ring-buffer: User context bit recursion checking
[firefly-linux-kernel-4.4.55.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/spinlock.h>
9 #include <linux/debugfs.h>
10 #include <linux/uaccess.h>
11 #include <linux/hardirq.h>
12 #include <linux/kmemcheck.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/fs.h>
22
23 #include <asm/local.h>
24 #include "trace.h"
25
26 static void update_pages_handler(struct work_struct *work);
27
28 /*
29  * The ring buffer header is special. We must manually up keep it.
30  */
31 int ring_buffer_print_entry_header(struct trace_seq *s)
32 {
33         int ret;
34
35         ret = trace_seq_printf(s, "# compressed entry header\n");
36         ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
37         ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
38         ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
39         ret = trace_seq_printf(s, "\n");
40         ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
41                                RINGBUF_TYPE_PADDING);
42         ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
43                                RINGBUF_TYPE_TIME_EXTEND);
44         ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
45                                RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47         return ret;
48 }
49
50 /*
51  * The ring buffer is made up of a list of pages. A separate list of pages is
52  * allocated for each CPU. A writer may only write to a buffer that is
53  * associated with the CPU it is currently executing on.  A reader may read
54  * from any per cpu buffer.
55  *
56  * The reader is special. For each per cpu buffer, the reader has its own
57  * reader page. When a reader has read the entire reader page, this reader
58  * page is swapped with another page in the ring buffer.
59  *
60  * Now, as long as the writer is off the reader page, the reader can do what
61  * ever it wants with that page. The writer will never write to that page
62  * again (as long as it is out of the ring buffer).
63  *
64  * Here's some silly ASCII art.
65  *
66  *   +------+
67  *   |reader|          RING BUFFER
68  *   |page  |
69  *   +------+        +---+   +---+   +---+
70  *                   |   |-->|   |-->|   |
71  *                   +---+   +---+   +---+
72  *                     ^               |
73  *                     |               |
74  *                     +---------------+
75  *
76  *
77  *   +------+
78  *   |reader|          RING BUFFER
79  *   |page  |------------------v
80  *   +------+        +---+   +---+   +---+
81  *                   |   |-->|   |-->|   |
82  *                   +---+   +---+   +---+
83  *                     ^               |
84  *                     |               |
85  *                     +---------------+
86  *
87  *
88  *   +------+
89  *   |reader|          RING BUFFER
90  *   |page  |------------------v
91  *   +------+        +---+   +---+   +---+
92  *      ^            |   |-->|   |-->|   |
93  *      |            +---+   +---+   +---+
94  *      |                              |
95  *      |                              |
96  *      +------------------------------+
97  *
98  *
99  *   +------+
100  *   |buffer|          RING BUFFER
101  *   |page  |------------------v
102  *   +------+        +---+   +---+   +---+
103  *      ^            |   |   |   |-->|   |
104  *      |   New      +---+   +---+   +---+
105  *      |  Reader------^               |
106  *      |   page                       |
107  *      +------------------------------+
108  *
109  *
110  * After we make this swap, the reader can hand this page off to the splice
111  * code and be done with it. It can even allocate a new page if it needs to
112  * and swap that into the ring buffer.
113  *
114  * We will be using cmpxchg soon to make all this lockless.
115  *
116  */
117
118 /*
119  * A fast way to enable or disable all ring buffers is to
120  * call tracing_on or tracing_off. Turning off the ring buffers
121  * prevents all ring buffers from being recorded to.
122  * Turning this switch on, makes it OK to write to the
123  * ring buffer, if the ring buffer is enabled itself.
124  *
125  * There's three layers that must be on in order to write
126  * to the ring buffer.
127  *
128  * 1) This global flag must be set.
129  * 2) The ring buffer must be enabled for recording.
130  * 3) The per cpu buffer must be enabled for recording.
131  *
132  * In case of an anomaly, this global flag has a bit set that
133  * will permantly disable all ring buffers.
134  */
135
136 /*
137  * Global flag to disable all recording to ring buffers
138  *  This has two bits: ON, DISABLED
139  *
140  *  ON   DISABLED
141  * ---- ----------
142  *   0      0        : ring buffers are off
143  *   1      0        : ring buffers are on
144  *   X      1        : ring buffers are permanently disabled
145  */
146
147 enum {
148         RB_BUFFERS_ON_BIT       = 0,
149         RB_BUFFERS_DISABLED_BIT = 1,
150 };
151
152 enum {
153         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
154         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
155 };
156
157 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
158
159 /* Used for individual buffers (after the counter) */
160 #define RB_BUFFER_OFF           (1 << 20)
161
162 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
163
164 /**
165  * tracing_off_permanent - permanently disable ring buffers
166  *
167  * This function, once called, will disable all ring buffers
168  * permanently.
169  */
170 void tracing_off_permanent(void)
171 {
172         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
173 }
174
175 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
176 #define RB_ALIGNMENT            4U
177 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
178 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
179
180 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
181 # define RB_FORCE_8BYTE_ALIGNMENT       0
182 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
183 #else
184 # define RB_FORCE_8BYTE_ALIGNMENT       1
185 # define RB_ARCH_ALIGNMENT              8U
186 #endif
187
188 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
189 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
190
191 enum {
192         RB_LEN_TIME_EXTEND = 8,
193         RB_LEN_TIME_STAMP = 16,
194 };
195
196 #define skip_time_extend(event) \
197         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
198
199 static inline int rb_null_event(struct ring_buffer_event *event)
200 {
201         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
202 }
203
204 static void rb_event_set_padding(struct ring_buffer_event *event)
205 {
206         /* padding has a NULL time_delta */
207         event->type_len = RINGBUF_TYPE_PADDING;
208         event->time_delta = 0;
209 }
210
211 static unsigned
212 rb_event_data_length(struct ring_buffer_event *event)
213 {
214         unsigned length;
215
216         if (event->type_len)
217                 length = event->type_len * RB_ALIGNMENT;
218         else
219                 length = event->array[0];
220         return length + RB_EVNT_HDR_SIZE;
221 }
222
223 /*
224  * Return the length of the given event. Will return
225  * the length of the time extend if the event is a
226  * time extend.
227  */
228 static inline unsigned
229 rb_event_length(struct ring_buffer_event *event)
230 {
231         switch (event->type_len) {
232         case RINGBUF_TYPE_PADDING:
233                 if (rb_null_event(event))
234                         /* undefined */
235                         return -1;
236                 return  event->array[0] + RB_EVNT_HDR_SIZE;
237
238         case RINGBUF_TYPE_TIME_EXTEND:
239                 return RB_LEN_TIME_EXTEND;
240
241         case RINGBUF_TYPE_TIME_STAMP:
242                 return RB_LEN_TIME_STAMP;
243
244         case RINGBUF_TYPE_DATA:
245                 return rb_event_data_length(event);
246         default:
247                 BUG();
248         }
249         /* not hit */
250         return 0;
251 }
252
253 /*
254  * Return total length of time extend and data,
255  *   or just the event length for all other events.
256  */
257 static inline unsigned
258 rb_event_ts_length(struct ring_buffer_event *event)
259 {
260         unsigned len = 0;
261
262         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
263                 /* time extends include the data event after it */
264                 len = RB_LEN_TIME_EXTEND;
265                 event = skip_time_extend(event);
266         }
267         return len + rb_event_length(event);
268 }
269
270 /**
271  * ring_buffer_event_length - return the length of the event
272  * @event: the event to get the length of
273  *
274  * Returns the size of the data load of a data event.
275  * If the event is something other than a data event, it
276  * returns the size of the event itself. With the exception
277  * of a TIME EXTEND, where it still returns the size of the
278  * data load of the data event after it.
279  */
280 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
281 {
282         unsigned length;
283
284         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
285                 event = skip_time_extend(event);
286
287         length = rb_event_length(event);
288         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
289                 return length;
290         length -= RB_EVNT_HDR_SIZE;
291         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
292                 length -= sizeof(event->array[0]);
293         return length;
294 }
295 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
296
297 /* inline for ring buffer fast paths */
298 static void *
299 rb_event_data(struct ring_buffer_event *event)
300 {
301         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
302                 event = skip_time_extend(event);
303         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
304         /* If length is in len field, then array[0] has the data */
305         if (event->type_len)
306                 return (void *)&event->array[0];
307         /* Otherwise length is in array[0] and array[1] has the data */
308         return (void *)&event->array[1];
309 }
310
311 /**
312  * ring_buffer_event_data - return the data of the event
313  * @event: the event to get the data from
314  */
315 void *ring_buffer_event_data(struct ring_buffer_event *event)
316 {
317         return rb_event_data(event);
318 }
319 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
320
321 #define for_each_buffer_cpu(buffer, cpu)                \
322         for_each_cpu(cpu, buffer->cpumask)
323
324 #define TS_SHIFT        27
325 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
326 #define TS_DELTA_TEST   (~TS_MASK)
327
328 /* Flag when events were overwritten */
329 #define RB_MISSED_EVENTS        (1 << 31)
330 /* Missed count stored at end */
331 #define RB_MISSED_STORED        (1 << 30)
332
333 struct buffer_data_page {
334         u64              time_stamp;    /* page time stamp */
335         local_t          commit;        /* write committed index */
336         unsigned char    data[];        /* data of buffer page */
337 };
338
339 /*
340  * Note, the buffer_page list must be first. The buffer pages
341  * are allocated in cache lines, which means that each buffer
342  * page will be at the beginning of a cache line, and thus
343  * the least significant bits will be zero. We use this to
344  * add flags in the list struct pointers, to make the ring buffer
345  * lockless.
346  */
347 struct buffer_page {
348         struct list_head list;          /* list of buffer pages */
349         local_t          write;         /* index for next write */
350         unsigned         read;          /* index for next read */
351         local_t          entries;       /* entries on this page */
352         unsigned long    real_end;      /* real end of data */
353         struct buffer_data_page *page;  /* Actual data page */
354 };
355
356 /*
357  * The buffer page counters, write and entries, must be reset
358  * atomically when crossing page boundaries. To synchronize this
359  * update, two counters are inserted into the number. One is
360  * the actual counter for the write position or count on the page.
361  *
362  * The other is a counter of updaters. Before an update happens
363  * the update partition of the counter is incremented. This will
364  * allow the updater to update the counter atomically.
365  *
366  * The counter is 20 bits, and the state data is 12.
367  */
368 #define RB_WRITE_MASK           0xfffff
369 #define RB_WRITE_INTCNT         (1 << 20)
370
371 static void rb_init_page(struct buffer_data_page *bpage)
372 {
373         local_set(&bpage->commit, 0);
374 }
375
376 /**
377  * ring_buffer_page_len - the size of data on the page.
378  * @page: The page to read
379  *
380  * Returns the amount of data on the page, including buffer page header.
381  */
382 size_t ring_buffer_page_len(void *page)
383 {
384         return local_read(&((struct buffer_data_page *)page)->commit)
385                 + BUF_PAGE_HDR_SIZE;
386 }
387
388 /*
389  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
390  * this issue out.
391  */
392 static void free_buffer_page(struct buffer_page *bpage)
393 {
394         free_page((unsigned long)bpage->page);
395         kfree(bpage);
396 }
397
398 /*
399  * We need to fit the time_stamp delta into 27 bits.
400  */
401 static inline int test_time_stamp(u64 delta)
402 {
403         if (delta & TS_DELTA_TEST)
404                 return 1;
405         return 0;
406 }
407
408 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
409
410 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
411 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
412
413 int ring_buffer_print_page_header(struct trace_seq *s)
414 {
415         struct buffer_data_page field;
416         int ret;
417
418         ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
419                                "offset:0;\tsize:%u;\tsigned:%u;\n",
420                                (unsigned int)sizeof(field.time_stamp),
421                                (unsigned int)is_signed_type(u64));
422
423         ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
424                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
425                                (unsigned int)offsetof(typeof(field), commit),
426                                (unsigned int)sizeof(field.commit),
427                                (unsigned int)is_signed_type(long));
428
429         ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
430                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
431                                (unsigned int)offsetof(typeof(field), commit),
432                                1,
433                                (unsigned int)is_signed_type(long));
434
435         ret = trace_seq_printf(s, "\tfield: char data;\t"
436                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
437                                (unsigned int)offsetof(typeof(field), data),
438                                (unsigned int)BUF_PAGE_SIZE,
439                                (unsigned int)is_signed_type(char));
440
441         return ret;
442 }
443
444 /*
445  * head_page == tail_page && head == tail then buffer is empty.
446  */
447 struct ring_buffer_per_cpu {
448         int                             cpu;
449         atomic_t                        record_disabled;
450         struct ring_buffer              *buffer;
451         raw_spinlock_t                  reader_lock;    /* serialize readers */
452         arch_spinlock_t                 lock;
453         struct lock_class_key           lock_key;
454         unsigned int                    nr_pages;
455         struct list_head                *pages;
456         struct buffer_page              *head_page;     /* read from head */
457         struct buffer_page              *tail_page;     /* write to tail */
458         struct buffer_page              *commit_page;   /* committed pages */
459         struct buffer_page              *reader_page;
460         unsigned long                   lost_events;
461         unsigned long                   last_overrun;
462         local_t                         entries_bytes;
463         local_t                         entries;
464         local_t                         overrun;
465         local_t                         commit_overrun;
466         local_t                         dropped_events;
467         local_t                         committing;
468         local_t                         commits;
469         unsigned long                   read;
470         unsigned long                   read_bytes;
471         u64                             write_stamp;
472         u64                             read_stamp;
473         /* ring buffer pages to update, > 0 to add, < 0 to remove */
474         int                             nr_pages_to_update;
475         struct list_head                new_pages; /* new pages to add */
476         struct work_struct              update_pages_work;
477         struct completion               update_done;
478 };
479
480 struct ring_buffer {
481         unsigned                        flags;
482         int                             cpus;
483         atomic_t                        record_disabled;
484         atomic_t                        resize_disabled;
485         cpumask_var_t                   cpumask;
486
487         struct lock_class_key           *reader_lock_key;
488
489         struct mutex                    mutex;
490
491         struct ring_buffer_per_cpu      **buffers;
492
493 #ifdef CONFIG_HOTPLUG_CPU
494         struct notifier_block           cpu_notify;
495 #endif
496         u64                             (*clock)(void);
497 };
498
499 struct ring_buffer_iter {
500         struct ring_buffer_per_cpu      *cpu_buffer;
501         unsigned long                   head;
502         struct buffer_page              *head_page;
503         struct buffer_page              *cache_reader_page;
504         unsigned long                   cache_read;
505         u64                             read_stamp;
506 };
507
508 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
509 #define RB_WARN_ON(b, cond)                                             \
510         ({                                                              \
511                 int _____ret = unlikely(cond);                          \
512                 if (_____ret) {                                         \
513                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
514                                 struct ring_buffer_per_cpu *__b =       \
515                                         (void *)b;                      \
516                                 atomic_inc(&__b->buffer->record_disabled); \
517                         } else                                          \
518                                 atomic_inc(&b->record_disabled);        \
519                         WARN_ON(1);                                     \
520                 }                                                       \
521                 _____ret;                                               \
522         })
523
524 /* Up this if you want to test the TIME_EXTENTS and normalization */
525 #define DEBUG_SHIFT 0
526
527 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
528 {
529         /* shift to debug/test normalization and TIME_EXTENTS */
530         return buffer->clock() << DEBUG_SHIFT;
531 }
532
533 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
534 {
535         u64 time;
536
537         preempt_disable_notrace();
538         time = rb_time_stamp(buffer);
539         preempt_enable_no_resched_notrace();
540
541         return time;
542 }
543 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
544
545 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
546                                       int cpu, u64 *ts)
547 {
548         /* Just stupid testing the normalize function and deltas */
549         *ts >>= DEBUG_SHIFT;
550 }
551 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
552
553 /*
554  * Making the ring buffer lockless makes things tricky.
555  * Although writes only happen on the CPU that they are on,
556  * and they only need to worry about interrupts. Reads can
557  * happen on any CPU.
558  *
559  * The reader page is always off the ring buffer, but when the
560  * reader finishes with a page, it needs to swap its page with
561  * a new one from the buffer. The reader needs to take from
562  * the head (writes go to the tail). But if a writer is in overwrite
563  * mode and wraps, it must push the head page forward.
564  *
565  * Here lies the problem.
566  *
567  * The reader must be careful to replace only the head page, and
568  * not another one. As described at the top of the file in the
569  * ASCII art, the reader sets its old page to point to the next
570  * page after head. It then sets the page after head to point to
571  * the old reader page. But if the writer moves the head page
572  * during this operation, the reader could end up with the tail.
573  *
574  * We use cmpxchg to help prevent this race. We also do something
575  * special with the page before head. We set the LSB to 1.
576  *
577  * When the writer must push the page forward, it will clear the
578  * bit that points to the head page, move the head, and then set
579  * the bit that points to the new head page.
580  *
581  * We also don't want an interrupt coming in and moving the head
582  * page on another writer. Thus we use the second LSB to catch
583  * that too. Thus:
584  *
585  * head->list->prev->next        bit 1          bit 0
586  *                              -------        -------
587  * Normal page                     0              0
588  * Points to head page             0              1
589  * New head page                   1              0
590  *
591  * Note we can not trust the prev pointer of the head page, because:
592  *
593  * +----+       +-----+        +-----+
594  * |    |------>|  T  |---X--->|  N  |
595  * |    |<------|     |        |     |
596  * +----+       +-----+        +-----+
597  *   ^                           ^ |
598  *   |          +-----+          | |
599  *   +----------|  R  |----------+ |
600  *              |     |<-----------+
601  *              +-----+
602  *
603  * Key:  ---X-->  HEAD flag set in pointer
604  *         T      Tail page
605  *         R      Reader page
606  *         N      Next page
607  *
608  * (see __rb_reserve_next() to see where this happens)
609  *
610  *  What the above shows is that the reader just swapped out
611  *  the reader page with a page in the buffer, but before it
612  *  could make the new header point back to the new page added
613  *  it was preempted by a writer. The writer moved forward onto
614  *  the new page added by the reader and is about to move forward
615  *  again.
616  *
617  *  You can see, it is legitimate for the previous pointer of
618  *  the head (or any page) not to point back to itself. But only
619  *  temporarially.
620  */
621
622 #define RB_PAGE_NORMAL          0UL
623 #define RB_PAGE_HEAD            1UL
624 #define RB_PAGE_UPDATE          2UL
625
626
627 #define RB_FLAG_MASK            3UL
628
629 /* PAGE_MOVED is not part of the mask */
630 #define RB_PAGE_MOVED           4UL
631
632 /*
633  * rb_list_head - remove any bit
634  */
635 static struct list_head *rb_list_head(struct list_head *list)
636 {
637         unsigned long val = (unsigned long)list;
638
639         return (struct list_head *)(val & ~RB_FLAG_MASK);
640 }
641
642 /*
643  * rb_is_head_page - test if the given page is the head page
644  *
645  * Because the reader may move the head_page pointer, we can
646  * not trust what the head page is (it may be pointing to
647  * the reader page). But if the next page is a header page,
648  * its flags will be non zero.
649  */
650 static inline int
651 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
652                 struct buffer_page *page, struct list_head *list)
653 {
654         unsigned long val;
655
656         val = (unsigned long)list->next;
657
658         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
659                 return RB_PAGE_MOVED;
660
661         return val & RB_FLAG_MASK;
662 }
663
664 /*
665  * rb_is_reader_page
666  *
667  * The unique thing about the reader page, is that, if the
668  * writer is ever on it, the previous pointer never points
669  * back to the reader page.
670  */
671 static int rb_is_reader_page(struct buffer_page *page)
672 {
673         struct list_head *list = page->list.prev;
674
675         return rb_list_head(list->next) != &page->list;
676 }
677
678 /*
679  * rb_set_list_to_head - set a list_head to be pointing to head.
680  */
681 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
682                                 struct list_head *list)
683 {
684         unsigned long *ptr;
685
686         ptr = (unsigned long *)&list->next;
687         *ptr |= RB_PAGE_HEAD;
688         *ptr &= ~RB_PAGE_UPDATE;
689 }
690
691 /*
692  * rb_head_page_activate - sets up head page
693  */
694 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
695 {
696         struct buffer_page *head;
697
698         head = cpu_buffer->head_page;
699         if (!head)
700                 return;
701
702         /*
703          * Set the previous list pointer to have the HEAD flag.
704          */
705         rb_set_list_to_head(cpu_buffer, head->list.prev);
706 }
707
708 static void rb_list_head_clear(struct list_head *list)
709 {
710         unsigned long *ptr = (unsigned long *)&list->next;
711
712         *ptr &= ~RB_FLAG_MASK;
713 }
714
715 /*
716  * rb_head_page_dactivate - clears head page ptr (for free list)
717  */
718 static void
719 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
720 {
721         struct list_head *hd;
722
723         /* Go through the whole list and clear any pointers found. */
724         rb_list_head_clear(cpu_buffer->pages);
725
726         list_for_each(hd, cpu_buffer->pages)
727                 rb_list_head_clear(hd);
728 }
729
730 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
731                             struct buffer_page *head,
732                             struct buffer_page *prev,
733                             int old_flag, int new_flag)
734 {
735         struct list_head *list;
736         unsigned long val = (unsigned long)&head->list;
737         unsigned long ret;
738
739         list = &prev->list;
740
741         val &= ~RB_FLAG_MASK;
742
743         ret = cmpxchg((unsigned long *)&list->next,
744                       val | old_flag, val | new_flag);
745
746         /* check if the reader took the page */
747         if ((ret & ~RB_FLAG_MASK) != val)
748                 return RB_PAGE_MOVED;
749
750         return ret & RB_FLAG_MASK;
751 }
752
753 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
754                                    struct buffer_page *head,
755                                    struct buffer_page *prev,
756                                    int old_flag)
757 {
758         return rb_head_page_set(cpu_buffer, head, prev,
759                                 old_flag, RB_PAGE_UPDATE);
760 }
761
762 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
763                                  struct buffer_page *head,
764                                  struct buffer_page *prev,
765                                  int old_flag)
766 {
767         return rb_head_page_set(cpu_buffer, head, prev,
768                                 old_flag, RB_PAGE_HEAD);
769 }
770
771 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
772                                    struct buffer_page *head,
773                                    struct buffer_page *prev,
774                                    int old_flag)
775 {
776         return rb_head_page_set(cpu_buffer, head, prev,
777                                 old_flag, RB_PAGE_NORMAL);
778 }
779
780 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
781                                struct buffer_page **bpage)
782 {
783         struct list_head *p = rb_list_head((*bpage)->list.next);
784
785         *bpage = list_entry(p, struct buffer_page, list);
786 }
787
788 static struct buffer_page *
789 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
790 {
791         struct buffer_page *head;
792         struct buffer_page *page;
793         struct list_head *list;
794         int i;
795
796         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
797                 return NULL;
798
799         /* sanity check */
800         list = cpu_buffer->pages;
801         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
802                 return NULL;
803
804         page = head = cpu_buffer->head_page;
805         /*
806          * It is possible that the writer moves the header behind
807          * where we started, and we miss in one loop.
808          * A second loop should grab the header, but we'll do
809          * three loops just because I'm paranoid.
810          */
811         for (i = 0; i < 3; i++) {
812                 do {
813                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
814                                 cpu_buffer->head_page = page;
815                                 return page;
816                         }
817                         rb_inc_page(cpu_buffer, &page);
818                 } while (page != head);
819         }
820
821         RB_WARN_ON(cpu_buffer, 1);
822
823         return NULL;
824 }
825
826 static int rb_head_page_replace(struct buffer_page *old,
827                                 struct buffer_page *new)
828 {
829         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
830         unsigned long val;
831         unsigned long ret;
832
833         val = *ptr & ~RB_FLAG_MASK;
834         val |= RB_PAGE_HEAD;
835
836         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
837
838         return ret == val;
839 }
840
841 /*
842  * rb_tail_page_update - move the tail page forward
843  *
844  * Returns 1 if moved tail page, 0 if someone else did.
845  */
846 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
847                                struct buffer_page *tail_page,
848                                struct buffer_page *next_page)
849 {
850         struct buffer_page *old_tail;
851         unsigned long old_entries;
852         unsigned long old_write;
853         int ret = 0;
854
855         /*
856          * The tail page now needs to be moved forward.
857          *
858          * We need to reset the tail page, but without messing
859          * with possible erasing of data brought in by interrupts
860          * that have moved the tail page and are currently on it.
861          *
862          * We add a counter to the write field to denote this.
863          */
864         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
865         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
866
867         /*
868          * Just make sure we have seen our old_write and synchronize
869          * with any interrupts that come in.
870          */
871         barrier();
872
873         /*
874          * If the tail page is still the same as what we think
875          * it is, then it is up to us to update the tail
876          * pointer.
877          */
878         if (tail_page == cpu_buffer->tail_page) {
879                 /* Zero the write counter */
880                 unsigned long val = old_write & ~RB_WRITE_MASK;
881                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
882
883                 /*
884                  * This will only succeed if an interrupt did
885                  * not come in and change it. In which case, we
886                  * do not want to modify it.
887                  *
888                  * We add (void) to let the compiler know that we do not care
889                  * about the return value of these functions. We use the
890                  * cmpxchg to only update if an interrupt did not already
891                  * do it for us. If the cmpxchg fails, we don't care.
892                  */
893                 (void)local_cmpxchg(&next_page->write, old_write, val);
894                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
895
896                 /*
897                  * No need to worry about races with clearing out the commit.
898                  * it only can increment when a commit takes place. But that
899                  * only happens in the outer most nested commit.
900                  */
901                 local_set(&next_page->page->commit, 0);
902
903                 old_tail = cmpxchg(&cpu_buffer->tail_page,
904                                    tail_page, next_page);
905
906                 if (old_tail == tail_page)
907                         ret = 1;
908         }
909
910         return ret;
911 }
912
913 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
914                           struct buffer_page *bpage)
915 {
916         unsigned long val = (unsigned long)bpage;
917
918         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
919                 return 1;
920
921         return 0;
922 }
923
924 /**
925  * rb_check_list - make sure a pointer to a list has the last bits zero
926  */
927 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
928                          struct list_head *list)
929 {
930         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
931                 return 1;
932         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
933                 return 1;
934         return 0;
935 }
936
937 /**
938  * check_pages - integrity check of buffer pages
939  * @cpu_buffer: CPU buffer with pages to test
940  *
941  * As a safety measure we check to make sure the data pages have not
942  * been corrupted.
943  */
944 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
945 {
946         struct list_head *head = cpu_buffer->pages;
947         struct buffer_page *bpage, *tmp;
948
949         /* Reset the head page if it exists */
950         if (cpu_buffer->head_page)
951                 rb_set_head_page(cpu_buffer);
952
953         rb_head_page_deactivate(cpu_buffer);
954
955         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
956                 return -1;
957         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
958                 return -1;
959
960         if (rb_check_list(cpu_buffer, head))
961                 return -1;
962
963         list_for_each_entry_safe(bpage, tmp, head, list) {
964                 if (RB_WARN_ON(cpu_buffer,
965                                bpage->list.next->prev != &bpage->list))
966                         return -1;
967                 if (RB_WARN_ON(cpu_buffer,
968                                bpage->list.prev->next != &bpage->list))
969                         return -1;
970                 if (rb_check_list(cpu_buffer, &bpage->list))
971                         return -1;
972         }
973
974         rb_head_page_activate(cpu_buffer);
975
976         return 0;
977 }
978
979 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
980 {
981         int i;
982         struct buffer_page *bpage, *tmp;
983
984         for (i = 0; i < nr_pages; i++) {
985                 struct page *page;
986                 /*
987                  * __GFP_NORETRY flag makes sure that the allocation fails
988                  * gracefully without invoking oom-killer and the system is
989                  * not destabilized.
990                  */
991                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
992                                     GFP_KERNEL | __GFP_NORETRY,
993                                     cpu_to_node(cpu));
994                 if (!bpage)
995                         goto free_pages;
996
997                 list_add(&bpage->list, pages);
998
999                 page = alloc_pages_node(cpu_to_node(cpu),
1000                                         GFP_KERNEL | __GFP_NORETRY, 0);
1001                 if (!page)
1002                         goto free_pages;
1003                 bpage->page = page_address(page);
1004                 rb_init_page(bpage->page);
1005         }
1006
1007         return 0;
1008
1009 free_pages:
1010         list_for_each_entry_safe(bpage, tmp, pages, list) {
1011                 list_del_init(&bpage->list);
1012                 free_buffer_page(bpage);
1013         }
1014
1015         return -ENOMEM;
1016 }
1017
1018 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1019                              unsigned nr_pages)
1020 {
1021         LIST_HEAD(pages);
1022
1023         WARN_ON(!nr_pages);
1024
1025         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1026                 return -ENOMEM;
1027
1028         /*
1029          * The ring buffer page list is a circular list that does not
1030          * start and end with a list head. All page list items point to
1031          * other pages.
1032          */
1033         cpu_buffer->pages = pages.next;
1034         list_del(&pages);
1035
1036         cpu_buffer->nr_pages = nr_pages;
1037
1038         rb_check_pages(cpu_buffer);
1039
1040         return 0;
1041 }
1042
1043 static struct ring_buffer_per_cpu *
1044 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1045 {
1046         struct ring_buffer_per_cpu *cpu_buffer;
1047         struct buffer_page *bpage;
1048         struct page *page;
1049         int ret;
1050
1051         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1052                                   GFP_KERNEL, cpu_to_node(cpu));
1053         if (!cpu_buffer)
1054                 return NULL;
1055
1056         cpu_buffer->cpu = cpu;
1057         cpu_buffer->buffer = buffer;
1058         raw_spin_lock_init(&cpu_buffer->reader_lock);
1059         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1060         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1061         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1062         init_completion(&cpu_buffer->update_done);
1063
1064         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1065                             GFP_KERNEL, cpu_to_node(cpu));
1066         if (!bpage)
1067                 goto fail_free_buffer;
1068
1069         rb_check_bpage(cpu_buffer, bpage);
1070
1071         cpu_buffer->reader_page = bpage;
1072         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1073         if (!page)
1074                 goto fail_free_reader;
1075         bpage->page = page_address(page);
1076         rb_init_page(bpage->page);
1077
1078         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1079         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1080
1081         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1082         if (ret < 0)
1083                 goto fail_free_reader;
1084
1085         cpu_buffer->head_page
1086                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1087         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1088
1089         rb_head_page_activate(cpu_buffer);
1090
1091         return cpu_buffer;
1092
1093  fail_free_reader:
1094         free_buffer_page(cpu_buffer->reader_page);
1095
1096  fail_free_buffer:
1097         kfree(cpu_buffer);
1098         return NULL;
1099 }
1100
1101 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1102 {
1103         struct list_head *head = cpu_buffer->pages;
1104         struct buffer_page *bpage, *tmp;
1105
1106         free_buffer_page(cpu_buffer->reader_page);
1107
1108         rb_head_page_deactivate(cpu_buffer);
1109
1110         if (head) {
1111                 list_for_each_entry_safe(bpage, tmp, head, list) {
1112                         list_del_init(&bpage->list);
1113                         free_buffer_page(bpage);
1114                 }
1115                 bpage = list_entry(head, struct buffer_page, list);
1116                 free_buffer_page(bpage);
1117         }
1118
1119         kfree(cpu_buffer);
1120 }
1121
1122 #ifdef CONFIG_HOTPLUG_CPU
1123 static int rb_cpu_notify(struct notifier_block *self,
1124                          unsigned long action, void *hcpu);
1125 #endif
1126
1127 /**
1128  * ring_buffer_alloc - allocate a new ring_buffer
1129  * @size: the size in bytes per cpu that is needed.
1130  * @flags: attributes to set for the ring buffer.
1131  *
1132  * Currently the only flag that is available is the RB_FL_OVERWRITE
1133  * flag. This flag means that the buffer will overwrite old data
1134  * when the buffer wraps. If this flag is not set, the buffer will
1135  * drop data when the tail hits the head.
1136  */
1137 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1138                                         struct lock_class_key *key)
1139 {
1140         struct ring_buffer *buffer;
1141         int bsize;
1142         int cpu, nr_pages;
1143
1144         /* keep it in its own cache line */
1145         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1146                          GFP_KERNEL);
1147         if (!buffer)
1148                 return NULL;
1149
1150         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1151                 goto fail_free_buffer;
1152
1153         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1154         buffer->flags = flags;
1155         buffer->clock = trace_clock_local;
1156         buffer->reader_lock_key = key;
1157
1158         /* need at least two pages */
1159         if (nr_pages < 2)
1160                 nr_pages = 2;
1161
1162         /*
1163          * In case of non-hotplug cpu, if the ring-buffer is allocated
1164          * in early initcall, it will not be notified of secondary cpus.
1165          * In that off case, we need to allocate for all possible cpus.
1166          */
1167 #ifdef CONFIG_HOTPLUG_CPU
1168         get_online_cpus();
1169         cpumask_copy(buffer->cpumask, cpu_online_mask);
1170 #else
1171         cpumask_copy(buffer->cpumask, cpu_possible_mask);
1172 #endif
1173         buffer->cpus = nr_cpu_ids;
1174
1175         bsize = sizeof(void *) * nr_cpu_ids;
1176         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1177                                   GFP_KERNEL);
1178         if (!buffer->buffers)
1179                 goto fail_free_cpumask;
1180
1181         for_each_buffer_cpu(buffer, cpu) {
1182                 buffer->buffers[cpu] =
1183                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1184                 if (!buffer->buffers[cpu])
1185                         goto fail_free_buffers;
1186         }
1187
1188 #ifdef CONFIG_HOTPLUG_CPU
1189         buffer->cpu_notify.notifier_call = rb_cpu_notify;
1190         buffer->cpu_notify.priority = 0;
1191         register_cpu_notifier(&buffer->cpu_notify);
1192 #endif
1193
1194         put_online_cpus();
1195         mutex_init(&buffer->mutex);
1196
1197         return buffer;
1198
1199  fail_free_buffers:
1200         for_each_buffer_cpu(buffer, cpu) {
1201                 if (buffer->buffers[cpu])
1202                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1203         }
1204         kfree(buffer->buffers);
1205
1206  fail_free_cpumask:
1207         free_cpumask_var(buffer->cpumask);
1208         put_online_cpus();
1209
1210  fail_free_buffer:
1211         kfree(buffer);
1212         return NULL;
1213 }
1214 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1215
1216 /**
1217  * ring_buffer_free - free a ring buffer.
1218  * @buffer: the buffer to free.
1219  */
1220 void
1221 ring_buffer_free(struct ring_buffer *buffer)
1222 {
1223         int cpu;
1224
1225         get_online_cpus();
1226
1227 #ifdef CONFIG_HOTPLUG_CPU
1228         unregister_cpu_notifier(&buffer->cpu_notify);
1229 #endif
1230
1231         for_each_buffer_cpu(buffer, cpu)
1232                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1233
1234         put_online_cpus();
1235
1236         kfree(buffer->buffers);
1237         free_cpumask_var(buffer->cpumask);
1238
1239         kfree(buffer);
1240 }
1241 EXPORT_SYMBOL_GPL(ring_buffer_free);
1242
1243 void ring_buffer_set_clock(struct ring_buffer *buffer,
1244                            u64 (*clock)(void))
1245 {
1246         buffer->clock = clock;
1247 }
1248
1249 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1250
1251 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1252 {
1253         return local_read(&bpage->entries) & RB_WRITE_MASK;
1254 }
1255
1256 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1257 {
1258         return local_read(&bpage->write) & RB_WRITE_MASK;
1259 }
1260
1261 static int
1262 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1263 {
1264         struct list_head *tail_page, *to_remove, *next_page;
1265         struct buffer_page *to_remove_page, *tmp_iter_page;
1266         struct buffer_page *last_page, *first_page;
1267         unsigned int nr_removed;
1268         unsigned long head_bit;
1269         int page_entries;
1270
1271         head_bit = 0;
1272
1273         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1274         atomic_inc(&cpu_buffer->record_disabled);
1275         /*
1276          * We don't race with the readers since we have acquired the reader
1277          * lock. We also don't race with writers after disabling recording.
1278          * This makes it easy to figure out the first and the last page to be
1279          * removed from the list. We unlink all the pages in between including
1280          * the first and last pages. This is done in a busy loop so that we
1281          * lose the least number of traces.
1282          * The pages are freed after we restart recording and unlock readers.
1283          */
1284         tail_page = &cpu_buffer->tail_page->list;
1285
1286         /*
1287          * tail page might be on reader page, we remove the next page
1288          * from the ring buffer
1289          */
1290         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1291                 tail_page = rb_list_head(tail_page->next);
1292         to_remove = tail_page;
1293
1294         /* start of pages to remove */
1295         first_page = list_entry(rb_list_head(to_remove->next),
1296                                 struct buffer_page, list);
1297
1298         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1299                 to_remove = rb_list_head(to_remove)->next;
1300                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1301         }
1302
1303         next_page = rb_list_head(to_remove)->next;
1304
1305         /*
1306          * Now we remove all pages between tail_page and next_page.
1307          * Make sure that we have head_bit value preserved for the
1308          * next page
1309          */
1310         tail_page->next = (struct list_head *)((unsigned long)next_page |
1311                                                 head_bit);
1312         next_page = rb_list_head(next_page);
1313         next_page->prev = tail_page;
1314
1315         /* make sure pages points to a valid page in the ring buffer */
1316         cpu_buffer->pages = next_page;
1317
1318         /* update head page */
1319         if (head_bit)
1320                 cpu_buffer->head_page = list_entry(next_page,
1321                                                 struct buffer_page, list);
1322
1323         /*
1324          * change read pointer to make sure any read iterators reset
1325          * themselves
1326          */
1327         cpu_buffer->read = 0;
1328
1329         /* pages are removed, resume tracing and then free the pages */
1330         atomic_dec(&cpu_buffer->record_disabled);
1331         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1332
1333         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1334
1335         /* last buffer page to remove */
1336         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1337                                 list);
1338         tmp_iter_page = first_page;
1339
1340         do {
1341                 to_remove_page = tmp_iter_page;
1342                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1343
1344                 /* update the counters */
1345                 page_entries = rb_page_entries(to_remove_page);
1346                 if (page_entries) {
1347                         /*
1348                          * If something was added to this page, it was full
1349                          * since it is not the tail page. So we deduct the
1350                          * bytes consumed in ring buffer from here.
1351                          * Increment overrun to account for the lost events.
1352                          */
1353                         local_add(page_entries, &cpu_buffer->overrun);
1354                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1355                 }
1356
1357                 /*
1358                  * We have already removed references to this list item, just
1359                  * free up the buffer_page and its page
1360                  */
1361                 free_buffer_page(to_remove_page);
1362                 nr_removed--;
1363
1364         } while (to_remove_page != last_page);
1365
1366         RB_WARN_ON(cpu_buffer, nr_removed);
1367
1368         return nr_removed == 0;
1369 }
1370
1371 static int
1372 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1373 {
1374         struct list_head *pages = &cpu_buffer->new_pages;
1375         int retries, success;
1376
1377         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1378         /*
1379          * We are holding the reader lock, so the reader page won't be swapped
1380          * in the ring buffer. Now we are racing with the writer trying to
1381          * move head page and the tail page.
1382          * We are going to adapt the reader page update process where:
1383          * 1. We first splice the start and end of list of new pages between
1384          *    the head page and its previous page.
1385          * 2. We cmpxchg the prev_page->next to point from head page to the
1386          *    start of new pages list.
1387          * 3. Finally, we update the head->prev to the end of new list.
1388          *
1389          * We will try this process 10 times, to make sure that we don't keep
1390          * spinning.
1391          */
1392         retries = 10;
1393         success = 0;
1394         while (retries--) {
1395                 struct list_head *head_page, *prev_page, *r;
1396                 struct list_head *last_page, *first_page;
1397                 struct list_head *head_page_with_bit;
1398
1399                 head_page = &rb_set_head_page(cpu_buffer)->list;
1400                 if (!head_page)
1401                         break;
1402                 prev_page = head_page->prev;
1403
1404                 first_page = pages->next;
1405                 last_page  = pages->prev;
1406
1407                 head_page_with_bit = (struct list_head *)
1408                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1409
1410                 last_page->next = head_page_with_bit;
1411                 first_page->prev = prev_page;
1412
1413                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1414
1415                 if (r == head_page_with_bit) {
1416                         /*
1417                          * yay, we replaced the page pointer to our new list,
1418                          * now, we just have to update to head page's prev
1419                          * pointer to point to end of list
1420                          */
1421                         head_page->prev = last_page;
1422                         success = 1;
1423                         break;
1424                 }
1425         }
1426
1427         if (success)
1428                 INIT_LIST_HEAD(pages);
1429         /*
1430          * If we weren't successful in adding in new pages, warn and stop
1431          * tracing
1432          */
1433         RB_WARN_ON(cpu_buffer, !success);
1434         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1435
1436         /* free pages if they weren't inserted */
1437         if (!success) {
1438                 struct buffer_page *bpage, *tmp;
1439                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1440                                          list) {
1441                         list_del_init(&bpage->list);
1442                         free_buffer_page(bpage);
1443                 }
1444         }
1445         return success;
1446 }
1447
1448 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1449 {
1450         int success;
1451
1452         if (cpu_buffer->nr_pages_to_update > 0)
1453                 success = rb_insert_pages(cpu_buffer);
1454         else
1455                 success = rb_remove_pages(cpu_buffer,
1456                                         -cpu_buffer->nr_pages_to_update);
1457
1458         if (success)
1459                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1460 }
1461
1462 static void update_pages_handler(struct work_struct *work)
1463 {
1464         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1465                         struct ring_buffer_per_cpu, update_pages_work);
1466         rb_update_pages(cpu_buffer);
1467         complete(&cpu_buffer->update_done);
1468 }
1469
1470 /**
1471  * ring_buffer_resize - resize the ring buffer
1472  * @buffer: the buffer to resize.
1473  * @size: the new size.
1474  *
1475  * Minimum size is 2 * BUF_PAGE_SIZE.
1476  *
1477  * Returns 0 on success and < 0 on failure.
1478  */
1479 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1480                         int cpu_id)
1481 {
1482         struct ring_buffer_per_cpu *cpu_buffer;
1483         unsigned nr_pages;
1484         int cpu, err = 0;
1485
1486         /*
1487          * Always succeed at resizing a non-existent buffer:
1488          */
1489         if (!buffer)
1490                 return size;
1491
1492         /* Make sure the requested buffer exists */
1493         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1494             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1495                 return size;
1496
1497         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1498         size *= BUF_PAGE_SIZE;
1499
1500         /* we need a minimum of two pages */
1501         if (size < BUF_PAGE_SIZE * 2)
1502                 size = BUF_PAGE_SIZE * 2;
1503
1504         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1505
1506         /*
1507          * Don't succeed if resizing is disabled, as a reader might be
1508          * manipulating the ring buffer and is expecting a sane state while
1509          * this is true.
1510          */
1511         if (atomic_read(&buffer->resize_disabled))
1512                 return -EBUSY;
1513
1514         /* prevent another thread from changing buffer sizes */
1515         mutex_lock(&buffer->mutex);
1516
1517         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1518                 /* calculate the pages to update */
1519                 for_each_buffer_cpu(buffer, cpu) {
1520                         cpu_buffer = buffer->buffers[cpu];
1521
1522                         cpu_buffer->nr_pages_to_update = nr_pages -
1523                                                         cpu_buffer->nr_pages;
1524                         /*
1525                          * nothing more to do for removing pages or no update
1526                          */
1527                         if (cpu_buffer->nr_pages_to_update <= 0)
1528                                 continue;
1529                         /*
1530                          * to add pages, make sure all new pages can be
1531                          * allocated without receiving ENOMEM
1532                          */
1533                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1534                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1535                                                 &cpu_buffer->new_pages, cpu)) {
1536                                 /* not enough memory for new pages */
1537                                 err = -ENOMEM;
1538                                 goto out_err;
1539                         }
1540                 }
1541
1542                 get_online_cpus();
1543                 /*
1544                  * Fire off all the required work handlers
1545                  * We can't schedule on offline CPUs, but it's not necessary
1546                  * since we can change their buffer sizes without any race.
1547                  */
1548                 for_each_buffer_cpu(buffer, cpu) {
1549                         cpu_buffer = buffer->buffers[cpu];
1550                         if (!cpu_buffer->nr_pages_to_update)
1551                                 continue;
1552
1553                         if (cpu_online(cpu))
1554                                 schedule_work_on(cpu,
1555                                                 &cpu_buffer->update_pages_work);
1556                         else
1557                                 rb_update_pages(cpu_buffer);
1558                 }
1559
1560                 /* wait for all the updates to complete */
1561                 for_each_buffer_cpu(buffer, cpu) {
1562                         cpu_buffer = buffer->buffers[cpu];
1563                         if (!cpu_buffer->nr_pages_to_update)
1564                                 continue;
1565
1566                         if (cpu_online(cpu))
1567                                 wait_for_completion(&cpu_buffer->update_done);
1568                         cpu_buffer->nr_pages_to_update = 0;
1569                 }
1570
1571                 put_online_cpus();
1572         } else {
1573                 /* Make sure this CPU has been intitialized */
1574                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1575                         goto out;
1576
1577                 cpu_buffer = buffer->buffers[cpu_id];
1578
1579                 if (nr_pages == cpu_buffer->nr_pages)
1580                         goto out;
1581
1582                 cpu_buffer->nr_pages_to_update = nr_pages -
1583                                                 cpu_buffer->nr_pages;
1584
1585                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1586                 if (cpu_buffer->nr_pages_to_update > 0 &&
1587                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1588                                             &cpu_buffer->new_pages, cpu_id)) {
1589                         err = -ENOMEM;
1590                         goto out_err;
1591                 }
1592
1593                 get_online_cpus();
1594
1595                 if (cpu_online(cpu_id)) {
1596                         schedule_work_on(cpu_id,
1597                                          &cpu_buffer->update_pages_work);
1598                         wait_for_completion(&cpu_buffer->update_done);
1599                 } else
1600                         rb_update_pages(cpu_buffer);
1601
1602                 cpu_buffer->nr_pages_to_update = 0;
1603                 put_online_cpus();
1604         }
1605
1606  out:
1607         /*
1608          * The ring buffer resize can happen with the ring buffer
1609          * enabled, so that the update disturbs the tracing as little
1610          * as possible. But if the buffer is disabled, we do not need
1611          * to worry about that, and we can take the time to verify
1612          * that the buffer is not corrupt.
1613          */
1614         if (atomic_read(&buffer->record_disabled)) {
1615                 atomic_inc(&buffer->record_disabled);
1616                 /*
1617                  * Even though the buffer was disabled, we must make sure
1618                  * that it is truly disabled before calling rb_check_pages.
1619                  * There could have been a race between checking
1620                  * record_disable and incrementing it.
1621                  */
1622                 synchronize_sched();
1623                 for_each_buffer_cpu(buffer, cpu) {
1624                         cpu_buffer = buffer->buffers[cpu];
1625                         rb_check_pages(cpu_buffer);
1626                 }
1627                 atomic_dec(&buffer->record_disabled);
1628         }
1629
1630         mutex_unlock(&buffer->mutex);
1631         return size;
1632
1633  out_err:
1634         for_each_buffer_cpu(buffer, cpu) {
1635                 struct buffer_page *bpage, *tmp;
1636
1637                 cpu_buffer = buffer->buffers[cpu];
1638                 cpu_buffer->nr_pages_to_update = 0;
1639
1640                 if (list_empty(&cpu_buffer->new_pages))
1641                         continue;
1642
1643                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1644                                         list) {
1645                         list_del_init(&bpage->list);
1646                         free_buffer_page(bpage);
1647                 }
1648         }
1649         mutex_unlock(&buffer->mutex);
1650         return err;
1651 }
1652 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1653
1654 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1655 {
1656         mutex_lock(&buffer->mutex);
1657         if (val)
1658                 buffer->flags |= RB_FL_OVERWRITE;
1659         else
1660                 buffer->flags &= ~RB_FL_OVERWRITE;
1661         mutex_unlock(&buffer->mutex);
1662 }
1663 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1664
1665 static inline void *
1666 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1667 {
1668         return bpage->data + index;
1669 }
1670
1671 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1672 {
1673         return bpage->page->data + index;
1674 }
1675
1676 static inline struct ring_buffer_event *
1677 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1678 {
1679         return __rb_page_index(cpu_buffer->reader_page,
1680                                cpu_buffer->reader_page->read);
1681 }
1682
1683 static inline struct ring_buffer_event *
1684 rb_iter_head_event(struct ring_buffer_iter *iter)
1685 {
1686         return __rb_page_index(iter->head_page, iter->head);
1687 }
1688
1689 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1690 {
1691         return local_read(&bpage->page->commit);
1692 }
1693
1694 /* Size is determined by what has been committed */
1695 static inline unsigned rb_page_size(struct buffer_page *bpage)
1696 {
1697         return rb_page_commit(bpage);
1698 }
1699
1700 static inline unsigned
1701 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1702 {
1703         return rb_page_commit(cpu_buffer->commit_page);
1704 }
1705
1706 static inline unsigned
1707 rb_event_index(struct ring_buffer_event *event)
1708 {
1709         unsigned long addr = (unsigned long)event;
1710
1711         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1712 }
1713
1714 static inline int
1715 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1716                    struct ring_buffer_event *event)
1717 {
1718         unsigned long addr = (unsigned long)event;
1719         unsigned long index;
1720
1721         index = rb_event_index(event);
1722         addr &= PAGE_MASK;
1723
1724         return cpu_buffer->commit_page->page == (void *)addr &&
1725                 rb_commit_index(cpu_buffer) == index;
1726 }
1727
1728 static void
1729 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1730 {
1731         unsigned long max_count;
1732
1733         /*
1734          * We only race with interrupts and NMIs on this CPU.
1735          * If we own the commit event, then we can commit
1736          * all others that interrupted us, since the interruptions
1737          * are in stack format (they finish before they come
1738          * back to us). This allows us to do a simple loop to
1739          * assign the commit to the tail.
1740          */
1741  again:
1742         max_count = cpu_buffer->nr_pages * 100;
1743
1744         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1745                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1746                         return;
1747                 if (RB_WARN_ON(cpu_buffer,
1748                                rb_is_reader_page(cpu_buffer->tail_page)))
1749                         return;
1750                 local_set(&cpu_buffer->commit_page->page->commit,
1751                           rb_page_write(cpu_buffer->commit_page));
1752                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1753                 cpu_buffer->write_stamp =
1754                         cpu_buffer->commit_page->page->time_stamp;
1755                 /* add barrier to keep gcc from optimizing too much */
1756                 barrier();
1757         }
1758         while (rb_commit_index(cpu_buffer) !=
1759                rb_page_write(cpu_buffer->commit_page)) {
1760
1761                 local_set(&cpu_buffer->commit_page->page->commit,
1762                           rb_page_write(cpu_buffer->commit_page));
1763                 RB_WARN_ON(cpu_buffer,
1764                            local_read(&cpu_buffer->commit_page->page->commit) &
1765                            ~RB_WRITE_MASK);
1766                 barrier();
1767         }
1768
1769         /* again, keep gcc from optimizing */
1770         barrier();
1771
1772         /*
1773          * If an interrupt came in just after the first while loop
1774          * and pushed the tail page forward, we will be left with
1775          * a dangling commit that will never go forward.
1776          */
1777         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1778                 goto again;
1779 }
1780
1781 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1782 {
1783         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1784         cpu_buffer->reader_page->read = 0;
1785 }
1786
1787 static void rb_inc_iter(struct ring_buffer_iter *iter)
1788 {
1789         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1790
1791         /*
1792          * The iterator could be on the reader page (it starts there).
1793          * But the head could have moved, since the reader was
1794          * found. Check for this case and assign the iterator
1795          * to the head page instead of next.
1796          */
1797         if (iter->head_page == cpu_buffer->reader_page)
1798                 iter->head_page = rb_set_head_page(cpu_buffer);
1799         else
1800                 rb_inc_page(cpu_buffer, &iter->head_page);
1801
1802         iter->read_stamp = iter->head_page->page->time_stamp;
1803         iter->head = 0;
1804 }
1805
1806 /* Slow path, do not inline */
1807 static noinline struct ring_buffer_event *
1808 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1809 {
1810         event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1811
1812         /* Not the first event on the page? */
1813         if (rb_event_index(event)) {
1814                 event->time_delta = delta & TS_MASK;
1815                 event->array[0] = delta >> TS_SHIFT;
1816         } else {
1817                 /* nope, just zero it */
1818                 event->time_delta = 0;
1819                 event->array[0] = 0;
1820         }
1821
1822         return skip_time_extend(event);
1823 }
1824
1825 /**
1826  * rb_update_event - update event type and data
1827  * @event: the even to update
1828  * @type: the type of event
1829  * @length: the size of the event field in the ring buffer
1830  *
1831  * Update the type and data fields of the event. The length
1832  * is the actual size that is written to the ring buffer,
1833  * and with this, we can determine what to place into the
1834  * data field.
1835  */
1836 static void
1837 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1838                 struct ring_buffer_event *event, unsigned length,
1839                 int add_timestamp, u64 delta)
1840 {
1841         /* Only a commit updates the timestamp */
1842         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1843                 delta = 0;
1844
1845         /*
1846          * If we need to add a timestamp, then we
1847          * add it to the start of the resevered space.
1848          */
1849         if (unlikely(add_timestamp)) {
1850                 event = rb_add_time_stamp(event, delta);
1851                 length -= RB_LEN_TIME_EXTEND;
1852                 delta = 0;
1853         }
1854
1855         event->time_delta = delta;
1856         length -= RB_EVNT_HDR_SIZE;
1857         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1858                 event->type_len = 0;
1859                 event->array[0] = length;
1860         } else
1861                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1862 }
1863
1864 /*
1865  * rb_handle_head_page - writer hit the head page
1866  *
1867  * Returns: +1 to retry page
1868  *           0 to continue
1869  *          -1 on error
1870  */
1871 static int
1872 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1873                     struct buffer_page *tail_page,
1874                     struct buffer_page *next_page)
1875 {
1876         struct buffer_page *new_head;
1877         int entries;
1878         int type;
1879         int ret;
1880
1881         entries = rb_page_entries(next_page);
1882
1883         /*
1884          * The hard part is here. We need to move the head
1885          * forward, and protect against both readers on
1886          * other CPUs and writers coming in via interrupts.
1887          */
1888         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1889                                        RB_PAGE_HEAD);
1890
1891         /*
1892          * type can be one of four:
1893          *  NORMAL - an interrupt already moved it for us
1894          *  HEAD   - we are the first to get here.
1895          *  UPDATE - we are the interrupt interrupting
1896          *           a current move.
1897          *  MOVED  - a reader on another CPU moved the next
1898          *           pointer to its reader page. Give up
1899          *           and try again.
1900          */
1901
1902         switch (type) {
1903         case RB_PAGE_HEAD:
1904                 /*
1905                  * We changed the head to UPDATE, thus
1906                  * it is our responsibility to update
1907                  * the counters.
1908                  */
1909                 local_add(entries, &cpu_buffer->overrun);
1910                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1911
1912                 /*
1913                  * The entries will be zeroed out when we move the
1914                  * tail page.
1915                  */
1916
1917                 /* still more to do */
1918                 break;
1919
1920         case RB_PAGE_UPDATE:
1921                 /*
1922                  * This is an interrupt that interrupt the
1923                  * previous update. Still more to do.
1924                  */
1925                 break;
1926         case RB_PAGE_NORMAL:
1927                 /*
1928                  * An interrupt came in before the update
1929                  * and processed this for us.
1930                  * Nothing left to do.
1931                  */
1932                 return 1;
1933         case RB_PAGE_MOVED:
1934                 /*
1935                  * The reader is on another CPU and just did
1936                  * a swap with our next_page.
1937                  * Try again.
1938                  */
1939                 return 1;
1940         default:
1941                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1942                 return -1;
1943         }
1944
1945         /*
1946          * Now that we are here, the old head pointer is
1947          * set to UPDATE. This will keep the reader from
1948          * swapping the head page with the reader page.
1949          * The reader (on another CPU) will spin till
1950          * we are finished.
1951          *
1952          * We just need to protect against interrupts
1953          * doing the job. We will set the next pointer
1954          * to HEAD. After that, we set the old pointer
1955          * to NORMAL, but only if it was HEAD before.
1956          * otherwise we are an interrupt, and only
1957          * want the outer most commit to reset it.
1958          */
1959         new_head = next_page;
1960         rb_inc_page(cpu_buffer, &new_head);
1961
1962         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1963                                     RB_PAGE_NORMAL);
1964
1965         /*
1966          * Valid returns are:
1967          *  HEAD   - an interrupt came in and already set it.
1968          *  NORMAL - One of two things:
1969          *            1) We really set it.
1970          *            2) A bunch of interrupts came in and moved
1971          *               the page forward again.
1972          */
1973         switch (ret) {
1974         case RB_PAGE_HEAD:
1975         case RB_PAGE_NORMAL:
1976                 /* OK */
1977                 break;
1978         default:
1979                 RB_WARN_ON(cpu_buffer, 1);
1980                 return -1;
1981         }
1982
1983         /*
1984          * It is possible that an interrupt came in,
1985          * set the head up, then more interrupts came in
1986          * and moved it again. When we get back here,
1987          * the page would have been set to NORMAL but we
1988          * just set it back to HEAD.
1989          *
1990          * How do you detect this? Well, if that happened
1991          * the tail page would have moved.
1992          */
1993         if (ret == RB_PAGE_NORMAL) {
1994                 /*
1995                  * If the tail had moved passed next, then we need
1996                  * to reset the pointer.
1997                  */
1998                 if (cpu_buffer->tail_page != tail_page &&
1999                     cpu_buffer->tail_page != next_page)
2000                         rb_head_page_set_normal(cpu_buffer, new_head,
2001                                                 next_page,
2002                                                 RB_PAGE_HEAD);
2003         }
2004
2005         /*
2006          * If this was the outer most commit (the one that
2007          * changed the original pointer from HEAD to UPDATE),
2008          * then it is up to us to reset it to NORMAL.
2009          */
2010         if (type == RB_PAGE_HEAD) {
2011                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2012                                               tail_page,
2013                                               RB_PAGE_UPDATE);
2014                 if (RB_WARN_ON(cpu_buffer,
2015                                ret != RB_PAGE_UPDATE))
2016                         return -1;
2017         }
2018
2019         return 0;
2020 }
2021
2022 static unsigned rb_calculate_event_length(unsigned length)
2023 {
2024         struct ring_buffer_event event; /* Used only for sizeof array */
2025
2026         /* zero length can cause confusions */
2027         if (!length)
2028                 length = 1;
2029
2030         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2031                 length += sizeof(event.array[0]);
2032
2033         length += RB_EVNT_HDR_SIZE;
2034         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2035
2036         return length;
2037 }
2038
2039 static inline void
2040 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2041               struct buffer_page *tail_page,
2042               unsigned long tail, unsigned long length)
2043 {
2044         struct ring_buffer_event *event;
2045
2046         /*
2047          * Only the event that crossed the page boundary
2048          * must fill the old tail_page with padding.
2049          */
2050         if (tail >= BUF_PAGE_SIZE) {
2051                 /*
2052                  * If the page was filled, then we still need
2053                  * to update the real_end. Reset it to zero
2054                  * and the reader will ignore it.
2055                  */
2056                 if (tail == BUF_PAGE_SIZE)
2057                         tail_page->real_end = 0;
2058
2059                 local_sub(length, &tail_page->write);
2060                 return;
2061         }
2062
2063         event = __rb_page_index(tail_page, tail);
2064         kmemcheck_annotate_bitfield(event, bitfield);
2065
2066         /* account for padding bytes */
2067         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2068
2069         /*
2070          * Save the original length to the meta data.
2071          * This will be used by the reader to add lost event
2072          * counter.
2073          */
2074         tail_page->real_end = tail;
2075
2076         /*
2077          * If this event is bigger than the minimum size, then
2078          * we need to be careful that we don't subtract the
2079          * write counter enough to allow another writer to slip
2080          * in on this page.
2081          * We put in a discarded commit instead, to make sure
2082          * that this space is not used again.
2083          *
2084          * If we are less than the minimum size, we don't need to
2085          * worry about it.
2086          */
2087         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2088                 /* No room for any events */
2089
2090                 /* Mark the rest of the page with padding */
2091                 rb_event_set_padding(event);
2092
2093                 /* Set the write back to the previous setting */
2094                 local_sub(length, &tail_page->write);
2095                 return;
2096         }
2097
2098         /* Put in a discarded event */
2099         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2100         event->type_len = RINGBUF_TYPE_PADDING;
2101         /* time delta must be non zero */
2102         event->time_delta = 1;
2103
2104         /* Set write to end of buffer */
2105         length = (tail + length) - BUF_PAGE_SIZE;
2106         local_sub(length, &tail_page->write);
2107 }
2108
2109 /*
2110  * This is the slow path, force gcc not to inline it.
2111  */
2112 static noinline struct ring_buffer_event *
2113 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2114              unsigned long length, unsigned long tail,
2115              struct buffer_page *tail_page, u64 ts)
2116 {
2117         struct buffer_page *commit_page = cpu_buffer->commit_page;
2118         struct ring_buffer *buffer = cpu_buffer->buffer;
2119         struct buffer_page *next_page;
2120         int ret;
2121
2122         next_page = tail_page;
2123
2124         rb_inc_page(cpu_buffer, &next_page);
2125
2126         /*
2127          * If for some reason, we had an interrupt storm that made
2128          * it all the way around the buffer, bail, and warn
2129          * about it.
2130          */
2131         if (unlikely(next_page == commit_page)) {
2132                 local_inc(&cpu_buffer->commit_overrun);
2133                 goto out_reset;
2134         }
2135
2136         /*
2137          * This is where the fun begins!
2138          *
2139          * We are fighting against races between a reader that
2140          * could be on another CPU trying to swap its reader
2141          * page with the buffer head.
2142          *
2143          * We are also fighting against interrupts coming in and
2144          * moving the head or tail on us as well.
2145          *
2146          * If the next page is the head page then we have filled
2147          * the buffer, unless the commit page is still on the
2148          * reader page.
2149          */
2150         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2151
2152                 /*
2153                  * If the commit is not on the reader page, then
2154                  * move the header page.
2155                  */
2156                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2157                         /*
2158                          * If we are not in overwrite mode,
2159                          * this is easy, just stop here.
2160                          */
2161                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2162                                 local_inc(&cpu_buffer->dropped_events);
2163                                 goto out_reset;
2164                         }
2165
2166                         ret = rb_handle_head_page(cpu_buffer,
2167                                                   tail_page,
2168                                                   next_page);
2169                         if (ret < 0)
2170                                 goto out_reset;
2171                         if (ret)
2172                                 goto out_again;
2173                 } else {
2174                         /*
2175                          * We need to be careful here too. The
2176                          * commit page could still be on the reader
2177                          * page. We could have a small buffer, and
2178                          * have filled up the buffer with events
2179                          * from interrupts and such, and wrapped.
2180                          *
2181                          * Note, if the tail page is also the on the
2182                          * reader_page, we let it move out.
2183                          */
2184                         if (unlikely((cpu_buffer->commit_page !=
2185                                       cpu_buffer->tail_page) &&
2186                                      (cpu_buffer->commit_page ==
2187                                       cpu_buffer->reader_page))) {
2188                                 local_inc(&cpu_buffer->commit_overrun);
2189                                 goto out_reset;
2190                         }
2191                 }
2192         }
2193
2194         ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2195         if (ret) {
2196                 /*
2197                  * Nested commits always have zero deltas, so
2198                  * just reread the time stamp
2199                  */
2200                 ts = rb_time_stamp(buffer);
2201                 next_page->page->time_stamp = ts;
2202         }
2203
2204  out_again:
2205
2206         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2207
2208         /* fail and let the caller try again */
2209         return ERR_PTR(-EAGAIN);
2210
2211  out_reset:
2212         /* reset write */
2213         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2214
2215         return NULL;
2216 }
2217
2218 static struct ring_buffer_event *
2219 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2220                   unsigned long length, u64 ts,
2221                   u64 delta, int add_timestamp)
2222 {
2223         struct buffer_page *tail_page;
2224         struct ring_buffer_event *event;
2225         unsigned long tail, write;
2226
2227         /*
2228          * If the time delta since the last event is too big to
2229          * hold in the time field of the event, then we append a
2230          * TIME EXTEND event ahead of the data event.
2231          */
2232         if (unlikely(add_timestamp))
2233                 length += RB_LEN_TIME_EXTEND;
2234
2235         tail_page = cpu_buffer->tail_page;
2236         write = local_add_return(length, &tail_page->write);
2237
2238         /* set write to only the index of the write */
2239         write &= RB_WRITE_MASK;
2240         tail = write - length;
2241
2242         /* See if we shot pass the end of this buffer page */
2243         if (unlikely(write > BUF_PAGE_SIZE))
2244                 return rb_move_tail(cpu_buffer, length, tail,
2245                                     tail_page, ts);
2246
2247         /* We reserved something on the buffer */
2248
2249         event = __rb_page_index(tail_page, tail);
2250         kmemcheck_annotate_bitfield(event, bitfield);
2251         rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2252
2253         local_inc(&tail_page->entries);
2254
2255         /*
2256          * If this is the first commit on the page, then update
2257          * its timestamp.
2258          */
2259         if (!tail)
2260                 tail_page->page->time_stamp = ts;
2261
2262         /* account for these added bytes */
2263         local_add(length, &cpu_buffer->entries_bytes);
2264
2265         return event;
2266 }
2267
2268 static inline int
2269 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2270                   struct ring_buffer_event *event)
2271 {
2272         unsigned long new_index, old_index;
2273         struct buffer_page *bpage;
2274         unsigned long index;
2275         unsigned long addr;
2276
2277         new_index = rb_event_index(event);
2278         old_index = new_index + rb_event_ts_length(event);
2279         addr = (unsigned long)event;
2280         addr &= PAGE_MASK;
2281
2282         bpage = cpu_buffer->tail_page;
2283
2284         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2285                 unsigned long write_mask =
2286                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2287                 unsigned long event_length = rb_event_length(event);
2288                 /*
2289                  * This is on the tail page. It is possible that
2290                  * a write could come in and move the tail page
2291                  * and write to the next page. That is fine
2292                  * because we just shorten what is on this page.
2293                  */
2294                 old_index += write_mask;
2295                 new_index += write_mask;
2296                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2297                 if (index == old_index) {
2298                         /* update counters */
2299                         local_sub(event_length, &cpu_buffer->entries_bytes);
2300                         return 1;
2301                 }
2302         }
2303
2304         /* could not discard */
2305         return 0;
2306 }
2307
2308 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2309 {
2310         local_inc(&cpu_buffer->committing);
2311         local_inc(&cpu_buffer->commits);
2312 }
2313
2314 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2315 {
2316         unsigned long commits;
2317
2318         if (RB_WARN_ON(cpu_buffer,
2319                        !local_read(&cpu_buffer->committing)))
2320                 return;
2321
2322  again:
2323         commits = local_read(&cpu_buffer->commits);
2324         /* synchronize with interrupts */
2325         barrier();
2326         if (local_read(&cpu_buffer->committing) == 1)
2327                 rb_set_commit_to_write(cpu_buffer);
2328
2329         local_dec(&cpu_buffer->committing);
2330
2331         /* synchronize with interrupts */
2332         barrier();
2333
2334         /*
2335          * Need to account for interrupts coming in between the
2336          * updating of the commit page and the clearing of the
2337          * committing counter.
2338          */
2339         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2340             !local_read(&cpu_buffer->committing)) {
2341                 local_inc(&cpu_buffer->committing);
2342                 goto again;
2343         }
2344 }
2345
2346 static struct ring_buffer_event *
2347 rb_reserve_next_event(struct ring_buffer *buffer,
2348                       struct ring_buffer_per_cpu *cpu_buffer,
2349                       unsigned long length)
2350 {
2351         struct ring_buffer_event *event;
2352         u64 ts, delta;
2353         int nr_loops = 0;
2354         int add_timestamp;
2355         u64 diff;
2356
2357         rb_start_commit(cpu_buffer);
2358
2359 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2360         /*
2361          * Due to the ability to swap a cpu buffer from a buffer
2362          * it is possible it was swapped before we committed.
2363          * (committing stops a swap). We check for it here and
2364          * if it happened, we have to fail the write.
2365          */
2366         barrier();
2367         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2368                 local_dec(&cpu_buffer->committing);
2369                 local_dec(&cpu_buffer->commits);
2370                 return NULL;
2371         }
2372 #endif
2373
2374         length = rb_calculate_event_length(length);
2375  again:
2376         add_timestamp = 0;
2377         delta = 0;
2378
2379         /*
2380          * We allow for interrupts to reenter here and do a trace.
2381          * If one does, it will cause this original code to loop
2382          * back here. Even with heavy interrupts happening, this
2383          * should only happen a few times in a row. If this happens
2384          * 1000 times in a row, there must be either an interrupt
2385          * storm or we have something buggy.
2386          * Bail!
2387          */
2388         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2389                 goto out_fail;
2390
2391         ts = rb_time_stamp(cpu_buffer->buffer);
2392         diff = ts - cpu_buffer->write_stamp;
2393
2394         /* make sure this diff is calculated here */
2395         barrier();
2396
2397         /* Did the write stamp get updated already? */
2398         if (likely(ts >= cpu_buffer->write_stamp)) {
2399                 delta = diff;
2400                 if (unlikely(test_time_stamp(delta))) {
2401                         int local_clock_stable = 1;
2402 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2403                         local_clock_stable = sched_clock_stable;
2404 #endif
2405                         WARN_ONCE(delta > (1ULL << 59),
2406                                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2407                                   (unsigned long long)delta,
2408                                   (unsigned long long)ts,
2409                                   (unsigned long long)cpu_buffer->write_stamp,
2410                                   local_clock_stable ? "" :
2411                                   "If you just came from a suspend/resume,\n"
2412                                   "please switch to the trace global clock:\n"
2413                                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2414                         add_timestamp = 1;
2415                 }
2416         }
2417
2418         event = __rb_reserve_next(cpu_buffer, length, ts,
2419                                   delta, add_timestamp);
2420         if (unlikely(PTR_ERR(event) == -EAGAIN))
2421                 goto again;
2422
2423         if (!event)
2424                 goto out_fail;
2425
2426         return event;
2427
2428  out_fail:
2429         rb_end_commit(cpu_buffer);
2430         return NULL;
2431 }
2432
2433 #ifdef CONFIG_TRACING
2434
2435 /*
2436  * The lock and unlock are done within a preempt disable section.
2437  * The current_context per_cpu variable can only be modified
2438  * by the current task between lock and unlock. But it can
2439  * be modified more than once via an interrupt. To pass this
2440  * information from the lock to the unlock without having to
2441  * access the 'in_interrupt()' functions again (which do show
2442  * a bit of overhead in something as critical as function tracing,
2443  * we use a bitmask trick.
2444  *
2445  *  bit 0 =  NMI context
2446  *  bit 1 =  IRQ context
2447  *  bit 2 =  SoftIRQ context
2448  *  bit 3 =  normal context.
2449  *
2450  * This works because this is the order of contexts that can
2451  * preempt other contexts. A SoftIRQ never preempts an IRQ
2452  * context.
2453  *
2454  * When the context is determined, the corresponding bit is
2455  * checked and set (if it was set, then a recursion of that context
2456  * happened).
2457  *
2458  * On unlock, we need to clear this bit. To do so, just subtract
2459  * 1 from the current_context and AND it to itself.
2460  *
2461  * (binary)
2462  *  101 - 1 = 100
2463  *  101 & 100 = 100 (clearing bit zero)
2464  *
2465  *  1010 - 1 = 1001
2466  *  1010 & 1001 = 1000 (clearing bit 1)
2467  *
2468  * The least significant bit can be cleared this way, and it
2469  * just so happens that it is the same bit corresponding to
2470  * the current context.
2471  */
2472 static DEFINE_PER_CPU(unsigned int, current_context);
2473
2474 static __always_inline int trace_recursive_lock(void)
2475 {
2476         unsigned int val = this_cpu_read(current_context);
2477         int bit;
2478
2479         if (in_interrupt()) {
2480                 if (in_nmi())
2481                         bit = 0;
2482                 else if (in_irq())
2483                         bit = 1;
2484                 else
2485                         bit = 2;
2486         } else
2487                 bit = 3;
2488
2489         if (unlikely(val & (1 << bit)))
2490                 return 1;
2491
2492         val |= (1 << bit);
2493         this_cpu_write(current_context, val);
2494
2495         return 0;
2496 }
2497
2498 static __always_inline void trace_recursive_unlock(void)
2499 {
2500         unsigned int val = this_cpu_read(current_context);
2501
2502         val--;
2503         val &= this_cpu_read(current_context);
2504         this_cpu_write(current_context, val);
2505 }
2506
2507 #else
2508
2509 #define trace_recursive_lock()          (0)
2510 #define trace_recursive_unlock()        do { } while (0)
2511
2512 #endif
2513
2514 /**
2515  * ring_buffer_lock_reserve - reserve a part of the buffer
2516  * @buffer: the ring buffer to reserve from
2517  * @length: the length of the data to reserve (excluding event header)
2518  *
2519  * Returns a reseverd event on the ring buffer to copy directly to.
2520  * The user of this interface will need to get the body to write into
2521  * and can use the ring_buffer_event_data() interface.
2522  *
2523  * The length is the length of the data needed, not the event length
2524  * which also includes the event header.
2525  *
2526  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2527  * If NULL is returned, then nothing has been allocated or locked.
2528  */
2529 struct ring_buffer_event *
2530 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2531 {
2532         struct ring_buffer_per_cpu *cpu_buffer;
2533         struct ring_buffer_event *event;
2534         int cpu;
2535
2536         if (ring_buffer_flags != RB_BUFFERS_ON)
2537                 return NULL;
2538
2539         /* If we are tracing schedule, we don't want to recurse */
2540         preempt_disable_notrace();
2541
2542         if (atomic_read(&buffer->record_disabled))
2543                 goto out_nocheck;
2544
2545         if (trace_recursive_lock())
2546                 goto out_nocheck;
2547
2548         cpu = raw_smp_processor_id();
2549
2550         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2551                 goto out;
2552
2553         cpu_buffer = buffer->buffers[cpu];
2554
2555         if (atomic_read(&cpu_buffer->record_disabled))
2556                 goto out;
2557
2558         if (length > BUF_MAX_DATA_SIZE)
2559                 goto out;
2560
2561         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2562         if (!event)
2563                 goto out;
2564
2565         return event;
2566
2567  out:
2568         trace_recursive_unlock();
2569
2570  out_nocheck:
2571         preempt_enable_notrace();
2572         return NULL;
2573 }
2574 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2575
2576 static void
2577 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2578                       struct ring_buffer_event *event)
2579 {
2580         u64 delta;
2581
2582         /*
2583          * The event first in the commit queue updates the
2584          * time stamp.
2585          */
2586         if (rb_event_is_commit(cpu_buffer, event)) {
2587                 /*
2588                  * A commit event that is first on a page
2589                  * updates the write timestamp with the page stamp
2590                  */
2591                 if (!rb_event_index(event))
2592                         cpu_buffer->write_stamp =
2593                                 cpu_buffer->commit_page->page->time_stamp;
2594                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2595                         delta = event->array[0];
2596                         delta <<= TS_SHIFT;
2597                         delta += event->time_delta;
2598                         cpu_buffer->write_stamp += delta;
2599                 } else
2600                         cpu_buffer->write_stamp += event->time_delta;
2601         }
2602 }
2603
2604 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2605                       struct ring_buffer_event *event)
2606 {
2607         local_inc(&cpu_buffer->entries);
2608         rb_update_write_stamp(cpu_buffer, event);
2609         rb_end_commit(cpu_buffer);
2610 }
2611
2612 /**
2613  * ring_buffer_unlock_commit - commit a reserved
2614  * @buffer: The buffer to commit to
2615  * @event: The event pointer to commit.
2616  *
2617  * This commits the data to the ring buffer, and releases any locks held.
2618  *
2619  * Must be paired with ring_buffer_lock_reserve.
2620  */
2621 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2622                               struct ring_buffer_event *event)
2623 {
2624         struct ring_buffer_per_cpu *cpu_buffer;
2625         int cpu = raw_smp_processor_id();
2626
2627         cpu_buffer = buffer->buffers[cpu];
2628
2629         rb_commit(cpu_buffer, event);
2630
2631         trace_recursive_unlock();
2632
2633         preempt_enable_notrace();
2634
2635         return 0;
2636 }
2637 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2638
2639 static inline void rb_event_discard(struct ring_buffer_event *event)
2640 {
2641         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2642                 event = skip_time_extend(event);
2643
2644         /* array[0] holds the actual length for the discarded event */
2645         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2646         event->type_len = RINGBUF_TYPE_PADDING;
2647         /* time delta must be non zero */
2648         if (!event->time_delta)
2649                 event->time_delta = 1;
2650 }
2651
2652 /*
2653  * Decrement the entries to the page that an event is on.
2654  * The event does not even need to exist, only the pointer
2655  * to the page it is on. This may only be called before the commit
2656  * takes place.
2657  */
2658 static inline void
2659 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2660                    struct ring_buffer_event *event)
2661 {
2662         unsigned long addr = (unsigned long)event;
2663         struct buffer_page *bpage = cpu_buffer->commit_page;
2664         struct buffer_page *start;
2665
2666         addr &= PAGE_MASK;
2667
2668         /* Do the likely case first */
2669         if (likely(bpage->page == (void *)addr)) {
2670                 local_dec(&bpage->entries);
2671                 return;
2672         }
2673
2674         /*
2675          * Because the commit page may be on the reader page we
2676          * start with the next page and check the end loop there.
2677          */
2678         rb_inc_page(cpu_buffer, &bpage);
2679         start = bpage;
2680         do {
2681                 if (bpage->page == (void *)addr) {
2682                         local_dec(&bpage->entries);
2683                         return;
2684                 }
2685                 rb_inc_page(cpu_buffer, &bpage);
2686         } while (bpage != start);
2687
2688         /* commit not part of this buffer?? */
2689         RB_WARN_ON(cpu_buffer, 1);
2690 }
2691
2692 /**
2693  * ring_buffer_commit_discard - discard an event that has not been committed
2694  * @buffer: the ring buffer
2695  * @event: non committed event to discard
2696  *
2697  * Sometimes an event that is in the ring buffer needs to be ignored.
2698  * This function lets the user discard an event in the ring buffer
2699  * and then that event will not be read later.
2700  *
2701  * This function only works if it is called before the the item has been
2702  * committed. It will try to free the event from the ring buffer
2703  * if another event has not been added behind it.
2704  *
2705  * If another event has been added behind it, it will set the event
2706  * up as discarded, and perform the commit.
2707  *
2708  * If this function is called, do not call ring_buffer_unlock_commit on
2709  * the event.
2710  */
2711 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2712                                 struct ring_buffer_event *event)
2713 {
2714         struct ring_buffer_per_cpu *cpu_buffer;
2715         int cpu;
2716
2717         /* The event is discarded regardless */
2718         rb_event_discard(event);
2719
2720         cpu = smp_processor_id();
2721         cpu_buffer = buffer->buffers[cpu];
2722
2723         /*
2724          * This must only be called if the event has not been
2725          * committed yet. Thus we can assume that preemption
2726          * is still disabled.
2727          */
2728         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2729
2730         rb_decrement_entry(cpu_buffer, event);
2731         if (rb_try_to_discard(cpu_buffer, event))
2732                 goto out;
2733
2734         /*
2735          * The commit is still visible by the reader, so we
2736          * must still update the timestamp.
2737          */
2738         rb_update_write_stamp(cpu_buffer, event);
2739  out:
2740         rb_end_commit(cpu_buffer);
2741
2742         trace_recursive_unlock();
2743
2744         preempt_enable_notrace();
2745
2746 }
2747 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2748
2749 /**
2750  * ring_buffer_write - write data to the buffer without reserving
2751  * @buffer: The ring buffer to write to.
2752  * @length: The length of the data being written (excluding the event header)
2753  * @data: The data to write to the buffer.
2754  *
2755  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2756  * one function. If you already have the data to write to the buffer, it
2757  * may be easier to simply call this function.
2758  *
2759  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2760  * and not the length of the event which would hold the header.
2761  */
2762 int ring_buffer_write(struct ring_buffer *buffer,
2763                       unsigned long length,
2764                       void *data)
2765 {
2766         struct ring_buffer_per_cpu *cpu_buffer;
2767         struct ring_buffer_event *event;
2768         void *body;
2769         int ret = -EBUSY;
2770         int cpu;
2771
2772         if (ring_buffer_flags != RB_BUFFERS_ON)
2773                 return -EBUSY;
2774
2775         preempt_disable_notrace();
2776
2777         if (atomic_read(&buffer->record_disabled))
2778                 goto out;
2779
2780         cpu = raw_smp_processor_id();
2781
2782         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2783                 goto out;
2784
2785         cpu_buffer = buffer->buffers[cpu];
2786
2787         if (atomic_read(&cpu_buffer->record_disabled))
2788                 goto out;
2789
2790         if (length > BUF_MAX_DATA_SIZE)
2791                 goto out;
2792
2793         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2794         if (!event)
2795                 goto out;
2796
2797         body = rb_event_data(event);
2798
2799         memcpy(body, data, length);
2800
2801         rb_commit(cpu_buffer, event);
2802
2803         ret = 0;
2804  out:
2805         preempt_enable_notrace();
2806
2807         return ret;
2808 }
2809 EXPORT_SYMBOL_GPL(ring_buffer_write);
2810
2811 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2812 {
2813         struct buffer_page *reader = cpu_buffer->reader_page;
2814         struct buffer_page *head = rb_set_head_page(cpu_buffer);
2815         struct buffer_page *commit = cpu_buffer->commit_page;
2816
2817         /* In case of error, head will be NULL */
2818         if (unlikely(!head))
2819                 return 1;
2820
2821         return reader->read == rb_page_commit(reader) &&
2822                 (commit == reader ||
2823                  (commit == head &&
2824                   head->read == rb_page_commit(commit)));
2825 }
2826
2827 /**
2828  * ring_buffer_record_disable - stop all writes into the buffer
2829  * @buffer: The ring buffer to stop writes to.
2830  *
2831  * This prevents all writes to the buffer. Any attempt to write
2832  * to the buffer after this will fail and return NULL.
2833  *
2834  * The caller should call synchronize_sched() after this.
2835  */
2836 void ring_buffer_record_disable(struct ring_buffer *buffer)
2837 {
2838         atomic_inc(&buffer->record_disabled);
2839 }
2840 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2841
2842 /**
2843  * ring_buffer_record_enable - enable writes to the buffer
2844  * @buffer: The ring buffer to enable writes
2845  *
2846  * Note, multiple disables will need the same number of enables
2847  * to truly enable the writing (much like preempt_disable).
2848  */
2849 void ring_buffer_record_enable(struct ring_buffer *buffer)
2850 {
2851         atomic_dec(&buffer->record_disabled);
2852 }
2853 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2854
2855 /**
2856  * ring_buffer_record_off - stop all writes into the buffer
2857  * @buffer: The ring buffer to stop writes to.
2858  *
2859  * This prevents all writes to the buffer. Any attempt to write
2860  * to the buffer after this will fail and return NULL.
2861  *
2862  * This is different than ring_buffer_record_disable() as
2863  * it works like an on/off switch, where as the disable() version
2864  * must be paired with a enable().
2865  */
2866 void ring_buffer_record_off(struct ring_buffer *buffer)
2867 {
2868         unsigned int rd;
2869         unsigned int new_rd;
2870
2871         do {
2872                 rd = atomic_read(&buffer->record_disabled);
2873                 new_rd = rd | RB_BUFFER_OFF;
2874         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2875 }
2876 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
2877
2878 /**
2879  * ring_buffer_record_on - restart writes into the buffer
2880  * @buffer: The ring buffer to start writes to.
2881  *
2882  * This enables all writes to the buffer that was disabled by
2883  * ring_buffer_record_off().
2884  *
2885  * This is different than ring_buffer_record_enable() as
2886  * it works like an on/off switch, where as the enable() version
2887  * must be paired with a disable().
2888  */
2889 void ring_buffer_record_on(struct ring_buffer *buffer)
2890 {
2891         unsigned int rd;
2892         unsigned int new_rd;
2893
2894         do {
2895                 rd = atomic_read(&buffer->record_disabled);
2896                 new_rd = rd & ~RB_BUFFER_OFF;
2897         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2898 }
2899 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
2900
2901 /**
2902  * ring_buffer_record_is_on - return true if the ring buffer can write
2903  * @buffer: The ring buffer to see if write is enabled
2904  *
2905  * Returns true if the ring buffer is in a state that it accepts writes.
2906  */
2907 int ring_buffer_record_is_on(struct ring_buffer *buffer)
2908 {
2909         return !atomic_read(&buffer->record_disabled);
2910 }
2911
2912 /**
2913  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2914  * @buffer: The ring buffer to stop writes to.
2915  * @cpu: The CPU buffer to stop
2916  *
2917  * This prevents all writes to the buffer. Any attempt to write
2918  * to the buffer after this will fail and return NULL.
2919  *
2920  * The caller should call synchronize_sched() after this.
2921  */
2922 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2923 {
2924         struct ring_buffer_per_cpu *cpu_buffer;
2925
2926         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2927                 return;
2928
2929         cpu_buffer = buffer->buffers[cpu];
2930         atomic_inc(&cpu_buffer->record_disabled);
2931 }
2932 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2933
2934 /**
2935  * ring_buffer_record_enable_cpu - enable writes to the buffer
2936  * @buffer: The ring buffer to enable writes
2937  * @cpu: The CPU to enable.
2938  *
2939  * Note, multiple disables will need the same number of enables
2940  * to truly enable the writing (much like preempt_disable).
2941  */
2942 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2943 {
2944         struct ring_buffer_per_cpu *cpu_buffer;
2945
2946         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2947                 return;
2948
2949         cpu_buffer = buffer->buffers[cpu];
2950         atomic_dec(&cpu_buffer->record_disabled);
2951 }
2952 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2953
2954 /*
2955  * The total entries in the ring buffer is the running counter
2956  * of entries entered into the ring buffer, minus the sum of
2957  * the entries read from the ring buffer and the number of
2958  * entries that were overwritten.
2959  */
2960 static inline unsigned long
2961 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2962 {
2963         return local_read(&cpu_buffer->entries) -
2964                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2965 }
2966
2967 /**
2968  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
2969  * @buffer: The ring buffer
2970  * @cpu: The per CPU buffer to read from.
2971  */
2972 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
2973 {
2974         unsigned long flags;
2975         struct ring_buffer_per_cpu *cpu_buffer;
2976         struct buffer_page *bpage;
2977         u64 ret = 0;
2978
2979         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2980                 return 0;
2981
2982         cpu_buffer = buffer->buffers[cpu];
2983         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2984         /*
2985          * if the tail is on reader_page, oldest time stamp is on the reader
2986          * page
2987          */
2988         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2989                 bpage = cpu_buffer->reader_page;
2990         else
2991                 bpage = rb_set_head_page(cpu_buffer);
2992         if (bpage)
2993                 ret = bpage->page->time_stamp;
2994         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2995
2996         return ret;
2997 }
2998 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
2999
3000 /**
3001  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3002  * @buffer: The ring buffer
3003  * @cpu: The per CPU buffer to read from.
3004  */
3005 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3006 {
3007         struct ring_buffer_per_cpu *cpu_buffer;
3008         unsigned long ret;
3009
3010         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3011                 return 0;
3012
3013         cpu_buffer = buffer->buffers[cpu];
3014         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3015
3016         return ret;
3017 }
3018 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3019
3020 /**
3021  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3022  * @buffer: The ring buffer
3023  * @cpu: The per CPU buffer to get the entries from.
3024  */
3025 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3026 {
3027         struct ring_buffer_per_cpu *cpu_buffer;
3028
3029         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3030                 return 0;
3031
3032         cpu_buffer = buffer->buffers[cpu];
3033
3034         return rb_num_of_entries(cpu_buffer);
3035 }
3036 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3037
3038 /**
3039  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3040  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3041  * @buffer: The ring buffer
3042  * @cpu: The per CPU buffer to get the number of overruns from
3043  */
3044 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3045 {
3046         struct ring_buffer_per_cpu *cpu_buffer;
3047         unsigned long ret;
3048
3049         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3050                 return 0;
3051
3052         cpu_buffer = buffer->buffers[cpu];
3053         ret = local_read(&cpu_buffer->overrun);
3054
3055         return ret;
3056 }
3057 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3058
3059 /**
3060  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3061  * commits failing due to the buffer wrapping around while there are uncommitted
3062  * events, such as during an interrupt storm.
3063  * @buffer: The ring buffer
3064  * @cpu: The per CPU buffer to get the number of overruns from
3065  */
3066 unsigned long
3067 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3068 {
3069         struct ring_buffer_per_cpu *cpu_buffer;
3070         unsigned long ret;
3071
3072         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3073                 return 0;
3074
3075         cpu_buffer = buffer->buffers[cpu];
3076         ret = local_read(&cpu_buffer->commit_overrun);
3077
3078         return ret;
3079 }
3080 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3081
3082 /**
3083  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3084  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3085  * @buffer: The ring buffer
3086  * @cpu: The per CPU buffer to get the number of overruns from
3087  */
3088 unsigned long
3089 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3090 {
3091         struct ring_buffer_per_cpu *cpu_buffer;
3092         unsigned long ret;
3093
3094         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3095                 return 0;
3096
3097         cpu_buffer = buffer->buffers[cpu];
3098         ret = local_read(&cpu_buffer->dropped_events);
3099
3100         return ret;
3101 }
3102 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3103
3104 /**
3105  * ring_buffer_entries - get the number of entries in a buffer
3106  * @buffer: The ring buffer
3107  *
3108  * Returns the total number of entries in the ring buffer
3109  * (all CPU entries)
3110  */
3111 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3112 {
3113         struct ring_buffer_per_cpu *cpu_buffer;
3114         unsigned long entries = 0;
3115         int cpu;
3116
3117         /* if you care about this being correct, lock the buffer */
3118         for_each_buffer_cpu(buffer, cpu) {
3119                 cpu_buffer = buffer->buffers[cpu];
3120                 entries += rb_num_of_entries(cpu_buffer);
3121         }
3122
3123         return entries;
3124 }
3125 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3126
3127 /**
3128  * ring_buffer_overruns - get the number of overruns in buffer
3129  * @buffer: The ring buffer
3130  *
3131  * Returns the total number of overruns in the ring buffer
3132  * (all CPU entries)
3133  */
3134 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3135 {
3136         struct ring_buffer_per_cpu *cpu_buffer;
3137         unsigned long overruns = 0;
3138         int cpu;
3139
3140         /* if you care about this being correct, lock the buffer */
3141         for_each_buffer_cpu(buffer, cpu) {
3142                 cpu_buffer = buffer->buffers[cpu];
3143                 overruns += local_read(&cpu_buffer->overrun);
3144         }
3145
3146         return overruns;
3147 }
3148 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3149
3150 static void rb_iter_reset(struct ring_buffer_iter *iter)
3151 {
3152         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3153
3154         /* Iterator usage is expected to have record disabled */
3155         if (list_empty(&cpu_buffer->reader_page->list)) {
3156                 iter->head_page = rb_set_head_page(cpu_buffer);
3157                 if (unlikely(!iter->head_page))
3158                         return;
3159                 iter->head = iter->head_page->read;
3160         } else {
3161                 iter->head_page = cpu_buffer->reader_page;
3162                 iter->head = cpu_buffer->reader_page->read;
3163         }
3164         if (iter->head)
3165                 iter->read_stamp = cpu_buffer->read_stamp;
3166         else
3167                 iter->read_stamp = iter->head_page->page->time_stamp;
3168         iter->cache_reader_page = cpu_buffer->reader_page;
3169         iter->cache_read = cpu_buffer->read;
3170 }
3171
3172 /**
3173  * ring_buffer_iter_reset - reset an iterator
3174  * @iter: The iterator to reset
3175  *
3176  * Resets the iterator, so that it will start from the beginning
3177  * again.
3178  */
3179 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3180 {
3181         struct ring_buffer_per_cpu *cpu_buffer;
3182         unsigned long flags;
3183
3184         if (!iter)
3185                 return;
3186
3187         cpu_buffer = iter->cpu_buffer;
3188
3189         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3190         rb_iter_reset(iter);
3191         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3192 }
3193 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3194
3195 /**
3196  * ring_buffer_iter_empty - check if an iterator has no more to read
3197  * @iter: The iterator to check
3198  */
3199 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3200 {
3201         struct ring_buffer_per_cpu *cpu_buffer;
3202
3203         cpu_buffer = iter->cpu_buffer;
3204
3205         return iter->head_page == cpu_buffer->commit_page &&
3206                 iter->head == rb_commit_index(cpu_buffer);
3207 }
3208 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3209
3210 static void
3211 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3212                      struct ring_buffer_event *event)
3213 {
3214         u64 delta;
3215
3216         switch (event->type_len) {
3217         case RINGBUF_TYPE_PADDING:
3218                 return;
3219
3220         case RINGBUF_TYPE_TIME_EXTEND:
3221                 delta = event->array[0];
3222                 delta <<= TS_SHIFT;
3223                 delta += event->time_delta;
3224                 cpu_buffer->read_stamp += delta;
3225                 return;
3226
3227         case RINGBUF_TYPE_TIME_STAMP:
3228                 /* FIXME: not implemented */
3229                 return;
3230
3231         case RINGBUF_TYPE_DATA:
3232                 cpu_buffer->read_stamp += event->time_delta;
3233                 return;
3234
3235         default:
3236                 BUG();
3237         }
3238         return;
3239 }
3240
3241 static void
3242 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3243                           struct ring_buffer_event *event)
3244 {
3245         u64 delta;
3246
3247         switch (event->type_len) {
3248         case RINGBUF_TYPE_PADDING:
3249                 return;
3250
3251         case RINGBUF_TYPE_TIME_EXTEND:
3252                 delta = event->array[0];
3253                 delta <<= TS_SHIFT;
3254                 delta += event->time_delta;
3255                 iter->read_stamp += delta;
3256                 return;
3257
3258         case RINGBUF_TYPE_TIME_STAMP:
3259                 /* FIXME: not implemented */
3260                 return;
3261
3262         case RINGBUF_TYPE_DATA:
3263                 iter->read_stamp += event->time_delta;
3264                 return;
3265
3266         default:
3267                 BUG();
3268         }
3269         return;
3270 }
3271
3272 static struct buffer_page *
3273 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3274 {
3275         struct buffer_page *reader = NULL;
3276         unsigned long overwrite;
3277         unsigned long flags;
3278         int nr_loops = 0;
3279         int ret;
3280
3281         local_irq_save(flags);
3282         arch_spin_lock(&cpu_buffer->lock);
3283
3284  again:
3285         /*
3286          * This should normally only loop twice. But because the
3287          * start of the reader inserts an empty page, it causes
3288          * a case where we will loop three times. There should be no
3289          * reason to loop four times (that I know of).
3290          */
3291         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3292                 reader = NULL;
3293                 goto out;
3294         }
3295
3296         reader = cpu_buffer->reader_page;
3297
3298         /* If there's more to read, return this page */
3299         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3300                 goto out;
3301
3302         /* Never should we have an index greater than the size */
3303         if (RB_WARN_ON(cpu_buffer,
3304                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3305                 goto out;
3306
3307         /* check if we caught up to the tail */
3308         reader = NULL;
3309         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3310                 goto out;
3311
3312         /* Don't bother swapping if the ring buffer is empty */
3313         if (rb_num_of_entries(cpu_buffer) == 0)
3314                 goto out;
3315
3316         /*
3317          * Reset the reader page to size zero.
3318          */
3319         local_set(&cpu_buffer->reader_page->write, 0);
3320         local_set(&cpu_buffer->reader_page->entries, 0);
3321         local_set(&cpu_buffer->reader_page->page->commit, 0);
3322         cpu_buffer->reader_page->real_end = 0;
3323
3324  spin:
3325         /*
3326          * Splice the empty reader page into the list around the head.
3327          */
3328         reader = rb_set_head_page(cpu_buffer);
3329         if (!reader)
3330                 goto out;
3331         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3332         cpu_buffer->reader_page->list.prev = reader->list.prev;
3333
3334         /*
3335          * cpu_buffer->pages just needs to point to the buffer, it
3336          *  has no specific buffer page to point to. Lets move it out
3337          *  of our way so we don't accidentally swap it.
3338          */
3339         cpu_buffer->pages = reader->list.prev;
3340
3341         /* The reader page will be pointing to the new head */
3342         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3343
3344         /*
3345          * We want to make sure we read the overruns after we set up our
3346          * pointers to the next object. The writer side does a
3347          * cmpxchg to cross pages which acts as the mb on the writer
3348          * side. Note, the reader will constantly fail the swap
3349          * while the writer is updating the pointers, so this
3350          * guarantees that the overwrite recorded here is the one we
3351          * want to compare with the last_overrun.
3352          */
3353         smp_mb();
3354         overwrite = local_read(&(cpu_buffer->overrun));
3355
3356         /*
3357          * Here's the tricky part.
3358          *
3359          * We need to move the pointer past the header page.
3360          * But we can only do that if a writer is not currently
3361          * moving it. The page before the header page has the
3362          * flag bit '1' set if it is pointing to the page we want.
3363          * but if the writer is in the process of moving it
3364          * than it will be '2' or already moved '0'.
3365          */
3366
3367         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3368
3369         /*
3370          * If we did not convert it, then we must try again.
3371          */
3372         if (!ret)
3373                 goto spin;
3374
3375         /*
3376          * Yeah! We succeeded in replacing the page.
3377          *
3378          * Now make the new head point back to the reader page.
3379          */
3380         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3381         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3382
3383         /* Finally update the reader page to the new head */
3384         cpu_buffer->reader_page = reader;
3385         rb_reset_reader_page(cpu_buffer);
3386
3387         if (overwrite != cpu_buffer->last_overrun) {
3388                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3389                 cpu_buffer->last_overrun = overwrite;
3390         }
3391
3392         goto again;
3393
3394  out:
3395         arch_spin_unlock(&cpu_buffer->lock);
3396         local_irq_restore(flags);
3397
3398         return reader;
3399 }
3400
3401 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3402 {
3403         struct ring_buffer_event *event;
3404         struct buffer_page *reader;
3405         unsigned length;
3406
3407         reader = rb_get_reader_page(cpu_buffer);
3408
3409         /* This function should not be called when buffer is empty */
3410         if (RB_WARN_ON(cpu_buffer, !reader))
3411                 return;
3412
3413         event = rb_reader_event(cpu_buffer);
3414
3415         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3416                 cpu_buffer->read++;
3417
3418         rb_update_read_stamp(cpu_buffer, event);
3419
3420         length = rb_event_length(event);
3421         cpu_buffer->reader_page->read += length;
3422 }
3423
3424 static void rb_advance_iter(struct ring_buffer_iter *iter)
3425 {
3426         struct ring_buffer_per_cpu *cpu_buffer;
3427         struct ring_buffer_event *event;
3428         unsigned length;
3429
3430         cpu_buffer = iter->cpu_buffer;
3431
3432         /*
3433          * Check if we are at the end of the buffer.
3434          */
3435         if (iter->head >= rb_page_size(iter->head_page)) {
3436                 /* discarded commits can make the page empty */
3437                 if (iter->head_page == cpu_buffer->commit_page)
3438                         return;
3439                 rb_inc_iter(iter);
3440                 return;
3441         }
3442
3443         event = rb_iter_head_event(iter);
3444
3445         length = rb_event_length(event);
3446
3447         /*
3448          * This should not be called to advance the header if we are
3449          * at the tail of the buffer.
3450          */
3451         if (RB_WARN_ON(cpu_buffer,
3452                        (iter->head_page == cpu_buffer->commit_page) &&
3453                        (iter->head + length > rb_commit_index(cpu_buffer))))
3454                 return;
3455
3456         rb_update_iter_read_stamp(iter, event);
3457
3458         iter->head += length;
3459
3460         /* check for end of page padding */
3461         if ((iter->head >= rb_page_size(iter->head_page)) &&
3462             (iter->head_page != cpu_buffer->commit_page))
3463                 rb_inc_iter(iter);
3464 }
3465
3466 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3467 {
3468         return cpu_buffer->lost_events;
3469 }
3470
3471 static struct ring_buffer_event *
3472 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3473                unsigned long *lost_events)
3474 {
3475         struct ring_buffer_event *event;
3476         struct buffer_page *reader;
3477         int nr_loops = 0;
3478
3479  again:
3480         /*
3481          * We repeat when a time extend is encountered.
3482          * Since the time extend is always attached to a data event,
3483          * we should never loop more than once.
3484          * (We never hit the following condition more than twice).
3485          */
3486         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3487                 return NULL;
3488
3489         reader = rb_get_reader_page(cpu_buffer);
3490         if (!reader)
3491                 return NULL;
3492
3493         event = rb_reader_event(cpu_buffer);
3494
3495         switch (event->type_len) {
3496         case RINGBUF_TYPE_PADDING:
3497                 if (rb_null_event(event))
3498                         RB_WARN_ON(cpu_buffer, 1);
3499                 /*
3500                  * Because the writer could be discarding every
3501                  * event it creates (which would probably be bad)
3502                  * if we were to go back to "again" then we may never
3503                  * catch up, and will trigger the warn on, or lock
3504                  * the box. Return the padding, and we will release
3505                  * the current locks, and try again.
3506                  */
3507                 return event;
3508
3509         case RINGBUF_TYPE_TIME_EXTEND:
3510                 /* Internal data, OK to advance */
3511                 rb_advance_reader(cpu_buffer);
3512                 goto again;
3513
3514         case RINGBUF_TYPE_TIME_STAMP:
3515                 /* FIXME: not implemented */
3516                 rb_advance_reader(cpu_buffer);
3517                 goto again;
3518
3519         case RINGBUF_TYPE_DATA:
3520                 if (ts) {
3521                         *ts = cpu_buffer->read_stamp + event->time_delta;
3522                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3523                                                          cpu_buffer->cpu, ts);
3524                 }
3525                 if (lost_events)
3526                         *lost_events = rb_lost_events(cpu_buffer);
3527                 return event;
3528
3529         default:
3530                 BUG();
3531         }
3532
3533         return NULL;
3534 }
3535 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3536
3537 static struct ring_buffer_event *
3538 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3539 {
3540         struct ring_buffer *buffer;
3541         struct ring_buffer_per_cpu *cpu_buffer;
3542         struct ring_buffer_event *event;
3543         int nr_loops = 0;
3544
3545         cpu_buffer = iter->cpu_buffer;
3546         buffer = cpu_buffer->buffer;
3547
3548         /*
3549          * Check if someone performed a consuming read to
3550          * the buffer. A consuming read invalidates the iterator
3551          * and we need to reset the iterator in this case.
3552          */
3553         if (unlikely(iter->cache_read != cpu_buffer->read ||
3554                      iter->cache_reader_page != cpu_buffer->reader_page))
3555                 rb_iter_reset(iter);
3556
3557  again:
3558         if (ring_buffer_iter_empty(iter))
3559                 return NULL;
3560
3561         /*
3562          * We repeat when a time extend is encountered.
3563          * Since the time extend is always attached to a data event,
3564          * we should never loop more than once.
3565          * (We never hit the following condition more than twice).
3566          */
3567         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3568                 return NULL;
3569
3570         if (rb_per_cpu_empty(cpu_buffer))
3571                 return NULL;
3572
3573         if (iter->head >= local_read(&iter->head_page->page->commit)) {
3574                 rb_inc_iter(iter);
3575                 goto again;
3576         }
3577
3578         event = rb_iter_head_event(iter);
3579
3580         switch (event->type_len) {
3581         case RINGBUF_TYPE_PADDING:
3582                 if (rb_null_event(event)) {
3583                         rb_inc_iter(iter);
3584                         goto again;
3585                 }
3586                 rb_advance_iter(iter);
3587                 return event;
3588
3589         case RINGBUF_TYPE_TIME_EXTEND:
3590                 /* Internal data, OK to advance */
3591                 rb_advance_iter(iter);
3592                 goto again;
3593
3594         case RINGBUF_TYPE_TIME_STAMP:
3595                 /* FIXME: not implemented */
3596                 rb_advance_iter(iter);
3597                 goto again;
3598
3599         case RINGBUF_TYPE_DATA:
3600                 if (ts) {
3601                         *ts = iter->read_stamp + event->time_delta;
3602                         ring_buffer_normalize_time_stamp(buffer,
3603                                                          cpu_buffer->cpu, ts);
3604                 }
3605                 return event;
3606
3607         default:
3608                 BUG();
3609         }
3610
3611         return NULL;
3612 }
3613 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3614
3615 static inline int rb_ok_to_lock(void)
3616 {
3617         /*
3618          * If an NMI die dumps out the content of the ring buffer
3619          * do not grab locks. We also permanently disable the ring
3620          * buffer too. A one time deal is all you get from reading
3621          * the ring buffer from an NMI.
3622          */
3623         if (likely(!in_nmi()))
3624                 return 1;
3625
3626         tracing_off_permanent();
3627         return 0;
3628 }
3629
3630 /**
3631  * ring_buffer_peek - peek at the next event to be read
3632  * @buffer: The ring buffer to read
3633  * @cpu: The cpu to peak at
3634  * @ts: The timestamp counter of this event.
3635  * @lost_events: a variable to store if events were lost (may be NULL)
3636  *
3637  * This will return the event that will be read next, but does
3638  * not consume the data.
3639  */
3640 struct ring_buffer_event *
3641 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3642                  unsigned long *lost_events)
3643 {
3644         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3645         struct ring_buffer_event *event;
3646         unsigned long flags;
3647         int dolock;
3648
3649         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3650                 return NULL;
3651
3652         dolock = rb_ok_to_lock();
3653  again:
3654         local_irq_save(flags);
3655         if (dolock)
3656                 raw_spin_lock(&cpu_buffer->reader_lock);
3657         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3658         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3659                 rb_advance_reader(cpu_buffer);
3660         if (dolock)
3661                 raw_spin_unlock(&cpu_buffer->reader_lock);
3662         local_irq_restore(flags);
3663
3664         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3665                 goto again;
3666
3667         return event;
3668 }
3669
3670 /**
3671  * ring_buffer_iter_peek - peek at the next event to be read
3672  * @iter: The ring buffer iterator
3673  * @ts: The timestamp counter of this event.
3674  *
3675  * This will return the event that will be read next, but does
3676  * not increment the iterator.
3677  */
3678 struct ring_buffer_event *
3679 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3680 {
3681         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3682         struct ring_buffer_event *event;
3683         unsigned long flags;
3684
3685  again:
3686         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3687         event = rb_iter_peek(iter, ts);
3688         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3689
3690         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3691                 goto again;
3692
3693         return event;
3694 }
3695
3696 /**
3697  * ring_buffer_consume - return an event and consume it
3698  * @buffer: The ring buffer to get the next event from
3699  * @cpu: the cpu to read the buffer from
3700  * @ts: a variable to store the timestamp (may be NULL)
3701  * @lost_events: a variable to store if events were lost (may be NULL)
3702  *
3703  * Returns the next event in the ring buffer, and that event is consumed.
3704  * Meaning, that sequential reads will keep returning a different event,
3705  * and eventually empty the ring buffer if the producer is slower.
3706  */
3707 struct ring_buffer_event *
3708 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3709                     unsigned long *lost_events)
3710 {
3711         struct ring_buffer_per_cpu *cpu_buffer;
3712         struct ring_buffer_event *event = NULL;
3713         unsigned long flags;
3714         int dolock;
3715
3716         dolock = rb_ok_to_lock();
3717
3718  again:
3719         /* might be called in atomic */
3720         preempt_disable();
3721
3722         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3723                 goto out;
3724
3725         cpu_buffer = buffer->buffers[cpu];
3726         local_irq_save(flags);
3727         if (dolock)
3728                 raw_spin_lock(&cpu_buffer->reader_lock);
3729
3730         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3731         if (event) {
3732                 cpu_buffer->lost_events = 0;
3733                 rb_advance_reader(cpu_buffer);
3734         }
3735
3736         if (dolock)
3737                 raw_spin_unlock(&cpu_buffer->reader_lock);
3738         local_irq_restore(flags);
3739
3740  out:
3741         preempt_enable();
3742
3743         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3744                 goto again;
3745
3746         return event;
3747 }
3748 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3749
3750 /**
3751  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3752  * @buffer: The ring buffer to read from
3753  * @cpu: The cpu buffer to iterate over
3754  *
3755  * This performs the initial preparations necessary to iterate
3756  * through the buffer.  Memory is allocated, buffer recording
3757  * is disabled, and the iterator pointer is returned to the caller.
3758  *
3759  * Disabling buffer recordng prevents the reading from being
3760  * corrupted. This is not a consuming read, so a producer is not
3761  * expected.
3762  *
3763  * After a sequence of ring_buffer_read_prepare calls, the user is
3764  * expected to make at least one call to ring_buffer_prepare_sync.
3765  * Afterwards, ring_buffer_read_start is invoked to get things going
3766  * for real.
3767  *
3768  * This overall must be paired with ring_buffer_finish.
3769  */
3770 struct ring_buffer_iter *
3771 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3772 {
3773         struct ring_buffer_per_cpu *cpu_buffer;
3774         struct ring_buffer_iter *iter;
3775
3776         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3777                 return NULL;
3778
3779         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3780         if (!iter)
3781                 return NULL;
3782
3783         cpu_buffer = buffer->buffers[cpu];
3784
3785         iter->cpu_buffer = cpu_buffer;
3786
3787         atomic_inc(&buffer->resize_disabled);
3788         atomic_inc(&cpu_buffer->record_disabled);
3789
3790         return iter;
3791 }
3792 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3793
3794 /**
3795  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3796  *
3797  * All previously invoked ring_buffer_read_prepare calls to prepare
3798  * iterators will be synchronized.  Afterwards, read_buffer_read_start
3799  * calls on those iterators are allowed.
3800  */
3801 void
3802 ring_buffer_read_prepare_sync(void)
3803 {
3804         synchronize_sched();
3805 }
3806 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3807
3808 /**
3809  * ring_buffer_read_start - start a non consuming read of the buffer
3810  * @iter: The iterator returned by ring_buffer_read_prepare
3811  *
3812  * This finalizes the startup of an iteration through the buffer.
3813  * The iterator comes from a call to ring_buffer_read_prepare and
3814  * an intervening ring_buffer_read_prepare_sync must have been
3815  * performed.
3816  *
3817  * Must be paired with ring_buffer_finish.
3818  */
3819 void
3820 ring_buffer_read_start(struct ring_buffer_iter *iter)
3821 {
3822         struct ring_buffer_per_cpu *cpu_buffer;
3823         unsigned long flags;
3824
3825         if (!iter)
3826                 return;
3827
3828         cpu_buffer = iter->cpu_buffer;
3829
3830         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3831         arch_spin_lock(&cpu_buffer->lock);
3832         rb_iter_reset(iter);
3833         arch_spin_unlock(&cpu_buffer->lock);
3834         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3835 }
3836 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3837
3838 /**
3839  * ring_buffer_finish - finish reading the iterator of the buffer
3840  * @iter: The iterator retrieved by ring_buffer_start
3841  *
3842  * This re-enables the recording to the buffer, and frees the
3843  * iterator.
3844  */
3845 void
3846 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3847 {
3848         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3849         unsigned long flags;
3850
3851         /*
3852          * Ring buffer is disabled from recording, here's a good place
3853          * to check the integrity of the ring buffer.
3854          * Must prevent readers from trying to read, as the check
3855          * clears the HEAD page and readers require it.
3856          */
3857         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3858         rb_check_pages(cpu_buffer);
3859         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3860
3861         atomic_dec(&cpu_buffer->record_disabled);
3862         atomic_dec(&cpu_buffer->buffer->resize_disabled);
3863         kfree(iter);
3864 }
3865 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3866
3867 /**
3868  * ring_buffer_read - read the next item in the ring buffer by the iterator
3869  * @iter: The ring buffer iterator
3870  * @ts: The time stamp of the event read.
3871  *
3872  * This reads the next event in the ring buffer and increments the iterator.
3873  */
3874 struct ring_buffer_event *
3875 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3876 {
3877         struct ring_buffer_event *event;
3878         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3879         unsigned long flags;
3880
3881         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3882  again:
3883         event = rb_iter_peek(iter, ts);
3884         if (!event)
3885                 goto out;
3886
3887         if (event->type_len == RINGBUF_TYPE_PADDING)
3888                 goto again;
3889
3890         rb_advance_iter(iter);
3891  out:
3892         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3893
3894         return event;
3895 }
3896 EXPORT_SYMBOL_GPL(ring_buffer_read);
3897
3898 /**
3899  * ring_buffer_size - return the size of the ring buffer (in bytes)
3900  * @buffer: The ring buffer.
3901  */
3902 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
3903 {
3904         /*
3905          * Earlier, this method returned
3906          *      BUF_PAGE_SIZE * buffer->nr_pages
3907          * Since the nr_pages field is now removed, we have converted this to
3908          * return the per cpu buffer value.
3909          */
3910         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3911                 return 0;
3912
3913         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
3914 }
3915 EXPORT_SYMBOL_GPL(ring_buffer_size);
3916
3917 static void
3918 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3919 {
3920         rb_head_page_deactivate(cpu_buffer);
3921
3922         cpu_buffer->head_page
3923                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
3924         local_set(&cpu_buffer->head_page->write, 0);
3925         local_set(&cpu_buffer->head_page->entries, 0);
3926         local_set(&cpu_buffer->head_page->page->commit, 0);
3927
3928         cpu_buffer->head_page->read = 0;
3929
3930         cpu_buffer->tail_page = cpu_buffer->head_page;
3931         cpu_buffer->commit_page = cpu_buffer->head_page;
3932
3933         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3934         INIT_LIST_HEAD(&cpu_buffer->new_pages);
3935         local_set(&cpu_buffer->reader_page->write, 0);
3936         local_set(&cpu_buffer->reader_page->entries, 0);
3937         local_set(&cpu_buffer->reader_page->page->commit, 0);
3938         cpu_buffer->reader_page->read = 0;
3939
3940         local_set(&cpu_buffer->entries_bytes, 0);
3941         local_set(&cpu_buffer->overrun, 0);
3942         local_set(&cpu_buffer->commit_overrun, 0);
3943         local_set(&cpu_buffer->dropped_events, 0);
3944         local_set(&cpu_buffer->entries, 0);
3945         local_set(&cpu_buffer->committing, 0);
3946         local_set(&cpu_buffer->commits, 0);
3947         cpu_buffer->read = 0;
3948         cpu_buffer->read_bytes = 0;
3949
3950         cpu_buffer->write_stamp = 0;
3951         cpu_buffer->read_stamp = 0;
3952
3953         cpu_buffer->lost_events = 0;
3954         cpu_buffer->last_overrun = 0;
3955
3956         rb_head_page_activate(cpu_buffer);
3957 }
3958
3959 /**
3960  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3961  * @buffer: The ring buffer to reset a per cpu buffer of
3962  * @cpu: The CPU buffer to be reset
3963  */
3964 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3965 {
3966         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3967         unsigned long flags;
3968
3969         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3970                 return;
3971
3972         atomic_inc(&buffer->resize_disabled);
3973         atomic_inc(&cpu_buffer->record_disabled);
3974
3975         /* Make sure all commits have finished */
3976         synchronize_sched();
3977
3978         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3979
3980         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3981                 goto out;
3982
3983         arch_spin_lock(&cpu_buffer->lock);
3984
3985         rb_reset_cpu(cpu_buffer);
3986
3987         arch_spin_unlock(&cpu_buffer->lock);
3988
3989  out:
3990         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3991
3992         atomic_dec(&cpu_buffer->record_disabled);
3993         atomic_dec(&buffer->resize_disabled);
3994 }
3995 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3996
3997 /**
3998  * ring_buffer_reset - reset a ring buffer
3999  * @buffer: The ring buffer to reset all cpu buffers
4000  */
4001 void ring_buffer_reset(struct ring_buffer *buffer)
4002 {
4003         int cpu;
4004
4005         for_each_buffer_cpu(buffer, cpu)
4006                 ring_buffer_reset_cpu(buffer, cpu);
4007 }
4008 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4009
4010 /**
4011  * rind_buffer_empty - is the ring buffer empty?
4012  * @buffer: The ring buffer to test
4013  */
4014 int ring_buffer_empty(struct ring_buffer *buffer)
4015 {
4016         struct ring_buffer_per_cpu *cpu_buffer;
4017         unsigned long flags;
4018         int dolock;
4019         int cpu;
4020         int ret;
4021
4022         dolock = rb_ok_to_lock();
4023
4024         /* yes this is racy, but if you don't like the race, lock the buffer */
4025         for_each_buffer_cpu(buffer, cpu) {
4026                 cpu_buffer = buffer->buffers[cpu];
4027                 local_irq_save(flags);
4028                 if (dolock)
4029                         raw_spin_lock(&cpu_buffer->reader_lock);
4030                 ret = rb_per_cpu_empty(cpu_buffer);
4031                 if (dolock)
4032                         raw_spin_unlock(&cpu_buffer->reader_lock);
4033                 local_irq_restore(flags);
4034
4035                 if (!ret)
4036                         return 0;
4037         }
4038
4039         return 1;
4040 }
4041 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4042
4043 /**
4044  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4045  * @buffer: The ring buffer
4046  * @cpu: The CPU buffer to test
4047  */
4048 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4049 {
4050         struct ring_buffer_per_cpu *cpu_buffer;
4051         unsigned long flags;
4052         int dolock;
4053         int ret;
4054
4055         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4056                 return 1;
4057
4058         dolock = rb_ok_to_lock();
4059
4060         cpu_buffer = buffer->buffers[cpu];
4061         local_irq_save(flags);
4062         if (dolock)
4063                 raw_spin_lock(&cpu_buffer->reader_lock);
4064         ret = rb_per_cpu_empty(cpu_buffer);
4065         if (dolock)
4066                 raw_spin_unlock(&cpu_buffer->reader_lock);
4067         local_irq_restore(flags);
4068
4069         return ret;
4070 }
4071 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4072
4073 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4074 /**
4075  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4076  * @buffer_a: One buffer to swap with
4077  * @buffer_b: The other buffer to swap with
4078  *
4079  * This function is useful for tracers that want to take a "snapshot"
4080  * of a CPU buffer and has another back up buffer lying around.
4081  * it is expected that the tracer handles the cpu buffer not being
4082  * used at the moment.
4083  */
4084 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4085                          struct ring_buffer *buffer_b, int cpu)
4086 {
4087         struct ring_buffer_per_cpu *cpu_buffer_a;
4088         struct ring_buffer_per_cpu *cpu_buffer_b;
4089         int ret = -EINVAL;
4090
4091         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4092             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4093                 goto out;
4094
4095         cpu_buffer_a = buffer_a->buffers[cpu];
4096         cpu_buffer_b = buffer_b->buffers[cpu];
4097
4098         /* At least make sure the two buffers are somewhat the same */
4099         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4100                 goto out;
4101
4102         ret = -EAGAIN;
4103
4104         if (ring_buffer_flags != RB_BUFFERS_ON)
4105                 goto out;
4106
4107         if (atomic_read(&buffer_a->record_disabled))
4108                 goto out;
4109
4110         if (atomic_read(&buffer_b->record_disabled))
4111                 goto out;
4112
4113         if (atomic_read(&cpu_buffer_a->record_disabled))
4114                 goto out;
4115
4116         if (atomic_read(&cpu_buffer_b->record_disabled))
4117                 goto out;
4118
4119         /*
4120          * We can't do a synchronize_sched here because this
4121          * function can be called in atomic context.
4122          * Normally this will be called from the same CPU as cpu.
4123          * If not it's up to the caller to protect this.
4124          */
4125         atomic_inc(&cpu_buffer_a->record_disabled);
4126         atomic_inc(&cpu_buffer_b->record_disabled);
4127
4128         ret = -EBUSY;
4129         if (local_read(&cpu_buffer_a->committing))
4130                 goto out_dec;
4131         if (local_read(&cpu_buffer_b->committing))
4132                 goto out_dec;
4133
4134         buffer_a->buffers[cpu] = cpu_buffer_b;
4135         buffer_b->buffers[cpu] = cpu_buffer_a;
4136
4137         cpu_buffer_b->buffer = buffer_a;
4138         cpu_buffer_a->buffer = buffer_b;
4139
4140         ret = 0;
4141
4142 out_dec:
4143         atomic_dec(&cpu_buffer_a->record_disabled);
4144         atomic_dec(&cpu_buffer_b->record_disabled);
4145 out:
4146         return ret;
4147 }
4148 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4149 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4150
4151 /**
4152  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4153  * @buffer: the buffer to allocate for.
4154  *
4155  * This function is used in conjunction with ring_buffer_read_page.
4156  * When reading a full page from the ring buffer, these functions
4157  * can be used to speed up the process. The calling function should
4158  * allocate a few pages first with this function. Then when it
4159  * needs to get pages from the ring buffer, it passes the result
4160  * of this function into ring_buffer_read_page, which will swap
4161  * the page that was allocated, with the read page of the buffer.
4162  *
4163  * Returns:
4164  *  The page allocated, or NULL on error.
4165  */
4166 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4167 {
4168         struct buffer_data_page *bpage;
4169         struct page *page;
4170
4171         page = alloc_pages_node(cpu_to_node(cpu),
4172                                 GFP_KERNEL | __GFP_NORETRY, 0);
4173         if (!page)
4174                 return NULL;
4175
4176         bpage = page_address(page);
4177
4178         rb_init_page(bpage);
4179
4180         return bpage;
4181 }
4182 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4183
4184 /**
4185  * ring_buffer_free_read_page - free an allocated read page
4186  * @buffer: the buffer the page was allocate for
4187  * @data: the page to free
4188  *
4189  * Free a page allocated from ring_buffer_alloc_read_page.
4190  */
4191 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4192 {
4193         free_page((unsigned long)data);
4194 }
4195 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4196
4197 /**
4198  * ring_buffer_read_page - extract a page from the ring buffer
4199  * @buffer: buffer to extract from
4200  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4201  * @len: amount to extract
4202  * @cpu: the cpu of the buffer to extract
4203  * @full: should the extraction only happen when the page is full.
4204  *
4205  * This function will pull out a page from the ring buffer and consume it.
4206  * @data_page must be the address of the variable that was returned
4207  * from ring_buffer_alloc_read_page. This is because the page might be used
4208  * to swap with a page in the ring buffer.
4209  *
4210  * for example:
4211  *      rpage = ring_buffer_alloc_read_page(buffer);
4212  *      if (!rpage)
4213  *              return error;
4214  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4215  *      if (ret >= 0)
4216  *              process_page(rpage, ret);
4217  *
4218  * When @full is set, the function will not return true unless
4219  * the writer is off the reader page.
4220  *
4221  * Note: it is up to the calling functions to handle sleeps and wakeups.
4222  *  The ring buffer can be used anywhere in the kernel and can not
4223  *  blindly call wake_up. The layer that uses the ring buffer must be
4224  *  responsible for that.
4225  *
4226  * Returns:
4227  *  >=0 if data has been transferred, returns the offset of consumed data.
4228  *  <0 if no data has been transferred.
4229  */
4230 int ring_buffer_read_page(struct ring_buffer *buffer,
4231                           void **data_page, size_t len, int cpu, int full)
4232 {
4233         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4234         struct ring_buffer_event *event;
4235         struct buffer_data_page *bpage;
4236         struct buffer_page *reader;
4237         unsigned long missed_events;
4238         unsigned long flags;
4239         unsigned int commit;
4240         unsigned int read;
4241         u64 save_timestamp;
4242         int ret = -1;
4243
4244         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4245                 goto out;
4246
4247         /*
4248          * If len is not big enough to hold the page header, then
4249          * we can not copy anything.
4250          */
4251         if (len <= BUF_PAGE_HDR_SIZE)
4252                 goto out;
4253
4254         len -= BUF_PAGE_HDR_SIZE;
4255
4256         if (!data_page)
4257                 goto out;
4258
4259         bpage = *data_page;
4260         if (!bpage)
4261                 goto out;
4262
4263         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4264
4265         reader = rb_get_reader_page(cpu_buffer);
4266         if (!reader)
4267                 goto out_unlock;
4268
4269         event = rb_reader_event(cpu_buffer);
4270
4271         read = reader->read;
4272         commit = rb_page_commit(reader);
4273
4274         /* Check if any events were dropped */
4275         missed_events = cpu_buffer->lost_events;
4276
4277         /*
4278          * If this page has been partially read or
4279          * if len is not big enough to read the rest of the page or
4280          * a writer is still on the page, then
4281          * we must copy the data from the page to the buffer.
4282          * Otherwise, we can simply swap the page with the one passed in.
4283          */
4284         if (read || (len < (commit - read)) ||
4285             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4286                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4287                 unsigned int rpos = read;
4288                 unsigned int pos = 0;
4289                 unsigned int size;
4290
4291                 if (full)
4292                         goto out_unlock;
4293
4294                 if (len > (commit - read))
4295                         len = (commit - read);
4296
4297                 /* Always keep the time extend and data together */
4298                 size = rb_event_ts_length(event);
4299
4300                 if (len < size)
4301                         goto out_unlock;
4302
4303                 /* save the current timestamp, since the user will need it */
4304                 save_timestamp = cpu_buffer->read_stamp;
4305
4306                 /* Need to copy one event at a time */
4307                 do {
4308                         /* We need the size of one event, because
4309                          * rb_advance_reader only advances by one event,
4310                          * whereas rb_event_ts_length may include the size of
4311                          * one or two events.
4312                          * We have already ensured there's enough space if this
4313                          * is a time extend. */
4314                         size = rb_event_length(event);
4315                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4316
4317                         len -= size;
4318
4319                         rb_advance_reader(cpu_buffer);
4320                         rpos = reader->read;
4321                         pos += size;
4322
4323                         if (rpos >= commit)
4324                                 break;
4325
4326                         event = rb_reader_event(cpu_buffer);
4327                         /* Always keep the time extend and data together */
4328                         size = rb_event_ts_length(event);
4329                 } while (len >= size);
4330
4331                 /* update bpage */
4332                 local_set(&bpage->commit, pos);
4333                 bpage->time_stamp = save_timestamp;
4334
4335                 /* we copied everything to the beginning */
4336                 read = 0;
4337         } else {
4338                 /* update the entry counter */
4339                 cpu_buffer->read += rb_page_entries(reader);
4340                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4341
4342                 /* swap the pages */
4343                 rb_init_page(bpage);
4344                 bpage = reader->page;
4345                 reader->page = *data_page;
4346                 local_set(&reader->write, 0);
4347                 local_set(&reader->entries, 0);
4348                 reader->read = 0;
4349                 *data_page = bpage;
4350
4351                 /*
4352                  * Use the real_end for the data size,
4353                  * This gives us a chance to store the lost events
4354                  * on the page.
4355                  */
4356                 if (reader->real_end)
4357                         local_set(&bpage->commit, reader->real_end);
4358         }
4359         ret = read;
4360
4361         cpu_buffer->lost_events = 0;
4362
4363         commit = local_read(&bpage->commit);
4364         /*
4365          * Set a flag in the commit field if we lost events
4366          */
4367         if (missed_events) {
4368                 /* If there is room at the end of the page to save the
4369                  * missed events, then record it there.
4370                  */
4371                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4372                         memcpy(&bpage->data[commit], &missed_events,
4373                                sizeof(missed_events));
4374                         local_add(RB_MISSED_STORED, &bpage->commit);
4375                         commit += sizeof(missed_events);
4376                 }
4377                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4378         }
4379
4380         /*
4381          * This page may be off to user land. Zero it out here.
4382          */
4383         if (commit < BUF_PAGE_SIZE)
4384                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4385
4386  out_unlock:
4387         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4388
4389  out:
4390         return ret;
4391 }
4392 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4393
4394 #ifdef CONFIG_HOTPLUG_CPU
4395 static int rb_cpu_notify(struct notifier_block *self,
4396                          unsigned long action, void *hcpu)
4397 {
4398         struct ring_buffer *buffer =
4399                 container_of(self, struct ring_buffer, cpu_notify);
4400         long cpu = (long)hcpu;
4401         int cpu_i, nr_pages_same;
4402         unsigned int nr_pages;
4403
4404         switch (action) {
4405         case CPU_UP_PREPARE:
4406         case CPU_UP_PREPARE_FROZEN:
4407                 if (cpumask_test_cpu(cpu, buffer->cpumask))
4408                         return NOTIFY_OK;
4409
4410                 nr_pages = 0;
4411                 nr_pages_same = 1;
4412                 /* check if all cpu sizes are same */
4413                 for_each_buffer_cpu(buffer, cpu_i) {
4414                         /* fill in the size from first enabled cpu */
4415                         if (nr_pages == 0)
4416                                 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4417                         if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4418                                 nr_pages_same = 0;
4419                                 break;
4420                         }
4421                 }
4422                 /* allocate minimum pages, user can later expand it */
4423                 if (!nr_pages_same)
4424                         nr_pages = 2;
4425                 buffer->buffers[cpu] =
4426                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4427                 if (!buffer->buffers[cpu]) {
4428                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4429                              cpu);
4430                         return NOTIFY_OK;
4431                 }
4432                 smp_wmb();
4433                 cpumask_set_cpu(cpu, buffer->cpumask);
4434                 break;
4435         case CPU_DOWN_PREPARE:
4436         case CPU_DOWN_PREPARE_FROZEN:
4437                 /*
4438                  * Do nothing.
4439                  *  If we were to free the buffer, then the user would
4440                  *  lose any trace that was in the buffer.
4441                  */
4442                 break;
4443         default:
4444                 break;
4445         }
4446         return NOTIFY_OK;
4447 }
4448 #endif