == egid ||
569                     old->sgid == egid ||
570                     nsown_capable(CAP_SETGID))
571                         new->egid = egid;
572                 else
573                         goto error;
574         }
575
576         if (rgid != (gid_t) -1 ||
577             (egid != (gid_t) -1 && egid != old->gid))
578                 new->sgid = new->egid;
579         new->fsgid = new->egid;
580
581         return commit_creds(new);
582
583 error:
584         abort_creds(new);
585         return retval;
586 }
587
588 /*
589  * setgid() is implemented like SysV w/ SAVED_IDS 
590  *
591  * SMP: Same implicit races as above.
592  */
593 SYSCALL_DEFINE1(setgid, gid_t, gid)
594 {
595         const struct cred *old;
596         struct cred *new;
597         int retval;
598
599         new = prepare_creds();
600         if (!new)
601                 return -ENOMEM;
602         old = current_cred();
603
604         retval = -EPERM;
605         if (nsown_capable(CAP_SETGID))
606                 new->gid = new->egid = new->sgid = new->fsgid = gid;
607         else if (gid == old->gid || gid == old->sgid)
608                 new->egid = new->fsgid = gid;
609         else
610                 goto error;
611
612         return commit_creds(new);
613
614 error:
615         abort_creds(new);
616         return retval;
617 }
618
619 /*
620  * change the user struct in a credentials set to match the new UID
621  */
622 static int set_user(struct cred *new)
623 {
624         struct user_struct *new_user;
625
626         new_user = alloc_uid(current_user_ns(), new->uid);
627         if (!new_user)
628                 return -EAGAIN;
629
630         if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
631                         new_user != INIT_USER) {
632                 free_uid(new_user);
633                 return -EAGAIN;
634         }
635
636         free_uid(new->user);
637         new->user = new_user;
638         return 0;
639 }
640
641 /*
642  * Unprivileged users may change the real uid to the effective uid
643  * or vice versa.  (BSD-style)
644  *
645  * If you set the real uid at all, or set the effective uid to a value not
646  * equal to the real uid, then the saved uid is set to the new effective uid.
647  *
648  * This makes it possible for a setuid program to completely drop its
649  * privileges, which is often a useful assertion to make when you are doing
650  * a security audit over a program.
651  *
652  * The general idea is that a program which uses just setreuid() will be
653  * 100% compatible with BSD.  A program which uses just setuid() will be
654  * 100% compatible with POSIX with saved IDs. 
655  */
656 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
657 {
658         const struct cred *old;
659         struct cred *new;
660         int retval;
661
662         new = prepare_creds();
663         if (!new)
664                 return -ENOMEM;
665         old = current_cred();
666
667         retval = -EPERM;
668         if (ruid != (uid_t) -1) {
669                 new->uid = ruid;
670                 if (old->uid != ruid &&
671                     old->euid != ruid &&
672                     !nsown_capable(CAP_SETUID))
673                         goto error;
674         }
675
676         if (euid != (uid_t) -1) {
677                 new->euid = euid;
678                 if (old->uid != euid &&
679                     old->euid != euid &&
680                     old->suid != euid &&
681                     !nsown_capable(CAP_SETUID))
682                         goto error;
683         }
684
685         if (new->uid != old->uid) {
686                 retval = set_user(new);
687                 if (retval < 0)
688                         goto error;
689         }
690         if (ruid != (uid_t) -1 ||
691             (euid != (uid_t) -1 && euid != old->uid))
692                 new->suid = new->euid;
693         new->fsuid = new->euid;
694
695         retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
696         if (retval < 0)
697                 goto error;
698
699         return commit_creds(new);
700
701 error:
702         abort_creds(new);
703         return retval;
704 }
705                 
706 /*
707  * setuid() is implemented like SysV with SAVED_IDS 
708  * 
709  * Note that SAVED_ID's is deficient in that a setuid root program
710  * like sendmail, for example, cannot set its uid to be a normal 
711  * user and then switch back, because if you're root, setuid() sets
712  * the saved uid too.  If you don't like this, blame the bright people
713  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
714  * will allow a root program to temporarily drop privileges and be able to
715  * regain them by swapping the real and effective uid.  
716  */
717 SYSCALL_DEFINE1(setuid, uid_t, uid)
718 {
719         const struct cred *old;
720         struct cred *new;
721         int retval;
722
723         new = prepare_creds();
724         if (!new)
725                 return -ENOMEM;
726         old = current_cred();
727
728         retval = -EPERM;
729         if (nsown_capable(CAP_SETUID)) {
730                 new->suid = new->uid = uid;
731                 if (uid != old->uid) {
732                         retval = set_user(new);
733                         if (retval < 0)
734                                 goto error;
735                 }
736         } else if (uid != old->uid && uid != new->suid) {
737                 goto error;
738         }
739
740         new->fsuid = new->euid = uid;
741
742         retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
743         if (retval < 0)
744                 goto error;
745
746         return commit_creds(new);
747
748 error:
749         abort_creds(new);
750         return retval;
751 }
752
753
754 /*
755  * This function implements a generic ability to update ruid, euid,
756  * and suid.  This allows you to implement the 4.4 compatible seteuid().
757  */
758 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
759 {
760         const struct cred *old;
761         struct cred *new;
762         int retval;
763
764         new = prepare_creds();
765         if (!new)
766                 return -ENOMEM;
767
768         old = current_cred();
769
770         retval = -EPERM;
771         if (!nsown_capable(CAP_SETUID)) {
772                 if (ruid != (uid_t) -1 && ruid != old->uid &&
773                     ruid != old->euid  && ruid != old->suid)
774                         goto error;
775                 if (euid != (uid_t) -1 && euid != old->uid &&
776                     euid != old->euid  && euid != old->suid)
777                         goto error;
778                 if (suid != (uid_t) -1 && suid != old->uid &&
779                     suid != old->euid  && suid != old->suid)
780                         goto error;
781         }
782
783         if (ruid != (uid_t) -1) {
784                 new->uid = ruid;
785                 if (ruid != old->uid) {
786                         retval = set_user(new);
787                         if (retval < 0)
788                                 goto error;
789                 }
790         }
791         if (euid != (uid_t) -1)
792                 new->euid = euid;
793         if (suid != (uid_t) -1)
794                 new->suid = suid;
795         new->fsuid = new->euid;
796
797         retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
798         if (retval < 0)
799                 goto error;
800
801         return commit_creds(new);
802
803 error:
804         abort_creds(new);
805         return retval;
806 }
807
808 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
809 {
810         const struct cred *cred = current_cred();
811         int retval;
812
813         if (!(retval   = put_user(cred->uid,  ruid)) &&
814             !(retval   = put_user(cred->euid, euid)))
815                 retval = put_user(cred->suid, suid);
816
817         return retval;
818 }
819
820 /*
821  * Same as above, but for rgid, egid, sgid.
822  */
823 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
824 {
825         const struct cred *old;
826         struct cred *new;
827         int retval;
828
829         new = prepare_creds();
830         if (!new)
831                 return -ENOMEM;
832         old = current_cred();
833
834         retval = -EPERM;
835         if (!nsown_capable(CAP_SETGID)) {
836                 if (rgid != (gid_t) -1 && rgid != old->gid &&
837                     rgid != old->egid  && rgid != old->sgid)
838                         goto error;
839                 if (egid != (gid_t) -1 && egid != old->gid &&
840                     egid != old->egid  && egid != old->sgid)
841                         goto error;
842                 if (sgid != (gid_t) -1 && sgid != old->gid &&
843                     sgid != old->egid  && sgid != old->sgid)
844                         goto error;
845         }
846
847         if (rgid != (gid_t) -1)
848                 new->gid = rgid;
849         if (egid != (gid_t) -1)
850                 new->egid = egid;
851         if (sgid != (gid_t) -1)
852                 new->sgid = sgid;
853         new->fsgid = new->egid;
854
855         return commit_creds(new);
856
857 error:
858         abort_creds(new);
859         return retval;
860 }
861
862 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
863 {
864         const struct cred *cred = current_cred();
865         int retval;
866
867         if (!(retval   = put_user(cred->gid,  rgid)) &&
868             !(retval   = put_user(cred->egid, egid)))
869                 retval = put_user(cred->sgid, sgid);
870
871         return retval;
872 }
873
874
875 /*
876  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
877  * is used for "access()" and for the NFS daemon (letting nfsd stay at
878  * whatever uid it wants to). It normally shadows "euid", except when
879  * explicitly set by setfsuid() or for access..
880  */
881 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
882 {
883         const struct cred *old;
884         struct cred *new;
885         uid_t old_fsuid;
886
887         new = prepare_creds();
888         if (!new)
889                 return current_fsuid();
890         old = current_cred();
891         old_fsuid = old->fsuid;
892
893         if (uid == old->uid  || uid == old->euid  ||
894             uid == old->suid || uid == old->fsuid ||
895             nsown_capable(CAP_SETUID)) {
896                 if (uid != old_fsuid) {
897                         new->fsuid = uid;
898                         if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
899                                 goto change_okay;
900                 }
901         }
902
903         abort_creds(new);
904         return old_fsuid;
905
906 change_okay:
907         commit_creds(new);
908         return old_fsuid;
909 }
910
911 /*
912  * Samma pÃ¥ svenska..
913  */
914 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
915 {
916         const struct cred *old;
917         struct cred *new;
918         gid_t old_fsgid;
919
920         new = prepare_creds();
921         if (!new)
922                 return current_fsgid();
923         old = current_cred();
924         old_fsgid = old->fsgid;
925
926         if (gid == old->gid  || gid == old->egid  ||
927             gid == old->sgid || gid == old->fsgid ||
928             nsown_capable(CAP_SETGID)) {
929                 if (gid != old_fsgid) {
930                         new->fsgid = gid;
931                         goto change_okay;
932                 }
933         }
934
935         abort_creds(new);
936         return old_fsgid;
937
938 change_okay:
939         commit_creds(new);
940         return old_fsgid;
941 }
942
943 void do_sys_times(struct tms *tms)
944 {
945         cputime_t tgutime, tgstime, cutime, cstime;
946
947         spin_lock_irq(&current->sighand->siglock);
948         thread_group_times(current, &tgutime, &tgstime);
949         cutime = current->signal->cutime;
950         cstime = current->signal->cstime;
951         spin_unlock_irq(&current->sighand->siglock);
952         tms->tms_utime = cputime_to_clock_t(tgutime);
953         tms->tms_stime = cputime_to_clock_t(tgstime);
954         tms->tms_cutime = cputime_to_clock_t(cutime);
955         tms->tms_cstime = cputime_to_clock_t(cstime);
956 }
957
958 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
959 {
960         if (tbuf) {
961                 struct tms tmp;
962
963                 do_sys_times(&tmp);
964                 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
965                         return -EFAULT;
966         }
967         force_successful_syscall_return();
968         return (long) jiffies_64_to_clock_t(get_jiffies_64());
969 }
970
971 /*
972  * This needs some heavy checking ...
973  * I just haven't the stomach for it. I also don't fully
974  * understand sessions/pgrp etc. Let somebody who does explain it.
975  *
976  * OK, I think I have the protection semantics right.... this is really
977  * only important on a multi-user system anyway, to make sure one user
978  * can't send a signal to a process owned by another.  -TYT, 12/12/91
979  *
980  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
981  * LBT 04.03.94
982  */
983 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
984 {
985         struct task_struct *p;
986         struct task_struct *group_leader = current->group_leader;
987         struct pid *pgrp;
988         int err;
989
990         if (!pid)
991                 pid = task_pid_vnr(group_leader);
992         if (!pgid)
993                 pgid = pid;
994         if (pgid < 0)
995                 return -EINVAL;
996         rcu_read_lock();
997
998         /* From this point forward we keep holding onto the tasklist lock
999          * so that our parent does not change from under us. -DaveM
1000          */
1001         write_lock_irq(&tasklist_lock);
1002
1003         err = -ESRCH;
1004         p = find_task_by_vpid(pid);
1005         if (!p)
1006                 goto out;
1007
1008         err = -EINVAL;
1009         if (!thread_group_leader(p))
1010                 goto out;
1011
1012         if (same_thread_group(p->real_parent, group_leader)) {
1013                 err = -EPERM;
1014                 if (task_session(p) != task_session(group_leader))
1015                         goto out;
1016                 err = -EACCES;
1017                 if (p->did_exec)
1018                         goto out;
1019         } else {
1020                 err = -ESRCH;
1021                 if (p != group_leader)
1022                         goto out;
1023         }
1024
1025         err = -EPERM;
1026         if (p->signal->leader)
1027                 goto out;
1028
1029         pgrp = task_pid(p);
1030         if (pgid != pid) {
1031                 struct task_struct *g;
1032
1033                 pgrp = find_vpid(pgid);
1034                 g = pid_task(pgrp, PIDTYPE_PGID);
1035                 if (!g || task_session(g) != task_session(group_leader))
1036                         goto out;
1037         }
1038
1039         err = security_task_setpgid(p, pgid);
1040         if (err)
1041                 goto out;
1042
1043         if (task_pgrp(p) != pgrp)
1044                 change_pid(p, PIDTYPE_PGID, pgrp);
1045
1046         err = 0;
1047 out:
1048         /* All paths lead to here, thus we are safe. -DaveM */
1049         write_unlock_irq(&tasklist_lock);
1050         rcu_read_unlock();
1051         return err;
1052 }
1053
1054 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1055 {
1056         struct task_struct *p;
1057         struct pid *grp;
1058         int retval;
1059
1060         rcu_read_lock();
1061         if (!pid)
1062                 grp = task_pgrp(current);
1063         else {
1064                 retval = -ESRCH;
1065                 p = find_task_by_vpid(pid);
1066                 if (!p)
1067                         goto out;
1068                 grp = task_pgrp(p);
1069                 if (!grp)
1070                         goto out;
1071
1072                 retval = security_task_getpgid(p);
1073                 if (retval)
1074                         goto out;
1075         }
1076         retval = pid_vnr(grp);
1077 out:
1078         rcu_read_unlock();
1079         return retval;
1080 }
1081
1082 #ifdef __ARCH_WANT_SYS_GETPGRP
1083
1084 SYSCALL_DEFINE0(getpgrp)
1085 {
1086         return sys_getpgid(0);
1087 }
1088
1089 #endif
1090
1091 SYSCALL_DEFINE1(getsid, pid_t, pid)
1092 {
1093         struct task_struct *p;
1094         struct pid *sid;
1095         int retval;
1096
1097         rcu_read_lock();
1098         if (!pid)
1099                 sid = task_session(current);
1100         else {
1101                 retval = -ESRCH;
1102                 p = find_task_by_vpid(pid);
1103                 if (!p)
1104                         goto out;
1105                 sid = task_session(p);
1106                 if (!sid)
1107                         goto out;
1108
1109                 retval = security_task_getsid(p);
1110                 if (retval)
1111                         goto out;
1112         }
1113         retval = pid_vnr(sid);
1114 out:
1115         rcu_read_unlock();
1116         return retval;
1117 }
1118
1119 SYSCALL_DEFINE0(setsid)
1120 {
1121         struct task_struct *group_leader = current->group_leader;
1122         struct pid *sid = task_pid(group_leader);
1123         pid_t session = pid_vnr(sid);
1124         int err = -EPERM;
1125
1126         write_lock_irq(&tasklist_lock);
1127         /* Fail if I am already a session leader */
1128         if (group_leader->signal->leader)
1129                 goto out;
1130
1131         /* Fail if a process group id already exists that equals the
1132          * proposed session id.
1133          */
1134         if (pid_task(sid, PIDTYPE_PGID))
1135                 goto out;
1136
1137         group_leader->signal->leader = 1;
1138         __set_special_pids(sid);
1139
1140         proc_clear_tty(group_leader);
1141
1142         err = session;
1143 out:
1144         write_unlock_irq(&tasklist_lock);
1145         if (err > 0) {
1146                 proc_sid_connector(group_leader);
1147                 sched_autogroup_create_attach(group_leader);
1148         }
1149         return err;
1150 }
1151
1152 DECLARE_RWSEM(uts_sem);
1153
1154 #ifdef COMPAT_UTS_MACHINE
1155 #define override_architecture(name) \
1156         (personality(current->personality) == PER_LINUX32 && \
1157          copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1158                       sizeof(COMPAT_UTS_MACHINE)))
1159 #else
1160 #define override_architecture(name)     0
1161 #endif
1162
1163 /*
1164  * Work around broken programs that cannot handle "Linux 3.0".
1165  * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1166  */
1167 static int override_release(char __user *release, size_t len)
1168 {
1169         int ret = 0;
1170
1171         if (current->personality & UNAME26) {
1172                 const char *rest = UTS_RELEASE;
1173                 char buf[65] = { 0 };
1174                 int ndots = 0;
1175                 unsigned v;
1176                 size_t copy;
1177
1178                 while (*rest) {
1179                         if (*rest == '.' && ++ndots >= 3)
1180                                 break;
1181                         if (!isdigit(*rest) && *rest != '.')
1182                                 break;
1183                         rest++;
1184                 }
1185                 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
1186                 copy = clamp_t(size_t, len, 1, sizeof(buf));
1187                 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1188                 ret = copy_to_user(release, buf, copy + 1);
1189         }
1190         return ret;
1191 }
1192
1193 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1194 {
1195         int errno = 0;
1196
1197         down_read(&uts_sem);
1198         if (copy_to_user(name, utsname(), sizeof *name))
1199                 errno = -EFAULT;
1200         up_read(&uts_sem);
1201
1202         if (!errno && override_release(name->release, sizeof(name->release)))
1203                 errno = -EFAULT;
1204         if (!errno && override_architecture(name))
1205                 errno = -EFAULT;
1206         return errno;
1207 }
1208
1209 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1210 /*
1211  * Old cruft
1212  */
1213 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1214 {
1215         int error = 0;
1216
1217         if (!name)
1218                 return -EFAULT;
1219
1220         down_read(&uts_sem);
1221         if (copy_to_user(name, utsname(), sizeof(*name)))
1222                 error = -EFAULT;
1223         up_read(&uts_sem);
1224
1225         if (!error && override_release(name->release, sizeof(name->release)))
1226                 error = -EFAULT;
1227         if (!error && override_architecture(name))
1228                 error = -EFAULT;
1229         return error;
1230 }
1231
1232 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1233 {
1234         int error;
1235
1236         if (!name)
1237                 return -EFAULT;
1238         if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1239                 return -EFAULT;
1240
1241         down_read(&uts_sem);
1242         error = __copy_to_user(&name->sysname, &utsname()->sysname,
1243                                __OLD_UTS_LEN);
1244         error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1245         error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1246                                 __OLD_UTS_LEN);
1247         error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1248         error |= __copy_to_user(&name->release, &utsname()->release,
1249                                 __OLD_UTS_LEN);
1250         error |= __put_user(0, name->release + __OLD_UTS_LEN);
1251         error |= __copy_to_user(&name->version, &utsname()->version,
1252                                 __OLD_UTS_LEN);
1253         error |= __put_user(0, name->version + __OLD_UTS_LEN);
1254         error |= __copy_to_user(&name->machine, &utsname()->machine,
1255                                 __OLD_UTS_LEN);
1256         error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1257         up_read(&uts_sem);
1258
1259         if (!error && override_architecture(name))
1260                 error = -EFAULT;
1261         if (!error && override_release(name->release, sizeof(name->release)))
1262                 error = -EFAULT;
1263         return error ? -EFAULT : 0;
1264 }
1265 #endif
1266
1267 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1268 {
1269         int errno;
1270         char tmp[__NEW_UTS_LEN];
1271
1272         if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1273                 return -EPERM;
1274
1275         if (len < 0 || len > __NEW_UTS_LEN)
1276                 return -EINVAL;
1277         down_write(&uts_sem);
1278         errno = -EFAULT;
1279         if (!copy_from_user(tmp, name, len)) {
1280                 struct new_utsname *u = utsname();
1281
1282                 memcpy(u->nodename, tmp, len);
1283                 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1284                 errno = 0;
1285         }
1286         up_write(&uts_sem);
1287         return errno;
1288 }
1289
1290 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1291
1292 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1293 {
1294         int i, errno;
1295         struct new_utsname *u;
1296
1297         if (len < 0)
1298                 return -EINVAL;
1299         down_read(&uts_sem);
1300         u = utsname();
1301         i = 1 + strlen(u->nodename);
1302         if (i > len)
1303                 i = len;
1304         errno = 0;
1305         if (copy_to_user(name, u->nodename, i))
1306                 errno = -EFAULT;
1307         up_read(&uts_sem);
1308         return errno;
1309 }
1310
1311 #endif
1312
1313 /*
1314  * Only setdomainname; getdomainname can be implemented by calling
1315  * uname()
1316  */
1317 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1318 {
1319         int errno;
1320         char tmp[__NEW_UTS_LEN];
1321
1322         if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1323                 return -EPERM;
1324         if (len < 0 || len > __NEW_UTS_LEN)
1325                 return -EINVAL;
1326
1327         down_write(&uts_sem);
1328         errno = -EFAULT;
1329         if (!copy_from_user(tmp, name, len)) {
1330                 struct new_utsname *u = utsname();
1331
1332                 memcpy(u->domainname, tmp, len);
1333                 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1334                 errno = 0;
1335         }
1336         up_write(&uts_sem);
1337         return errno;
1338 }
1339
1340 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1341 {
1342         struct rlimit value;
1343         int ret;
1344
1345         ret = do_prlimit(current, resource, NULL, &value);
1346         if (!ret)
1347                 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1348
1349         return ret;
1350 }
1351
1352 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1353
1354 /*
1355  *      Back compatibility for getrlimit. Needed for some apps.
1356  */
1357  
1358 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1359                 struct rlimit __user *, rlim)
1360 {
1361         struct rlimit x;
1362         if (resource >= RLIM_NLIMITS)
1363                 return -EINVAL;
1364
1365         task_lock(current->group_leader);
1366         x = current->signal->rlim[resource];
1367         task_unlock(current->group_leader);
1368         if (x.rlim_cur > 0x7FFFFFFF)
1369                 x.rlim_cur = 0x7FFFFFFF;
1370         if (x.rlim_max > 0x7FFFFFFF)
1371                 x.rlim_max = 0x7FFFFFFF;
1372         return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1373 }
1374
1375 #endif
1376
1377 static inline bool rlim64_is_infinity(__u64 rlim64)
1378 {
1379 #if BITS_PER_LONG < 64
1380         return rlim64 >= ULONG_MAX;
1381 #else
1382         return rlim64 == RLIM64_INFINITY;
1383 #endif
1384 }
1385
1386 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1387 {
1388         if (rlim->rlim_cur == RLIM_INFINITY)
1389                 rlim64->rlim_cur = RLIM64_INFINITY;
1390         else
1391                 rlim64->rlim_cur = rlim->rlim_cur;
1392         if (rlim->rlim_max == RLIM_INFINITY)
1393                 rlim64->rlim_max = RLIM64_INFINITY;
1394         else
1395                 rlim64->rlim_max = rlim->rlim_max;
1396 }
1397
1398 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1399 {
1400         if (rlim64_is_infinity(rlim64->rlim_cur))
1401                 rlim->rlim_cur = RLIM_INFINITY;
1402         else
1403                 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1404         if (rlim64_is_infinity(rlim64->rlim_max))
1405                 rlim->rlim_max = RLIM_INFINITY;
1406         else
1407                 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1408 }
1409
1410 /* make sure you are allowed to change @tsk limits before calling this */
1411 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1412                 struct rlimit *new_rlim, struct rlimit *old_rlim)
1413 {
1414         struct rlimit *rlim;
1415         int retval = 0;
1416
1417         if (resource >= RLIM_NLIMITS)
1418                 return -EINVAL;
1419         if (new_rlim) {
1420                 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1421                         return -EINVAL;
1422                 if (resource == RLIMIT_NOFILE &&
1423                                 new_rlim->rlim_max > sysctl_nr_open)
1424                         return -EPERM;
1425         }
1426
1427         /* protect tsk->signal and tsk->sighand from disappearing */
1428         read_lock(&tasklist_lock);
1429         if (!tsk->sighand) {
1430                 retval = -ESRCH;
1431                 goto out;
1432         }
1433
1434         rlim = tsk->signal->rlim + resource;
1435         task_lock(tsk->group_leader);
1436         if (new_rlim) {
1437                 /* Keep the capable check against init_user_ns until
1438                    cgroups can contain all limits */
1439                 if (new_rlim->rlim_max > rlim->rlim_max &&
1440                                 !capable(CAP_SYS_RESOURCE))
1441                         retval = -EPERM;
1442                 if (!retval)
1443                         retval = security_task_setrlimit(tsk->group_leader,
1444                                         resource, new_rlim);
1445                 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1446                         /*
1447                          * The caller is asking for an immediate RLIMIT_CPU
1448                          * expiry.  But we use the zero value to mean "it was
1449                          * never set".  So let's cheat and make it one second
1450                          * instead
1451                          */
1452                         new_rlim->rlim_cur = 1;
1453                 }
1454         }
1455         if (!retval) {
1456                 if (old_rlim)
1457                         *old_rlim = *rlim;
1458                 if (new_rlim)
1459                         *rlim = *new_rlim;
1460         }
1461         task_unlock(tsk->group_leader);
1462
1463         /*
1464          * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1465          * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1466          * very long-standing error, and fixing it now risks breakage of
1467          * applications, so we live with it
1468          */
1469          if (!retval && new_rlim && resource == RLIMIT_CPU &&
1470                          new_rlim->rlim_cur != RLIM_INFINITY)
1471                 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1472 out:
1473         read_unlock(&tasklist_lock);
1474         return retval;
1475 }
1476
1477 /* rcu lock must be held */
1478 static int check_prlimit_permission(struct task_struct *task)
1479 {
1480         const struct cred *cred = current_cred(), *tcred;
1481
1482         if (current == task)
1483                 return 0;
1484
1485         tcred = __task_cred(task);
1486         if (cred->user->user_ns == tcred->user->user_ns &&
1487             (cred->uid == tcred->euid &&
1488              cred->uid == tcred->suid &&
1489              cred->uid == tcred->uid  &&
1490              cred->gid == tcred->egid &&
1491              cred->gid == tcred->sgid &&
1492              cred->gid == tcred->gid))
1493                 return 0;
1494         if (ns_capable(tcred->user->user_ns, CAP_SYS_RESOURCE))
1495                 return 0;
1496
1497         return -EPERM;
1498 }
1499
1500 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1501                 const struct rlimit64 __user *, new_rlim,
1502                 struct rlimit64 __user *, old_rlim)
1503 {
1504         struct rlimit64 old64, new64;
1505         struct rlimit old, new;
1506         struct task_struct *tsk;
1507         int ret;
1508
1509         if (new_rlim) {
1510                 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1511                         return -EFAULT;
1512                 rlim64_to_rlim(&new64, &new);
1513         }
1514
1515         rcu_read_lock();
1516         tsk = pid ? find_task_by_vpid(pid) : current;
1517         if (!tsk) {
1518                 rcu_read_unlock();
1519                 return -ESRCH;
1520         }
1521         ret = check_prlimit_permission(tsk);
1522         if (ret) {
1523                 rcu_read_unlock();
1524                 return ret;
1525         }
1526         get_task_struct(tsk);
1527         rcu_read_unlock();
1528
1529         ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1530                         old_rlim ? &old : NULL);
1531
1532         if (!ret && old_rlim) {
1533                 rlim_to_rlim64(&old, &old64);
1534                 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1535                         ret = -EFAULT;
1536         }
1537
1538         put_task_struct(tsk);
1539         return ret;
1540 }
1541
1542 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1543 {
1544         struct rlimit new_rlim;
1545
1546         if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1547                 return -EFAULT;
1548         return do_prlimit(current, resource, &new_rlim, NULL);
1549 }
1550
1551 /*
1552  * It would make sense to put struct rusage in the task_struct,
1553  * except that would make the task_struct be *really big*.  After
1554  * task_struct gets moved into malloc'ed memory, it would
1555  * make sense to do this.  It will make moving the rest of the information
1556  * a lot simpler!  (Which we're not doing right now because we're not
1557  * measuring them yet).
1558  *
1559  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1560  * races with threads incrementing their own counters.  But since word
1561  * reads are atomic, we either get new values or old values and we don't
1562  * care which for the sums.  We always take the siglock to protect reading
1563  * the c* fields from p->signal from races with exit.c updating those
1564  * fields when reaping, so a sample either gets all the additions of a
1565  * given child after it's reaped, or none so this sample is before reaping.
1566  *
1567  * Locking:
1568  * We need to take the siglock for CHILDEREN, SELF and BOTH
1569  * for  the cases current multithreaded, non-current single threaded
1570  * non-current multithreaded.  Thread traversal is now safe with
1571  * the siglock held.
1572  * Strictly speaking, we donot need to take the siglock if we are current and
1573  * single threaded,  as no one else can take our signal_struct away, no one
1574  * else can  reap the  children to update signal->c* counters, and no one else
1575  * can race with the signal-> fields. If we do not take any lock, the
1576  * signal-> fields could be read out of order while another thread was just
1577  * exiting. So we should  place a read memory barrier when we avoid the lock.
1578  * On the writer side,  write memory barrier is implied in  __exit_signal
1579  * as __exit_signal releases  the siglock spinlock after updating the signal->
1580  * fields. But we don't do this yet to keep things simple.
1581  *
1582  */
1583
1584 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1585 {
1586         r->ru_nvcsw += t->nvcsw;
1587         r->ru_nivcsw += t->nivcsw;
1588         r->ru_minflt += t->min_flt;
1589         r->ru_majflt += t->maj_flt;
1590         r->ru_inblock += task_io_get_inblock(t);
1591         r->ru_oublock += task_io_get_oublock(t);
1592 }
1593
1594 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1595 {
1596         struct task_struct *t;
1597         unsigned long flags;
1598         cputime_t tgutime, tgstime, utime, stime;
1599         unsigned long maxrss = 0;
1600
1601         memset((char *) r, 0, sizeof *r);
1602         utime = stime = cputime_zero;
1603
1604         if (who == RUSAGE_THREAD) {
1605                 task_times(current, &utime, &stime);
1606                 accumulate_thread_rusage(p, r);
1607                 maxrss = p->signal->maxrss;
1608                 goto out;
1609         }
1610
1611         if (!lock_task_sighand(p, &flags))
1612                 return;
1613
1614         switch (who) {
1615                 case RUSAGE_BOTH:
1616                 case RUSAGE_CHILDREN:
1617                         utime = p->signal->cutime;
1618                         stime = p->signal->cstime;
1619                         r->ru_nvcsw = p->signal->cnvcsw;
1620                         r->ru_nivcsw = p->signal->cnivcsw;
1621                         r->ru_minflt = p->signal->cmin_flt;
1622                         r->ru_majflt = p->signal->cmaj_flt;
1623                         r->ru_inblock = p->signal->cinblock;
1624                         r->ru_oublock = p->signal->coublock;
1625                         maxrss = p->signal->cmaxrss;
1626
1627                         if (who == RUSAGE_CHILDREN)
1628                                 break;
1629
1630                 case RUSAGE_SELF:
1631                         thread_group_times(p, &tgutime, &tgstime);
1632                         utime = cputime_add(utime, tgutime);
1633                         stime = cputime_add(stime, tgstime);
1634                         r->ru_nvcsw += p->signal->nvcsw;
1635                         r->ru_nivcsw += p->signal->nivcsw;
1636                         r->ru_minflt += p->signal->min_flt;
1637                         r->ru_majflt += p->signal->maj_flt;
1638                         r->ru_inblock += p->signal->inblock;
1639                         r->ru_oublock += p->signal->oublock;
1640                         if (maxrss < p->signal->maxrss)
1641                                 maxrss = p->signal->maxrss;
1642                         t = p;
1643                         do {
1644                                 accumulate_thread_rusage(t, r);
1645                                 t = next_thread(t);
1646                         } while (t != p);
1647                         break;
1648
1649                 default:
1650                         BUG();
1651         }
1652         unlock_task_sighand(p, &flags);
1653
1654 out:
1655         cputime_to_timeval(utime, &r->ru_utime);
1656         cputime_to_timeval(stime, &r->ru_stime);
1657
1658         if (who != RUSAGE_CHILDREN) {
1659                 struct mm_struct *mm = get_task_mm(p);
1660                 if (mm) {
1661                         setmax_mm_hiwater_rss(&maxrss, mm);
1662                         mmput(mm);
1663                 }
1664         }
1665         r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1666 }
1667
1668 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1669 {
1670         struct rusage r;
1671         k_getrusage(p, who, &r);
1672         return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1673 }
1674
1675 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1676 {
1677         if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1678             who != RUSAGE_THREAD)
1679                 return -EINVAL;
1680         return getrusage(current, who, ru);
1681 }
1682
1683 SYSCALL_DEFINE1(umask, int, mask)
1684 {
1685         mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1686         return mask;
1687 }
1688
1689 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1690                 unsigned long, arg4, unsigned long, arg5)
1691 {
1692         struct task_struct *me = current;
1693         unsigned char comm[sizeof(me->comm)];
1694         long error;
1695
1696         error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1697         if (error != -ENOSYS)
1698                 return error;
1699
1700         error = 0;
1701         switch (option) {
1702                 case PR_SET_PDEATHSIG:
1703                         if (!valid_signal(arg2)) {
1704                                 error = -EINVAL;
1705                                 break;
1706                         }
1707                         me->pdeath_signal = arg2;
1708                         error = 0;
1709                         break;
1710                 case PR_GET_PDEATHSIG:
1711                         error = put_user(me->pdeath_signal, (int __user *)arg2);
1712                         break;
1713                 case PR_GET_DUMPABLE:
1714                         error = get_dumpable(me->mm);
1715                         break;
1716                 case PR_SET_DUMPABLE:
1717                         if (arg2 < 0 || arg2 > 1) {
1718                                 error = -EINVAL;
1719                                 break;
1720                         }
1721                         set_dumpable(me->mm, arg2);
1722                         error = 0;
1723                         break;
1724
1725                 case PR_SET_UNALIGN:
1726                         error = SET_UNALIGN_CTL(me, arg2);
1727                         break;
1728                 case PR_GET_UNALIGN:
1729                         error = GET_UNALIGN_CTL(me, arg2);
1730                         break;
1731                 case PR_SET_FPEMU:
1732                         error = SET_FPEMU_CTL(me, arg2);
1733                         break;
1734                 case PR_GET_FPEMU:
1735                         error = GET_FPEMU_CTL(me, arg2);
1736                         break;
1737                 case PR_SET_FPEXC:
1738                         error = SET_FPEXC_CTL(me, arg2);
1739                         break;
1740                 case PR_GET_FPEXC:
1741                         error = GET_FPEXC_CTL(me, arg2);
1742                         break;
1743                 case PR_GET_TIMING:
1744                         error = PR_TIMING_STATISTICAL;
1745                         break;
1746                 case PR_SET_TIMING:
1747                         if (arg2 != PR_TIMING_STATISTICAL)
1748                                 error = -EINVAL;
1749                         else
1750                                 error = 0;
1751                         break;
1752
1753                 case PR_SET_NAME:
1754                         comm[sizeof(me->comm)-1] = 0;
1755                         if (strncpy_from_user(comm, (char __user *)arg2,
1756                                               sizeof(me->comm) - 1) < 0)
1757                                 return -EFAULT;
1758                         set_task_comm(me, comm);
1759                         return 0;
1760                 case PR_GET_NAME:
1761                         get_task_comm(comm, me);
1762                         if (copy_to_user((char __user *)arg2, comm,
1763                                          sizeof(comm)))
1764                                 return -EFAULT;
1765                         return 0;
1766                 case PR_GET_ENDIAN:
1767                         error = GET_ENDIAN(me, arg2);
1768                         break;
1769                 case PR_SET_ENDIAN:
1770                         error = SET_ENDIAN(me, arg2);
1771                         break;
1772
1773                 case PR_GET_SECCOMP:
1774                         error = prctl_get_seccomp();
1775                         break;
1776                 case PR_SET_SECCOMP:
1777                         error = prctl_set_seccomp(arg2);
1778                         break;
1779                 case PR_GET_TSC:
1780                         error = GET_TSC_CTL(arg2);
1781                         break;
1782                 case PR_SET_TSC:
1783                         error = SET_TSC_CTL(arg2);
1784                         break;
1785                 case PR_TASK_PERF_EVENTS_DISABLE:
1786                         error = perf_event_task_disable();
1787                         break;
1788                 case PR_TASK_PERF_EVENTS_ENABLE:
1789                         error = perf_event_task_enable();
1790                         break;
1791                 case PR_GET_TIMERSLACK:
1792                         error = current->timer_slack_ns;
1793                         break;
1794                 case PR_SET_TIMERSLACK:
1795                         if (arg2 <= 0)
1796                                 current->timer_slack_ns =
1797                                         current->default_timer_slack_ns;
1798                         else
1799                                 current->timer_slack_ns = arg2;
1800                         error = 0;
1801                         break;
1802                 case PR_MCE_KILL:
1803                         if (arg4 | arg5)
1804                                 return -EINVAL;
1805                         switch (arg2) {
1806                         case PR_MCE_KILL_CLEAR:
1807                                 if (arg3 != 0)
1808                                         return -EINVAL;
1809                                 current->flags &= ~PF_MCE_PROCESS;
1810                                 break;
1811                         case PR_MCE_KILL_SET:
1812                                 current->flags |= PF_MCE_PROCESS;
1813                                 if (arg3 == PR_MCE_KILL_EARLY)
1814                                         current->flags |= PF_MCE_EARLY;
1815                                 else if (arg3 == PR_MCE_KILL_LATE)
1816                                         current->flags &= ~PF_MCE_EARLY;
1817                                 else if (arg3 == PR_MCE_KILL_DEFAULT)
1818                                         current->flags &=
1819                                                 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
1820                                 else
1821                                         return -EINVAL;
1822                                 break;
1823                         default:
1824                                 return -EINVAL;
1825                         }
1826                         error = 0;
1827                         break;
1828                 case PR_MCE_KILL_GET:
1829                         if (arg2 | arg3 | arg4 | arg5)
1830                                 return -EINVAL;
1831                         if (current->flags & PF_MCE_PROCESS)
1832                                 error = (current->flags & PF_MCE_EARLY) ?
1833                                         PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1834                         else
1835                                 error = PR_MCE_KILL_DEFAULT;
1836                         break;
1837                 default:
1838                         error = -EINVAL;
1839                         break;
1840         }
1841         return error;
1842 }
1843
1844 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1845                 struct getcpu_cache __user *, unused)
1846 {
1847         int err = 0;
1848         int cpu = raw_smp_processor_id();
1849         if (cpup)
1850                 err |= put_user(cpu, cpup);
1851         if (nodep)
1852                 err |= put_user(cpu_to_node(cpu), nodep);
1853         return err ? -EFAULT : 0;
1854 }
1855
1856 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1857
1858 static void argv_cleanup(struct subprocess_info *info)
1859 {
1860         argv_free(info->argv);
1861 }
1862
1863 /**
1864  * orderly_poweroff - Trigger an orderly system poweroff
1865  * @force: force poweroff if command execution fails
1866  *
1867  * This may be called from any context to trigger a system shutdown.
1868  * If the orderly shutdown fails, it will force an immediate shutdown.
1869  */
1870 int orderly_poweroff(bool force)
1871 {
1872         int argc;
1873         char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1874         static char *envp[] = {
1875                 "HOME=/",
1876                 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1877                 NULL
1878         };
1879         int ret = -ENOMEM;
1880         struct subprocess_info *info;
1881
1882         if (argv == NULL) {
1883                 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1884                        __func__, poweroff_cmd);
1885                 goto out;
1886         }
1887
1888         info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
1889         if (info == NULL) {
1890                 argv_free(argv);
1891                 goto out;
1892         }
1893
1894         call_usermodehelper_setfns(info, NULL, argv_cleanup, NULL);
1895
1896         ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
1897
1898   out:
1899         if (ret && force) {
1900                 printk(KERN_WARNING "Failed to start orderly shutdown: "
1901                        "forcing the issue\n");
1902
1903                 /* I guess this should try to kick off some daemon to
1904                    sync and poweroff asap.  Or not even bother syncing
1905                    if we're doing an emergency shutdown? */
1906                 emergency_sync();
1907                 kernel_power_off();
1908         }
1909
1910         return ret;
1911 }
1912 EXPORT_SYMBOL_GPL(orderly_poweroff);