timekeeping: Pass readout base to update_fast_timekeeper()
[firefly-linux-kernel-4.4.55.git] / kernel / time / timekeeping.c
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30
31 #define TK_CLEAR_NTP            (1 << 0)
32 #define TK_MIRROR               (1 << 1)
33 #define TK_CLOCK_WAS_SET        (1 << 2)
34
35 /*
36  * The most important data for readout fits into a single 64 byte
37  * cache line.
38  */
39 static struct {
40         seqcount_t              seq;
41         struct timekeeper       timekeeper;
42 } tk_core ____cacheline_aligned;
43
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46
47 /**
48  * struct tk_fast - NMI safe timekeeper
49  * @seq:        Sequence counter for protecting updates. The lowest bit
50  *              is the index for the tk_read_base array
51  * @base:       tk_read_base array. Access is indexed by the lowest bit of
52  *              @seq.
53  *
54  * See @update_fast_timekeeper() below.
55  */
56 struct tk_fast {
57         seqcount_t              seq;
58         struct tk_read_base     base[2];
59 };
60
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62
63 /* flag for if timekeeping is suspended */
64 int __read_mostly timekeeping_suspended;
65
66 /* Flag for if there is a persistent clock on this platform */
67 bool __read_mostly persistent_clock_exist = false;
68
69 static inline void tk_normalize_xtime(struct timekeeper *tk)
70 {
71         while (tk->tkr.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr.shift)) {
72                 tk->tkr.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr.shift;
73                 tk->xtime_sec++;
74         }
75 }
76
77 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
78 {
79         struct timespec64 ts;
80
81         ts.tv_sec = tk->xtime_sec;
82         ts.tv_nsec = (long)(tk->tkr.xtime_nsec >> tk->tkr.shift);
83         return ts;
84 }
85
86 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
87 {
88         tk->xtime_sec = ts->tv_sec;
89         tk->tkr.xtime_nsec = (u64)ts->tv_nsec << tk->tkr.shift;
90 }
91
92 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
93 {
94         tk->xtime_sec += ts->tv_sec;
95         tk->tkr.xtime_nsec += (u64)ts->tv_nsec << tk->tkr.shift;
96         tk_normalize_xtime(tk);
97 }
98
99 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
100 {
101         struct timespec64 tmp;
102
103         /*
104          * Verify consistency of: offset_real = -wall_to_monotonic
105          * before modifying anything
106          */
107         set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
108                                         -tk->wall_to_monotonic.tv_nsec);
109         WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
110         tk->wall_to_monotonic = wtm;
111         set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
112         tk->offs_real = timespec64_to_ktime(tmp);
113         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
114 }
115
116 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
117 {
118         tk->offs_boot = ktime_add(tk->offs_boot, delta);
119 }
120
121 /**
122  * tk_setup_internals - Set up internals to use clocksource clock.
123  *
124  * @tk:         The target timekeeper to setup.
125  * @clock:              Pointer to clocksource.
126  *
127  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
128  * pair and interval request.
129  *
130  * Unless you're the timekeeping code, you should not be using this!
131  */
132 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
133 {
134         cycle_t interval;
135         u64 tmp, ntpinterval;
136         struct clocksource *old_clock;
137
138         old_clock = tk->tkr.clock;
139         tk->tkr.clock = clock;
140         tk->tkr.read = clock->read;
141         tk->tkr.mask = clock->mask;
142         tk->tkr.cycle_last = tk->tkr.read(clock);
143
144         /* Do the ns -> cycle conversion first, using original mult */
145         tmp = NTP_INTERVAL_LENGTH;
146         tmp <<= clock->shift;
147         ntpinterval = tmp;
148         tmp += clock->mult/2;
149         do_div(tmp, clock->mult);
150         if (tmp == 0)
151                 tmp = 1;
152
153         interval = (cycle_t) tmp;
154         tk->cycle_interval = interval;
155
156         /* Go back from cycles -> shifted ns */
157         tk->xtime_interval = (u64) interval * clock->mult;
158         tk->xtime_remainder = ntpinterval - tk->xtime_interval;
159         tk->raw_interval =
160                 ((u64) interval * clock->mult) >> clock->shift;
161
162          /* if changing clocks, convert xtime_nsec shift units */
163         if (old_clock) {
164                 int shift_change = clock->shift - old_clock->shift;
165                 if (shift_change < 0)
166                         tk->tkr.xtime_nsec >>= -shift_change;
167                 else
168                         tk->tkr.xtime_nsec <<= shift_change;
169         }
170         tk->tkr.shift = clock->shift;
171
172         tk->ntp_error = 0;
173         tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
174         tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
175
176         /*
177          * The timekeeper keeps its own mult values for the currently
178          * active clocksource. These value will be adjusted via NTP
179          * to counteract clock drifting.
180          */
181         tk->tkr.mult = clock->mult;
182         tk->ntp_err_mult = 0;
183 }
184
185 /* Timekeeper helper functions. */
186
187 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
188 static u32 default_arch_gettimeoffset(void) { return 0; }
189 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
190 #else
191 static inline u32 arch_gettimeoffset(void) { return 0; }
192 #endif
193
194 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
195 {
196         cycle_t cycle_now, delta;
197         s64 nsec;
198
199         /* read clocksource: */
200         cycle_now = tkr->read(tkr->clock);
201
202         /* calculate the delta since the last update_wall_time: */
203         delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
204
205         nsec = delta * tkr->mult + tkr->xtime_nsec;
206         nsec >>= tkr->shift;
207
208         /* If arch requires, add in get_arch_timeoffset() */
209         return nsec + arch_gettimeoffset();
210 }
211
212 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
213 {
214         struct clocksource *clock = tk->tkr.clock;
215         cycle_t cycle_now, delta;
216         s64 nsec;
217
218         /* read clocksource: */
219         cycle_now = tk->tkr.read(clock);
220
221         /* calculate the delta since the last update_wall_time: */
222         delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
223
224         /* convert delta to nanoseconds. */
225         nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
226
227         /* If arch requires, add in get_arch_timeoffset() */
228         return nsec + arch_gettimeoffset();
229 }
230
231 /**
232  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
233  * @tkr: Timekeeping readout base from which we take the update
234  *
235  * We want to use this from any context including NMI and tracing /
236  * instrumenting the timekeeping code itself.
237  *
238  * So we handle this differently than the other timekeeping accessor
239  * functions which retry when the sequence count has changed. The
240  * update side does:
241  *
242  * smp_wmb();   <- Ensure that the last base[1] update is visible
243  * tkf->seq++;
244  * smp_wmb();   <- Ensure that the seqcount update is visible
245  * update(tkf->base[0], tkr);
246  * smp_wmb();   <- Ensure that the base[0] update is visible
247  * tkf->seq++;
248  * smp_wmb();   <- Ensure that the seqcount update is visible
249  * update(tkf->base[1], tkr);
250  *
251  * The reader side does:
252  *
253  * do {
254  *      seq = tkf->seq;
255  *      smp_rmb();
256  *      idx = seq & 0x01;
257  *      now = now(tkf->base[idx]);
258  *      smp_rmb();
259  * } while (seq != tkf->seq)
260  *
261  * As long as we update base[0] readers are forced off to
262  * base[1]. Once base[0] is updated readers are redirected to base[0]
263  * and the base[1] update takes place.
264  *
265  * So if a NMI hits the update of base[0] then it will use base[1]
266  * which is still consistent. In the worst case this can result is a
267  * slightly wrong timestamp (a few nanoseconds). See
268  * @ktime_get_mono_fast_ns.
269  */
270 static void update_fast_timekeeper(struct tk_read_base *tkr)
271 {
272         struct tk_read_base *base = tk_fast_mono.base;
273
274         /* Force readers off to base[1] */
275         raw_write_seqcount_latch(&tk_fast_mono.seq);
276
277         /* Update base[0] */
278         memcpy(base, tkr, sizeof(*base));
279
280         /* Force readers back to base[0] */
281         raw_write_seqcount_latch(&tk_fast_mono.seq);
282
283         /* Update base[1] */
284         memcpy(base + 1, base, sizeof(*base));
285 }
286
287 /**
288  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
289  *
290  * This timestamp is not guaranteed to be monotonic across an update.
291  * The timestamp is calculated by:
292  *
293  *      now = base_mono + clock_delta * slope
294  *
295  * So if the update lowers the slope, readers who are forced to the
296  * not yet updated second array are still using the old steeper slope.
297  *
298  * tmono
299  * ^
300  * |    o  n
301  * |   o n
302  * |  u
303  * | o
304  * |o
305  * |12345678---> reader order
306  *
307  * o = old slope
308  * u = update
309  * n = new slope
310  *
311  * So reader 6 will observe time going backwards versus reader 5.
312  *
313  * While other CPUs are likely to be able observe that, the only way
314  * for a CPU local observation is when an NMI hits in the middle of
315  * the update. Timestamps taken from that NMI context might be ahead
316  * of the following timestamps. Callers need to be aware of that and
317  * deal with it.
318  */
319 u64 notrace ktime_get_mono_fast_ns(void)
320 {
321         struct tk_read_base *tkr;
322         unsigned int seq;
323         u64 now;
324
325         do {
326                 seq = raw_read_seqcount(&tk_fast_mono.seq);
327                 tkr = tk_fast_mono.base + (seq & 0x01);
328                 now = ktime_to_ns(tkr->base_mono) + timekeeping_get_ns(tkr);
329
330         } while (read_seqcount_retry(&tk_fast_mono.seq, seq));
331         return now;
332 }
333 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
334
335 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
336
337 static inline void update_vsyscall(struct timekeeper *tk)
338 {
339         struct timespec xt, wm;
340
341         xt = timespec64_to_timespec(tk_xtime(tk));
342         wm = timespec64_to_timespec(tk->wall_to_monotonic);
343         update_vsyscall_old(&xt, &wm, tk->tkr.clock, tk->tkr.mult,
344                             tk->tkr.cycle_last);
345 }
346
347 static inline void old_vsyscall_fixup(struct timekeeper *tk)
348 {
349         s64 remainder;
350
351         /*
352         * Store only full nanoseconds into xtime_nsec after rounding
353         * it up and add the remainder to the error difference.
354         * XXX - This is necessary to avoid small 1ns inconsistnecies caused
355         * by truncating the remainder in vsyscalls. However, it causes
356         * additional work to be done in timekeeping_adjust(). Once
357         * the vsyscall implementations are converted to use xtime_nsec
358         * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
359         * users are removed, this can be killed.
360         */
361         remainder = tk->tkr.xtime_nsec & ((1ULL << tk->tkr.shift) - 1);
362         tk->tkr.xtime_nsec -= remainder;
363         tk->tkr.xtime_nsec += 1ULL << tk->tkr.shift;
364         tk->ntp_error += remainder << tk->ntp_error_shift;
365         tk->ntp_error -= (1ULL << tk->tkr.shift) << tk->ntp_error_shift;
366 }
367 #else
368 #define old_vsyscall_fixup(tk)
369 #endif
370
371 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
372
373 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
374 {
375         raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
376 }
377
378 /**
379  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
380  */
381 int pvclock_gtod_register_notifier(struct notifier_block *nb)
382 {
383         struct timekeeper *tk = &tk_core.timekeeper;
384         unsigned long flags;
385         int ret;
386
387         raw_spin_lock_irqsave(&timekeeper_lock, flags);
388         ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
389         update_pvclock_gtod(tk, true);
390         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
391
392         return ret;
393 }
394 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
395
396 /**
397  * pvclock_gtod_unregister_notifier - unregister a pvclock
398  * timedata update listener
399  */
400 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
401 {
402         unsigned long flags;
403         int ret;
404
405         raw_spin_lock_irqsave(&timekeeper_lock, flags);
406         ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
407         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
408
409         return ret;
410 }
411 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
412
413 /*
414  * Update the ktime_t based scalar nsec members of the timekeeper
415  */
416 static inline void tk_update_ktime_data(struct timekeeper *tk)
417 {
418         u64 seconds;
419         u32 nsec;
420
421         /*
422          * The xtime based monotonic readout is:
423          *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
424          * The ktime based monotonic readout is:
425          *      nsec = base_mono + now();
426          * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
427          */
428         seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
429         nsec = (u32) tk->wall_to_monotonic.tv_nsec;
430         tk->tkr.base_mono = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
431
432         /* Update the monotonic raw base */
433         tk->base_raw = timespec64_to_ktime(tk->raw_time);
434
435         /*
436          * The sum of the nanoseconds portions of xtime and
437          * wall_to_monotonic can be greater/equal one second. Take
438          * this into account before updating tk->ktime_sec.
439          */
440         nsec += (u32)(tk->tkr.xtime_nsec >> tk->tkr.shift);
441         if (nsec >= NSEC_PER_SEC)
442                 seconds++;
443         tk->ktime_sec = seconds;
444 }
445
446 /* must hold timekeeper_lock */
447 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
448 {
449         if (action & TK_CLEAR_NTP) {
450                 tk->ntp_error = 0;
451                 ntp_clear();
452         }
453
454         tk_update_ktime_data(tk);
455
456         update_vsyscall(tk);
457         update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
458
459         if (action & TK_MIRROR)
460                 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
461                        sizeof(tk_core.timekeeper));
462
463         update_fast_timekeeper(&tk->tkr);
464 }
465
466 /**
467  * timekeeping_forward_now - update clock to the current time
468  *
469  * Forward the current clock to update its state since the last call to
470  * update_wall_time(). This is useful before significant clock changes,
471  * as it avoids having to deal with this time offset explicitly.
472  */
473 static void timekeeping_forward_now(struct timekeeper *tk)
474 {
475         struct clocksource *clock = tk->tkr.clock;
476         cycle_t cycle_now, delta;
477         s64 nsec;
478
479         cycle_now = tk->tkr.read(clock);
480         delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
481         tk->tkr.cycle_last = cycle_now;
482
483         tk->tkr.xtime_nsec += delta * tk->tkr.mult;
484
485         /* If arch requires, add in get_arch_timeoffset() */
486         tk->tkr.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr.shift;
487
488         tk_normalize_xtime(tk);
489
490         nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
491         timespec64_add_ns(&tk->raw_time, nsec);
492 }
493
494 /**
495  * __getnstimeofday64 - Returns the time of day in a timespec64.
496  * @ts:         pointer to the timespec to be set
497  *
498  * Updates the time of day in the timespec.
499  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
500  */
501 int __getnstimeofday64(struct timespec64 *ts)
502 {
503         struct timekeeper *tk = &tk_core.timekeeper;
504         unsigned long seq;
505         s64 nsecs = 0;
506
507         do {
508                 seq = read_seqcount_begin(&tk_core.seq);
509
510                 ts->tv_sec = tk->xtime_sec;
511                 nsecs = timekeeping_get_ns(&tk->tkr);
512
513         } while (read_seqcount_retry(&tk_core.seq, seq));
514
515         ts->tv_nsec = 0;
516         timespec64_add_ns(ts, nsecs);
517
518         /*
519          * Do not bail out early, in case there were callers still using
520          * the value, even in the face of the WARN_ON.
521          */
522         if (unlikely(timekeeping_suspended))
523                 return -EAGAIN;
524         return 0;
525 }
526 EXPORT_SYMBOL(__getnstimeofday64);
527
528 /**
529  * getnstimeofday64 - Returns the time of day in a timespec64.
530  * @ts:         pointer to the timespec64 to be set
531  *
532  * Returns the time of day in a timespec64 (WARN if suspended).
533  */
534 void getnstimeofday64(struct timespec64 *ts)
535 {
536         WARN_ON(__getnstimeofday64(ts));
537 }
538 EXPORT_SYMBOL(getnstimeofday64);
539
540 ktime_t ktime_get(void)
541 {
542         struct timekeeper *tk = &tk_core.timekeeper;
543         unsigned int seq;
544         ktime_t base;
545         s64 nsecs;
546
547         WARN_ON(timekeeping_suspended);
548
549         do {
550                 seq = read_seqcount_begin(&tk_core.seq);
551                 base = tk->tkr.base_mono;
552                 nsecs = timekeeping_get_ns(&tk->tkr);
553
554         } while (read_seqcount_retry(&tk_core.seq, seq));
555
556         return ktime_add_ns(base, nsecs);
557 }
558 EXPORT_SYMBOL_GPL(ktime_get);
559
560 static ktime_t *offsets[TK_OFFS_MAX] = {
561         [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
562         [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
563         [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
564 };
565
566 ktime_t ktime_get_with_offset(enum tk_offsets offs)
567 {
568         struct timekeeper *tk = &tk_core.timekeeper;
569         unsigned int seq;
570         ktime_t base, *offset = offsets[offs];
571         s64 nsecs;
572
573         WARN_ON(timekeeping_suspended);
574
575         do {
576                 seq = read_seqcount_begin(&tk_core.seq);
577                 base = ktime_add(tk->tkr.base_mono, *offset);
578                 nsecs = timekeeping_get_ns(&tk->tkr);
579
580         } while (read_seqcount_retry(&tk_core.seq, seq));
581
582         return ktime_add_ns(base, nsecs);
583
584 }
585 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
586
587 /**
588  * ktime_mono_to_any() - convert mononotic time to any other time
589  * @tmono:      time to convert.
590  * @offs:       which offset to use
591  */
592 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
593 {
594         ktime_t *offset = offsets[offs];
595         unsigned long seq;
596         ktime_t tconv;
597
598         do {
599                 seq = read_seqcount_begin(&tk_core.seq);
600                 tconv = ktime_add(tmono, *offset);
601         } while (read_seqcount_retry(&tk_core.seq, seq));
602
603         return tconv;
604 }
605 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
606
607 /**
608  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
609  */
610 ktime_t ktime_get_raw(void)
611 {
612         struct timekeeper *tk = &tk_core.timekeeper;
613         unsigned int seq;
614         ktime_t base;
615         s64 nsecs;
616
617         do {
618                 seq = read_seqcount_begin(&tk_core.seq);
619                 base = tk->base_raw;
620                 nsecs = timekeeping_get_ns_raw(tk);
621
622         } while (read_seqcount_retry(&tk_core.seq, seq));
623
624         return ktime_add_ns(base, nsecs);
625 }
626 EXPORT_SYMBOL_GPL(ktime_get_raw);
627
628 /**
629  * ktime_get_ts64 - get the monotonic clock in timespec64 format
630  * @ts:         pointer to timespec variable
631  *
632  * The function calculates the monotonic clock from the realtime
633  * clock and the wall_to_monotonic offset and stores the result
634  * in normalized timespec64 format in the variable pointed to by @ts.
635  */
636 void ktime_get_ts64(struct timespec64 *ts)
637 {
638         struct timekeeper *tk = &tk_core.timekeeper;
639         struct timespec64 tomono;
640         s64 nsec;
641         unsigned int seq;
642
643         WARN_ON(timekeeping_suspended);
644
645         do {
646                 seq = read_seqcount_begin(&tk_core.seq);
647                 ts->tv_sec = tk->xtime_sec;
648                 nsec = timekeeping_get_ns(&tk->tkr);
649                 tomono = tk->wall_to_monotonic;
650
651         } while (read_seqcount_retry(&tk_core.seq, seq));
652
653         ts->tv_sec += tomono.tv_sec;
654         ts->tv_nsec = 0;
655         timespec64_add_ns(ts, nsec + tomono.tv_nsec);
656 }
657 EXPORT_SYMBOL_GPL(ktime_get_ts64);
658
659 /**
660  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
661  *
662  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
663  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
664  * works on both 32 and 64 bit systems. On 32 bit systems the readout
665  * covers ~136 years of uptime which should be enough to prevent
666  * premature wrap arounds.
667  */
668 time64_t ktime_get_seconds(void)
669 {
670         struct timekeeper *tk = &tk_core.timekeeper;
671
672         WARN_ON(timekeeping_suspended);
673         return tk->ktime_sec;
674 }
675 EXPORT_SYMBOL_GPL(ktime_get_seconds);
676
677 /**
678  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
679  *
680  * Returns the wall clock seconds since 1970. This replaces the
681  * get_seconds() interface which is not y2038 safe on 32bit systems.
682  *
683  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
684  * 32bit systems the access must be protected with the sequence
685  * counter to provide "atomic" access to the 64bit tk->xtime_sec
686  * value.
687  */
688 time64_t ktime_get_real_seconds(void)
689 {
690         struct timekeeper *tk = &tk_core.timekeeper;
691         time64_t seconds;
692         unsigned int seq;
693
694         if (IS_ENABLED(CONFIG_64BIT))
695                 return tk->xtime_sec;
696
697         do {
698                 seq = read_seqcount_begin(&tk_core.seq);
699                 seconds = tk->xtime_sec;
700
701         } while (read_seqcount_retry(&tk_core.seq, seq));
702
703         return seconds;
704 }
705 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
706
707 #ifdef CONFIG_NTP_PPS
708
709 /**
710  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
711  * @ts_raw:     pointer to the timespec to be set to raw monotonic time
712  * @ts_real:    pointer to the timespec to be set to the time of day
713  *
714  * This function reads both the time of day and raw monotonic time at the
715  * same time atomically and stores the resulting timestamps in timespec
716  * format.
717  */
718 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
719 {
720         struct timekeeper *tk = &tk_core.timekeeper;
721         unsigned long seq;
722         s64 nsecs_raw, nsecs_real;
723
724         WARN_ON_ONCE(timekeeping_suspended);
725
726         do {
727                 seq = read_seqcount_begin(&tk_core.seq);
728
729                 *ts_raw = timespec64_to_timespec(tk->raw_time);
730                 ts_real->tv_sec = tk->xtime_sec;
731                 ts_real->tv_nsec = 0;
732
733                 nsecs_raw = timekeeping_get_ns_raw(tk);
734                 nsecs_real = timekeeping_get_ns(&tk->tkr);
735
736         } while (read_seqcount_retry(&tk_core.seq, seq));
737
738         timespec_add_ns(ts_raw, nsecs_raw);
739         timespec_add_ns(ts_real, nsecs_real);
740 }
741 EXPORT_SYMBOL(getnstime_raw_and_real);
742
743 #endif /* CONFIG_NTP_PPS */
744
745 /**
746  * do_gettimeofday - Returns the time of day in a timeval
747  * @tv:         pointer to the timeval to be set
748  *
749  * NOTE: Users should be converted to using getnstimeofday()
750  */
751 void do_gettimeofday(struct timeval *tv)
752 {
753         struct timespec64 now;
754
755         getnstimeofday64(&now);
756         tv->tv_sec = now.tv_sec;
757         tv->tv_usec = now.tv_nsec/1000;
758 }
759 EXPORT_SYMBOL(do_gettimeofday);
760
761 /**
762  * do_settimeofday64 - Sets the time of day.
763  * @ts:     pointer to the timespec64 variable containing the new time
764  *
765  * Sets the time of day to the new time and update NTP and notify hrtimers
766  */
767 int do_settimeofday64(const struct timespec64 *ts)
768 {
769         struct timekeeper *tk = &tk_core.timekeeper;
770         struct timespec64 ts_delta, xt;
771         unsigned long flags;
772
773         if (!timespec64_valid_strict(ts))
774                 return -EINVAL;
775
776         raw_spin_lock_irqsave(&timekeeper_lock, flags);
777         write_seqcount_begin(&tk_core.seq);
778
779         timekeeping_forward_now(tk);
780
781         xt = tk_xtime(tk);
782         ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
783         ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
784
785         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
786
787         tk_set_xtime(tk, ts);
788
789         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
790
791         write_seqcount_end(&tk_core.seq);
792         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
793
794         /* signal hrtimers about time change */
795         clock_was_set();
796
797         return 0;
798 }
799 EXPORT_SYMBOL(do_settimeofday64);
800
801 /**
802  * timekeeping_inject_offset - Adds or subtracts from the current time.
803  * @tv:         pointer to the timespec variable containing the offset
804  *
805  * Adds or subtracts an offset value from the current time.
806  */
807 int timekeeping_inject_offset(struct timespec *ts)
808 {
809         struct timekeeper *tk = &tk_core.timekeeper;
810         unsigned long flags;
811         struct timespec64 ts64, tmp;
812         int ret = 0;
813
814         if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
815                 return -EINVAL;
816
817         ts64 = timespec_to_timespec64(*ts);
818
819         raw_spin_lock_irqsave(&timekeeper_lock, flags);
820         write_seqcount_begin(&tk_core.seq);
821
822         timekeeping_forward_now(tk);
823
824         /* Make sure the proposed value is valid */
825         tmp = timespec64_add(tk_xtime(tk),  ts64);
826         if (!timespec64_valid_strict(&tmp)) {
827                 ret = -EINVAL;
828                 goto error;
829         }
830
831         tk_xtime_add(tk, &ts64);
832         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
833
834 error: /* even if we error out, we forwarded the time, so call update */
835         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
836
837         write_seqcount_end(&tk_core.seq);
838         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
839
840         /* signal hrtimers about time change */
841         clock_was_set();
842
843         return ret;
844 }
845 EXPORT_SYMBOL(timekeeping_inject_offset);
846
847
848 /**
849  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
850  *
851  */
852 s32 timekeeping_get_tai_offset(void)
853 {
854         struct timekeeper *tk = &tk_core.timekeeper;
855         unsigned int seq;
856         s32 ret;
857
858         do {
859                 seq = read_seqcount_begin(&tk_core.seq);
860                 ret = tk->tai_offset;
861         } while (read_seqcount_retry(&tk_core.seq, seq));
862
863         return ret;
864 }
865
866 /**
867  * __timekeeping_set_tai_offset - Lock free worker function
868  *
869  */
870 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
871 {
872         tk->tai_offset = tai_offset;
873         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
874 }
875
876 /**
877  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
878  *
879  */
880 void timekeeping_set_tai_offset(s32 tai_offset)
881 {
882         struct timekeeper *tk = &tk_core.timekeeper;
883         unsigned long flags;
884
885         raw_spin_lock_irqsave(&timekeeper_lock, flags);
886         write_seqcount_begin(&tk_core.seq);
887         __timekeeping_set_tai_offset(tk, tai_offset);
888         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
889         write_seqcount_end(&tk_core.seq);
890         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
891         clock_was_set();
892 }
893
894 /**
895  * change_clocksource - Swaps clocksources if a new one is available
896  *
897  * Accumulates current time interval and initializes new clocksource
898  */
899 static int change_clocksource(void *data)
900 {
901         struct timekeeper *tk = &tk_core.timekeeper;
902         struct clocksource *new, *old;
903         unsigned long flags;
904
905         new = (struct clocksource *) data;
906
907         raw_spin_lock_irqsave(&timekeeper_lock, flags);
908         write_seqcount_begin(&tk_core.seq);
909
910         timekeeping_forward_now(tk);
911         /*
912          * If the cs is in module, get a module reference. Succeeds
913          * for built-in code (owner == NULL) as well.
914          */
915         if (try_module_get(new->owner)) {
916                 if (!new->enable || new->enable(new) == 0) {
917                         old = tk->tkr.clock;
918                         tk_setup_internals(tk, new);
919                         if (old->disable)
920                                 old->disable(old);
921                         module_put(old->owner);
922                 } else {
923                         module_put(new->owner);
924                 }
925         }
926         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
927
928         write_seqcount_end(&tk_core.seq);
929         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
930
931         return 0;
932 }
933
934 /**
935  * timekeeping_notify - Install a new clock source
936  * @clock:              pointer to the clock source
937  *
938  * This function is called from clocksource.c after a new, better clock
939  * source has been registered. The caller holds the clocksource_mutex.
940  */
941 int timekeeping_notify(struct clocksource *clock)
942 {
943         struct timekeeper *tk = &tk_core.timekeeper;
944
945         if (tk->tkr.clock == clock)
946                 return 0;
947         stop_machine(change_clocksource, clock, NULL);
948         tick_clock_notify();
949         return tk->tkr.clock == clock ? 0 : -1;
950 }
951
952 /**
953  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
954  * @ts:         pointer to the timespec64 to be set
955  *
956  * Returns the raw monotonic time (completely un-modified by ntp)
957  */
958 void getrawmonotonic64(struct timespec64 *ts)
959 {
960         struct timekeeper *tk = &tk_core.timekeeper;
961         struct timespec64 ts64;
962         unsigned long seq;
963         s64 nsecs;
964
965         do {
966                 seq = read_seqcount_begin(&tk_core.seq);
967                 nsecs = timekeeping_get_ns_raw(tk);
968                 ts64 = tk->raw_time;
969
970         } while (read_seqcount_retry(&tk_core.seq, seq));
971
972         timespec64_add_ns(&ts64, nsecs);
973         *ts = ts64;
974 }
975 EXPORT_SYMBOL(getrawmonotonic64);
976
977
978 /**
979  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
980  */
981 int timekeeping_valid_for_hres(void)
982 {
983         struct timekeeper *tk = &tk_core.timekeeper;
984         unsigned long seq;
985         int ret;
986
987         do {
988                 seq = read_seqcount_begin(&tk_core.seq);
989
990                 ret = tk->tkr.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
991
992         } while (read_seqcount_retry(&tk_core.seq, seq));
993
994         return ret;
995 }
996
997 /**
998  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
999  */
1000 u64 timekeeping_max_deferment(void)
1001 {
1002         struct timekeeper *tk = &tk_core.timekeeper;
1003         unsigned long seq;
1004         u64 ret;
1005
1006         do {
1007                 seq = read_seqcount_begin(&tk_core.seq);
1008
1009                 ret = tk->tkr.clock->max_idle_ns;
1010
1011         } while (read_seqcount_retry(&tk_core.seq, seq));
1012
1013         return ret;
1014 }
1015
1016 /**
1017  * read_persistent_clock -  Return time from the persistent clock.
1018  *
1019  * Weak dummy function for arches that do not yet support it.
1020  * Reads the time from the battery backed persistent clock.
1021  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1022  *
1023  *  XXX - Do be sure to remove it once all arches implement it.
1024  */
1025 void __weak read_persistent_clock(struct timespec *ts)
1026 {
1027         ts->tv_sec = 0;
1028         ts->tv_nsec = 0;
1029 }
1030
1031 /**
1032  * read_boot_clock -  Return time of the system start.
1033  *
1034  * Weak dummy function for arches that do not yet support it.
1035  * Function to read the exact time the system has been started.
1036  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1037  *
1038  *  XXX - Do be sure to remove it once all arches implement it.
1039  */
1040 void __weak read_boot_clock(struct timespec *ts)
1041 {
1042         ts->tv_sec = 0;
1043         ts->tv_nsec = 0;
1044 }
1045
1046 /*
1047  * timekeeping_init - Initializes the clocksource and common timekeeping values
1048  */
1049 void __init timekeeping_init(void)
1050 {
1051         struct timekeeper *tk = &tk_core.timekeeper;
1052         struct clocksource *clock;
1053         unsigned long flags;
1054         struct timespec64 now, boot, tmp;
1055         struct timespec ts;
1056
1057         read_persistent_clock(&ts);
1058         now = timespec_to_timespec64(ts);
1059         if (!timespec64_valid_strict(&now)) {
1060                 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1061                         "         Check your CMOS/BIOS settings.\n");
1062                 now.tv_sec = 0;
1063                 now.tv_nsec = 0;
1064         } else if (now.tv_sec || now.tv_nsec)
1065                 persistent_clock_exist = true;
1066
1067         read_boot_clock(&ts);
1068         boot = timespec_to_timespec64(ts);
1069         if (!timespec64_valid_strict(&boot)) {
1070                 pr_warn("WARNING: Boot clock returned invalid value!\n"
1071                         "         Check your CMOS/BIOS settings.\n");
1072                 boot.tv_sec = 0;
1073                 boot.tv_nsec = 0;
1074         }
1075
1076         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1077         write_seqcount_begin(&tk_core.seq);
1078         ntp_init();
1079
1080         clock = clocksource_default_clock();
1081         if (clock->enable)
1082                 clock->enable(clock);
1083         tk_setup_internals(tk, clock);
1084
1085         tk_set_xtime(tk, &now);
1086         tk->raw_time.tv_sec = 0;
1087         tk->raw_time.tv_nsec = 0;
1088         tk->base_raw.tv64 = 0;
1089         if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1090                 boot = tk_xtime(tk);
1091
1092         set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1093         tk_set_wall_to_mono(tk, tmp);
1094
1095         timekeeping_update(tk, TK_MIRROR);
1096
1097         write_seqcount_end(&tk_core.seq);
1098         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1099 }
1100
1101 /* time in seconds when suspend began */
1102 static struct timespec64 timekeeping_suspend_time;
1103
1104 /**
1105  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1106  * @delta: pointer to a timespec delta value
1107  *
1108  * Takes a timespec offset measuring a suspend interval and properly
1109  * adds the sleep offset to the timekeeping variables.
1110  */
1111 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1112                                            struct timespec64 *delta)
1113 {
1114         if (!timespec64_valid_strict(delta)) {
1115                 printk_deferred(KERN_WARNING
1116                                 "__timekeeping_inject_sleeptime: Invalid "
1117                                 "sleep delta value!\n");
1118                 return;
1119         }
1120         tk_xtime_add(tk, delta);
1121         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1122         tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1123         tk_debug_account_sleep_time(delta);
1124 }
1125
1126 /**
1127  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1128  * @delta: pointer to a timespec64 delta value
1129  *
1130  * This hook is for architectures that cannot support read_persistent_clock
1131  * because their RTC/persistent clock is only accessible when irqs are enabled.
1132  *
1133  * This function should only be called by rtc_resume(), and allows
1134  * a suspend offset to be injected into the timekeeping values.
1135  */
1136 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1137 {
1138         struct timekeeper *tk = &tk_core.timekeeper;
1139         unsigned long flags;
1140
1141         /*
1142          * Make sure we don't set the clock twice, as timekeeping_resume()
1143          * already did it
1144          */
1145         if (has_persistent_clock())
1146                 return;
1147
1148         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1149         write_seqcount_begin(&tk_core.seq);
1150
1151         timekeeping_forward_now(tk);
1152
1153         __timekeeping_inject_sleeptime(tk, delta);
1154
1155         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1156
1157         write_seqcount_end(&tk_core.seq);
1158         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1159
1160         /* signal hrtimers about time change */
1161         clock_was_set();
1162 }
1163
1164 /**
1165  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1166  *
1167  * This is for the generic clocksource timekeeping.
1168  * xtime/wall_to_monotonic/jiffies/etc are
1169  * still managed by arch specific suspend/resume code.
1170  */
1171 static void timekeeping_resume(void)
1172 {
1173         struct timekeeper *tk = &tk_core.timekeeper;
1174         struct clocksource *clock = tk->tkr.clock;
1175         unsigned long flags;
1176         struct timespec64 ts_new, ts_delta;
1177         struct timespec tmp;
1178         cycle_t cycle_now, cycle_delta;
1179         bool suspendtime_found = false;
1180
1181         read_persistent_clock(&tmp);
1182         ts_new = timespec_to_timespec64(tmp);
1183
1184         clockevents_resume();
1185         clocksource_resume();
1186
1187         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1188         write_seqcount_begin(&tk_core.seq);
1189
1190         /*
1191          * After system resumes, we need to calculate the suspended time and
1192          * compensate it for the OS time. There are 3 sources that could be
1193          * used: Nonstop clocksource during suspend, persistent clock and rtc
1194          * device.
1195          *
1196          * One specific platform may have 1 or 2 or all of them, and the
1197          * preference will be:
1198          *      suspend-nonstop clocksource -> persistent clock -> rtc
1199          * The less preferred source will only be tried if there is no better
1200          * usable source. The rtc part is handled separately in rtc core code.
1201          */
1202         cycle_now = tk->tkr.read(clock);
1203         if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1204                 cycle_now > tk->tkr.cycle_last) {
1205                 u64 num, max = ULLONG_MAX;
1206                 u32 mult = clock->mult;
1207                 u32 shift = clock->shift;
1208                 s64 nsec = 0;
1209
1210                 cycle_delta = clocksource_delta(cycle_now, tk->tkr.cycle_last,
1211                                                 tk->tkr.mask);
1212
1213                 /*
1214                  * "cycle_delta * mutl" may cause 64 bits overflow, if the
1215                  * suspended time is too long. In that case we need do the
1216                  * 64 bits math carefully
1217                  */
1218                 do_div(max, mult);
1219                 if (cycle_delta > max) {
1220                         num = div64_u64(cycle_delta, max);
1221                         nsec = (((u64) max * mult) >> shift) * num;
1222                         cycle_delta -= num * max;
1223                 }
1224                 nsec += ((u64) cycle_delta * mult) >> shift;
1225
1226                 ts_delta = ns_to_timespec64(nsec);
1227                 suspendtime_found = true;
1228         } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1229                 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1230                 suspendtime_found = true;
1231         }
1232
1233         if (suspendtime_found)
1234                 __timekeeping_inject_sleeptime(tk, &ts_delta);
1235
1236         /* Re-base the last cycle value */
1237         tk->tkr.cycle_last = cycle_now;
1238         tk->ntp_error = 0;
1239         timekeeping_suspended = 0;
1240         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1241         write_seqcount_end(&tk_core.seq);
1242         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1243
1244         touch_softlockup_watchdog();
1245
1246         clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
1247
1248         /* Resume hrtimers */
1249         hrtimers_resume();
1250 }
1251
1252 static int timekeeping_suspend(void)
1253 {
1254         struct timekeeper *tk = &tk_core.timekeeper;
1255         unsigned long flags;
1256         struct timespec64               delta, delta_delta;
1257         static struct timespec64        old_delta;
1258         struct timespec tmp;
1259
1260         read_persistent_clock(&tmp);
1261         timekeeping_suspend_time = timespec_to_timespec64(tmp);
1262
1263         /*
1264          * On some systems the persistent_clock can not be detected at
1265          * timekeeping_init by its return value, so if we see a valid
1266          * value returned, update the persistent_clock_exists flag.
1267          */
1268         if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1269                 persistent_clock_exist = true;
1270
1271         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1272         write_seqcount_begin(&tk_core.seq);
1273         timekeeping_forward_now(tk);
1274         timekeeping_suspended = 1;
1275
1276         /*
1277          * To avoid drift caused by repeated suspend/resumes,
1278          * which each can add ~1 second drift error,
1279          * try to compensate so the difference in system time
1280          * and persistent_clock time stays close to constant.
1281          */
1282         delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1283         delta_delta = timespec64_sub(delta, old_delta);
1284         if (abs(delta_delta.tv_sec)  >= 2) {
1285                 /*
1286                  * if delta_delta is too large, assume time correction
1287                  * has occured and set old_delta to the current delta.
1288                  */
1289                 old_delta = delta;
1290         } else {
1291                 /* Otherwise try to adjust old_system to compensate */
1292                 timekeeping_suspend_time =
1293                         timespec64_add(timekeeping_suspend_time, delta_delta);
1294         }
1295
1296         timekeeping_update(tk, TK_MIRROR);
1297         write_seqcount_end(&tk_core.seq);
1298         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1299
1300         clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
1301         clocksource_suspend();
1302         clockevents_suspend();
1303
1304         return 0;
1305 }
1306
1307 /* sysfs resume/suspend bits for timekeeping */
1308 static struct syscore_ops timekeeping_syscore_ops = {
1309         .resume         = timekeeping_resume,
1310         .suspend        = timekeeping_suspend,
1311 };
1312
1313 static int __init timekeeping_init_ops(void)
1314 {
1315         register_syscore_ops(&timekeeping_syscore_ops);
1316         return 0;
1317 }
1318 device_initcall(timekeeping_init_ops);
1319
1320 /*
1321  * Apply a multiplier adjustment to the timekeeper
1322  */
1323 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1324                                                          s64 offset,
1325                                                          bool negative,
1326                                                          int adj_scale)
1327 {
1328         s64 interval = tk->cycle_interval;
1329         s32 mult_adj = 1;
1330
1331         if (negative) {
1332                 mult_adj = -mult_adj;
1333                 interval = -interval;
1334                 offset  = -offset;
1335         }
1336         mult_adj <<= adj_scale;
1337         interval <<= adj_scale;
1338         offset <<= adj_scale;
1339
1340         /*
1341          * So the following can be confusing.
1342          *
1343          * To keep things simple, lets assume mult_adj == 1 for now.
1344          *
1345          * When mult_adj != 1, remember that the interval and offset values
1346          * have been appropriately scaled so the math is the same.
1347          *
1348          * The basic idea here is that we're increasing the multiplier
1349          * by one, this causes the xtime_interval to be incremented by
1350          * one cycle_interval. This is because:
1351          *      xtime_interval = cycle_interval * mult
1352          * So if mult is being incremented by one:
1353          *      xtime_interval = cycle_interval * (mult + 1)
1354          * Its the same as:
1355          *      xtime_interval = (cycle_interval * mult) + cycle_interval
1356          * Which can be shortened to:
1357          *      xtime_interval += cycle_interval
1358          *
1359          * So offset stores the non-accumulated cycles. Thus the current
1360          * time (in shifted nanoseconds) is:
1361          *      now = (offset * adj) + xtime_nsec
1362          * Now, even though we're adjusting the clock frequency, we have
1363          * to keep time consistent. In other words, we can't jump back
1364          * in time, and we also want to avoid jumping forward in time.
1365          *
1366          * So given the same offset value, we need the time to be the same
1367          * both before and after the freq adjustment.
1368          *      now = (offset * adj_1) + xtime_nsec_1
1369          *      now = (offset * adj_2) + xtime_nsec_2
1370          * So:
1371          *      (offset * adj_1) + xtime_nsec_1 =
1372          *              (offset * adj_2) + xtime_nsec_2
1373          * And we know:
1374          *      adj_2 = adj_1 + 1
1375          * So:
1376          *      (offset * adj_1) + xtime_nsec_1 =
1377          *              (offset * (adj_1+1)) + xtime_nsec_2
1378          *      (offset * adj_1) + xtime_nsec_1 =
1379          *              (offset * adj_1) + offset + xtime_nsec_2
1380          * Canceling the sides:
1381          *      xtime_nsec_1 = offset + xtime_nsec_2
1382          * Which gives us:
1383          *      xtime_nsec_2 = xtime_nsec_1 - offset
1384          * Which simplfies to:
1385          *      xtime_nsec -= offset
1386          *
1387          * XXX - TODO: Doc ntp_error calculation.
1388          */
1389         if ((mult_adj > 0) && (tk->tkr.mult + mult_adj < mult_adj)) {
1390                 /* NTP adjustment caused clocksource mult overflow */
1391                 WARN_ON_ONCE(1);
1392                 return;
1393         }
1394
1395         tk->tkr.mult += mult_adj;
1396         tk->xtime_interval += interval;
1397         tk->tkr.xtime_nsec -= offset;
1398         tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1399 }
1400
1401 /*
1402  * Calculate the multiplier adjustment needed to match the frequency
1403  * specified by NTP
1404  */
1405 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1406                                                         s64 offset)
1407 {
1408         s64 interval = tk->cycle_interval;
1409         s64 xinterval = tk->xtime_interval;
1410         s64 tick_error;
1411         bool negative;
1412         u32 adj;
1413
1414         /* Remove any current error adj from freq calculation */
1415         if (tk->ntp_err_mult)
1416                 xinterval -= tk->cycle_interval;
1417
1418         tk->ntp_tick = ntp_tick_length();
1419
1420         /* Calculate current error per tick */
1421         tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1422         tick_error -= (xinterval + tk->xtime_remainder);
1423
1424         /* Don't worry about correcting it if its small */
1425         if (likely((tick_error >= 0) && (tick_error <= interval)))
1426                 return;
1427
1428         /* preserve the direction of correction */
1429         negative = (tick_error < 0);
1430
1431         /* Sort out the magnitude of the correction */
1432         tick_error = abs(tick_error);
1433         for (adj = 0; tick_error > interval; adj++)
1434                 tick_error >>= 1;
1435
1436         /* scale the corrections */
1437         timekeeping_apply_adjustment(tk, offset, negative, adj);
1438 }
1439
1440 /*
1441  * Adjust the timekeeper's multiplier to the correct frequency
1442  * and also to reduce the accumulated error value.
1443  */
1444 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1445 {
1446         /* Correct for the current frequency error */
1447         timekeeping_freqadjust(tk, offset);
1448
1449         /* Next make a small adjustment to fix any cumulative error */
1450         if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1451                 tk->ntp_err_mult = 1;
1452                 timekeeping_apply_adjustment(tk, offset, 0, 0);
1453         } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1454                 /* Undo any existing error adjustment */
1455                 timekeeping_apply_adjustment(tk, offset, 1, 0);
1456                 tk->ntp_err_mult = 0;
1457         }
1458
1459         if (unlikely(tk->tkr.clock->maxadj &&
1460                 (abs(tk->tkr.mult - tk->tkr.clock->mult)
1461                         > tk->tkr.clock->maxadj))) {
1462                 printk_once(KERN_WARNING
1463                         "Adjusting %s more than 11%% (%ld vs %ld)\n",
1464                         tk->tkr.clock->name, (long)tk->tkr.mult,
1465                         (long)tk->tkr.clock->mult + tk->tkr.clock->maxadj);
1466         }
1467
1468         /*
1469          * It may be possible that when we entered this function, xtime_nsec
1470          * was very small.  Further, if we're slightly speeding the clocksource
1471          * in the code above, its possible the required corrective factor to
1472          * xtime_nsec could cause it to underflow.
1473          *
1474          * Now, since we already accumulated the second, cannot simply roll
1475          * the accumulated second back, since the NTP subsystem has been
1476          * notified via second_overflow. So instead we push xtime_nsec forward
1477          * by the amount we underflowed, and add that amount into the error.
1478          *
1479          * We'll correct this error next time through this function, when
1480          * xtime_nsec is not as small.
1481          */
1482         if (unlikely((s64)tk->tkr.xtime_nsec < 0)) {
1483                 s64 neg = -(s64)tk->tkr.xtime_nsec;
1484                 tk->tkr.xtime_nsec = 0;
1485                 tk->ntp_error += neg << tk->ntp_error_shift;
1486         }
1487 }
1488
1489 /**
1490  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1491  *
1492  * Helper function that accumulates a the nsecs greater then a second
1493  * from the xtime_nsec field to the xtime_secs field.
1494  * It also calls into the NTP code to handle leapsecond processing.
1495  *
1496  */
1497 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1498 {
1499         u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr.shift;
1500         unsigned int clock_set = 0;
1501
1502         while (tk->tkr.xtime_nsec >= nsecps) {
1503                 int leap;
1504
1505                 tk->tkr.xtime_nsec -= nsecps;
1506                 tk->xtime_sec++;
1507
1508                 /* Figure out if its a leap sec and apply if needed */
1509                 leap = second_overflow(tk->xtime_sec);
1510                 if (unlikely(leap)) {
1511                         struct timespec64 ts;
1512
1513                         tk->xtime_sec += leap;
1514
1515                         ts.tv_sec = leap;
1516                         ts.tv_nsec = 0;
1517                         tk_set_wall_to_mono(tk,
1518                                 timespec64_sub(tk->wall_to_monotonic, ts));
1519
1520                         __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1521
1522                         clock_set = TK_CLOCK_WAS_SET;
1523                 }
1524         }
1525         return clock_set;
1526 }
1527
1528 /**
1529  * logarithmic_accumulation - shifted accumulation of cycles
1530  *
1531  * This functions accumulates a shifted interval of cycles into
1532  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1533  * loop.
1534  *
1535  * Returns the unconsumed cycles.
1536  */
1537 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1538                                                 u32 shift,
1539                                                 unsigned int *clock_set)
1540 {
1541         cycle_t interval = tk->cycle_interval << shift;
1542         u64 raw_nsecs;
1543
1544         /* If the offset is smaller then a shifted interval, do nothing */
1545         if (offset < interval)
1546                 return offset;
1547
1548         /* Accumulate one shifted interval */
1549         offset -= interval;
1550         tk->tkr.cycle_last += interval;
1551
1552         tk->tkr.xtime_nsec += tk->xtime_interval << shift;
1553         *clock_set |= accumulate_nsecs_to_secs(tk);
1554
1555         /* Accumulate raw time */
1556         raw_nsecs = (u64)tk->raw_interval << shift;
1557         raw_nsecs += tk->raw_time.tv_nsec;
1558         if (raw_nsecs >= NSEC_PER_SEC) {
1559                 u64 raw_secs = raw_nsecs;
1560                 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1561                 tk->raw_time.tv_sec += raw_secs;
1562         }
1563         tk->raw_time.tv_nsec = raw_nsecs;
1564
1565         /* Accumulate error between NTP and clock interval */
1566         tk->ntp_error += tk->ntp_tick << shift;
1567         tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1568                                                 (tk->ntp_error_shift + shift);
1569
1570         return offset;
1571 }
1572
1573 /**
1574  * update_wall_time - Uses the current clocksource to increment the wall time
1575  *
1576  */
1577 void update_wall_time(void)
1578 {
1579         struct timekeeper *real_tk = &tk_core.timekeeper;
1580         struct timekeeper *tk = &shadow_timekeeper;
1581         cycle_t offset;
1582         int shift = 0, maxshift;
1583         unsigned int clock_set = 0;
1584         unsigned long flags;
1585
1586         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1587
1588         /* Make sure we're fully resumed: */
1589         if (unlikely(timekeeping_suspended))
1590                 goto out;
1591
1592 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1593         offset = real_tk->cycle_interval;
1594 #else
1595         offset = clocksource_delta(tk->tkr.read(tk->tkr.clock),
1596                                    tk->tkr.cycle_last, tk->tkr.mask);
1597 #endif
1598
1599         /* Check if there's really nothing to do */
1600         if (offset < real_tk->cycle_interval)
1601                 goto out;
1602
1603         /*
1604          * With NO_HZ we may have to accumulate many cycle_intervals
1605          * (think "ticks") worth of time at once. To do this efficiently,
1606          * we calculate the largest doubling multiple of cycle_intervals
1607          * that is smaller than the offset.  We then accumulate that
1608          * chunk in one go, and then try to consume the next smaller
1609          * doubled multiple.
1610          */
1611         shift = ilog2(offset) - ilog2(tk->cycle_interval);
1612         shift = max(0, shift);
1613         /* Bound shift to one less than what overflows tick_length */
1614         maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1615         shift = min(shift, maxshift);
1616         while (offset >= tk->cycle_interval) {
1617                 offset = logarithmic_accumulation(tk, offset, shift,
1618                                                         &clock_set);
1619                 if (offset < tk->cycle_interval<<shift)
1620                         shift--;
1621         }
1622
1623         /* correct the clock when NTP error is too big */
1624         timekeeping_adjust(tk, offset);
1625
1626         /*
1627          * XXX This can be killed once everyone converts
1628          * to the new update_vsyscall.
1629          */
1630         old_vsyscall_fixup(tk);
1631
1632         /*
1633          * Finally, make sure that after the rounding
1634          * xtime_nsec isn't larger than NSEC_PER_SEC
1635          */
1636         clock_set |= accumulate_nsecs_to_secs(tk);
1637
1638         write_seqcount_begin(&tk_core.seq);
1639         /*
1640          * Update the real timekeeper.
1641          *
1642          * We could avoid this memcpy by switching pointers, but that
1643          * requires changes to all other timekeeper usage sites as
1644          * well, i.e. move the timekeeper pointer getter into the
1645          * spinlocked/seqcount protected sections. And we trade this
1646          * memcpy under the tk_core.seq against one before we start
1647          * updating.
1648          */
1649         memcpy(real_tk, tk, sizeof(*tk));
1650         timekeeping_update(real_tk, clock_set);
1651         write_seqcount_end(&tk_core.seq);
1652 out:
1653         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1654         if (clock_set)
1655                 /* Have to call _delayed version, since in irq context*/
1656                 clock_was_set_delayed();
1657 }
1658
1659 /**
1660  * getboottime64 - Return the real time of system boot.
1661  * @ts:         pointer to the timespec64 to be set
1662  *
1663  * Returns the wall-time of boot in a timespec64.
1664  *
1665  * This is based on the wall_to_monotonic offset and the total suspend
1666  * time. Calls to settimeofday will affect the value returned (which
1667  * basically means that however wrong your real time clock is at boot time,
1668  * you get the right time here).
1669  */
1670 void getboottime64(struct timespec64 *ts)
1671 {
1672         struct timekeeper *tk = &tk_core.timekeeper;
1673         ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1674
1675         *ts = ktime_to_timespec64(t);
1676 }
1677 EXPORT_SYMBOL_GPL(getboottime64);
1678
1679 unsigned long get_seconds(void)
1680 {
1681         struct timekeeper *tk = &tk_core.timekeeper;
1682
1683         return tk->xtime_sec;
1684 }
1685 EXPORT_SYMBOL(get_seconds);
1686
1687 struct timespec __current_kernel_time(void)
1688 {
1689         struct timekeeper *tk = &tk_core.timekeeper;
1690
1691         return timespec64_to_timespec(tk_xtime(tk));
1692 }
1693
1694 struct timespec current_kernel_time(void)
1695 {
1696         struct timekeeper *tk = &tk_core.timekeeper;
1697         struct timespec64 now;
1698         unsigned long seq;
1699
1700         do {
1701                 seq = read_seqcount_begin(&tk_core.seq);
1702
1703                 now = tk_xtime(tk);
1704         } while (read_seqcount_retry(&tk_core.seq, seq));
1705
1706         return timespec64_to_timespec(now);
1707 }
1708 EXPORT_SYMBOL(current_kernel_time);
1709
1710 struct timespec64 get_monotonic_coarse64(void)
1711 {
1712         struct timekeeper *tk = &tk_core.timekeeper;
1713         struct timespec64 now, mono;
1714         unsigned long seq;
1715
1716         do {
1717                 seq = read_seqcount_begin(&tk_core.seq);
1718
1719                 now = tk_xtime(tk);
1720                 mono = tk->wall_to_monotonic;
1721         } while (read_seqcount_retry(&tk_core.seq, seq));
1722
1723         set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1724                                 now.tv_nsec + mono.tv_nsec);
1725
1726         return now;
1727 }
1728
1729 /*
1730  * Must hold jiffies_lock
1731  */
1732 void do_timer(unsigned long ticks)
1733 {
1734         jiffies_64 += ticks;
1735         calc_global_load(ticks);
1736 }
1737
1738 /**
1739  * ktime_get_update_offsets_tick - hrtimer helper
1740  * @offs_real:  pointer to storage for monotonic -> realtime offset
1741  * @offs_boot:  pointer to storage for monotonic -> boottime offset
1742  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
1743  *
1744  * Returns monotonic time at last tick and various offsets
1745  */
1746 ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
1747                                                         ktime_t *offs_tai)
1748 {
1749         struct timekeeper *tk = &tk_core.timekeeper;
1750         unsigned int seq;
1751         ktime_t base;
1752         u64 nsecs;
1753
1754         do {
1755                 seq = read_seqcount_begin(&tk_core.seq);
1756
1757                 base = tk->tkr.base_mono;
1758                 nsecs = tk->tkr.xtime_nsec >> tk->tkr.shift;
1759
1760                 *offs_real = tk->offs_real;
1761                 *offs_boot = tk->offs_boot;
1762                 *offs_tai = tk->offs_tai;
1763         } while (read_seqcount_retry(&tk_core.seq, seq));
1764
1765         return ktime_add_ns(base, nsecs);
1766 }
1767
1768 #ifdef CONFIG_HIGH_RES_TIMERS
1769 /**
1770  * ktime_get_update_offsets_now - hrtimer helper
1771  * @offs_real:  pointer to storage for monotonic -> realtime offset
1772  * @offs_boot:  pointer to storage for monotonic -> boottime offset
1773  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
1774  *
1775  * Returns current monotonic time and updates the offsets
1776  * Called from hrtimer_interrupt() or retrigger_next_event()
1777  */
1778 ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1779                                                         ktime_t *offs_tai)
1780 {
1781         struct timekeeper *tk = &tk_core.timekeeper;
1782         unsigned int seq;
1783         ktime_t base;
1784         u64 nsecs;
1785
1786         do {
1787                 seq = read_seqcount_begin(&tk_core.seq);
1788
1789                 base = tk->tkr.base_mono;
1790                 nsecs = timekeeping_get_ns(&tk->tkr);
1791
1792                 *offs_real = tk->offs_real;
1793                 *offs_boot = tk->offs_boot;
1794                 *offs_tai = tk->offs_tai;
1795         } while (read_seqcount_retry(&tk_core.seq, seq));
1796
1797         return ktime_add_ns(base, nsecs);
1798 }
1799 #endif
1800
1801 /**
1802  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1803  */
1804 int do_adjtimex(struct timex *txc)
1805 {
1806         struct timekeeper *tk = &tk_core.timekeeper;
1807         unsigned long flags;
1808         struct timespec64 ts;
1809         s32 orig_tai, tai;
1810         int ret;
1811
1812         /* Validate the data before disabling interrupts */
1813         ret = ntp_validate_timex(txc);
1814         if (ret)
1815                 return ret;
1816
1817         if (txc->modes & ADJ_SETOFFSET) {
1818                 struct timespec delta;
1819                 delta.tv_sec  = txc->time.tv_sec;
1820                 delta.tv_nsec = txc->time.tv_usec;
1821                 if (!(txc->modes & ADJ_NANO))
1822                         delta.tv_nsec *= 1000;
1823                 ret = timekeeping_inject_offset(&delta);
1824                 if (ret)
1825                         return ret;
1826         }
1827
1828         getnstimeofday64(&ts);
1829
1830         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1831         write_seqcount_begin(&tk_core.seq);
1832
1833         orig_tai = tai = tk->tai_offset;
1834         ret = __do_adjtimex(txc, &ts, &tai);
1835
1836         if (tai != orig_tai) {
1837                 __timekeeping_set_tai_offset(tk, tai);
1838                 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1839         }
1840         write_seqcount_end(&tk_core.seq);
1841         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1842
1843         if (tai != orig_tai)
1844                 clock_was_set();
1845
1846         ntp_notify_cmos_timer();
1847
1848         return ret;
1849 }
1850
1851 #ifdef CONFIG_NTP_PPS
1852 /**
1853  * hardpps() - Accessor function to NTP __hardpps function
1854  */
1855 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
1856 {
1857         unsigned long flags;
1858
1859         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1860         write_seqcount_begin(&tk_core.seq);
1861
1862         __hardpps(phase_ts, raw_ts);
1863
1864         write_seqcount_end(&tk_core.seq);
1865         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1866 }
1867 EXPORT_SYMBOL(hardpps);
1868 #endif
1869
1870 /**
1871  * xtime_update() - advances the timekeeping infrastructure
1872  * @ticks:      number of ticks, that have elapsed since the last call.
1873  *
1874  * Must be called with interrupts disabled.
1875  */
1876 void xtime_update(unsigned long ticks)
1877 {
1878         write_seqlock(&jiffies_lock);
1879         do_timer(ticks);
1880         write_sequnlock(&jiffies_lock);
1881         update_wall_time();
1882 }