tracing: Remove unneeded includes of debugfs.h and fs.h
[firefly-linux-kernel-4.4.55.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/uaccess.h>
13 #include <linux/hardirq.h>
14 #include <linux/kthread.h>      /* for self test */
15 #include <linux/kmemcheck.h>
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25
26 #include <asm/local.h>
27
28 static void update_pages_handler(struct work_struct *work);
29
30 /*
31  * The ring buffer header is special. We must manually up keep it.
32  */
33 int ring_buffer_print_entry_header(struct trace_seq *s)
34 {
35         trace_seq_puts(s, "# compressed entry header\n");
36         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
37         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
38         trace_seq_puts(s, "\tarray       :   32 bits\n");
39         trace_seq_putc(s, '\n');
40         trace_seq_printf(s, "\tpadding     : type == %d\n",
41                          RINGBUF_TYPE_PADDING);
42         trace_seq_printf(s, "\ttime_extend : type == %d\n",
43                          RINGBUF_TYPE_TIME_EXTEND);
44         trace_seq_printf(s, "\tdata max type_len  == %d\n",
45                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47         return !trace_seq_has_overflowed(s);
48 }
49
50 /*
51  * The ring buffer is made up of a list of pages. A separate list of pages is
52  * allocated for each CPU. A writer may only write to a buffer that is
53  * associated with the CPU it is currently executing on.  A reader may read
54  * from any per cpu buffer.
55  *
56  * The reader is special. For each per cpu buffer, the reader has its own
57  * reader page. When a reader has read the entire reader page, this reader
58  * page is swapped with another page in the ring buffer.
59  *
60  * Now, as long as the writer is off the reader page, the reader can do what
61  * ever it wants with that page. The writer will never write to that page
62  * again (as long as it is out of the ring buffer).
63  *
64  * Here's some silly ASCII art.
65  *
66  *   +------+
67  *   |reader|          RING BUFFER
68  *   |page  |
69  *   +------+        +---+   +---+   +---+
70  *                   |   |-->|   |-->|   |
71  *                   +---+   +---+   +---+
72  *                     ^               |
73  *                     |               |
74  *                     +---------------+
75  *
76  *
77  *   +------+
78  *   |reader|          RING BUFFER
79  *   |page  |------------------v
80  *   +------+        +---+   +---+   +---+
81  *                   |   |-->|   |-->|   |
82  *                   +---+   +---+   +---+
83  *                     ^               |
84  *                     |               |
85  *                     +---------------+
86  *
87  *
88  *   +------+
89  *   |reader|          RING BUFFER
90  *   |page  |------------------v
91  *   +------+        +---+   +---+   +---+
92  *      ^            |   |-->|   |-->|   |
93  *      |            +---+   +---+   +---+
94  *      |                              |
95  *      |                              |
96  *      +------------------------------+
97  *
98  *
99  *   +------+
100  *   |buffer|          RING BUFFER
101  *   |page  |------------------v
102  *   +------+        +---+   +---+   +---+
103  *      ^            |   |   |   |-->|   |
104  *      |   New      +---+   +---+   +---+
105  *      |  Reader------^               |
106  *      |   page                       |
107  *      +------------------------------+
108  *
109  *
110  * After we make this swap, the reader can hand this page off to the splice
111  * code and be done with it. It can even allocate a new page if it needs to
112  * and swap that into the ring buffer.
113  *
114  * We will be using cmpxchg soon to make all this lockless.
115  *
116  */
117
118 /*
119  * A fast way to enable or disable all ring buffers is to
120  * call tracing_on or tracing_off. Turning off the ring buffers
121  * prevents all ring buffers from being recorded to.
122  * Turning this switch on, makes it OK to write to the
123  * ring buffer, if the ring buffer is enabled itself.
124  *
125  * There's three layers that must be on in order to write
126  * to the ring buffer.
127  *
128  * 1) This global flag must be set.
129  * 2) The ring buffer must be enabled for recording.
130  * 3) The per cpu buffer must be enabled for recording.
131  *
132  * In case of an anomaly, this global flag has a bit set that
133  * will permantly disable all ring buffers.
134  */
135
136 /*
137  * Global flag to disable all recording to ring buffers
138  *  This has two bits: ON, DISABLED
139  *
140  *  ON   DISABLED
141  * ---- ----------
142  *   0      0        : ring buffers are off
143  *   1      0        : ring buffers are on
144  *   X      1        : ring buffers are permanently disabled
145  */
146
147 enum {
148         RB_BUFFERS_ON_BIT       = 0,
149         RB_BUFFERS_DISABLED_BIT = 1,
150 };
151
152 enum {
153         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
154         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
155 };
156
157 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
158
159 /* Used for individual buffers (after the counter) */
160 #define RB_BUFFER_OFF           (1 << 20)
161
162 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
163
164 /**
165  * tracing_off_permanent - permanently disable ring buffers
166  *
167  * This function, once called, will disable all ring buffers
168  * permanently.
169  */
170 void tracing_off_permanent(void)
171 {
172         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
173 }
174
175 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
176 #define RB_ALIGNMENT            4U
177 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
178 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
179
180 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
181 # define RB_FORCE_8BYTE_ALIGNMENT       0
182 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
183 #else
184 # define RB_FORCE_8BYTE_ALIGNMENT       1
185 # define RB_ARCH_ALIGNMENT              8U
186 #endif
187
188 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
189
190 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
191 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
192
193 enum {
194         RB_LEN_TIME_EXTEND = 8,
195         RB_LEN_TIME_STAMP = 16,
196 };
197
198 #define skip_time_extend(event) \
199         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
200
201 static inline int rb_null_event(struct ring_buffer_event *event)
202 {
203         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
204 }
205
206 static void rb_event_set_padding(struct ring_buffer_event *event)
207 {
208         /* padding has a NULL time_delta */
209         event->type_len = RINGBUF_TYPE_PADDING;
210         event->time_delta = 0;
211 }
212
213 static unsigned
214 rb_event_data_length(struct ring_buffer_event *event)
215 {
216         unsigned length;
217
218         if (event->type_len)
219                 length = event->type_len * RB_ALIGNMENT;
220         else
221                 length = event->array[0];
222         return length + RB_EVNT_HDR_SIZE;
223 }
224
225 /*
226  * Return the length of the given event. Will return
227  * the length of the time extend if the event is a
228  * time extend.
229  */
230 static inline unsigned
231 rb_event_length(struct ring_buffer_event *event)
232 {
233         switch (event->type_len) {
234         case RINGBUF_TYPE_PADDING:
235                 if (rb_null_event(event))
236                         /* undefined */
237                         return -1;
238                 return  event->array[0] + RB_EVNT_HDR_SIZE;
239
240         case RINGBUF_TYPE_TIME_EXTEND:
241                 return RB_LEN_TIME_EXTEND;
242
243         case RINGBUF_TYPE_TIME_STAMP:
244                 return RB_LEN_TIME_STAMP;
245
246         case RINGBUF_TYPE_DATA:
247                 return rb_event_data_length(event);
248         default:
249                 BUG();
250         }
251         /* not hit */
252         return 0;
253 }
254
255 /*
256  * Return total length of time extend and data,
257  *   or just the event length for all other events.
258  */
259 static inline unsigned
260 rb_event_ts_length(struct ring_buffer_event *event)
261 {
262         unsigned len = 0;
263
264         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
265                 /* time extends include the data event after it */
266                 len = RB_LEN_TIME_EXTEND;
267                 event = skip_time_extend(event);
268         }
269         return len + rb_event_length(event);
270 }
271
272 /**
273  * ring_buffer_event_length - return the length of the event
274  * @event: the event to get the length of
275  *
276  * Returns the size of the data load of a data event.
277  * If the event is something other than a data event, it
278  * returns the size of the event itself. With the exception
279  * of a TIME EXTEND, where it still returns the size of the
280  * data load of the data event after it.
281  */
282 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
283 {
284         unsigned length;
285
286         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
287                 event = skip_time_extend(event);
288
289         length = rb_event_length(event);
290         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
291                 return length;
292         length -= RB_EVNT_HDR_SIZE;
293         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
294                 length -= sizeof(event->array[0]);
295         return length;
296 }
297 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
298
299 /* inline for ring buffer fast paths */
300 static void *
301 rb_event_data(struct ring_buffer_event *event)
302 {
303         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
304                 event = skip_time_extend(event);
305         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
306         /* If length is in len field, then array[0] has the data */
307         if (event->type_len)
308                 return (void *)&event->array[0];
309         /* Otherwise length is in array[0] and array[1] has the data */
310         return (void *)&event->array[1];
311 }
312
313 /**
314  * ring_buffer_event_data - return the data of the event
315  * @event: the event to get the data from
316  */
317 void *ring_buffer_event_data(struct ring_buffer_event *event)
318 {
319         return rb_event_data(event);
320 }
321 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
322
323 #define for_each_buffer_cpu(buffer, cpu)                \
324         for_each_cpu(cpu, buffer->cpumask)
325
326 #define TS_SHIFT        27
327 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
328 #define TS_DELTA_TEST   (~TS_MASK)
329
330 /* Flag when events were overwritten */
331 #define RB_MISSED_EVENTS        (1 << 31)
332 /* Missed count stored at end */
333 #define RB_MISSED_STORED        (1 << 30)
334
335 struct buffer_data_page {
336         u64              time_stamp;    /* page time stamp */
337         local_t          commit;        /* write committed index */
338         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
339 };
340
341 /*
342  * Note, the buffer_page list must be first. The buffer pages
343  * are allocated in cache lines, which means that each buffer
344  * page will be at the beginning of a cache line, and thus
345  * the least significant bits will be zero. We use this to
346  * add flags in the list struct pointers, to make the ring buffer
347  * lockless.
348  */
349 struct buffer_page {
350         struct list_head list;          /* list of buffer pages */
351         local_t          write;         /* index for next write */
352         unsigned         read;          /* index for next read */
353         local_t          entries;       /* entries on this page */
354         unsigned long    real_end;      /* real end of data */
355         struct buffer_data_page *page;  /* Actual data page */
356 };
357
358 /*
359  * The buffer page counters, write and entries, must be reset
360  * atomically when crossing page boundaries. To synchronize this
361  * update, two counters are inserted into the number. One is
362  * the actual counter for the write position or count on the page.
363  *
364  * The other is a counter of updaters. Before an update happens
365  * the update partition of the counter is incremented. This will
366  * allow the updater to update the counter atomically.
367  *
368  * The counter is 20 bits, and the state data is 12.
369  */
370 #define RB_WRITE_MASK           0xfffff
371 #define RB_WRITE_INTCNT         (1 << 20)
372
373 static void rb_init_page(struct buffer_data_page *bpage)
374 {
375         local_set(&bpage->commit, 0);
376 }
377
378 /**
379  * ring_buffer_page_len - the size of data on the page.
380  * @page: The page to read
381  *
382  * Returns the amount of data on the page, including buffer page header.
383  */
384 size_t ring_buffer_page_len(void *page)
385 {
386         return local_read(&((struct buffer_data_page *)page)->commit)
387                 + BUF_PAGE_HDR_SIZE;
388 }
389
390 /*
391  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
392  * this issue out.
393  */
394 static void free_buffer_page(struct buffer_page *bpage)
395 {
396         free_page((unsigned long)bpage->page);
397         kfree(bpage);
398 }
399
400 /*
401  * We need to fit the time_stamp delta into 27 bits.
402  */
403 static inline int test_time_stamp(u64 delta)
404 {
405         if (delta & TS_DELTA_TEST)
406                 return 1;
407         return 0;
408 }
409
410 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
411
412 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
413 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
414
415 int ring_buffer_print_page_header(struct trace_seq *s)
416 {
417         struct buffer_data_page field;
418
419         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
420                          "offset:0;\tsize:%u;\tsigned:%u;\n",
421                          (unsigned int)sizeof(field.time_stamp),
422                          (unsigned int)is_signed_type(u64));
423
424         trace_seq_printf(s, "\tfield: local_t commit;\t"
425                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
426                          (unsigned int)offsetof(typeof(field), commit),
427                          (unsigned int)sizeof(field.commit),
428                          (unsigned int)is_signed_type(long));
429
430         trace_seq_printf(s, "\tfield: int overwrite;\t"
431                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
432                          (unsigned int)offsetof(typeof(field), commit),
433                          1,
434                          (unsigned int)is_signed_type(long));
435
436         trace_seq_printf(s, "\tfield: char data;\t"
437                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
438                          (unsigned int)offsetof(typeof(field), data),
439                          (unsigned int)BUF_PAGE_SIZE,
440                          (unsigned int)is_signed_type(char));
441
442         return !trace_seq_has_overflowed(s);
443 }
444
445 struct rb_irq_work {
446         struct irq_work                 work;
447         wait_queue_head_t               waiters;
448         bool                            waiters_pending;
449 };
450
451 /*
452  * head_page == tail_page && head == tail then buffer is empty.
453  */
454 struct ring_buffer_per_cpu {
455         int                             cpu;
456         atomic_t                        record_disabled;
457         struct ring_buffer              *buffer;
458         raw_spinlock_t                  reader_lock;    /* serialize readers */
459         arch_spinlock_t                 lock;
460         struct lock_class_key           lock_key;
461         unsigned int                    nr_pages;
462         struct list_head                *pages;
463         struct buffer_page              *head_page;     /* read from head */
464         struct buffer_page              *tail_page;     /* write to tail */
465         struct buffer_page              *commit_page;   /* committed pages */
466         struct buffer_page              *reader_page;
467         unsigned long                   lost_events;
468         unsigned long                   last_overrun;
469         local_t                         entries_bytes;
470         local_t                         entries;
471         local_t                         overrun;
472         local_t                         commit_overrun;
473         local_t                         dropped_events;
474         local_t                         committing;
475         local_t                         commits;
476         unsigned long                   read;
477         unsigned long                   read_bytes;
478         u64                             write_stamp;
479         u64                             read_stamp;
480         /* ring buffer pages to update, > 0 to add, < 0 to remove */
481         int                             nr_pages_to_update;
482         struct list_head                new_pages; /* new pages to add */
483         struct work_struct              update_pages_work;
484         struct completion               update_done;
485
486         struct rb_irq_work              irq_work;
487 };
488
489 struct ring_buffer {
490         unsigned                        flags;
491         int                             cpus;
492         atomic_t                        record_disabled;
493         atomic_t                        resize_disabled;
494         cpumask_var_t                   cpumask;
495
496         struct lock_class_key           *reader_lock_key;
497
498         struct mutex                    mutex;
499
500         struct ring_buffer_per_cpu      **buffers;
501
502 #ifdef CONFIG_HOTPLUG_CPU
503         struct notifier_block           cpu_notify;
504 #endif
505         u64                             (*clock)(void);
506
507         struct rb_irq_work              irq_work;
508 };
509
510 struct ring_buffer_iter {
511         struct ring_buffer_per_cpu      *cpu_buffer;
512         unsigned long                   head;
513         struct buffer_page              *head_page;
514         struct buffer_page              *cache_reader_page;
515         unsigned long                   cache_read;
516         u64                             read_stamp;
517 };
518
519 /*
520  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
521  *
522  * Schedules a delayed work to wake up any task that is blocked on the
523  * ring buffer waiters queue.
524  */
525 static void rb_wake_up_waiters(struct irq_work *work)
526 {
527         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
528
529         wake_up_all(&rbwork->waiters);
530 }
531
532 /**
533  * ring_buffer_wait - wait for input to the ring buffer
534  * @buffer: buffer to wait on
535  * @cpu: the cpu buffer to wait on
536  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
537  *
538  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
539  * as data is added to any of the @buffer's cpu buffers. Otherwise
540  * it will wait for data to be added to a specific cpu buffer.
541  */
542 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
543 {
544         struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
545         DEFINE_WAIT(wait);
546         struct rb_irq_work *work;
547         int ret = 0;
548
549         /*
550          * Depending on what the caller is waiting for, either any
551          * data in any cpu buffer, or a specific buffer, put the
552          * caller on the appropriate wait queue.
553          */
554         if (cpu == RING_BUFFER_ALL_CPUS)
555                 work = &buffer->irq_work;
556         else {
557                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
558                         return -ENODEV;
559                 cpu_buffer = buffer->buffers[cpu];
560                 work = &cpu_buffer->irq_work;
561         }
562
563
564         while (true) {
565                 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
566
567                 /*
568                  * The events can happen in critical sections where
569                  * checking a work queue can cause deadlocks.
570                  * After adding a task to the queue, this flag is set
571                  * only to notify events to try to wake up the queue
572                  * using irq_work.
573                  *
574                  * We don't clear it even if the buffer is no longer
575                  * empty. The flag only causes the next event to run
576                  * irq_work to do the work queue wake up. The worse
577                  * that can happen if we race with !trace_empty() is that
578                  * an event will cause an irq_work to try to wake up
579                  * an empty queue.
580                  *
581                  * There's no reason to protect this flag either, as
582                  * the work queue and irq_work logic will do the necessary
583                  * synchronization for the wake ups. The only thing
584                  * that is necessary is that the wake up happens after
585                  * a task has been queued. It's OK for spurious wake ups.
586                  */
587                 work->waiters_pending = true;
588
589                 if (signal_pending(current)) {
590                         ret = -EINTR;
591                         break;
592                 }
593
594                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
595                         break;
596
597                 if (cpu != RING_BUFFER_ALL_CPUS &&
598                     !ring_buffer_empty_cpu(buffer, cpu)) {
599                         unsigned long flags;
600                         bool pagebusy;
601
602                         if (!full)
603                                 break;
604
605                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
606                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
607                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
608
609                         if (!pagebusy)
610                                 break;
611                 }
612
613                 schedule();
614         }
615
616         finish_wait(&work->waiters, &wait);
617
618         return ret;
619 }
620
621 /**
622  * ring_buffer_poll_wait - poll on buffer input
623  * @buffer: buffer to wait on
624  * @cpu: the cpu buffer to wait on
625  * @filp: the file descriptor
626  * @poll_table: The poll descriptor
627  *
628  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
629  * as data is added to any of the @buffer's cpu buffers. Otherwise
630  * it will wait for data to be added to a specific cpu buffer.
631  *
632  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
633  * zero otherwise.
634  */
635 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
636                           struct file *filp, poll_table *poll_table)
637 {
638         struct ring_buffer_per_cpu *cpu_buffer;
639         struct rb_irq_work *work;
640
641         if (cpu == RING_BUFFER_ALL_CPUS)
642                 work = &buffer->irq_work;
643         else {
644                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
645                         return -EINVAL;
646
647                 cpu_buffer = buffer->buffers[cpu];
648                 work = &cpu_buffer->irq_work;
649         }
650
651         poll_wait(filp, &work->waiters, poll_table);
652         work->waiters_pending = true;
653         /*
654          * There's a tight race between setting the waiters_pending and
655          * checking if the ring buffer is empty.  Once the waiters_pending bit
656          * is set, the next event will wake the task up, but we can get stuck
657          * if there's only a single event in.
658          *
659          * FIXME: Ideally, we need a memory barrier on the writer side as well,
660          * but adding a memory barrier to all events will cause too much of a
661          * performance hit in the fast path.  We only need a memory barrier when
662          * the buffer goes from empty to having content.  But as this race is
663          * extremely small, and it's not a problem if another event comes in, we
664          * will fix it later.
665          */
666         smp_mb();
667
668         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
669             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
670                 return POLLIN | POLLRDNORM;
671         return 0;
672 }
673
674 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
675 #define RB_WARN_ON(b, cond)                                             \
676         ({                                                              \
677                 int _____ret = unlikely(cond);                          \
678                 if (_____ret) {                                         \
679                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
680                                 struct ring_buffer_per_cpu *__b =       \
681                                         (void *)b;                      \
682                                 atomic_inc(&__b->buffer->record_disabled); \
683                         } else                                          \
684                                 atomic_inc(&b->record_disabled);        \
685                         WARN_ON(1);                                     \
686                 }                                                       \
687                 _____ret;                                               \
688         })
689
690 /* Up this if you want to test the TIME_EXTENTS and normalization */
691 #define DEBUG_SHIFT 0
692
693 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
694 {
695         /* shift to debug/test normalization and TIME_EXTENTS */
696         return buffer->clock() << DEBUG_SHIFT;
697 }
698
699 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
700 {
701         u64 time;
702
703         preempt_disable_notrace();
704         time = rb_time_stamp(buffer);
705         preempt_enable_no_resched_notrace();
706
707         return time;
708 }
709 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
710
711 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
712                                       int cpu, u64 *ts)
713 {
714         /* Just stupid testing the normalize function and deltas */
715         *ts >>= DEBUG_SHIFT;
716 }
717 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
718
719 /*
720  * Making the ring buffer lockless makes things tricky.
721  * Although writes only happen on the CPU that they are on,
722  * and they only need to worry about interrupts. Reads can
723  * happen on any CPU.
724  *
725  * The reader page is always off the ring buffer, but when the
726  * reader finishes with a page, it needs to swap its page with
727  * a new one from the buffer. The reader needs to take from
728  * the head (writes go to the tail). But if a writer is in overwrite
729  * mode and wraps, it must push the head page forward.
730  *
731  * Here lies the problem.
732  *
733  * The reader must be careful to replace only the head page, and
734  * not another one. As described at the top of the file in the
735  * ASCII art, the reader sets its old page to point to the next
736  * page after head. It then sets the page after head to point to
737  * the old reader page. But if the writer moves the head page
738  * during this operation, the reader could end up with the tail.
739  *
740  * We use cmpxchg to help prevent this race. We also do something
741  * special with the page before head. We set the LSB to 1.
742  *
743  * When the writer must push the page forward, it will clear the
744  * bit that points to the head page, move the head, and then set
745  * the bit that points to the new head page.
746  *
747  * We also don't want an interrupt coming in and moving the head
748  * page on another writer. Thus we use the second LSB to catch
749  * that too. Thus:
750  *
751  * head->list->prev->next        bit 1          bit 0
752  *                              -------        -------
753  * Normal page                     0              0
754  * Points to head page             0              1
755  * New head page                   1              0
756  *
757  * Note we can not trust the prev pointer of the head page, because:
758  *
759  * +----+       +-----+        +-----+
760  * |    |------>|  T  |---X--->|  N  |
761  * |    |<------|     |        |     |
762  * +----+       +-----+        +-----+
763  *   ^                           ^ |
764  *   |          +-----+          | |
765  *   +----------|  R  |----------+ |
766  *              |     |<-----------+
767  *              +-----+
768  *
769  * Key:  ---X-->  HEAD flag set in pointer
770  *         T      Tail page
771  *         R      Reader page
772  *         N      Next page
773  *
774  * (see __rb_reserve_next() to see where this happens)
775  *
776  *  What the above shows is that the reader just swapped out
777  *  the reader page with a page in the buffer, but before it
778  *  could make the new header point back to the new page added
779  *  it was preempted by a writer. The writer moved forward onto
780  *  the new page added by the reader and is about to move forward
781  *  again.
782  *
783  *  You can see, it is legitimate for the previous pointer of
784  *  the head (or any page) not to point back to itself. But only
785  *  temporarially.
786  */
787
788 #define RB_PAGE_NORMAL          0UL
789 #define RB_PAGE_HEAD            1UL
790 #define RB_PAGE_UPDATE          2UL
791
792
793 #define RB_FLAG_MASK            3UL
794
795 /* PAGE_MOVED is not part of the mask */
796 #define RB_PAGE_MOVED           4UL
797
798 /*
799  * rb_list_head - remove any bit
800  */
801 static struct list_head *rb_list_head(struct list_head *list)
802 {
803         unsigned long val = (unsigned long)list;
804
805         return (struct list_head *)(val & ~RB_FLAG_MASK);
806 }
807
808 /*
809  * rb_is_head_page - test if the given page is the head page
810  *
811  * Because the reader may move the head_page pointer, we can
812  * not trust what the head page is (it may be pointing to
813  * the reader page). But if the next page is a header page,
814  * its flags will be non zero.
815  */
816 static inline int
817 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
818                 struct buffer_page *page, struct list_head *list)
819 {
820         unsigned long val;
821
822         val = (unsigned long)list->next;
823
824         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
825                 return RB_PAGE_MOVED;
826
827         return val & RB_FLAG_MASK;
828 }
829
830 /*
831  * rb_is_reader_page
832  *
833  * The unique thing about the reader page, is that, if the
834  * writer is ever on it, the previous pointer never points
835  * back to the reader page.
836  */
837 static int rb_is_reader_page(struct buffer_page *page)
838 {
839         struct list_head *list = page->list.prev;
840
841         return rb_list_head(list->next) != &page->list;
842 }
843
844 /*
845  * rb_set_list_to_head - set a list_head to be pointing to head.
846  */
847 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
848                                 struct list_head *list)
849 {
850         unsigned long *ptr;
851
852         ptr = (unsigned long *)&list->next;
853         *ptr |= RB_PAGE_HEAD;
854         *ptr &= ~RB_PAGE_UPDATE;
855 }
856
857 /*
858  * rb_head_page_activate - sets up head page
859  */
860 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
861 {
862         struct buffer_page *head;
863
864         head = cpu_buffer->head_page;
865         if (!head)
866                 return;
867
868         /*
869          * Set the previous list pointer to have the HEAD flag.
870          */
871         rb_set_list_to_head(cpu_buffer, head->list.prev);
872 }
873
874 static void rb_list_head_clear(struct list_head *list)
875 {
876         unsigned long *ptr = (unsigned long *)&list->next;
877
878         *ptr &= ~RB_FLAG_MASK;
879 }
880
881 /*
882  * rb_head_page_dactivate - clears head page ptr (for free list)
883  */
884 static void
885 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
886 {
887         struct list_head *hd;
888
889         /* Go through the whole list and clear any pointers found. */
890         rb_list_head_clear(cpu_buffer->pages);
891
892         list_for_each(hd, cpu_buffer->pages)
893                 rb_list_head_clear(hd);
894 }
895
896 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
897                             struct buffer_page *head,
898                             struct buffer_page *prev,
899                             int old_flag, int new_flag)
900 {
901         struct list_head *list;
902         unsigned long val = (unsigned long)&head->list;
903         unsigned long ret;
904
905         list = &prev->list;
906
907         val &= ~RB_FLAG_MASK;
908
909         ret = cmpxchg((unsigned long *)&list->next,
910                       val | old_flag, val | new_flag);
911
912         /* check if the reader took the page */
913         if ((ret & ~RB_FLAG_MASK) != val)
914                 return RB_PAGE_MOVED;
915
916         return ret & RB_FLAG_MASK;
917 }
918
919 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
920                                    struct buffer_page *head,
921                                    struct buffer_page *prev,
922                                    int old_flag)
923 {
924         return rb_head_page_set(cpu_buffer, head, prev,
925                                 old_flag, RB_PAGE_UPDATE);
926 }
927
928 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
929                                  struct buffer_page *head,
930                                  struct buffer_page *prev,
931                                  int old_flag)
932 {
933         return rb_head_page_set(cpu_buffer, head, prev,
934                                 old_flag, RB_PAGE_HEAD);
935 }
936
937 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
938                                    struct buffer_page *head,
939                                    struct buffer_page *prev,
940                                    int old_flag)
941 {
942         return rb_head_page_set(cpu_buffer, head, prev,
943                                 old_flag, RB_PAGE_NORMAL);
944 }
945
946 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
947                                struct buffer_page **bpage)
948 {
949         struct list_head *p = rb_list_head((*bpage)->list.next);
950
951         *bpage = list_entry(p, struct buffer_page, list);
952 }
953
954 static struct buffer_page *
955 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
956 {
957         struct buffer_page *head;
958         struct buffer_page *page;
959         struct list_head *list;
960         int i;
961
962         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
963                 return NULL;
964
965         /* sanity check */
966         list = cpu_buffer->pages;
967         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
968                 return NULL;
969
970         page = head = cpu_buffer->head_page;
971         /*
972          * It is possible that the writer moves the header behind
973          * where we started, and we miss in one loop.
974          * A second loop should grab the header, but we'll do
975          * three loops just because I'm paranoid.
976          */
977         for (i = 0; i < 3; i++) {
978                 do {
979                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
980                                 cpu_buffer->head_page = page;
981                                 return page;
982                         }
983                         rb_inc_page(cpu_buffer, &page);
984                 } while (page != head);
985         }
986
987         RB_WARN_ON(cpu_buffer, 1);
988
989         return NULL;
990 }
991
992 static int rb_head_page_replace(struct buffer_page *old,
993                                 struct buffer_page *new)
994 {
995         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
996         unsigned long val;
997         unsigned long ret;
998
999         val = *ptr & ~RB_FLAG_MASK;
1000         val |= RB_PAGE_HEAD;
1001
1002         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1003
1004         return ret == val;
1005 }
1006
1007 /*
1008  * rb_tail_page_update - move the tail page forward
1009  *
1010  * Returns 1 if moved tail page, 0 if someone else did.
1011  */
1012 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1013                                struct buffer_page *tail_page,
1014                                struct buffer_page *next_page)
1015 {
1016         struct buffer_page *old_tail;
1017         unsigned long old_entries;
1018         unsigned long old_write;
1019         int ret = 0;
1020
1021         /*
1022          * The tail page now needs to be moved forward.
1023          *
1024          * We need to reset the tail page, but without messing
1025          * with possible erasing of data brought in by interrupts
1026          * that have moved the tail page and are currently on it.
1027          *
1028          * We add a counter to the write field to denote this.
1029          */
1030         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1031         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1032
1033         /*
1034          * Just make sure we have seen our old_write and synchronize
1035          * with any interrupts that come in.
1036          */
1037         barrier();
1038
1039         /*
1040          * If the tail page is still the same as what we think
1041          * it is, then it is up to us to update the tail
1042          * pointer.
1043          */
1044         if (tail_page == cpu_buffer->tail_page) {
1045                 /* Zero the write counter */
1046                 unsigned long val = old_write & ~RB_WRITE_MASK;
1047                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1048
1049                 /*
1050                  * This will only succeed if an interrupt did
1051                  * not come in and change it. In which case, we
1052                  * do not want to modify it.
1053                  *
1054                  * We add (void) to let the compiler know that we do not care
1055                  * about the return value of these functions. We use the
1056                  * cmpxchg to only update if an interrupt did not already
1057                  * do it for us. If the cmpxchg fails, we don't care.
1058                  */
1059                 (void)local_cmpxchg(&next_page->write, old_write, val);
1060                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1061
1062                 /*
1063                  * No need to worry about races with clearing out the commit.
1064                  * it only can increment when a commit takes place. But that
1065                  * only happens in the outer most nested commit.
1066                  */
1067                 local_set(&next_page->page->commit, 0);
1068
1069                 old_tail = cmpxchg(&cpu_buffer->tail_page,
1070                                    tail_page, next_page);
1071
1072                 if (old_tail == tail_page)
1073                         ret = 1;
1074         }
1075
1076         return ret;
1077 }
1078
1079 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1080                           struct buffer_page *bpage)
1081 {
1082         unsigned long val = (unsigned long)bpage;
1083
1084         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1085                 return 1;
1086
1087         return 0;
1088 }
1089
1090 /**
1091  * rb_check_list - make sure a pointer to a list has the last bits zero
1092  */
1093 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1094                          struct list_head *list)
1095 {
1096         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1097                 return 1;
1098         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1099                 return 1;
1100         return 0;
1101 }
1102
1103 /**
1104  * rb_check_pages - integrity check of buffer pages
1105  * @cpu_buffer: CPU buffer with pages to test
1106  *
1107  * As a safety measure we check to make sure the data pages have not
1108  * been corrupted.
1109  */
1110 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1111 {
1112         struct list_head *head = cpu_buffer->pages;
1113         struct buffer_page *bpage, *tmp;
1114
1115         /* Reset the head page if it exists */
1116         if (cpu_buffer->head_page)
1117                 rb_set_head_page(cpu_buffer);
1118
1119         rb_head_page_deactivate(cpu_buffer);
1120
1121         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1122                 return -1;
1123         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1124                 return -1;
1125
1126         if (rb_check_list(cpu_buffer, head))
1127                 return -1;
1128
1129         list_for_each_entry_safe(bpage, tmp, head, list) {
1130                 if (RB_WARN_ON(cpu_buffer,
1131                                bpage->list.next->prev != &bpage->list))
1132                         return -1;
1133                 if (RB_WARN_ON(cpu_buffer,
1134                                bpage->list.prev->next != &bpage->list))
1135                         return -1;
1136                 if (rb_check_list(cpu_buffer, &bpage->list))
1137                         return -1;
1138         }
1139
1140         rb_head_page_activate(cpu_buffer);
1141
1142         return 0;
1143 }
1144
1145 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1146 {
1147         int i;
1148         struct buffer_page *bpage, *tmp;
1149
1150         for (i = 0; i < nr_pages; i++) {
1151                 struct page *page;
1152                 /*
1153                  * __GFP_NORETRY flag makes sure that the allocation fails
1154                  * gracefully without invoking oom-killer and the system is
1155                  * not destabilized.
1156                  */
1157                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1158                                     GFP_KERNEL | __GFP_NORETRY,
1159                                     cpu_to_node(cpu));
1160                 if (!bpage)
1161                         goto free_pages;
1162
1163                 list_add(&bpage->list, pages);
1164
1165                 page = alloc_pages_node(cpu_to_node(cpu),
1166                                         GFP_KERNEL | __GFP_NORETRY, 0);
1167                 if (!page)
1168                         goto free_pages;
1169                 bpage->page = page_address(page);
1170                 rb_init_page(bpage->page);
1171         }
1172
1173         return 0;
1174
1175 free_pages:
1176         list_for_each_entry_safe(bpage, tmp, pages, list) {
1177                 list_del_init(&bpage->list);
1178                 free_buffer_page(bpage);
1179         }
1180
1181         return -ENOMEM;
1182 }
1183
1184 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1185                              unsigned nr_pages)
1186 {
1187         LIST_HEAD(pages);
1188
1189         WARN_ON(!nr_pages);
1190
1191         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1192                 return -ENOMEM;
1193
1194         /*
1195          * The ring buffer page list is a circular list that does not
1196          * start and end with a list head. All page list items point to
1197          * other pages.
1198          */
1199         cpu_buffer->pages = pages.next;
1200         list_del(&pages);
1201
1202         cpu_buffer->nr_pages = nr_pages;
1203
1204         rb_check_pages(cpu_buffer);
1205
1206         return 0;
1207 }
1208
1209 static struct ring_buffer_per_cpu *
1210 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1211 {
1212         struct ring_buffer_per_cpu *cpu_buffer;
1213         struct buffer_page *bpage;
1214         struct page *page;
1215         int ret;
1216
1217         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1218                                   GFP_KERNEL, cpu_to_node(cpu));
1219         if (!cpu_buffer)
1220                 return NULL;
1221
1222         cpu_buffer->cpu = cpu;
1223         cpu_buffer->buffer = buffer;
1224         raw_spin_lock_init(&cpu_buffer->reader_lock);
1225         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1226         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1227         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1228         init_completion(&cpu_buffer->update_done);
1229         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1230         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1231
1232         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1233                             GFP_KERNEL, cpu_to_node(cpu));
1234         if (!bpage)
1235                 goto fail_free_buffer;
1236
1237         rb_check_bpage(cpu_buffer, bpage);
1238
1239         cpu_buffer->reader_page = bpage;
1240         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1241         if (!page)
1242                 goto fail_free_reader;
1243         bpage->page = page_address(page);
1244         rb_init_page(bpage->page);
1245
1246         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1247         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1248
1249         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1250         if (ret < 0)
1251                 goto fail_free_reader;
1252
1253         cpu_buffer->head_page
1254                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1255         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1256
1257         rb_head_page_activate(cpu_buffer);
1258
1259         return cpu_buffer;
1260
1261  fail_free_reader:
1262         free_buffer_page(cpu_buffer->reader_page);
1263
1264  fail_free_buffer:
1265         kfree(cpu_buffer);
1266         return NULL;
1267 }
1268
1269 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1270 {
1271         struct list_head *head = cpu_buffer->pages;
1272         struct buffer_page *bpage, *tmp;
1273
1274         free_buffer_page(cpu_buffer->reader_page);
1275
1276         rb_head_page_deactivate(cpu_buffer);
1277
1278         if (head) {
1279                 list_for_each_entry_safe(bpage, tmp, head, list) {
1280                         list_del_init(&bpage->list);
1281                         free_buffer_page(bpage);
1282                 }
1283                 bpage = list_entry(head, struct buffer_page, list);
1284                 free_buffer_page(bpage);
1285         }
1286
1287         kfree(cpu_buffer);
1288 }
1289
1290 #ifdef CONFIG_HOTPLUG_CPU
1291 static int rb_cpu_notify(struct notifier_block *self,
1292                          unsigned long action, void *hcpu);
1293 #endif
1294
1295 /**
1296  * __ring_buffer_alloc - allocate a new ring_buffer
1297  * @size: the size in bytes per cpu that is needed.
1298  * @flags: attributes to set for the ring buffer.
1299  *
1300  * Currently the only flag that is available is the RB_FL_OVERWRITE
1301  * flag. This flag means that the buffer will overwrite old data
1302  * when the buffer wraps. If this flag is not set, the buffer will
1303  * drop data when the tail hits the head.
1304  */
1305 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1306                                         struct lock_class_key *key)
1307 {
1308         struct ring_buffer *buffer;
1309         int bsize;
1310         int cpu, nr_pages;
1311
1312         /* keep it in its own cache line */
1313         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1314                          GFP_KERNEL);
1315         if (!buffer)
1316                 return NULL;
1317
1318         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1319                 goto fail_free_buffer;
1320
1321         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1322         buffer->flags = flags;
1323         buffer->clock = trace_clock_local;
1324         buffer->reader_lock_key = key;
1325
1326         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1327         init_waitqueue_head(&buffer->irq_work.waiters);
1328
1329         /* need at least two pages */
1330         if (nr_pages < 2)
1331                 nr_pages = 2;
1332
1333         /*
1334          * In case of non-hotplug cpu, if the ring-buffer is allocated
1335          * in early initcall, it will not be notified of secondary cpus.
1336          * In that off case, we need to allocate for all possible cpus.
1337          */
1338 #ifdef CONFIG_HOTPLUG_CPU
1339         cpu_notifier_register_begin();
1340         cpumask_copy(buffer->cpumask, cpu_online_mask);
1341 #else
1342         cpumask_copy(buffer->cpumask, cpu_possible_mask);
1343 #endif
1344         buffer->cpus = nr_cpu_ids;
1345
1346         bsize = sizeof(void *) * nr_cpu_ids;
1347         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1348                                   GFP_KERNEL);
1349         if (!buffer->buffers)
1350                 goto fail_free_cpumask;
1351
1352         for_each_buffer_cpu(buffer, cpu) {
1353                 buffer->buffers[cpu] =
1354                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1355                 if (!buffer->buffers[cpu])
1356                         goto fail_free_buffers;
1357         }
1358
1359 #ifdef CONFIG_HOTPLUG_CPU
1360         buffer->cpu_notify.notifier_call = rb_cpu_notify;
1361         buffer->cpu_notify.priority = 0;
1362         __register_cpu_notifier(&buffer->cpu_notify);
1363         cpu_notifier_register_done();
1364 #endif
1365
1366         mutex_init(&buffer->mutex);
1367
1368         return buffer;
1369
1370  fail_free_buffers:
1371         for_each_buffer_cpu(buffer, cpu) {
1372                 if (buffer->buffers[cpu])
1373                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1374         }
1375         kfree(buffer->buffers);
1376
1377  fail_free_cpumask:
1378         free_cpumask_var(buffer->cpumask);
1379 #ifdef CONFIG_HOTPLUG_CPU
1380         cpu_notifier_register_done();
1381 #endif
1382
1383  fail_free_buffer:
1384         kfree(buffer);
1385         return NULL;
1386 }
1387 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1388
1389 /**
1390  * ring_buffer_free - free a ring buffer.
1391  * @buffer: the buffer to free.
1392  */
1393 void
1394 ring_buffer_free(struct ring_buffer *buffer)
1395 {
1396         int cpu;
1397
1398 #ifdef CONFIG_HOTPLUG_CPU
1399         cpu_notifier_register_begin();
1400         __unregister_cpu_notifier(&buffer->cpu_notify);
1401 #endif
1402
1403         for_each_buffer_cpu(buffer, cpu)
1404                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1405
1406 #ifdef CONFIG_HOTPLUG_CPU
1407         cpu_notifier_register_done();
1408 #endif
1409
1410         kfree(buffer->buffers);
1411         free_cpumask_var(buffer->cpumask);
1412
1413         kfree(buffer);
1414 }
1415 EXPORT_SYMBOL_GPL(ring_buffer_free);
1416
1417 void ring_buffer_set_clock(struct ring_buffer *buffer,
1418                            u64 (*clock)(void))
1419 {
1420         buffer->clock = clock;
1421 }
1422
1423 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1424
1425 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1426 {
1427         return local_read(&bpage->entries) & RB_WRITE_MASK;
1428 }
1429
1430 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1431 {
1432         return local_read(&bpage->write) & RB_WRITE_MASK;
1433 }
1434
1435 static int
1436 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1437 {
1438         struct list_head *tail_page, *to_remove, *next_page;
1439         struct buffer_page *to_remove_page, *tmp_iter_page;
1440         struct buffer_page *last_page, *first_page;
1441         unsigned int nr_removed;
1442         unsigned long head_bit;
1443         int page_entries;
1444
1445         head_bit = 0;
1446
1447         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1448         atomic_inc(&cpu_buffer->record_disabled);
1449         /*
1450          * We don't race with the readers since we have acquired the reader
1451          * lock. We also don't race with writers after disabling recording.
1452          * This makes it easy to figure out the first and the last page to be
1453          * removed from the list. We unlink all the pages in between including
1454          * the first and last pages. This is done in a busy loop so that we
1455          * lose the least number of traces.
1456          * The pages are freed after we restart recording and unlock readers.
1457          */
1458         tail_page = &cpu_buffer->tail_page->list;
1459
1460         /*
1461          * tail page might be on reader page, we remove the next page
1462          * from the ring buffer
1463          */
1464         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1465                 tail_page = rb_list_head(tail_page->next);
1466         to_remove = tail_page;
1467
1468         /* start of pages to remove */
1469         first_page = list_entry(rb_list_head(to_remove->next),
1470                                 struct buffer_page, list);
1471
1472         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1473                 to_remove = rb_list_head(to_remove)->next;
1474                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1475         }
1476
1477         next_page = rb_list_head(to_remove)->next;
1478
1479         /*
1480          * Now we remove all pages between tail_page and next_page.
1481          * Make sure that we have head_bit value preserved for the
1482          * next page
1483          */
1484         tail_page->next = (struct list_head *)((unsigned long)next_page |
1485                                                 head_bit);
1486         next_page = rb_list_head(next_page);
1487         next_page->prev = tail_page;
1488
1489         /* make sure pages points to a valid page in the ring buffer */
1490         cpu_buffer->pages = next_page;
1491
1492         /* update head page */
1493         if (head_bit)
1494                 cpu_buffer->head_page = list_entry(next_page,
1495                                                 struct buffer_page, list);
1496
1497         /*
1498          * change read pointer to make sure any read iterators reset
1499          * themselves
1500          */
1501         cpu_buffer->read = 0;
1502
1503         /* pages are removed, resume tracing and then free the pages */
1504         atomic_dec(&cpu_buffer->record_disabled);
1505         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1506
1507         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1508
1509         /* last buffer page to remove */
1510         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1511                                 list);
1512         tmp_iter_page = first_page;
1513
1514         do {
1515                 to_remove_page = tmp_iter_page;
1516                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1517
1518                 /* update the counters */
1519                 page_entries = rb_page_entries(to_remove_page);
1520                 if (page_entries) {
1521                         /*
1522                          * If something was added to this page, it was full
1523                          * since it is not the tail page. So we deduct the
1524                          * bytes consumed in ring buffer from here.
1525                          * Increment overrun to account for the lost events.
1526                          */
1527                         local_add(page_entries, &cpu_buffer->overrun);
1528                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1529                 }
1530
1531                 /*
1532                  * We have already removed references to this list item, just
1533                  * free up the buffer_page and its page
1534                  */
1535                 free_buffer_page(to_remove_page);
1536                 nr_removed--;
1537
1538         } while (to_remove_page != last_page);
1539
1540         RB_WARN_ON(cpu_buffer, nr_removed);
1541
1542         return nr_removed == 0;
1543 }
1544
1545 static int
1546 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1547 {
1548         struct list_head *pages = &cpu_buffer->new_pages;
1549         int retries, success;
1550
1551         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1552         /*
1553          * We are holding the reader lock, so the reader page won't be swapped
1554          * in the ring buffer. Now we are racing with the writer trying to
1555          * move head page and the tail page.
1556          * We are going to adapt the reader page update process where:
1557          * 1. We first splice the start and end of list of new pages between
1558          *    the head page and its previous page.
1559          * 2. We cmpxchg the prev_page->next to point from head page to the
1560          *    start of new pages list.
1561          * 3. Finally, we update the head->prev to the end of new list.
1562          *
1563          * We will try this process 10 times, to make sure that we don't keep
1564          * spinning.
1565          */
1566         retries = 10;
1567         success = 0;
1568         while (retries--) {
1569                 struct list_head *head_page, *prev_page, *r;
1570                 struct list_head *last_page, *first_page;
1571                 struct list_head *head_page_with_bit;
1572
1573                 head_page = &rb_set_head_page(cpu_buffer)->list;
1574                 if (!head_page)
1575                         break;
1576                 prev_page = head_page->prev;
1577
1578                 first_page = pages->next;
1579                 last_page  = pages->prev;
1580
1581                 head_page_with_bit = (struct list_head *)
1582                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1583
1584                 last_page->next = head_page_with_bit;
1585                 first_page->prev = prev_page;
1586
1587                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1588
1589                 if (r == head_page_with_bit) {
1590                         /*
1591                          * yay, we replaced the page pointer to our new list,
1592                          * now, we just have to update to head page's prev
1593                          * pointer to point to end of list
1594                          */
1595                         head_page->prev = last_page;
1596                         success = 1;
1597                         break;
1598                 }
1599         }
1600
1601         if (success)
1602                 INIT_LIST_HEAD(pages);
1603         /*
1604          * If we weren't successful in adding in new pages, warn and stop
1605          * tracing
1606          */
1607         RB_WARN_ON(cpu_buffer, !success);
1608         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1609
1610         /* free pages if they weren't inserted */
1611         if (!success) {
1612                 struct buffer_page *bpage, *tmp;
1613                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1614                                          list) {
1615                         list_del_init(&bpage->list);
1616                         free_buffer_page(bpage);
1617                 }
1618         }
1619         return success;
1620 }
1621
1622 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1623 {
1624         int success;
1625
1626         if (cpu_buffer->nr_pages_to_update > 0)
1627                 success = rb_insert_pages(cpu_buffer);
1628         else
1629                 success = rb_remove_pages(cpu_buffer,
1630                                         -cpu_buffer->nr_pages_to_update);
1631
1632         if (success)
1633                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1634 }
1635
1636 static void update_pages_handler(struct work_struct *work)
1637 {
1638         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1639                         struct ring_buffer_per_cpu, update_pages_work);
1640         rb_update_pages(cpu_buffer);
1641         complete(&cpu_buffer->update_done);
1642 }
1643
1644 /**
1645  * ring_buffer_resize - resize the ring buffer
1646  * @buffer: the buffer to resize.
1647  * @size: the new size.
1648  * @cpu_id: the cpu buffer to resize
1649  *
1650  * Minimum size is 2 * BUF_PAGE_SIZE.
1651  *
1652  * Returns 0 on success and < 0 on failure.
1653  */
1654 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1655                         int cpu_id)
1656 {
1657         struct ring_buffer_per_cpu *cpu_buffer;
1658         unsigned nr_pages;
1659         int cpu, err = 0;
1660
1661         /*
1662          * Always succeed at resizing a non-existent buffer:
1663          */
1664         if (!buffer)
1665                 return size;
1666
1667         /* Make sure the requested buffer exists */
1668         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1669             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1670                 return size;
1671
1672         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1673         size *= BUF_PAGE_SIZE;
1674
1675         /* we need a minimum of two pages */
1676         if (size < BUF_PAGE_SIZE * 2)
1677                 size = BUF_PAGE_SIZE * 2;
1678
1679         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1680
1681         /*
1682          * Don't succeed if resizing is disabled, as a reader might be
1683          * manipulating the ring buffer and is expecting a sane state while
1684          * this is true.
1685          */
1686         if (atomic_read(&buffer->resize_disabled))
1687                 return -EBUSY;
1688
1689         /* prevent another thread from changing buffer sizes */
1690         mutex_lock(&buffer->mutex);
1691
1692         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1693                 /* calculate the pages to update */
1694                 for_each_buffer_cpu(buffer, cpu) {
1695                         cpu_buffer = buffer->buffers[cpu];
1696
1697                         cpu_buffer->nr_pages_to_update = nr_pages -
1698                                                         cpu_buffer->nr_pages;
1699                         /*
1700                          * nothing more to do for removing pages or no update
1701                          */
1702                         if (cpu_buffer->nr_pages_to_update <= 0)
1703                                 continue;
1704                         /*
1705                          * to add pages, make sure all new pages can be
1706                          * allocated without receiving ENOMEM
1707                          */
1708                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1709                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1710                                                 &cpu_buffer->new_pages, cpu)) {
1711                                 /* not enough memory for new pages */
1712                                 err = -ENOMEM;
1713                                 goto out_err;
1714                         }
1715                 }
1716
1717                 get_online_cpus();
1718                 /*
1719                  * Fire off all the required work handlers
1720                  * We can't schedule on offline CPUs, but it's not necessary
1721                  * since we can change their buffer sizes without any race.
1722                  */
1723                 for_each_buffer_cpu(buffer, cpu) {
1724                         cpu_buffer = buffer->buffers[cpu];
1725                         if (!cpu_buffer->nr_pages_to_update)
1726                                 continue;
1727
1728                         /* Can't run something on an offline CPU. */
1729                         if (!cpu_online(cpu)) {
1730                                 rb_update_pages(cpu_buffer);
1731                                 cpu_buffer->nr_pages_to_update = 0;
1732                         } else {
1733                                 schedule_work_on(cpu,
1734                                                 &cpu_buffer->update_pages_work);
1735                         }
1736                 }
1737
1738                 /* wait for all the updates to complete */
1739                 for_each_buffer_cpu(buffer, cpu) {
1740                         cpu_buffer = buffer->buffers[cpu];
1741                         if (!cpu_buffer->nr_pages_to_update)
1742                                 continue;
1743
1744                         if (cpu_online(cpu))
1745                                 wait_for_completion(&cpu_buffer->update_done);
1746                         cpu_buffer->nr_pages_to_update = 0;
1747                 }
1748
1749                 put_online_cpus();
1750         } else {
1751                 /* Make sure this CPU has been intitialized */
1752                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1753                         goto out;
1754
1755                 cpu_buffer = buffer->buffers[cpu_id];
1756
1757                 if (nr_pages == cpu_buffer->nr_pages)
1758                         goto out;
1759
1760                 cpu_buffer->nr_pages_to_update = nr_pages -
1761                                                 cpu_buffer->nr_pages;
1762
1763                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1764                 if (cpu_buffer->nr_pages_to_update > 0 &&
1765                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1766                                             &cpu_buffer->new_pages, cpu_id)) {
1767                         err = -ENOMEM;
1768                         goto out_err;
1769                 }
1770
1771                 get_online_cpus();
1772
1773                 /* Can't run something on an offline CPU. */
1774                 if (!cpu_online(cpu_id))
1775                         rb_update_pages(cpu_buffer);
1776                 else {
1777                         schedule_work_on(cpu_id,
1778                                          &cpu_buffer->update_pages_work);
1779                         wait_for_completion(&cpu_buffer->update_done);
1780                 }
1781
1782                 cpu_buffer->nr_pages_to_update = 0;
1783                 put_online_cpus();
1784         }
1785
1786  out:
1787         /*
1788          * The ring buffer resize can happen with the ring buffer
1789          * enabled, so that the update disturbs the tracing as little
1790          * as possible. But if the buffer is disabled, we do not need
1791          * to worry about that, and we can take the time to verify
1792          * that the buffer is not corrupt.
1793          */
1794         if (atomic_read(&buffer->record_disabled)) {
1795                 atomic_inc(&buffer->record_disabled);
1796                 /*
1797                  * Even though the buffer was disabled, we must make sure
1798                  * that it is truly disabled before calling rb_check_pages.
1799                  * There could have been a race between checking
1800                  * record_disable and incrementing it.
1801                  */
1802                 synchronize_sched();
1803                 for_each_buffer_cpu(buffer, cpu) {
1804                         cpu_buffer = buffer->buffers[cpu];
1805                         rb_check_pages(cpu_buffer);
1806                 }
1807                 atomic_dec(&buffer->record_disabled);
1808         }
1809
1810         mutex_unlock(&buffer->mutex);
1811         return size;
1812
1813  out_err:
1814         for_each_buffer_cpu(buffer, cpu) {
1815                 struct buffer_page *bpage, *tmp;
1816
1817                 cpu_buffer = buffer->buffers[cpu];
1818                 cpu_buffer->nr_pages_to_update = 0;
1819
1820                 if (list_empty(&cpu_buffer->new_pages))
1821                         continue;
1822
1823                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1824                                         list) {
1825                         list_del_init(&bpage->list);
1826                         free_buffer_page(bpage);
1827                 }
1828         }
1829         mutex_unlock(&buffer->mutex);
1830         return err;
1831 }
1832 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1833
1834 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1835 {
1836         mutex_lock(&buffer->mutex);
1837         if (val)
1838                 buffer->flags |= RB_FL_OVERWRITE;
1839         else
1840                 buffer->flags &= ~RB_FL_OVERWRITE;
1841         mutex_unlock(&buffer->mutex);
1842 }
1843 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1844
1845 static inline void *
1846 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1847 {
1848         return bpage->data + index;
1849 }
1850
1851 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1852 {
1853         return bpage->page->data + index;
1854 }
1855
1856 static inline struct ring_buffer_event *
1857 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1858 {
1859         return __rb_page_index(cpu_buffer->reader_page,
1860                                cpu_buffer->reader_page->read);
1861 }
1862
1863 static inline struct ring_buffer_event *
1864 rb_iter_head_event(struct ring_buffer_iter *iter)
1865 {
1866         return __rb_page_index(iter->head_page, iter->head);
1867 }
1868
1869 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1870 {
1871         return local_read(&bpage->page->commit);
1872 }
1873
1874 /* Size is determined by what has been committed */
1875 static inline unsigned rb_page_size(struct buffer_page *bpage)
1876 {
1877         return rb_page_commit(bpage);
1878 }
1879
1880 static inline unsigned
1881 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1882 {
1883         return rb_page_commit(cpu_buffer->commit_page);
1884 }
1885
1886 static inline unsigned
1887 rb_event_index(struct ring_buffer_event *event)
1888 {
1889         unsigned long addr = (unsigned long)event;
1890
1891         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1892 }
1893
1894 static inline int
1895 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1896                    struct ring_buffer_event *event)
1897 {
1898         unsigned long addr = (unsigned long)event;
1899         unsigned long index;
1900
1901         index = rb_event_index(event);
1902         addr &= PAGE_MASK;
1903
1904         return cpu_buffer->commit_page->page == (void *)addr &&
1905                 rb_commit_index(cpu_buffer) == index;
1906 }
1907
1908 static void
1909 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1910 {
1911         unsigned long max_count;
1912
1913         /*
1914          * We only race with interrupts and NMIs on this CPU.
1915          * If we own the commit event, then we can commit
1916          * all others that interrupted us, since the interruptions
1917          * are in stack format (they finish before they come
1918          * back to us). This allows us to do a simple loop to
1919          * assign the commit to the tail.
1920          */
1921  again:
1922         max_count = cpu_buffer->nr_pages * 100;
1923
1924         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1925                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1926                         return;
1927                 if (RB_WARN_ON(cpu_buffer,
1928                                rb_is_reader_page(cpu_buffer->tail_page)))
1929                         return;
1930                 local_set(&cpu_buffer->commit_page->page->commit,
1931                           rb_page_write(cpu_buffer->commit_page));
1932                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1933                 cpu_buffer->write_stamp =
1934                         cpu_buffer->commit_page->page->time_stamp;
1935                 /* add barrier to keep gcc from optimizing too much */
1936                 barrier();
1937         }
1938         while (rb_commit_index(cpu_buffer) !=
1939                rb_page_write(cpu_buffer->commit_page)) {
1940
1941                 local_set(&cpu_buffer->commit_page->page->commit,
1942                           rb_page_write(cpu_buffer->commit_page));
1943                 RB_WARN_ON(cpu_buffer,
1944                            local_read(&cpu_buffer->commit_page->page->commit) &
1945                            ~RB_WRITE_MASK);
1946                 barrier();
1947         }
1948
1949         /* again, keep gcc from optimizing */
1950         barrier();
1951
1952         /*
1953          * If an interrupt came in just after the first while loop
1954          * and pushed the tail page forward, we will be left with
1955          * a dangling commit that will never go forward.
1956          */
1957         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1958                 goto again;
1959 }
1960
1961 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1962 {
1963         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1964         cpu_buffer->reader_page->read = 0;
1965 }
1966
1967 static void rb_inc_iter(struct ring_buffer_iter *iter)
1968 {
1969         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1970
1971         /*
1972          * The iterator could be on the reader page (it starts there).
1973          * But the head could have moved, since the reader was
1974          * found. Check for this case and assign the iterator
1975          * to the head page instead of next.
1976          */
1977         if (iter->head_page == cpu_buffer->reader_page)
1978                 iter->head_page = rb_set_head_page(cpu_buffer);
1979         else
1980                 rb_inc_page(cpu_buffer, &iter->head_page);
1981
1982         iter->read_stamp = iter->head_page->page->time_stamp;
1983         iter->head = 0;
1984 }
1985
1986 /* Slow path, do not inline */
1987 static noinline struct ring_buffer_event *
1988 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1989 {
1990         event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1991
1992         /* Not the first event on the page? */
1993         if (rb_event_index(event)) {
1994                 event->time_delta = delta & TS_MASK;
1995                 event->array[0] = delta >> TS_SHIFT;
1996         } else {
1997                 /* nope, just zero it */
1998                 event->time_delta = 0;
1999                 event->array[0] = 0;
2000         }
2001
2002         return skip_time_extend(event);
2003 }
2004
2005 /**
2006  * rb_update_event - update event type and data
2007  * @event: the event to update
2008  * @type: the type of event
2009  * @length: the size of the event field in the ring buffer
2010  *
2011  * Update the type and data fields of the event. The length
2012  * is the actual size that is written to the ring buffer,
2013  * and with this, we can determine what to place into the
2014  * data field.
2015  */
2016 static void
2017 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2018                 struct ring_buffer_event *event, unsigned length,
2019                 int add_timestamp, u64 delta)
2020 {
2021         /* Only a commit updates the timestamp */
2022         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2023                 delta = 0;
2024
2025         /*
2026          * If we need to add a timestamp, then we
2027          * add it to the start of the resevered space.
2028          */
2029         if (unlikely(add_timestamp)) {
2030                 event = rb_add_time_stamp(event, delta);
2031                 length -= RB_LEN_TIME_EXTEND;
2032                 delta = 0;
2033         }
2034
2035         event->time_delta = delta;
2036         length -= RB_EVNT_HDR_SIZE;
2037         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2038                 event->type_len = 0;
2039                 event->array[0] = length;
2040         } else
2041                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2042 }
2043
2044 /*
2045  * rb_handle_head_page - writer hit the head page
2046  *
2047  * Returns: +1 to retry page
2048  *           0 to continue
2049  *          -1 on error
2050  */
2051 static int
2052 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2053                     struct buffer_page *tail_page,
2054                     struct buffer_page *next_page)
2055 {
2056         struct buffer_page *new_head;
2057         int entries;
2058         int type;
2059         int ret;
2060
2061         entries = rb_page_entries(next_page);
2062
2063         /*
2064          * The hard part is here. We need to move the head
2065          * forward, and protect against both readers on
2066          * other CPUs and writers coming in via interrupts.
2067          */
2068         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2069                                        RB_PAGE_HEAD);
2070
2071         /*
2072          * type can be one of four:
2073          *  NORMAL - an interrupt already moved it for us
2074          *  HEAD   - we are the first to get here.
2075          *  UPDATE - we are the interrupt interrupting
2076          *           a current move.
2077          *  MOVED  - a reader on another CPU moved the next
2078          *           pointer to its reader page. Give up
2079          *           and try again.
2080          */
2081
2082         switch (type) {
2083         case RB_PAGE_HEAD:
2084                 /*
2085                  * We changed the head to UPDATE, thus
2086                  * it is our responsibility to update
2087                  * the counters.
2088                  */
2089                 local_add(entries, &cpu_buffer->overrun);
2090                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2091
2092                 /*
2093                  * The entries will be zeroed out when we move the
2094                  * tail page.
2095                  */
2096
2097                 /* still more to do */
2098                 break;
2099
2100         case RB_PAGE_UPDATE:
2101                 /*
2102                  * This is an interrupt that interrupt the
2103                  * previous update. Still more to do.
2104                  */
2105                 break;
2106         case RB_PAGE_NORMAL:
2107                 /*
2108                  * An interrupt came in before the update
2109                  * and processed this for us.
2110                  * Nothing left to do.
2111                  */
2112                 return 1;
2113         case RB_PAGE_MOVED:
2114                 /*
2115                  * The reader is on another CPU and just did
2116                  * a swap with our next_page.
2117                  * Try again.
2118                  */
2119                 return 1;
2120         default:
2121                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2122                 return -1;
2123         }
2124
2125         /*
2126          * Now that we are here, the old head pointer is
2127          * set to UPDATE. This will keep the reader from
2128          * swapping the head page with the reader page.
2129          * The reader (on another CPU) will spin till
2130          * we are finished.
2131          *
2132          * We just need to protect against interrupts
2133          * doing the job. We will set the next pointer
2134          * to HEAD. After that, we set the old pointer
2135          * to NORMAL, but only if it was HEAD before.
2136          * otherwise we are an interrupt, and only
2137          * want the outer most commit to reset it.
2138          */
2139         new_head = next_page;
2140         rb_inc_page(cpu_buffer, &new_head);
2141
2142         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2143                                     RB_PAGE_NORMAL);
2144
2145         /*
2146          * Valid returns are:
2147          *  HEAD   - an interrupt came in and already set it.
2148          *  NORMAL - One of two things:
2149          *            1) We really set it.
2150          *            2) A bunch of interrupts came in and moved
2151          *               the page forward again.
2152          */
2153         switch (ret) {
2154         case RB_PAGE_HEAD:
2155         case RB_PAGE_NORMAL:
2156                 /* OK */
2157                 break;
2158         default:
2159                 RB_WARN_ON(cpu_buffer, 1);
2160                 return -1;
2161         }
2162
2163         /*
2164          * It is possible that an interrupt came in,
2165          * set the head up, then more interrupts came in
2166          * and moved it again. When we get back here,
2167          * the page would have been set to NORMAL but we
2168          * just set it back to HEAD.
2169          *
2170          * How do you detect this? Well, if that happened
2171          * the tail page would have moved.
2172          */
2173         if (ret == RB_PAGE_NORMAL) {
2174                 /*
2175                  * If the tail had moved passed next, then we need
2176                  * to reset the pointer.
2177                  */
2178                 if (cpu_buffer->tail_page != tail_page &&
2179                     cpu_buffer->tail_page != next_page)
2180                         rb_head_page_set_normal(cpu_buffer, new_head,
2181                                                 next_page,
2182                                                 RB_PAGE_HEAD);
2183         }
2184
2185         /*
2186          * If this was the outer most commit (the one that
2187          * changed the original pointer from HEAD to UPDATE),
2188          * then it is up to us to reset it to NORMAL.
2189          */
2190         if (type == RB_PAGE_HEAD) {
2191                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2192                                               tail_page,
2193                                               RB_PAGE_UPDATE);
2194                 if (RB_WARN_ON(cpu_buffer,
2195                                ret != RB_PAGE_UPDATE))
2196                         return -1;
2197         }
2198
2199         return 0;
2200 }
2201
2202 static unsigned rb_calculate_event_length(unsigned length)
2203 {
2204         struct ring_buffer_event event; /* Used only for sizeof array */
2205
2206         /* zero length can cause confusions */
2207         if (!length)
2208                 length = 1;
2209
2210         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2211                 length += sizeof(event.array[0]);
2212
2213         length += RB_EVNT_HDR_SIZE;
2214         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2215
2216         return length;
2217 }
2218
2219 static inline void
2220 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2221               struct buffer_page *tail_page,
2222               unsigned long tail, unsigned long length)
2223 {
2224         struct ring_buffer_event *event;
2225
2226         /*
2227          * Only the event that crossed the page boundary
2228          * must fill the old tail_page with padding.
2229          */
2230         if (tail >= BUF_PAGE_SIZE) {
2231                 /*
2232                  * If the page was filled, then we still need
2233                  * to update the real_end. Reset it to zero
2234                  * and the reader will ignore it.
2235                  */
2236                 if (tail == BUF_PAGE_SIZE)
2237                         tail_page->real_end = 0;
2238
2239                 local_sub(length, &tail_page->write);
2240                 return;
2241         }
2242
2243         event = __rb_page_index(tail_page, tail);
2244         kmemcheck_annotate_bitfield(event, bitfield);
2245
2246         /* account for padding bytes */
2247         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2248
2249         /*
2250          * Save the original length to the meta data.
2251          * This will be used by the reader to add lost event
2252          * counter.
2253          */
2254         tail_page->real_end = tail;
2255
2256         /*
2257          * If this event is bigger than the minimum size, then
2258          * we need to be careful that we don't subtract the
2259          * write counter enough to allow another writer to slip
2260          * in on this page.
2261          * We put in a discarded commit instead, to make sure
2262          * that this space is not used again.
2263          *
2264          * If we are less than the minimum size, we don't need to
2265          * worry about it.
2266          */
2267         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2268                 /* No room for any events */
2269
2270                 /* Mark the rest of the page with padding */
2271                 rb_event_set_padding(event);
2272
2273                 /* Set the write back to the previous setting */
2274                 local_sub(length, &tail_page->write);
2275                 return;
2276         }
2277
2278         /* Put in a discarded event */
2279         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2280         event->type_len = RINGBUF_TYPE_PADDING;
2281         /* time delta must be non zero */
2282         event->time_delta = 1;
2283
2284         /* Set write to end of buffer */
2285         length = (tail + length) - BUF_PAGE_SIZE;
2286         local_sub(length, &tail_page->write);
2287 }
2288
2289 /*
2290  * This is the slow path, force gcc not to inline it.
2291  */
2292 static noinline struct ring_buffer_event *
2293 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2294              unsigned long length, unsigned long tail,
2295              struct buffer_page *tail_page, u64 ts)
2296 {
2297         struct buffer_page *commit_page = cpu_buffer->commit_page;
2298         struct ring_buffer *buffer = cpu_buffer->buffer;
2299         struct buffer_page *next_page;
2300         int ret;
2301
2302         next_page = tail_page;
2303
2304         rb_inc_page(cpu_buffer, &next_page);
2305
2306         /*
2307          * If for some reason, we had an interrupt storm that made
2308          * it all the way around the buffer, bail, and warn
2309          * about it.
2310          */
2311         if (unlikely(next_page == commit_page)) {
2312                 local_inc(&cpu_buffer->commit_overrun);
2313                 goto out_reset;
2314         }
2315
2316         /*
2317          * This is where the fun begins!
2318          *
2319          * We are fighting against races between a reader that
2320          * could be on another CPU trying to swap its reader
2321          * page with the buffer head.
2322          *
2323          * We are also fighting against interrupts coming in and
2324          * moving the head or tail on us as well.
2325          *
2326          * If the next page is the head page then we have filled
2327          * the buffer, unless the commit page is still on the
2328          * reader page.
2329          */
2330         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2331
2332                 /*
2333                  * If the commit is not on the reader page, then
2334                  * move the header page.
2335                  */
2336                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2337                         /*
2338                          * If we are not in overwrite mode,
2339                          * this is easy, just stop here.
2340                          */
2341                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2342                                 local_inc(&cpu_buffer->dropped_events);
2343                                 goto out_reset;
2344                         }
2345
2346                         ret = rb_handle_head_page(cpu_buffer,
2347                                                   tail_page,
2348                                                   next_page);
2349                         if (ret < 0)
2350                                 goto out_reset;
2351                         if (ret)
2352                                 goto out_again;
2353                 } else {
2354                         /*
2355                          * We need to be careful here too. The
2356                          * commit page could still be on the reader
2357                          * page. We could have a small buffer, and
2358                          * have filled up the buffer with events
2359                          * from interrupts and such, and wrapped.
2360                          *
2361                          * Note, if the tail page is also the on the
2362                          * reader_page, we let it move out.
2363                          */
2364                         if (unlikely((cpu_buffer->commit_page !=
2365                                       cpu_buffer->tail_page) &&
2366                                      (cpu_buffer->commit_page ==
2367                                       cpu_buffer->reader_page))) {
2368                                 local_inc(&cpu_buffer->commit_overrun);
2369                                 goto out_reset;
2370                         }
2371                 }
2372         }
2373
2374         ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2375         if (ret) {
2376                 /*
2377                  * Nested commits always have zero deltas, so
2378                  * just reread the time stamp
2379                  */
2380                 ts = rb_time_stamp(buffer);
2381                 next_page->page->time_stamp = ts;
2382         }
2383
2384  out_again:
2385
2386         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2387
2388         /* fail and let the caller try again */
2389         return ERR_PTR(-EAGAIN);
2390
2391  out_reset:
2392         /* reset write */
2393         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2394
2395         return NULL;
2396 }
2397
2398 static struct ring_buffer_event *
2399 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2400                   unsigned long length, u64 ts,
2401                   u64 delta, int add_timestamp)
2402 {
2403         struct buffer_page *tail_page;
2404         struct ring_buffer_event *event;
2405         unsigned long tail, write;
2406
2407         /*
2408          * If the time delta since the last event is too big to
2409          * hold in the time field of the event, then we append a
2410          * TIME EXTEND event ahead of the data event.
2411          */
2412         if (unlikely(add_timestamp))
2413                 length += RB_LEN_TIME_EXTEND;
2414
2415         tail_page = cpu_buffer->tail_page;
2416         write = local_add_return(length, &tail_page->write);
2417
2418         /* set write to only the index of the write */
2419         write &= RB_WRITE_MASK;
2420         tail = write - length;
2421
2422         /*
2423          * If this is the first commit on the page, then it has the same
2424          * timestamp as the page itself.
2425          */
2426         if (!tail)
2427                 delta = 0;
2428
2429         /* See if we shot pass the end of this buffer page */
2430         if (unlikely(write > BUF_PAGE_SIZE))
2431                 return rb_move_tail(cpu_buffer, length, tail,
2432                                     tail_page, ts);
2433
2434         /* We reserved something on the buffer */
2435
2436         event = __rb_page_index(tail_page, tail);
2437         kmemcheck_annotate_bitfield(event, bitfield);
2438         rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2439
2440         local_inc(&tail_page->entries);
2441
2442         /*
2443          * If this is the first commit on the page, then update
2444          * its timestamp.
2445          */
2446         if (!tail)
2447                 tail_page->page->time_stamp = ts;
2448
2449         /* account for these added bytes */
2450         local_add(length, &cpu_buffer->entries_bytes);
2451
2452         return event;
2453 }
2454
2455 static inline int
2456 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2457                   struct ring_buffer_event *event)
2458 {
2459         unsigned long new_index, old_index;
2460         struct buffer_page *bpage;
2461         unsigned long index;
2462         unsigned long addr;
2463
2464         new_index = rb_event_index(event);
2465         old_index = new_index + rb_event_ts_length(event);
2466         addr = (unsigned long)event;
2467         addr &= PAGE_MASK;
2468
2469         bpage = cpu_buffer->tail_page;
2470
2471         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2472                 unsigned long write_mask =
2473                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2474                 unsigned long event_length = rb_event_length(event);
2475                 /*
2476                  * This is on the tail page. It is possible that
2477                  * a write could come in and move the tail page
2478                  * and write to the next page. That is fine
2479                  * because we just shorten what is on this page.
2480                  */
2481                 old_index += write_mask;
2482                 new_index += write_mask;
2483                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2484                 if (index == old_index) {
2485                         /* update counters */
2486                         local_sub(event_length, &cpu_buffer->entries_bytes);
2487                         return 1;
2488                 }
2489         }
2490
2491         /* could not discard */
2492         return 0;
2493 }
2494
2495 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2496 {
2497         local_inc(&cpu_buffer->committing);
2498         local_inc(&cpu_buffer->commits);
2499 }
2500
2501 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2502 {
2503         unsigned long commits;
2504
2505         if (RB_WARN_ON(cpu_buffer,
2506                        !local_read(&cpu_buffer->committing)))
2507                 return;
2508
2509  again:
2510         commits = local_read(&cpu_buffer->commits);
2511         /* synchronize with interrupts */
2512         barrier();
2513         if (local_read(&cpu_buffer->committing) == 1)
2514                 rb_set_commit_to_write(cpu_buffer);
2515
2516         local_dec(&cpu_buffer->committing);
2517
2518         /* synchronize with interrupts */
2519         barrier();
2520
2521         /*
2522          * Need to account for interrupts coming in between the
2523          * updating of the commit page and the clearing of the
2524          * committing counter.
2525          */
2526         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2527             !local_read(&cpu_buffer->committing)) {
2528                 local_inc(&cpu_buffer->committing);
2529                 goto again;
2530         }
2531 }
2532
2533 static struct ring_buffer_event *
2534 rb_reserve_next_event(struct ring_buffer *buffer,
2535                       struct ring_buffer_per_cpu *cpu_buffer,
2536                       unsigned long length)
2537 {
2538         struct ring_buffer_event *event;
2539         u64 ts, delta;
2540         int nr_loops = 0;
2541         int add_timestamp;
2542         u64 diff;
2543
2544         rb_start_commit(cpu_buffer);
2545
2546 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2547         /*
2548          * Due to the ability to swap a cpu buffer from a buffer
2549          * it is possible it was swapped before we committed.
2550          * (committing stops a swap). We check for it here and
2551          * if it happened, we have to fail the write.
2552          */
2553         barrier();
2554         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2555                 local_dec(&cpu_buffer->committing);
2556                 local_dec(&cpu_buffer->commits);
2557                 return NULL;
2558         }
2559 #endif
2560
2561         length = rb_calculate_event_length(length);
2562  again:
2563         add_timestamp = 0;
2564         delta = 0;
2565
2566         /*
2567          * We allow for interrupts to reenter here and do a trace.
2568          * If one does, it will cause this original code to loop
2569          * back here. Even with heavy interrupts happening, this
2570          * should only happen a few times in a row. If this happens
2571          * 1000 times in a row, there must be either an interrupt
2572          * storm or we have something buggy.
2573          * Bail!
2574          */
2575         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2576                 goto out_fail;
2577
2578         ts = rb_time_stamp(cpu_buffer->buffer);
2579         diff = ts - cpu_buffer->write_stamp;
2580
2581         /* make sure this diff is calculated here */
2582         barrier();
2583
2584         /* Did the write stamp get updated already? */
2585         if (likely(ts >= cpu_buffer->write_stamp)) {
2586                 delta = diff;
2587                 if (unlikely(test_time_stamp(delta))) {
2588                         int local_clock_stable = 1;
2589 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2590                         local_clock_stable = sched_clock_stable();
2591 #endif
2592                         WARN_ONCE(delta > (1ULL << 59),
2593                                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2594                                   (unsigned long long)delta,
2595                                   (unsigned long long)ts,
2596                                   (unsigned long long)cpu_buffer->write_stamp,
2597                                   local_clock_stable ? "" :
2598                                   "If you just came from a suspend/resume,\n"
2599                                   "please switch to the trace global clock:\n"
2600                                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2601                         add_timestamp = 1;
2602                 }
2603         }
2604
2605         event = __rb_reserve_next(cpu_buffer, length, ts,
2606                                   delta, add_timestamp);
2607         if (unlikely(PTR_ERR(event) == -EAGAIN))
2608                 goto again;
2609
2610         if (!event)
2611                 goto out_fail;
2612
2613         return event;
2614
2615  out_fail:
2616         rb_end_commit(cpu_buffer);
2617         return NULL;
2618 }
2619
2620 #ifdef CONFIG_TRACING
2621
2622 /*
2623  * The lock and unlock are done within a preempt disable section.
2624  * The current_context per_cpu variable can only be modified
2625  * by the current task between lock and unlock. But it can
2626  * be modified more than once via an interrupt. To pass this
2627  * information from the lock to the unlock without having to
2628  * access the 'in_interrupt()' functions again (which do show
2629  * a bit of overhead in something as critical as function tracing,
2630  * we use a bitmask trick.
2631  *
2632  *  bit 0 =  NMI context
2633  *  bit 1 =  IRQ context
2634  *  bit 2 =  SoftIRQ context
2635  *  bit 3 =  normal context.
2636  *
2637  * This works because this is the order of contexts that can
2638  * preempt other contexts. A SoftIRQ never preempts an IRQ
2639  * context.
2640  *
2641  * When the context is determined, the corresponding bit is
2642  * checked and set (if it was set, then a recursion of that context
2643  * happened).
2644  *
2645  * On unlock, we need to clear this bit. To do so, just subtract
2646  * 1 from the current_context and AND it to itself.
2647  *
2648  * (binary)
2649  *  101 - 1 = 100
2650  *  101 & 100 = 100 (clearing bit zero)
2651  *
2652  *  1010 - 1 = 1001
2653  *  1010 & 1001 = 1000 (clearing bit 1)
2654  *
2655  * The least significant bit can be cleared this way, and it
2656  * just so happens that it is the same bit corresponding to
2657  * the current context.
2658  */
2659 static DEFINE_PER_CPU(unsigned int, current_context);
2660
2661 static __always_inline int trace_recursive_lock(void)
2662 {
2663         unsigned int val = this_cpu_read(current_context);
2664         int bit;
2665
2666         if (in_interrupt()) {
2667                 if (in_nmi())
2668                         bit = 0;
2669                 else if (in_irq())
2670                         bit = 1;
2671                 else
2672                         bit = 2;
2673         } else
2674                 bit = 3;
2675
2676         if (unlikely(val & (1 << bit)))
2677                 return 1;
2678
2679         val |= (1 << bit);
2680         this_cpu_write(current_context, val);
2681
2682         return 0;
2683 }
2684
2685 static __always_inline void trace_recursive_unlock(void)
2686 {
2687         unsigned int val = this_cpu_read(current_context);
2688
2689         val--;
2690         val &= this_cpu_read(current_context);
2691         this_cpu_write(current_context, val);
2692 }
2693
2694 #else
2695
2696 #define trace_recursive_lock()          (0)
2697 #define trace_recursive_unlock()        do { } while (0)
2698
2699 #endif
2700
2701 /**
2702  * ring_buffer_lock_reserve - reserve a part of the buffer
2703  * @buffer: the ring buffer to reserve from
2704  * @length: the length of the data to reserve (excluding event header)
2705  *
2706  * Returns a reseverd event on the ring buffer to copy directly to.
2707  * The user of this interface will need to get the body to write into
2708  * and can use the ring_buffer_event_data() interface.
2709  *
2710  * The length is the length of the data needed, not the event length
2711  * which also includes the event header.
2712  *
2713  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2714  * If NULL is returned, then nothing has been allocated or locked.
2715  */
2716 struct ring_buffer_event *
2717 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2718 {
2719         struct ring_buffer_per_cpu *cpu_buffer;
2720         struct ring_buffer_event *event;
2721         int cpu;
2722
2723         if (ring_buffer_flags != RB_BUFFERS_ON)
2724                 return NULL;
2725
2726         /* If we are tracing schedule, we don't want to recurse */
2727         preempt_disable_notrace();
2728
2729         if (atomic_read(&buffer->record_disabled))
2730                 goto out_nocheck;
2731
2732         if (trace_recursive_lock())
2733                 goto out_nocheck;
2734
2735         cpu = raw_smp_processor_id();
2736
2737         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2738                 goto out;
2739
2740         cpu_buffer = buffer->buffers[cpu];
2741
2742         if (atomic_read(&cpu_buffer->record_disabled))
2743                 goto out;
2744
2745         if (length > BUF_MAX_DATA_SIZE)
2746                 goto out;
2747
2748         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2749         if (!event)
2750                 goto out;
2751
2752         return event;
2753
2754  out:
2755         trace_recursive_unlock();
2756
2757  out_nocheck:
2758         preempt_enable_notrace();
2759         return NULL;
2760 }
2761 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2762
2763 static void
2764 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2765                       struct ring_buffer_event *event)
2766 {
2767         u64 delta;
2768
2769         /*
2770          * The event first in the commit queue updates the
2771          * time stamp.
2772          */
2773         if (rb_event_is_commit(cpu_buffer, event)) {
2774                 /*
2775                  * A commit event that is first on a page
2776                  * updates the write timestamp with the page stamp
2777                  */
2778                 if (!rb_event_index(event))
2779                         cpu_buffer->write_stamp =
2780                                 cpu_buffer->commit_page->page->time_stamp;
2781                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2782                         delta = event->array[0];
2783                         delta <<= TS_SHIFT;
2784                         delta += event->time_delta;
2785                         cpu_buffer->write_stamp += delta;
2786                 } else
2787                         cpu_buffer->write_stamp += event->time_delta;
2788         }
2789 }
2790
2791 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2792                       struct ring_buffer_event *event)
2793 {
2794         local_inc(&cpu_buffer->entries);
2795         rb_update_write_stamp(cpu_buffer, event);
2796         rb_end_commit(cpu_buffer);
2797 }
2798
2799 static __always_inline void
2800 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2801 {
2802         if (buffer->irq_work.waiters_pending) {
2803                 buffer->irq_work.waiters_pending = false;
2804                 /* irq_work_queue() supplies it's own memory barriers */
2805                 irq_work_queue(&buffer->irq_work.work);
2806         }
2807
2808         if (cpu_buffer->irq_work.waiters_pending) {
2809                 cpu_buffer->irq_work.waiters_pending = false;
2810                 /* irq_work_queue() supplies it's own memory barriers */
2811                 irq_work_queue(&cpu_buffer->irq_work.work);
2812         }
2813 }
2814
2815 /**
2816  * ring_buffer_unlock_commit - commit a reserved
2817  * @buffer: The buffer to commit to
2818  * @event: The event pointer to commit.
2819  *
2820  * This commits the data to the ring buffer, and releases any locks held.
2821  *
2822  * Must be paired with ring_buffer_lock_reserve.
2823  */
2824 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2825                               struct ring_buffer_event *event)
2826 {
2827         struct ring_buffer_per_cpu *cpu_buffer;
2828         int cpu = raw_smp_processor_id();
2829
2830         cpu_buffer = buffer->buffers[cpu];
2831
2832         rb_commit(cpu_buffer, event);
2833
2834         rb_wakeups(buffer, cpu_buffer);
2835
2836         trace_recursive_unlock();
2837
2838         preempt_enable_notrace();
2839
2840         return 0;
2841 }
2842 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2843
2844 static inline void rb_event_discard(struct ring_buffer_event *event)
2845 {
2846         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2847                 event = skip_time_extend(event);
2848
2849         /* array[0] holds the actual length for the discarded event */
2850         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2851         event->type_len = RINGBUF_TYPE_PADDING;
2852         /* time delta must be non zero */
2853         if (!event->time_delta)
2854                 event->time_delta = 1;
2855 }
2856
2857 /*
2858  * Decrement the entries to the page that an event is on.
2859  * The event does not even need to exist, only the pointer
2860  * to the page it is on. This may only be called before the commit
2861  * takes place.
2862  */
2863 static inline void
2864 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2865                    struct ring_buffer_event *event)
2866 {
2867         unsigned long addr = (unsigned long)event;
2868         struct buffer_page *bpage = cpu_buffer->commit_page;
2869         struct buffer_page *start;
2870
2871         addr &= PAGE_MASK;
2872
2873         /* Do the likely case first */
2874         if (likely(bpage->page == (void *)addr)) {
2875                 local_dec(&bpage->entries);
2876                 return;
2877         }
2878
2879         /*
2880          * Because the commit page may be on the reader page we
2881          * start with the next page and check the end loop there.
2882          */
2883         rb_inc_page(cpu_buffer, &bpage);
2884         start = bpage;
2885         do {
2886                 if (bpage->page == (void *)addr) {
2887                         local_dec(&bpage->entries);
2888                         return;
2889                 }
2890                 rb_inc_page(cpu_buffer, &bpage);
2891         } while (bpage != start);
2892
2893         /* commit not part of this buffer?? */
2894         RB_WARN_ON(cpu_buffer, 1);
2895 }
2896
2897 /**
2898  * ring_buffer_commit_discard - discard an event that has not been committed
2899  * @buffer: the ring buffer
2900  * @event: non committed event to discard
2901  *
2902  * Sometimes an event that is in the ring buffer needs to be ignored.
2903  * This function lets the user discard an event in the ring buffer
2904  * and then that event will not be read later.
2905  *
2906  * This function only works if it is called before the the item has been
2907  * committed. It will try to free the event from the ring buffer
2908  * if another event has not been added behind it.
2909  *
2910  * If another event has been added behind it, it will set the event
2911  * up as discarded, and perform the commit.
2912  *
2913  * If this function is called, do not call ring_buffer_unlock_commit on
2914  * the event.
2915  */
2916 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2917                                 struct ring_buffer_event *event)
2918 {
2919         struct ring_buffer_per_cpu *cpu_buffer;
2920         int cpu;
2921
2922         /* The event is discarded regardless */
2923         rb_event_discard(event);
2924
2925         cpu = smp_processor_id();
2926         cpu_buffer = buffer->buffers[cpu];
2927
2928         /*
2929          * This must only be called if the event has not been
2930          * committed yet. Thus we can assume that preemption
2931          * is still disabled.
2932          */
2933         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2934
2935         rb_decrement_entry(cpu_buffer, event);
2936         if (rb_try_to_discard(cpu_buffer, event))
2937                 goto out;
2938
2939         /*
2940          * The commit is still visible by the reader, so we
2941          * must still update the timestamp.
2942          */
2943         rb_update_write_stamp(cpu_buffer, event);
2944  out:
2945         rb_end_commit(cpu_buffer);
2946
2947         trace_recursive_unlock();
2948
2949         preempt_enable_notrace();
2950
2951 }
2952 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2953
2954 /**
2955  * ring_buffer_write - write data to the buffer without reserving
2956  * @buffer: The ring buffer to write to.
2957  * @length: The length of the data being written (excluding the event header)
2958  * @data: The data to write to the buffer.
2959  *
2960  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2961  * one function. If you already have the data to write to the buffer, it
2962  * may be easier to simply call this function.
2963  *
2964  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2965  * and not the length of the event which would hold the header.
2966  */
2967 int ring_buffer_write(struct ring_buffer *buffer,
2968                       unsigned long length,
2969                       void *data)
2970 {
2971         struct ring_buffer_per_cpu *cpu_buffer;
2972         struct ring_buffer_event *event;
2973         void *body;
2974         int ret = -EBUSY;
2975         int cpu;
2976
2977         if (ring_buffer_flags != RB_BUFFERS_ON)
2978                 return -EBUSY;
2979
2980         preempt_disable_notrace();
2981
2982         if (atomic_read(&buffer->record_disabled))
2983                 goto out;
2984
2985         cpu = raw_smp_processor_id();
2986
2987         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2988                 goto out;
2989
2990         cpu_buffer = buffer->buffers[cpu];
2991
2992         if (atomic_read(&cpu_buffer->record_disabled))
2993                 goto out;
2994
2995         if (length > BUF_MAX_DATA_SIZE)
2996                 goto out;
2997
2998         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2999         if (!event)
3000                 goto out;
3001
3002         body = rb_event_data(event);
3003
3004         memcpy(body, data, length);
3005
3006         rb_commit(cpu_buffer, event);
3007
3008         rb_wakeups(buffer, cpu_buffer);
3009
3010         ret = 0;
3011  out:
3012         preempt_enable_notrace();
3013
3014         return ret;
3015 }
3016 EXPORT_SYMBOL_GPL(ring_buffer_write);
3017
3018 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3019 {
3020         struct buffer_page *reader = cpu_buffer->reader_page;
3021         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3022         struct buffer_page *commit = cpu_buffer->commit_page;
3023
3024         /* In case of error, head will be NULL */
3025         if (unlikely(!head))
3026                 return 1;
3027
3028         return reader->read == rb_page_commit(reader) &&
3029                 (commit == reader ||
3030                  (commit == head &&
3031                   head->read == rb_page_commit(commit)));
3032 }
3033
3034 /**
3035  * ring_buffer_record_disable - stop all writes into the buffer
3036  * @buffer: The ring buffer to stop writes to.
3037  *
3038  * This prevents all writes to the buffer. Any attempt to write
3039  * to the buffer after this will fail and return NULL.
3040  *
3041  * The caller should call synchronize_sched() after this.
3042  */
3043 void ring_buffer_record_disable(struct ring_buffer *buffer)
3044 {
3045         atomic_inc(&buffer->record_disabled);
3046 }
3047 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3048
3049 /**
3050  * ring_buffer_record_enable - enable writes to the buffer
3051  * @buffer: The ring buffer to enable writes
3052  *
3053  * Note, multiple disables will need the same number of enables
3054  * to truly enable the writing (much like preempt_disable).
3055  */
3056 void ring_buffer_record_enable(struct ring_buffer *buffer)
3057 {
3058         atomic_dec(&buffer->record_disabled);
3059 }
3060 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3061
3062 /**
3063  * ring_buffer_record_off - stop all writes into the buffer
3064  * @buffer: The ring buffer to stop writes to.
3065  *
3066  * This prevents all writes to the buffer. Any attempt to write
3067  * to the buffer after this will fail and return NULL.
3068  *
3069  * This is different than ring_buffer_record_disable() as
3070  * it works like an on/off switch, where as the disable() version
3071  * must be paired with a enable().
3072  */
3073 void ring_buffer_record_off(struct ring_buffer *buffer)
3074 {
3075         unsigned int rd;
3076         unsigned int new_rd;
3077
3078         do {
3079                 rd = atomic_read(&buffer->record_disabled);
3080                 new_rd = rd | RB_BUFFER_OFF;
3081         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3082 }
3083 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3084
3085 /**
3086  * ring_buffer_record_on - restart writes into the buffer
3087  * @buffer: The ring buffer to start writes to.
3088  *
3089  * This enables all writes to the buffer that was disabled by
3090  * ring_buffer_record_off().
3091  *
3092  * This is different than ring_buffer_record_enable() as
3093  * it works like an on/off switch, where as the enable() version
3094  * must be paired with a disable().
3095  */
3096 void ring_buffer_record_on(struct ring_buffer *buffer)
3097 {
3098         unsigned int rd;
3099         unsigned int new_rd;
3100
3101         do {
3102                 rd = atomic_read(&buffer->record_disabled);
3103                 new_rd = rd & ~RB_BUFFER_OFF;
3104         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3105 }
3106 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3107
3108 /**
3109  * ring_buffer_record_is_on - return true if the ring buffer can write
3110  * @buffer: The ring buffer to see if write is enabled
3111  *
3112  * Returns true if the ring buffer is in a state that it accepts writes.
3113  */
3114 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3115 {
3116         return !atomic_read(&buffer->record_disabled);
3117 }
3118
3119 /**
3120  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3121  * @buffer: The ring buffer to stop writes to.
3122  * @cpu: The CPU buffer to stop
3123  *
3124  * This prevents all writes to the buffer. Any attempt to write
3125  * to the buffer after this will fail and return NULL.
3126  *
3127  * The caller should call synchronize_sched() after this.
3128  */
3129 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3130 {
3131         struct ring_buffer_per_cpu *cpu_buffer;
3132
3133         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3134                 return;
3135
3136         cpu_buffer = buffer->buffers[cpu];
3137         atomic_inc(&cpu_buffer->record_disabled);
3138 }
3139 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3140
3141 /**
3142  * ring_buffer_record_enable_cpu - enable writes to the buffer
3143  * @buffer: The ring buffer to enable writes
3144  * @cpu: The CPU to enable.
3145  *
3146  * Note, multiple disables will need the same number of enables
3147  * to truly enable the writing (much like preempt_disable).
3148  */
3149 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3150 {
3151         struct ring_buffer_per_cpu *cpu_buffer;
3152
3153         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3154                 return;
3155
3156         cpu_buffer = buffer->buffers[cpu];
3157         atomic_dec(&cpu_buffer->record_disabled);
3158 }
3159 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3160
3161 /*
3162  * The total entries in the ring buffer is the running counter
3163  * of entries entered into the ring buffer, minus the sum of
3164  * the entries read from the ring buffer and the number of
3165  * entries that were overwritten.
3166  */
3167 static inline unsigned long
3168 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3169 {
3170         return local_read(&cpu_buffer->entries) -
3171                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3172 }
3173
3174 /**
3175  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3176  * @buffer: The ring buffer
3177  * @cpu: The per CPU buffer to read from.
3178  */
3179 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3180 {
3181         unsigned long flags;
3182         struct ring_buffer_per_cpu *cpu_buffer;
3183         struct buffer_page *bpage;
3184         u64 ret = 0;
3185
3186         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3187                 return 0;
3188
3189         cpu_buffer = buffer->buffers[cpu];
3190         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3191         /*
3192          * if the tail is on reader_page, oldest time stamp is on the reader
3193          * page
3194          */
3195         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3196                 bpage = cpu_buffer->reader_page;
3197         else
3198                 bpage = rb_set_head_page(cpu_buffer);
3199         if (bpage)
3200                 ret = bpage->page->time_stamp;
3201         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3202
3203         return ret;
3204 }
3205 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3206
3207 /**
3208  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3209  * @buffer: The ring buffer
3210  * @cpu: The per CPU buffer to read from.
3211  */
3212 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3213 {
3214         struct ring_buffer_per_cpu *cpu_buffer;
3215         unsigned long ret;
3216
3217         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3218                 return 0;
3219
3220         cpu_buffer = buffer->buffers[cpu];
3221         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3222
3223         return ret;
3224 }
3225 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3226
3227 /**
3228  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3229  * @buffer: The ring buffer
3230  * @cpu: The per CPU buffer to get the entries from.
3231  */
3232 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3233 {
3234         struct ring_buffer_per_cpu *cpu_buffer;
3235
3236         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3237                 return 0;
3238
3239         cpu_buffer = buffer->buffers[cpu];
3240
3241         return rb_num_of_entries(cpu_buffer);
3242 }
3243 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3244
3245 /**
3246  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3247  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3248  * @buffer: The ring buffer
3249  * @cpu: The per CPU buffer to get the number of overruns from
3250  */
3251 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3252 {
3253         struct ring_buffer_per_cpu *cpu_buffer;
3254         unsigned long ret;
3255
3256         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3257                 return 0;
3258
3259         cpu_buffer = buffer->buffers[cpu];
3260         ret = local_read(&cpu_buffer->overrun);
3261
3262         return ret;
3263 }
3264 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3265
3266 /**
3267  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3268  * commits failing due to the buffer wrapping around while there are uncommitted
3269  * events, such as during an interrupt storm.
3270  * @buffer: The ring buffer
3271  * @cpu: The per CPU buffer to get the number of overruns from
3272  */
3273 unsigned long
3274 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3275 {
3276         struct ring_buffer_per_cpu *cpu_buffer;
3277         unsigned long ret;
3278
3279         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3280                 return 0;
3281
3282         cpu_buffer = buffer->buffers[cpu];
3283         ret = local_read(&cpu_buffer->commit_overrun);
3284
3285         return ret;
3286 }
3287 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3288
3289 /**
3290  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3291  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3292  * @buffer: The ring buffer
3293  * @cpu: The per CPU buffer to get the number of overruns from
3294  */
3295 unsigned long
3296 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3297 {
3298         struct ring_buffer_per_cpu *cpu_buffer;
3299         unsigned long ret;
3300
3301         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3302                 return 0;
3303
3304         cpu_buffer = buffer->buffers[cpu];
3305         ret = local_read(&cpu_buffer->dropped_events);
3306
3307         return ret;
3308 }
3309 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3310
3311 /**
3312  * ring_buffer_read_events_cpu - get the number of events successfully read
3313  * @buffer: The ring buffer
3314  * @cpu: The per CPU buffer to get the number of events read
3315  */
3316 unsigned long
3317 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3318 {
3319         struct ring_buffer_per_cpu *cpu_buffer;
3320
3321         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3322                 return 0;
3323
3324         cpu_buffer = buffer->buffers[cpu];
3325         return cpu_buffer->read;
3326 }
3327 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3328
3329 /**
3330  * ring_buffer_entries - get the number of entries in a buffer
3331  * @buffer: The ring buffer
3332  *
3333  * Returns the total number of entries in the ring buffer
3334  * (all CPU entries)
3335  */
3336 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3337 {
3338         struct ring_buffer_per_cpu *cpu_buffer;
3339         unsigned long entries = 0;
3340         int cpu;
3341
3342         /* if you care about this being correct, lock the buffer */
3343         for_each_buffer_cpu(buffer, cpu) {
3344                 cpu_buffer = buffer->buffers[cpu];
3345                 entries += rb_num_of_entries(cpu_buffer);
3346         }
3347
3348         return entries;
3349 }
3350 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3351
3352 /**
3353  * ring_buffer_overruns - get the number of overruns in buffer
3354  * @buffer: The ring buffer
3355  *
3356  * Returns the total number of overruns in the ring buffer
3357  * (all CPU entries)
3358  */
3359 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3360 {
3361         struct ring_buffer_per_cpu *cpu_buffer;
3362         unsigned long overruns = 0;
3363         int cpu;
3364
3365         /* if you care about this being correct, lock the buffer */
3366         for_each_buffer_cpu(buffer, cpu) {
3367                 cpu_buffer = buffer->buffers[cpu];
3368                 overruns += local_read(&cpu_buffer->overrun);
3369         }
3370
3371         return overruns;
3372 }
3373 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3374
3375 static void rb_iter_reset(struct ring_buffer_iter *iter)
3376 {
3377         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3378
3379         /* Iterator usage is expected to have record disabled */
3380         iter->head_page = cpu_buffer->reader_page;
3381         iter->head = cpu_buffer->reader_page->read;
3382
3383         iter->cache_reader_page = iter->head_page;
3384         iter->cache_read = cpu_buffer->read;
3385
3386         if (iter->head)
3387                 iter->read_stamp = cpu_buffer->read_stamp;
3388         else
3389                 iter->read_stamp = iter->head_page->page->time_stamp;
3390 }
3391
3392 /**
3393  * ring_buffer_iter_reset - reset an iterator
3394  * @iter: The iterator to reset
3395  *
3396  * Resets the iterator, so that it will start from the beginning
3397  * again.
3398  */
3399 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3400 {
3401         struct ring_buffer_per_cpu *cpu_buffer;
3402         unsigned long flags;
3403
3404         if (!iter)
3405                 return;
3406
3407         cpu_buffer = iter->cpu_buffer;
3408
3409         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3410         rb_iter_reset(iter);
3411         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3412 }
3413 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3414
3415 /**
3416  * ring_buffer_iter_empty - check if an iterator has no more to read
3417  * @iter: The iterator to check
3418  */
3419 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3420 {
3421         struct ring_buffer_per_cpu *cpu_buffer;
3422
3423         cpu_buffer = iter->cpu_buffer;
3424
3425         return iter->head_page == cpu_buffer->commit_page &&
3426                 iter->head == rb_commit_index(cpu_buffer);
3427 }
3428 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3429
3430 static void
3431 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3432                      struct ring_buffer_event *event)
3433 {
3434         u64 delta;
3435
3436         switch (event->type_len) {
3437         case RINGBUF_TYPE_PADDING:
3438                 return;
3439
3440         case RINGBUF_TYPE_TIME_EXTEND:
3441                 delta = event->array[0];
3442                 delta <<= TS_SHIFT;
3443                 delta += event->time_delta;
3444                 cpu_buffer->read_stamp += delta;
3445                 return;
3446
3447         case RINGBUF_TYPE_TIME_STAMP:
3448                 /* FIXME: not implemented */
3449                 return;
3450
3451         case RINGBUF_TYPE_DATA:
3452                 cpu_buffer->read_stamp += event->time_delta;
3453                 return;
3454
3455         default:
3456                 BUG();
3457         }
3458         return;
3459 }
3460
3461 static void
3462 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3463                           struct ring_buffer_event *event)
3464 {
3465         u64 delta;
3466
3467         switch (event->type_len) {
3468         case RINGBUF_TYPE_PADDING:
3469                 return;
3470
3471         case RINGBUF_TYPE_TIME_EXTEND:
3472                 delta = event->array[0];
3473                 delta <<= TS_SHIFT;
3474                 delta += event->time_delta;
3475                 iter->read_stamp += delta;
3476                 return;
3477
3478         case RINGBUF_TYPE_TIME_STAMP:
3479                 /* FIXME: not implemented */
3480                 return;
3481
3482         case RINGBUF_TYPE_DATA:
3483                 iter->read_stamp += event->time_delta;
3484                 return;
3485
3486         default:
3487                 BUG();
3488         }
3489         return;
3490 }
3491
3492 static struct buffer_page *
3493 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3494 {
3495         struct buffer_page *reader = NULL;
3496         unsigned long overwrite;
3497         unsigned long flags;
3498         int nr_loops = 0;
3499         int ret;
3500
3501         local_irq_save(flags);
3502         arch_spin_lock(&cpu_buffer->lock);
3503
3504  again:
3505         /*
3506          * This should normally only loop twice. But because the
3507          * start of the reader inserts an empty page, it causes
3508          * a case where we will loop three times. There should be no
3509          * reason to loop four times (that I know of).
3510          */
3511         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3512                 reader = NULL;
3513                 goto out;
3514         }
3515
3516         reader = cpu_buffer->reader_page;
3517
3518         /* If there's more to read, return this page */
3519         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3520                 goto out;
3521
3522         /* Never should we have an index greater than the size */
3523         if (RB_WARN_ON(cpu_buffer,
3524                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3525                 goto out;
3526
3527         /* check if we caught up to the tail */
3528         reader = NULL;
3529         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3530                 goto out;
3531
3532         /* Don't bother swapping if the ring buffer is empty */
3533         if (rb_num_of_entries(cpu_buffer) == 0)
3534                 goto out;
3535
3536         /*
3537          * Reset the reader page to size zero.
3538          */
3539         local_set(&cpu_buffer->reader_page->write, 0);
3540         local_set(&cpu_buffer->reader_page->entries, 0);
3541         local_set(&cpu_buffer->reader_page->page->commit, 0);
3542         cpu_buffer->reader_page->real_end = 0;
3543
3544  spin:
3545         /*
3546          * Splice the empty reader page into the list around the head.
3547          */
3548         reader = rb_set_head_page(cpu_buffer);
3549         if (!reader)
3550                 goto out;
3551         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3552         cpu_buffer->reader_page->list.prev = reader->list.prev;
3553
3554         /*
3555          * cpu_buffer->pages just needs to point to the buffer, it
3556          *  has no specific buffer page to point to. Lets move it out
3557          *  of our way so we don't accidentally swap it.
3558          */
3559         cpu_buffer->pages = reader->list.prev;
3560
3561         /* The reader page will be pointing to the new head */
3562         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3563
3564         /*
3565          * We want to make sure we read the overruns after we set up our
3566          * pointers to the next object. The writer side does a
3567          * cmpxchg to cross pages which acts as the mb on the writer
3568          * side. Note, the reader will constantly fail the swap
3569          * while the writer is updating the pointers, so this
3570          * guarantees that the overwrite recorded here is the one we
3571          * want to compare with the last_overrun.
3572          */
3573         smp_mb();
3574         overwrite = local_read(&(cpu_buffer->overrun));
3575
3576         /*
3577          * Here's the tricky part.
3578          *
3579          * We need to move the pointer past the header page.
3580          * But we can only do that if a writer is not currently
3581          * moving it. The page before the header page has the
3582          * flag bit '1' set if it is pointing to the page we want.
3583          * but if the writer is in the process of moving it
3584          * than it will be '2' or already moved '0'.
3585          */
3586
3587         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3588
3589         /*
3590          * If we did not convert it, then we must try again.
3591          */
3592         if (!ret)
3593                 goto spin;
3594
3595         /*
3596          * Yeah! We succeeded in replacing the page.
3597          *
3598          * Now make the new head point back to the reader page.
3599          */
3600         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3601         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3602
3603         /* Finally update the reader page to the new head */
3604         cpu_buffer->reader_page = reader;
3605         rb_reset_reader_page(cpu_buffer);
3606
3607         if (overwrite != cpu_buffer->last_overrun) {
3608                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3609                 cpu_buffer->last_overrun = overwrite;
3610         }
3611
3612         goto again;
3613
3614  out:
3615         arch_spin_unlock(&cpu_buffer->lock);
3616         local_irq_restore(flags);
3617
3618         return reader;
3619 }
3620
3621 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3622 {
3623         struct ring_buffer_event *event;
3624         struct buffer_page *reader;
3625         unsigned length;
3626
3627         reader = rb_get_reader_page(cpu_buffer);
3628
3629         /* This function should not be called when buffer is empty */
3630         if (RB_WARN_ON(cpu_buffer, !reader))
3631                 return;
3632
3633         event = rb_reader_event(cpu_buffer);
3634
3635         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3636                 cpu_buffer->read++;
3637
3638         rb_update_read_stamp(cpu_buffer, event);
3639
3640         length = rb_event_length(event);
3641         cpu_buffer->reader_page->read += length;
3642 }
3643
3644 static void rb_advance_iter(struct ring_buffer_iter *iter)
3645 {
3646         struct ring_buffer_per_cpu *cpu_buffer;
3647         struct ring_buffer_event *event;
3648         unsigned length;
3649
3650         cpu_buffer = iter->cpu_buffer;
3651
3652         /*
3653          * Check if we are at the end of the buffer.
3654          */
3655         if (iter->head >= rb_page_size(iter->head_page)) {
3656                 /* discarded commits can make the page empty */
3657                 if (iter->head_page == cpu_buffer->commit_page)
3658                         return;
3659                 rb_inc_iter(iter);
3660                 return;
3661         }
3662
3663         event = rb_iter_head_event(iter);
3664
3665         length = rb_event_length(event);
3666
3667         /*
3668          * This should not be called to advance the header if we are
3669          * at the tail of the buffer.
3670          */
3671         if (RB_WARN_ON(cpu_buffer,
3672                        (iter->head_page == cpu_buffer->commit_page) &&
3673                        (iter->head + length > rb_commit_index(cpu_buffer))))
3674                 return;
3675
3676         rb_update_iter_read_stamp(iter, event);
3677
3678         iter->head += length;
3679
3680         /* check for end of page padding */
3681         if ((iter->head >= rb_page_size(iter->head_page)) &&
3682             (iter->head_page != cpu_buffer->commit_page))
3683                 rb_inc_iter(iter);
3684 }
3685
3686 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3687 {
3688         return cpu_buffer->lost_events;
3689 }
3690
3691 static struct ring_buffer_event *
3692 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3693                unsigned long *lost_events)
3694 {
3695         struct ring_buffer_event *event;
3696         struct buffer_page *reader;
3697         int nr_loops = 0;
3698
3699  again:
3700         /*
3701          * We repeat when a time extend is encountered.
3702          * Since the time extend is always attached to a data event,
3703          * we should never loop more than once.
3704          * (We never hit the following condition more than twice).
3705          */
3706         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3707                 return NULL;
3708
3709         reader = rb_get_reader_page(cpu_buffer);
3710         if (!reader)
3711                 return NULL;
3712
3713         event = rb_reader_event(cpu_buffer);
3714
3715         switch (event->type_len) {
3716         case RINGBUF_TYPE_PADDING:
3717                 if (rb_null_event(event))
3718                         RB_WARN_ON(cpu_buffer, 1);
3719                 /*
3720                  * Because the writer could be discarding every
3721                  * event it creates (which would probably be bad)
3722                  * if we were to go back to "again" then we may never
3723                  * catch up, and will trigger the warn on, or lock
3724                  * the box. Return the padding, and we will release
3725                  * the current locks, and try again.
3726                  */
3727                 return event;
3728
3729         case RINGBUF_TYPE_TIME_EXTEND:
3730                 /* Internal data, OK to advance */
3731                 rb_advance_reader(cpu_buffer);
3732                 goto again;
3733
3734         case RINGBUF_TYPE_TIME_STAMP:
3735                 /* FIXME: not implemented */
3736                 rb_advance_reader(cpu_buffer);
3737                 goto again;
3738
3739         case RINGBUF_TYPE_DATA:
3740                 if (ts) {
3741                         *ts = cpu_buffer->read_stamp + event->time_delta;
3742                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3743                                                          cpu_buffer->cpu, ts);
3744                 }
3745                 if (lost_events)
3746                         *lost_events = rb_lost_events(cpu_buffer);
3747                 return event;
3748
3749         default:
3750                 BUG();
3751         }
3752
3753         return NULL;
3754 }
3755 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3756
3757 static struct ring_buffer_event *
3758 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3759 {
3760         struct ring_buffer *buffer;
3761         struct ring_buffer_per_cpu *cpu_buffer;
3762         struct ring_buffer_event *event;
3763         int nr_loops = 0;
3764
3765         cpu_buffer = iter->cpu_buffer;
3766         buffer = cpu_buffer->buffer;
3767
3768         /*
3769          * Check if someone performed a consuming read to
3770          * the buffer. A consuming read invalidates the iterator
3771          * and we need to reset the iterator in this case.
3772          */
3773         if (unlikely(iter->cache_read != cpu_buffer->read ||
3774                      iter->cache_reader_page != cpu_buffer->reader_page))
3775                 rb_iter_reset(iter);
3776
3777  again:
3778         if (ring_buffer_iter_empty(iter))
3779                 return NULL;
3780
3781         /*
3782          * We repeat when a time extend is encountered or we hit
3783          * the end of the page. Since the time extend is always attached
3784          * to a data event, we should never loop more than three times.
3785          * Once for going to next page, once on time extend, and
3786          * finally once to get the event.
3787          * (We never hit the following condition more than thrice).
3788          */
3789         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3790                 return NULL;
3791
3792         if (rb_per_cpu_empty(cpu_buffer))
3793                 return NULL;
3794
3795         if (iter->head >= rb_page_size(iter->head_page)) {
3796                 rb_inc_iter(iter);
3797                 goto again;
3798         }
3799
3800         event = rb_iter_head_event(iter);
3801
3802         switch (event->type_len) {
3803         case RINGBUF_TYPE_PADDING:
3804                 if (rb_null_event(event)) {
3805                         rb_inc_iter(iter);
3806                         goto again;
3807                 }
3808                 rb_advance_iter(iter);
3809                 return event;
3810
3811         case RINGBUF_TYPE_TIME_EXTEND:
3812                 /* Internal data, OK to advance */
3813                 rb_advance_iter(iter);
3814                 goto again;
3815
3816         case RINGBUF_TYPE_TIME_STAMP:
3817                 /* FIXME: not implemented */
3818                 rb_advance_iter(iter);
3819                 goto again;
3820
3821         case RINGBUF_TYPE_DATA:
3822                 if (ts) {
3823                         *ts = iter->read_stamp + event->time_delta;
3824                         ring_buffer_normalize_time_stamp(buffer,
3825                                                          cpu_buffer->cpu, ts);
3826                 }
3827                 return event;
3828
3829         default:
3830                 BUG();
3831         }
3832
3833         return NULL;
3834 }
3835 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3836
3837 static inline int rb_ok_to_lock(void)
3838 {
3839         /*
3840          * If an NMI die dumps out the content of the ring buffer
3841          * do not grab locks. We also permanently disable the ring
3842          * buffer too. A one time deal is all you get from reading
3843          * the ring buffer from an NMI.
3844          */
3845         if (likely(!in_nmi()))
3846                 return 1;
3847
3848         tracing_off_permanent();
3849         return 0;
3850 }
3851
3852 /**
3853  * ring_buffer_peek - peek at the next event to be read
3854  * @buffer: The ring buffer to read
3855  * @cpu: The cpu to peak at
3856  * @ts: The timestamp counter of this event.
3857  * @lost_events: a variable to store if events were lost (may be NULL)
3858  *
3859  * This will return the event that will be read next, but does
3860  * not consume the data.
3861  */
3862 struct ring_buffer_event *
3863 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3864                  unsigned long *lost_events)
3865 {
3866         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3867         struct ring_buffer_event *event;
3868         unsigned long flags;
3869         int dolock;
3870
3871         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3872                 return NULL;
3873
3874         dolock = rb_ok_to_lock();
3875  again:
3876         local_irq_save(flags);
3877         if (dolock)
3878                 raw_spin_lock(&cpu_buffer->reader_lock);
3879         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3880         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3881                 rb_advance_reader(cpu_buffer);
3882         if (dolock)
3883                 raw_spin_unlock(&cpu_buffer->reader_lock);
3884         local_irq_restore(flags);
3885
3886         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3887                 goto again;
3888
3889         return event;
3890 }
3891
3892 /**
3893  * ring_buffer_iter_peek - peek at the next event to be read
3894  * @iter: The ring buffer iterator
3895  * @ts: The timestamp counter of this event.
3896  *
3897  * This will return the event that will be read next, but does
3898  * not increment the iterator.
3899  */
3900 struct ring_buffer_event *
3901 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3902 {
3903         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3904         struct ring_buffer_event *event;
3905         unsigned long flags;
3906
3907  again:
3908         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3909         event = rb_iter_peek(iter, ts);
3910         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3911
3912         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3913                 goto again;
3914
3915         return event;
3916 }
3917
3918 /**
3919  * ring_buffer_consume - return an event and consume it
3920  * @buffer: The ring buffer to get the next event from
3921  * @cpu: the cpu to read the buffer from
3922  * @ts: a variable to store the timestamp (may be NULL)
3923  * @lost_events: a variable to store if events were lost (may be NULL)
3924  *
3925  * Returns the next event in the ring buffer, and that event is consumed.
3926  * Meaning, that sequential reads will keep returning a different event,
3927  * and eventually empty the ring buffer if the producer is slower.
3928  */
3929 struct ring_buffer_event *
3930 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3931                     unsigned long *lost_events)
3932 {
3933         struct ring_buffer_per_cpu *cpu_buffer;
3934         struct ring_buffer_event *event = NULL;
3935         unsigned long flags;
3936         int dolock;
3937
3938         dolock = rb_ok_to_lock();
3939
3940  again:
3941         /* might be called in atomic */
3942         preempt_disable();
3943
3944         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3945                 goto out;
3946
3947         cpu_buffer = buffer->buffers[cpu];
3948         local_irq_save(flags);
3949         if (dolock)
3950                 raw_spin_lock(&cpu_buffer->reader_lock);
3951
3952         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3953         if (event) {
3954                 cpu_buffer->lost_events = 0;
3955                 rb_advance_reader(cpu_buffer);
3956         }
3957
3958         if (dolock)
3959                 raw_spin_unlock(&cpu_buffer->reader_lock);
3960         local_irq_restore(flags);
3961
3962  out:
3963         preempt_enable();
3964
3965         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3966                 goto again;
3967
3968         return event;
3969 }
3970 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3971
3972 /**
3973  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3974  * @buffer: The ring buffer to read from
3975  * @cpu: The cpu buffer to iterate over
3976  *
3977  * This performs the initial preparations necessary to iterate
3978  * through the buffer.  Memory is allocated, buffer recording
3979  * is disabled, and the iterator pointer is returned to the caller.
3980  *
3981  * Disabling buffer recordng prevents the reading from being
3982  * corrupted. This is not a consuming read, so a producer is not
3983  * expected.
3984  *
3985  * After a sequence of ring_buffer_read_prepare calls, the user is
3986  * expected to make at least one call to ring_buffer_read_prepare_sync.
3987  * Afterwards, ring_buffer_read_start is invoked to get things going
3988  * for real.
3989  *
3990  * This overall must be paired with ring_buffer_read_finish.
3991  */
3992 struct ring_buffer_iter *
3993 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3994 {
3995         struct ring_buffer_per_cpu *cpu_buffer;
3996         struct ring_buffer_iter *iter;
3997
3998         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3999                 return NULL;
4000
4001         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4002         if (!iter)
4003                 return NULL;
4004
4005         cpu_buffer = buffer->buffers[cpu];
4006
4007         iter->cpu_buffer = cpu_buffer;
4008
4009         atomic_inc(&buffer->resize_disabled);
4010         atomic_inc(&cpu_buffer->record_disabled);
4011
4012         return iter;
4013 }
4014 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4015
4016 /**
4017  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4018  *
4019  * All previously invoked ring_buffer_read_prepare calls to prepare
4020  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4021  * calls on those iterators are allowed.
4022  */
4023 void
4024 ring_buffer_read_prepare_sync(void)
4025 {
4026         synchronize_sched();
4027 }
4028 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4029
4030 /**
4031  * ring_buffer_read_start - start a non consuming read of the buffer
4032  * @iter: The iterator returned by ring_buffer_read_prepare
4033  *
4034  * This finalizes the startup of an iteration through the buffer.
4035  * The iterator comes from a call to ring_buffer_read_prepare and
4036  * an intervening ring_buffer_read_prepare_sync must have been
4037  * performed.
4038  *
4039  * Must be paired with ring_buffer_read_finish.
4040  */
4041 void
4042 ring_buffer_read_start(struct ring_buffer_iter *iter)
4043 {
4044         struct ring_buffer_per_cpu *cpu_buffer;
4045         unsigned long flags;
4046
4047         if (!iter)
4048                 return;
4049
4050         cpu_buffer = iter->cpu_buffer;
4051
4052         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4053         arch_spin_lock(&cpu_buffer->lock);
4054         rb_iter_reset(iter);
4055         arch_spin_unlock(&cpu_buffer->lock);
4056         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4057 }
4058 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4059
4060 /**
4061  * ring_buffer_read_finish - finish reading the iterator of the buffer
4062  * @iter: The iterator retrieved by ring_buffer_start
4063  *
4064  * This re-enables the recording to the buffer, and frees the
4065  * iterator.
4066  */
4067 void
4068 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4069 {
4070         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4071         unsigned long flags;
4072
4073         /*
4074          * Ring buffer is disabled from recording, here's a good place
4075          * to check the integrity of the ring buffer.
4076          * Must prevent readers from trying to read, as the check
4077          * clears the HEAD page and readers require it.
4078          */
4079         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4080         rb_check_pages(cpu_buffer);
4081         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4082
4083         atomic_dec(&cpu_buffer->record_disabled);
4084         atomic_dec(&cpu_buffer->buffer->resize_disabled);
4085         kfree(iter);
4086 }
4087 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4088
4089 /**
4090  * ring_buffer_read - read the next item in the ring buffer by the iterator
4091  * @iter: The ring buffer iterator
4092  * @ts: The time stamp of the event read.
4093  *
4094  * This reads the next event in the ring buffer and increments the iterator.
4095  */
4096 struct ring_buffer_event *
4097 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4098 {
4099         struct ring_buffer_event *event;
4100         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4101         unsigned long flags;
4102
4103         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4104  again:
4105         event = rb_iter_peek(iter, ts);
4106         if (!event)
4107                 goto out;
4108
4109         if (event->type_len == RINGBUF_TYPE_PADDING)
4110                 goto again;
4111
4112         rb_advance_iter(iter);
4113  out:
4114         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4115
4116         return event;
4117 }
4118 EXPORT_SYMBOL_GPL(ring_buffer_read);
4119
4120 /**
4121  * ring_buffer_size - return the size of the ring buffer (in bytes)
4122  * @buffer: The ring buffer.
4123  */
4124 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4125 {
4126         /*
4127          * Earlier, this method returned
4128          *      BUF_PAGE_SIZE * buffer->nr_pages
4129          * Since the nr_pages field is now removed, we have converted this to
4130          * return the per cpu buffer value.
4131          */
4132         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4133                 return 0;
4134
4135         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4136 }
4137 EXPORT_SYMBOL_GPL(ring_buffer_size);
4138
4139 static void
4140 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4141 {
4142         rb_head_page_deactivate(cpu_buffer);
4143
4144         cpu_buffer->head_page
4145                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4146         local_set(&cpu_buffer->head_page->write, 0);
4147         local_set(&cpu_buffer->head_page->entries, 0);
4148         local_set(&cpu_buffer->head_page->page->commit, 0);
4149
4150         cpu_buffer->head_page->read = 0;
4151
4152         cpu_buffer->tail_page = cpu_buffer->head_page;
4153         cpu_buffer->commit_page = cpu_buffer->head_page;
4154
4155         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4156         INIT_LIST_HEAD(&cpu_buffer->new_pages);
4157         local_set(&cpu_buffer->reader_page->write, 0);
4158         local_set(&cpu_buffer->reader_page->entries, 0);
4159         local_set(&cpu_buffer->reader_page->page->commit, 0);
4160         cpu_buffer->reader_page->read = 0;
4161
4162         local_set(&cpu_buffer->entries_bytes, 0);
4163         local_set(&cpu_buffer->overrun, 0);
4164         local_set(&cpu_buffer->commit_overrun, 0);
4165         local_set(&cpu_buffer->dropped_events, 0);
4166         local_set(&cpu_buffer->entries, 0);
4167         local_set(&cpu_buffer->committing, 0);
4168         local_set(&cpu_buffer->commits, 0);
4169         cpu_buffer->read = 0;
4170         cpu_buffer->read_bytes = 0;
4171
4172         cpu_buffer->write_stamp = 0;
4173         cpu_buffer->read_stamp = 0;
4174
4175         cpu_buffer->lost_events = 0;
4176         cpu_buffer->last_overrun = 0;
4177
4178         rb_head_page_activate(cpu_buffer);
4179 }
4180
4181 /**
4182  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4183  * @buffer: The ring buffer to reset a per cpu buffer of
4184  * @cpu: The CPU buffer to be reset
4185  */
4186 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4187 {
4188         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4189         unsigned long flags;
4190
4191         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4192                 return;
4193
4194         atomic_inc(&buffer->resize_disabled);
4195         atomic_inc(&cpu_buffer->record_disabled);
4196
4197         /* Make sure all commits have finished */
4198         synchronize_sched();
4199
4200         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4201
4202         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4203                 goto out;
4204
4205         arch_spin_lock(&cpu_buffer->lock);
4206
4207         rb_reset_cpu(cpu_buffer);
4208
4209         arch_spin_unlock(&cpu_buffer->lock);
4210
4211  out:
4212         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4213
4214         atomic_dec(&cpu_buffer->record_disabled);
4215         atomic_dec(&buffer->resize_disabled);
4216 }
4217 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4218
4219 /**
4220  * ring_buffer_reset - reset a ring buffer
4221  * @buffer: The ring buffer to reset all cpu buffers
4222  */
4223 void ring_buffer_reset(struct ring_buffer *buffer)
4224 {
4225         int cpu;
4226
4227         for_each_buffer_cpu(buffer, cpu)
4228                 ring_buffer_reset_cpu(buffer, cpu);
4229 }
4230 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4231
4232 /**
4233  * rind_buffer_empty - is the ring buffer empty?
4234  * @buffer: The ring buffer to test
4235  */
4236 int ring_buffer_empty(struct ring_buffer *buffer)
4237 {
4238         struct ring_buffer_per_cpu *cpu_buffer;
4239         unsigned long flags;
4240         int dolock;
4241         int cpu;
4242         int ret;
4243
4244         dolock = rb_ok_to_lock();
4245
4246         /* yes this is racy, but if you don't like the race, lock the buffer */
4247         for_each_buffer_cpu(buffer, cpu) {
4248                 cpu_buffer = buffer->buffers[cpu];
4249                 local_irq_save(flags);
4250                 if (dolock)
4251                         raw_spin_lock(&cpu_buffer->reader_lock);
4252                 ret = rb_per_cpu_empty(cpu_buffer);
4253                 if (dolock)
4254                         raw_spin_unlock(&cpu_buffer->reader_lock);
4255                 local_irq_restore(flags);
4256
4257                 if (!ret)
4258                         return 0;
4259         }
4260
4261         return 1;
4262 }
4263 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4264
4265 /**
4266  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4267  * @buffer: The ring buffer
4268  * @cpu: The CPU buffer to test
4269  */
4270 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4271 {
4272         struct ring_buffer_per_cpu *cpu_buffer;
4273         unsigned long flags;
4274         int dolock;
4275         int ret;
4276
4277         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4278                 return 1;
4279
4280         dolock = rb_ok_to_lock();
4281
4282         cpu_buffer = buffer->buffers[cpu];
4283         local_irq_save(flags);
4284         if (dolock)
4285                 raw_spin_lock(&cpu_buffer->reader_lock);
4286         ret = rb_per_cpu_empty(cpu_buffer);
4287         if (dolock)
4288                 raw_spin_unlock(&cpu_buffer->reader_lock);
4289         local_irq_restore(flags);
4290
4291         return ret;
4292 }
4293 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4294
4295 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4296 /**
4297  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4298  * @buffer_a: One buffer to swap with
4299  * @buffer_b: The other buffer to swap with
4300  *
4301  * This function is useful for tracers that want to take a "snapshot"
4302  * of a CPU buffer and has another back up buffer lying around.
4303  * it is expected that the tracer handles the cpu buffer not being
4304  * used at the moment.
4305  */
4306 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4307                          struct ring_buffer *buffer_b, int cpu)
4308 {
4309         struct ring_buffer_per_cpu *cpu_buffer_a;
4310         struct ring_buffer_per_cpu *cpu_buffer_b;
4311         int ret = -EINVAL;
4312
4313         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4314             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4315                 goto out;
4316
4317         cpu_buffer_a = buffer_a->buffers[cpu];
4318         cpu_buffer_b = buffer_b->buffers[cpu];
4319
4320         /* At least make sure the two buffers are somewhat the same */
4321         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4322                 goto out;
4323
4324         ret = -EAGAIN;
4325
4326         if (ring_buffer_flags != RB_BUFFERS_ON)
4327                 goto out;
4328
4329         if (atomic_read(&buffer_a->record_disabled))
4330                 goto out;
4331
4332         if (atomic_read(&buffer_b->record_disabled))
4333                 goto out;
4334
4335         if (atomic_read(&cpu_buffer_a->record_disabled))
4336                 goto out;
4337
4338         if (atomic_read(&cpu_buffer_b->record_disabled))
4339                 goto out;
4340
4341         /*
4342          * We can't do a synchronize_sched here because this
4343          * function can be called in atomic context.
4344          * Normally this will be called from the same CPU as cpu.
4345          * If not it's up to the caller to protect this.
4346          */
4347         atomic_inc(&cpu_buffer_a->record_disabled);
4348         atomic_inc(&cpu_buffer_b->record_disabled);
4349
4350         ret = -EBUSY;
4351         if (local_read(&cpu_buffer_a->committing))
4352                 goto out_dec;
4353         if (local_read(&cpu_buffer_b->committing))
4354                 goto out_dec;
4355
4356         buffer_a->buffers[cpu] = cpu_buffer_b;
4357         buffer_b->buffers[cpu] = cpu_buffer_a;
4358
4359         cpu_buffer_b->buffer = buffer_a;
4360         cpu_buffer_a->buffer = buffer_b;
4361
4362         ret = 0;
4363
4364 out_dec:
4365         atomic_dec(&cpu_buffer_a->record_disabled);
4366         atomic_dec(&cpu_buffer_b->record_disabled);
4367 out:
4368         return ret;
4369 }
4370 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4371 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4372
4373 /**
4374  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4375  * @buffer: the buffer to allocate for.
4376  * @cpu: the cpu buffer to allocate.
4377  *
4378  * This function is used in conjunction with ring_buffer_read_page.
4379  * When reading a full page from the ring buffer, these functions
4380  * can be used to speed up the process. The calling function should
4381  * allocate a few pages first with this function. Then when it
4382  * needs to get pages from the ring buffer, it passes the result
4383  * of this function into ring_buffer_read_page, which will swap
4384  * the page that was allocated, with the read page of the buffer.
4385  *
4386  * Returns:
4387  *  The page allocated, or NULL on error.
4388  */
4389 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4390 {
4391         struct buffer_data_page *bpage;
4392         struct page *page;
4393
4394         page = alloc_pages_node(cpu_to_node(cpu),
4395                                 GFP_KERNEL | __GFP_NORETRY, 0);
4396         if (!page)
4397                 return NULL;
4398
4399         bpage = page_address(page);
4400
4401         rb_init_page(bpage);
4402
4403         return bpage;
4404 }
4405 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4406
4407 /**
4408  * ring_buffer_free_read_page - free an allocated read page
4409  * @buffer: the buffer the page was allocate for
4410  * @data: the page to free
4411  *
4412  * Free a page allocated from ring_buffer_alloc_read_page.
4413  */
4414 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4415 {
4416         free_page((unsigned long)data);
4417 }
4418 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4419
4420 /**
4421  * ring_buffer_read_page - extract a page from the ring buffer
4422  * @buffer: buffer to extract from
4423  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4424  * @len: amount to extract
4425  * @cpu: the cpu of the buffer to extract
4426  * @full: should the extraction only happen when the page is full.
4427  *
4428  * This function will pull out a page from the ring buffer and consume it.
4429  * @data_page must be the address of the variable that was returned
4430  * from ring_buffer_alloc_read_page. This is because the page might be used
4431  * to swap with a page in the ring buffer.
4432  *
4433  * for example:
4434  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4435  *      if (!rpage)
4436  *              return error;
4437  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4438  *      if (ret >= 0)
4439  *              process_page(rpage, ret);
4440  *
4441  * When @full is set, the function will not return true unless
4442  * the writer is off the reader page.
4443  *
4444  * Note: it is up to the calling functions to handle sleeps and wakeups.
4445  *  The ring buffer can be used anywhere in the kernel and can not
4446  *  blindly call wake_up. The layer that uses the ring buffer must be
4447  *  responsible for that.
4448  *
4449  * Returns:
4450  *  >=0 if data has been transferred, returns the offset of consumed data.
4451  *  <0 if no data has been transferred.
4452  */
4453 int ring_buffer_read_page(struct ring_buffer *buffer,
4454                           void **data_page, size_t len, int cpu, int full)
4455 {
4456         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4457         struct ring_buffer_event *event;
4458         struct buffer_data_page *bpage;
4459         struct buffer_page *reader;
4460         unsigned long missed_events;
4461         unsigned long flags;
4462         unsigned int commit;
4463         unsigned int read;
4464         u64 save_timestamp;
4465         int ret = -1;
4466
4467         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4468                 goto out;
4469
4470         /*
4471          * If len is not big enough to hold the page header, then
4472          * we can not copy anything.
4473          */
4474         if (len <= BUF_PAGE_HDR_SIZE)
4475                 goto out;
4476
4477         len -= BUF_PAGE_HDR_SIZE;
4478
4479         if (!data_page)
4480                 goto out;
4481
4482         bpage = *data_page;
4483         if (!bpage)
4484                 goto out;
4485
4486         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4487
4488         reader = rb_get_reader_page(cpu_buffer);
4489         if (!reader)
4490                 goto out_unlock;
4491
4492         event = rb_reader_event(cpu_buffer);
4493
4494         read = reader->read;
4495         commit = rb_page_commit(reader);
4496
4497         /* Check if any events were dropped */
4498         missed_events = cpu_buffer->lost_events;
4499
4500         /*
4501          * If this page has been partially read or
4502          * if len is not big enough to read the rest of the page or
4503          * a writer is still on the page, then
4504          * we must copy the data from the page to the buffer.
4505          * Otherwise, we can simply swap the page with the one passed in.
4506          */
4507         if (read || (len < (commit - read)) ||
4508             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4509                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4510                 unsigned int rpos = read;
4511                 unsigned int pos = 0;
4512                 unsigned int size;
4513
4514                 if (full)
4515                         goto out_unlock;
4516
4517                 if (len > (commit - read))
4518                         len = (commit - read);
4519
4520                 /* Always keep the time extend and data together */
4521                 size = rb_event_ts_length(event);
4522
4523                 if (len < size)
4524                         goto out_unlock;
4525
4526                 /* save the current timestamp, since the user will need it */
4527                 save_timestamp = cpu_buffer->read_stamp;
4528
4529                 /* Need to copy one event at a time */
4530                 do {
4531                         /* We need the size of one event, because
4532                          * rb_advance_reader only advances by one event,
4533                          * whereas rb_event_ts_length may include the size of
4534                          * one or two events.
4535                          * We have already ensured there's enough space if this
4536                          * is a time extend. */
4537                         size = rb_event_length(event);
4538                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4539
4540                         len -= size;
4541
4542                         rb_advance_reader(cpu_buffer);
4543                         rpos = reader->read;
4544                         pos += size;
4545
4546                         if (rpos >= commit)
4547                                 break;
4548
4549                         event = rb_reader_event(cpu_buffer);
4550                         /* Always keep the time extend and data together */
4551                         size = rb_event_ts_length(event);
4552                 } while (len >= size);
4553
4554                 /* update bpage */
4555                 local_set(&bpage->commit, pos);
4556                 bpage->time_stamp = save_timestamp;
4557
4558                 /* we copied everything to the beginning */
4559                 read = 0;
4560         } else {
4561                 /* update the entry counter */
4562                 cpu_buffer->read += rb_page_entries(reader);
4563                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4564
4565                 /* swap the pages */
4566                 rb_init_page(bpage);
4567                 bpage = reader->page;
4568                 reader->page = *data_page;
4569                 local_set(&reader->write, 0);
4570                 local_set(&reader->entries, 0);
4571                 reader->read = 0;
4572                 *data_page = bpage;
4573
4574                 /*
4575                  * Use the real_end for the data size,
4576                  * This gives us a chance to store the lost events
4577                  * on the page.
4578                  */
4579                 if (reader->real_end)
4580                         local_set(&bpage->commit, reader->real_end);
4581         }
4582         ret = read;
4583
4584         cpu_buffer->lost_events = 0;
4585
4586         commit = local_read(&bpage->commit);
4587         /*
4588          * Set a flag in the commit field if we lost events
4589          */
4590         if (missed_events) {
4591                 /* If there is room at the end of the page to save the
4592                  * missed events, then record it there.
4593                  */
4594                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4595                         memcpy(&bpage->data[commit], &missed_events,
4596                                sizeof(missed_events));
4597                         local_add(RB_MISSED_STORED, &bpage->commit);
4598                         commit += sizeof(missed_events);
4599                 }
4600                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4601         }
4602
4603         /*
4604          * This page may be off to user land. Zero it out here.
4605          */
4606         if (commit < BUF_PAGE_SIZE)
4607                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4608
4609  out_unlock:
4610         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4611
4612  out:
4613         return ret;
4614 }
4615 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4616
4617 #ifdef CONFIG_HOTPLUG_CPU
4618 static int rb_cpu_notify(struct notifier_block *self,
4619                          unsigned long action, void *hcpu)
4620 {
4621         struct ring_buffer *buffer =
4622                 container_of(self, struct ring_buffer, cpu_notify);
4623         long cpu = (long)hcpu;
4624         int cpu_i, nr_pages_same;
4625         unsigned int nr_pages;
4626
4627         switch (action) {
4628         case CPU_UP_PREPARE:
4629         case CPU_UP_PREPARE_FROZEN:
4630                 if (cpumask_test_cpu(cpu, buffer->cpumask))
4631                         return NOTIFY_OK;
4632
4633                 nr_pages = 0;
4634                 nr_pages_same = 1;
4635                 /* check if all cpu sizes are same */
4636                 for_each_buffer_cpu(buffer, cpu_i) {
4637                         /* fill in the size from first enabled cpu */
4638                         if (nr_pages == 0)
4639                                 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4640                         if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4641                                 nr_pages_same = 0;
4642                                 break;
4643                         }
4644                 }
4645                 /* allocate minimum pages, user can later expand it */
4646                 if (!nr_pages_same)
4647                         nr_pages = 2;
4648                 buffer->buffers[cpu] =
4649                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4650                 if (!buffer->buffers[cpu]) {
4651                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4652                              cpu);
4653                         return NOTIFY_OK;
4654                 }
4655                 smp_wmb();
4656                 cpumask_set_cpu(cpu, buffer->cpumask);
4657                 break;
4658         case CPU_DOWN_PREPARE:
4659         case CPU_DOWN_PREPARE_FROZEN:
4660                 /*
4661                  * Do nothing.
4662                  *  If we were to free the buffer, then the user would
4663                  *  lose any trace that was in the buffer.
4664                  */
4665                 break;
4666         default:
4667                 break;
4668         }
4669         return NOTIFY_OK;
4670 }
4671 #endif
4672
4673 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4674 /*
4675  * This is a basic integrity check of the ring buffer.
4676  * Late in the boot cycle this test will run when configured in.
4677  * It will kick off a thread per CPU that will go into a loop
4678  * writing to the per cpu ring buffer various sizes of data.
4679  * Some of the data will be large items, some small.
4680  *
4681  * Another thread is created that goes into a spin, sending out
4682  * IPIs to the other CPUs to also write into the ring buffer.
4683  * this is to test the nesting ability of the buffer.
4684  *
4685  * Basic stats are recorded and reported. If something in the
4686  * ring buffer should happen that's not expected, a big warning
4687  * is displayed and all ring buffers are disabled.
4688  */
4689 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4690
4691 struct rb_test_data {
4692         struct ring_buffer      *buffer;
4693         unsigned long           events;
4694         unsigned long           bytes_written;
4695         unsigned long           bytes_alloc;
4696         unsigned long           bytes_dropped;
4697         unsigned long           events_nested;
4698         unsigned long           bytes_written_nested;
4699         unsigned long           bytes_alloc_nested;
4700         unsigned long           bytes_dropped_nested;
4701         int                     min_size_nested;
4702         int                     max_size_nested;
4703         int                     max_size;
4704         int                     min_size;
4705         int                     cpu;
4706         int                     cnt;
4707 };
4708
4709 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4710
4711 /* 1 meg per cpu */
4712 #define RB_TEST_BUFFER_SIZE     1048576
4713
4714 static char rb_string[] __initdata =
4715         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4716         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4717         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4718
4719 static bool rb_test_started __initdata;
4720
4721 struct rb_item {
4722         int size;
4723         char str[];
4724 };
4725
4726 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4727 {
4728         struct ring_buffer_event *event;
4729         struct rb_item *item;
4730         bool started;
4731         int event_len;
4732         int size;
4733         int len;
4734         int cnt;
4735
4736         /* Have nested writes different that what is written */
4737         cnt = data->cnt + (nested ? 27 : 0);
4738
4739         /* Multiply cnt by ~e, to make some unique increment */
4740         size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4741
4742         len = size + sizeof(struct rb_item);
4743
4744         started = rb_test_started;
4745         /* read rb_test_started before checking buffer enabled */
4746         smp_rmb();
4747
4748         event = ring_buffer_lock_reserve(data->buffer, len);
4749         if (!event) {
4750                 /* Ignore dropped events before test starts. */
4751                 if (started) {
4752                         if (nested)
4753                                 data->bytes_dropped += len;
4754                         else
4755                                 data->bytes_dropped_nested += len;
4756                 }
4757                 return len;
4758         }
4759
4760         event_len = ring_buffer_event_length(event);
4761
4762         if (RB_WARN_ON(data->buffer, event_len < len))
4763                 goto out;
4764
4765         item = ring_buffer_event_data(event);
4766         item->size = size;
4767         memcpy(item->str, rb_string, size);
4768
4769         if (nested) {
4770                 data->bytes_alloc_nested += event_len;
4771                 data->bytes_written_nested += len;
4772                 data->events_nested++;
4773                 if (!data->min_size_nested || len < data->min_size_nested)
4774                         data->min_size_nested = len;
4775                 if (len > data->max_size_nested)
4776                         data->max_size_nested = len;
4777         } else {
4778                 data->bytes_alloc += event_len;
4779                 data->bytes_written += len;
4780                 data->events++;
4781                 if (!data->min_size || len < data->min_size)
4782                         data->max_size = len;
4783                 if (len > data->max_size)
4784                         data->max_size = len;
4785         }
4786
4787  out:
4788         ring_buffer_unlock_commit(data->buffer, event);
4789
4790         return 0;
4791 }
4792
4793 static __init int rb_test(void *arg)
4794 {
4795         struct rb_test_data *data = arg;
4796
4797         while (!kthread_should_stop()) {
4798                 rb_write_something(data, false);
4799                 data->cnt++;
4800
4801                 set_current_state(TASK_INTERRUPTIBLE);
4802                 /* Now sleep between a min of 100-300us and a max of 1ms */
4803                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4804         }
4805
4806         return 0;
4807 }
4808
4809 static __init void rb_ipi(void *ignore)
4810 {
4811         struct rb_test_data *data;
4812         int cpu = smp_processor_id();
4813
4814         data = &rb_data[cpu];
4815         rb_write_something(data, true);
4816 }
4817
4818 static __init int rb_hammer_test(void *arg)
4819 {
4820         while (!kthread_should_stop()) {
4821
4822                 /* Send an IPI to all cpus to write data! */
4823                 smp_call_function(rb_ipi, NULL, 1);
4824                 /* No sleep, but for non preempt, let others run */
4825                 schedule();
4826         }
4827
4828         return 0;
4829 }
4830
4831 static __init int test_ringbuffer(void)
4832 {
4833         struct task_struct *rb_hammer;
4834         struct ring_buffer *buffer;
4835         int cpu;
4836         int ret = 0;
4837
4838         pr_info("Running ring buffer tests...\n");
4839
4840         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4841         if (WARN_ON(!buffer))
4842                 return 0;
4843
4844         /* Disable buffer so that threads can't write to it yet */
4845         ring_buffer_record_off(buffer);
4846
4847         for_each_online_cpu(cpu) {
4848                 rb_data[cpu].buffer = buffer;
4849                 rb_data[cpu].cpu = cpu;
4850                 rb_data[cpu].cnt = cpu;
4851                 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4852                                                  "rbtester/%d", cpu);
4853                 if (WARN_ON(!rb_threads[cpu])) {
4854                         pr_cont("FAILED\n");
4855                         ret = -1;
4856                         goto out_free;
4857                 }
4858
4859                 kthread_bind(rb_threads[cpu], cpu);
4860                 wake_up_process(rb_threads[cpu]);
4861         }
4862
4863         /* Now create the rb hammer! */
4864         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4865         if (WARN_ON(!rb_hammer)) {
4866                 pr_cont("FAILED\n");
4867                 ret = -1;
4868                 goto out_free;
4869         }
4870
4871         ring_buffer_record_on(buffer);
4872         /*
4873          * Show buffer is enabled before setting rb_test_started.
4874          * Yes there's a small race window where events could be
4875          * dropped and the thread wont catch it. But when a ring
4876          * buffer gets enabled, there will always be some kind of
4877          * delay before other CPUs see it. Thus, we don't care about
4878          * those dropped events. We care about events dropped after
4879          * the threads see that the buffer is active.
4880          */
4881         smp_wmb();
4882         rb_test_started = true;
4883
4884         set_current_state(TASK_INTERRUPTIBLE);
4885         /* Just run for 10 seconds */;
4886         schedule_timeout(10 * HZ);
4887
4888         kthread_stop(rb_hammer);
4889
4890  out_free:
4891         for_each_online_cpu(cpu) {
4892                 if (!rb_threads[cpu])
4893                         break;
4894                 kthread_stop(rb_threads[cpu]);
4895         }
4896         if (ret) {
4897                 ring_buffer_free(buffer);
4898                 return ret;
4899         }
4900
4901         /* Report! */
4902         pr_info("finished\n");
4903         for_each_online_cpu(cpu) {
4904                 struct ring_buffer_event *event;
4905                 struct rb_test_data *data = &rb_data[cpu];
4906                 struct rb_item *item;
4907                 unsigned long total_events;
4908                 unsigned long total_dropped;
4909                 unsigned long total_written;
4910                 unsigned long total_alloc;
4911                 unsigned long total_read = 0;
4912                 unsigned long total_size = 0;
4913                 unsigned long total_len = 0;
4914                 unsigned long total_lost = 0;
4915                 unsigned long lost;
4916                 int big_event_size;
4917                 int small_event_size;
4918
4919                 ret = -1;
4920
4921                 total_events = data->events + data->events_nested;
4922                 total_written = data->bytes_written + data->bytes_written_nested;
4923                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4924                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4925
4926                 big_event_size = data->max_size + data->max_size_nested;
4927                 small_event_size = data->min_size + data->min_size_nested;
4928
4929                 pr_info("CPU %d:\n", cpu);
4930                 pr_info("              events:    %ld\n", total_events);
4931                 pr_info("       dropped bytes:    %ld\n", total_dropped);
4932                 pr_info("       alloced bytes:    %ld\n", total_alloc);
4933                 pr_info("       written bytes:    %ld\n", total_written);
4934                 pr_info("       biggest event:    %d\n", big_event_size);
4935                 pr_info("      smallest event:    %d\n", small_event_size);
4936
4937                 if (RB_WARN_ON(buffer, total_dropped))
4938                         break;
4939
4940                 ret = 0;
4941
4942                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4943                         total_lost += lost;
4944                         item = ring_buffer_event_data(event);
4945                         total_len += ring_buffer_event_length(event);
4946                         total_size += item->size + sizeof(struct rb_item);
4947                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4948                                 pr_info("FAILED!\n");
4949                                 pr_info("buffer had: %.*s\n", item->size, item->str);
4950                                 pr_info("expected:   %.*s\n", item->size, rb_string);
4951                                 RB_WARN_ON(buffer, 1);
4952                                 ret = -1;
4953                                 break;
4954                         }
4955                         total_read++;
4956                 }
4957                 if (ret)
4958                         break;
4959
4960                 ret = -1;
4961
4962                 pr_info("         read events:   %ld\n", total_read);
4963                 pr_info("         lost events:   %ld\n", total_lost);
4964                 pr_info("        total events:   %ld\n", total_lost + total_read);
4965                 pr_info("  recorded len bytes:   %ld\n", total_len);
4966                 pr_info(" recorded size bytes:   %ld\n", total_size);
4967                 if (total_lost)
4968                         pr_info(" With dropped events, record len and size may not match\n"
4969                                 " alloced and written from above\n");
4970                 if (!total_lost) {
4971                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
4972                                        total_size != total_written))
4973                                 break;
4974                 }
4975                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4976                         break;
4977
4978                 ret = 0;
4979         }
4980         if (!ret)
4981                 pr_info("Ring buffer PASSED!\n");
4982
4983         ring_buffer_free(buffer);
4984         return 0;
4985 }
4986
4987 late_initcall(test_ringbuffer);
4988 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */