2 * kernel/workqueue.c - generic async execution with shared worker pool
4 * Copyright (C) 2002 Ingo Molnar
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
12 * Made to use alloc_percpu by Christoph Lameter.
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
24 * Please read Documentation/workqueue.txt for details.
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
52 #include "workqueue_internal.h"
58 * A bound pool is either associated or disassociated with its CPU.
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 * be executing on any CPU. The pool behaves as an unbound one.
67 * Note that DISASSOCIATED should be flipped only while holding
68 * attach_mutex to avoid changing binding state while
69 * worker_attach_to_pool() is in progress.
71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
74 WORKER_DIE = 1 << 1, /* die die die */
75 WORKER_IDLE = 1 << 2, /* is idle */
76 WORKER_PREP = 1 << 3, /* preparing to run works */
77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
79 WORKER_REBOUND = 1 << 8, /* worker was rebound */
81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
82 WORKER_UNBOUND | WORKER_REBOUND,
84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
99 * Rescue workers are used only on emergencies and shared by
100 * all cpus. Give MIN_NICE.
102 RESCUER_NICE_LEVEL = MIN_NICE,
103 HIGHPRI_NICE_LEVEL = MIN_NICE,
109 * Structure fields follow one of the following exclusion rules.
111 * I: Modifiable by initialization/destruction paths and read-only for
114 * P: Preemption protected. Disabling preemption is enough and should
115 * only be modified and accessed from the local cpu.
117 * L: pool->lock protected. Access with pool->lock held.
119 * X: During normal operation, modification requires pool->lock and should
120 * be done only from local cpu. Either disabling preemption on local
121 * cpu or grabbing pool->lock is enough for read access. If
122 * POOL_DISASSOCIATED is set, it's identical to L.
124 * A: pool->attach_mutex protected.
126 * PL: wq_pool_mutex protected.
128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
130 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
132 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
133 * sched-RCU for reads.
135 * WQ: wq->mutex protected.
137 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
139 * MD: wq_mayday_lock protected.
142 /* struct worker is defined in workqueue_internal.h */
145 spinlock_t lock; /* the pool lock */
146 int cpu; /* I: the associated cpu */
147 int node; /* I: the associated node ID */
148 int id; /* I: pool ID */
149 unsigned int flags; /* X: flags */
151 struct list_head worklist; /* L: list of pending works */
152 int nr_workers; /* L: total number of workers */
154 /* nr_idle includes the ones off idle_list for rebinding */
155 int nr_idle; /* L: currently idle ones */
157 struct list_head idle_list; /* X: list of idle workers */
158 struct timer_list idle_timer; /* L: worker idle timeout */
159 struct timer_list mayday_timer; /* L: SOS timer for workers */
161 /* a workers is either on busy_hash or idle_list, or the manager */
162 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
163 /* L: hash of busy workers */
165 /* see manage_workers() for details on the two manager mutexes */
166 struct mutex manager_arb; /* manager arbitration */
167 struct worker *manager; /* L: purely informational */
168 struct mutex attach_mutex; /* attach/detach exclusion */
169 struct list_head workers; /* A: attached workers */
170 struct completion *detach_completion; /* all workers detached */
172 struct ida worker_ida; /* worker IDs for task name */
174 struct workqueue_attrs *attrs; /* I: worker attributes */
175 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
176 int refcnt; /* PL: refcnt for unbound pools */
179 * The current concurrency level. As it's likely to be accessed
180 * from other CPUs during try_to_wake_up(), put it in a separate
183 atomic_t nr_running ____cacheline_aligned_in_smp;
186 * Destruction of pool is sched-RCU protected to allow dereferences
187 * from get_work_pool().
190 } ____cacheline_aligned_in_smp;
193 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
194 * of work_struct->data are used for flags and the remaining high bits
195 * point to the pwq; thus, pwqs need to be aligned at two's power of the
196 * number of flag bits.
198 struct pool_workqueue {
199 struct worker_pool *pool; /* I: the associated pool */
200 struct workqueue_struct *wq; /* I: the owning workqueue */
201 int work_color; /* L: current color */
202 int flush_color; /* L: flushing color */
203 int refcnt; /* L: reference count */
204 int nr_in_flight[WORK_NR_COLORS];
205 /* L: nr of in_flight works */
206 int nr_active; /* L: nr of active works */
207 int max_active; /* L: max active works */
208 struct list_head delayed_works; /* L: delayed works */
209 struct list_head pwqs_node; /* WR: node on wq->pwqs */
210 struct list_head mayday_node; /* MD: node on wq->maydays */
213 * Release of unbound pwq is punted to system_wq. See put_pwq()
214 * and pwq_unbound_release_workfn() for details. pool_workqueue
215 * itself is also sched-RCU protected so that the first pwq can be
216 * determined without grabbing wq->mutex.
218 struct work_struct unbound_release_work;
220 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
223 * Structure used to wait for workqueue flush.
226 struct list_head list; /* WQ: list of flushers */
227 int flush_color; /* WQ: flush color waiting for */
228 struct completion done; /* flush completion */
234 * The externally visible workqueue. It relays the issued work items to
235 * the appropriate worker_pool through its pool_workqueues.
237 struct workqueue_struct {
238 struct list_head pwqs; /* WR: all pwqs of this wq */
239 struct list_head list; /* PR: list of all workqueues */
241 struct mutex mutex; /* protects this wq */
242 int work_color; /* WQ: current work color */
243 int flush_color; /* WQ: current flush color */
244 atomic_t nr_pwqs_to_flush; /* flush in progress */
245 struct wq_flusher *first_flusher; /* WQ: first flusher */
246 struct list_head flusher_queue; /* WQ: flush waiters */
247 struct list_head flusher_overflow; /* WQ: flush overflow list */
249 struct list_head maydays; /* MD: pwqs requesting rescue */
250 struct worker *rescuer; /* I: rescue worker */
252 int nr_drainers; /* WQ: drain in progress */
253 int saved_max_active; /* WQ: saved pwq max_active */
255 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
256 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
259 struct wq_device *wq_dev; /* I: for sysfs interface */
261 #ifdef CONFIG_LOCKDEP
262 struct lockdep_map lockdep_map;
264 char name[WQ_NAME_LEN]; /* I: workqueue name */
267 * Destruction of workqueue_struct is sched-RCU protected to allow
268 * walking the workqueues list without grabbing wq_pool_mutex.
269 * This is used to dump all workqueues from sysrq.
273 /* hot fields used during command issue, aligned to cacheline */
274 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
275 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
276 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
279 static struct kmem_cache *pwq_cache;
281 static cpumask_var_t *wq_numa_possible_cpumask;
282 /* possible CPUs of each node */
284 static bool wq_disable_numa;
285 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
287 /* see the comment above the definition of WQ_POWER_EFFICIENT */
288 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
289 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
291 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
293 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
294 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
296 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
297 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
299 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
300 static bool workqueue_freezing; /* PL: have wqs started freezing? */
302 static cpumask_var_t wq_unbound_cpumask; /* PL: low level cpumask for all unbound wqs */
304 /* the per-cpu worker pools */
305 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
308 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
310 /* PL: hash of all unbound pools keyed by pool->attrs */
311 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
313 /* I: attributes used when instantiating standard unbound pools on demand */
314 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
316 /* I: attributes used when instantiating ordered pools on demand */
317 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
319 struct workqueue_struct *system_wq __read_mostly;
320 EXPORT_SYMBOL(system_wq);
321 struct workqueue_struct *system_highpri_wq __read_mostly;
322 EXPORT_SYMBOL_GPL(system_highpri_wq);
323 struct workqueue_struct *system_long_wq __read_mostly;
324 EXPORT_SYMBOL_GPL(system_long_wq);
325 struct workqueue_struct *system_unbound_wq __read_mostly;
326 EXPORT_SYMBOL_GPL(system_unbound_wq);
327 struct workqueue_struct *system_freezable_wq __read_mostly;
328 EXPORT_SYMBOL_GPL(system_freezable_wq);
329 struct workqueue_struct *system_power_efficient_wq __read_mostly;
330 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
331 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
332 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
334 static int worker_thread(void *__worker);
335 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
337 #define CREATE_TRACE_POINTS
338 #include <trace/events/workqueue.h>
340 #define assert_rcu_or_pool_mutex() \
341 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
342 !lockdep_is_held(&wq_pool_mutex), \
343 "sched RCU or wq_pool_mutex should be held")
345 #define assert_rcu_or_wq_mutex(wq) \
346 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
347 !lockdep_is_held(&wq->mutex), \
348 "sched RCU or wq->mutex should be held")
350 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
351 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
352 !lockdep_is_held(&wq->mutex) && \
353 !lockdep_is_held(&wq_pool_mutex), \
354 "sched RCU, wq->mutex or wq_pool_mutex should be held")
356 #define for_each_cpu_worker_pool(pool, cpu) \
357 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
358 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
362 * for_each_pool - iterate through all worker_pools in the system
363 * @pool: iteration cursor
364 * @pi: integer used for iteration
366 * This must be called either with wq_pool_mutex held or sched RCU read
367 * locked. If the pool needs to be used beyond the locking in effect, the
368 * caller is responsible for guaranteeing that the pool stays online.
370 * The if/else clause exists only for the lockdep assertion and can be
373 #define for_each_pool(pool, pi) \
374 idr_for_each_entry(&worker_pool_idr, pool, pi) \
375 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
379 * for_each_pool_worker - iterate through all workers of a worker_pool
380 * @worker: iteration cursor
381 * @pool: worker_pool to iterate workers of
383 * This must be called with @pool->attach_mutex.
385 * The if/else clause exists only for the lockdep assertion and can be
388 #define for_each_pool_worker(worker, pool) \
389 list_for_each_entry((worker), &(pool)->workers, node) \
390 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
394 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
395 * @pwq: iteration cursor
396 * @wq: the target workqueue
398 * This must be called either with wq->mutex held or sched RCU read locked.
399 * If the pwq needs to be used beyond the locking in effect, the caller is
400 * responsible for guaranteeing that the pwq stays online.
402 * The if/else clause exists only for the lockdep assertion and can be
405 #define for_each_pwq(pwq, wq) \
406 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
407 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
410 #ifdef CONFIG_DEBUG_OBJECTS_WORK
412 static struct debug_obj_descr work_debug_descr;
414 static void *work_debug_hint(void *addr)
416 return ((struct work_struct *) addr)->func;
420 * fixup_init is called when:
421 * - an active object is initialized
423 static int work_fixup_init(void *addr, enum debug_obj_state state)
425 struct work_struct *work = addr;
428 case ODEBUG_STATE_ACTIVE:
429 cancel_work_sync(work);
430 debug_object_init(work, &work_debug_descr);
438 * fixup_activate is called when:
439 * - an active object is activated
440 * - an unknown object is activated (might be a statically initialized object)
442 static int work_fixup_activate(void *addr, enum debug_obj_state state)
444 struct work_struct *work = addr;
448 case ODEBUG_STATE_NOTAVAILABLE:
450 * This is not really a fixup. The work struct was
451 * statically initialized. We just make sure that it
452 * is tracked in the object tracker.
454 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
455 debug_object_init(work, &work_debug_descr);
456 debug_object_activate(work, &work_debug_descr);
462 case ODEBUG_STATE_ACTIVE:
471 * fixup_free is called when:
472 * - an active object is freed
474 static int work_fixup_free(void *addr, enum debug_obj_state state)
476 struct work_struct *work = addr;
479 case ODEBUG_STATE_ACTIVE:
480 cancel_work_sync(work);
481 debug_object_free(work, &work_debug_descr);
488 static struct debug_obj_descr work_debug_descr = {
489 .name = "work_struct",
490 .debug_hint = work_debug_hint,
491 .fixup_init = work_fixup_init,
492 .fixup_activate = work_fixup_activate,
493 .fixup_free = work_fixup_free,
496 static inline void debug_work_activate(struct work_struct *work)
498 debug_object_activate(work, &work_debug_descr);
501 static inline void debug_work_deactivate(struct work_struct *work)
503 debug_object_deactivate(work, &work_debug_descr);
506 void __init_work(struct work_struct *work, int onstack)
509 debug_object_init_on_stack(work, &work_debug_descr);
511 debug_object_init(work, &work_debug_descr);
513 EXPORT_SYMBOL_GPL(__init_work);
515 void destroy_work_on_stack(struct work_struct *work)
517 debug_object_free(work, &work_debug_descr);
519 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
521 void destroy_delayed_work_on_stack(struct delayed_work *work)
523 destroy_timer_on_stack(&work->timer);
524 debug_object_free(&work->work, &work_debug_descr);
526 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
529 static inline void debug_work_activate(struct work_struct *work) { }
530 static inline void debug_work_deactivate(struct work_struct *work) { }
534 * worker_pool_assign_id - allocate ID and assing it to @pool
535 * @pool: the pool pointer of interest
537 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
538 * successfully, -errno on failure.
540 static int worker_pool_assign_id(struct worker_pool *pool)
544 lockdep_assert_held(&wq_pool_mutex);
546 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
556 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
557 * @wq: the target workqueue
560 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
562 * If the pwq needs to be used beyond the locking in effect, the caller is
563 * responsible for guaranteeing that the pwq stays online.
565 * Return: The unbound pool_workqueue for @node.
567 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
570 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
573 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
574 * delayed item is pending. The plan is to keep CPU -> NODE
575 * mapping valid and stable across CPU on/offlines. Once that
576 * happens, this workaround can be removed.
578 if (unlikely(node == NUMA_NO_NODE))
581 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
584 static unsigned int work_color_to_flags(int color)
586 return color << WORK_STRUCT_COLOR_SHIFT;
589 static int get_work_color(struct work_struct *work)
591 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
592 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
595 static int work_next_color(int color)
597 return (color + 1) % WORK_NR_COLORS;
601 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
602 * contain the pointer to the queued pwq. Once execution starts, the flag
603 * is cleared and the high bits contain OFFQ flags and pool ID.
605 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
606 * and clear_work_data() can be used to set the pwq, pool or clear
607 * work->data. These functions should only be called while the work is
608 * owned - ie. while the PENDING bit is set.
610 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
611 * corresponding to a work. Pool is available once the work has been
612 * queued anywhere after initialization until it is sync canceled. pwq is
613 * available only while the work item is queued.
615 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
616 * canceled. While being canceled, a work item may have its PENDING set
617 * but stay off timer and worklist for arbitrarily long and nobody should
618 * try to steal the PENDING bit.
620 static inline void set_work_data(struct work_struct *work, unsigned long data,
623 WARN_ON_ONCE(!work_pending(work));
624 atomic_long_set(&work->data, data | flags | work_static(work));
627 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
628 unsigned long extra_flags)
630 set_work_data(work, (unsigned long)pwq,
631 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
634 static void set_work_pool_and_keep_pending(struct work_struct *work,
637 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
638 WORK_STRUCT_PENDING);
641 static void set_work_pool_and_clear_pending(struct work_struct *work,
645 * The following wmb is paired with the implied mb in
646 * test_and_set_bit(PENDING) and ensures all updates to @work made
647 * here are visible to and precede any updates by the next PENDING
651 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
653 * The following mb guarantees that previous clear of a PENDING bit
654 * will not be reordered with any speculative LOADS or STORES from
655 * work->current_func, which is executed afterwards. This possible
656 * reordering can lead to a missed execution on attempt to qeueue
657 * the same @work. E.g. consider this case:
660 * ---------------------------- --------------------------------
662 * 1 STORE event_indicated
663 * 2 queue_work_on() {
664 * 3 test_and_set_bit(PENDING)
665 * 4 } set_..._and_clear_pending() {
666 * 5 set_work_data() # clear bit
668 * 7 work->current_func() {
669 * 8 LOAD event_indicated
672 * Without an explicit full barrier speculative LOAD on line 8 can
673 * be executed before CPU#0 does STORE on line 1. If that happens,
674 * CPU#0 observes the PENDING bit is still set and new execution of
675 * a @work is not queued in a hope, that CPU#1 will eventually
676 * finish the queued @work. Meanwhile CPU#1 does not see
677 * event_indicated is set, because speculative LOAD was executed
678 * before actual STORE.
683 static void clear_work_data(struct work_struct *work)
685 smp_wmb(); /* see set_work_pool_and_clear_pending() */
686 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
689 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
691 unsigned long data = atomic_long_read(&work->data);
693 if (data & WORK_STRUCT_PWQ)
694 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
700 * get_work_pool - return the worker_pool a given work was associated with
701 * @work: the work item of interest
703 * Pools are created and destroyed under wq_pool_mutex, and allows read
704 * access under sched-RCU read lock. As such, this function should be
705 * called under wq_pool_mutex or with preemption disabled.
707 * All fields of the returned pool are accessible as long as the above
708 * mentioned locking is in effect. If the returned pool needs to be used
709 * beyond the critical section, the caller is responsible for ensuring the
710 * returned pool is and stays online.
712 * Return: The worker_pool @work was last associated with. %NULL if none.
714 static struct worker_pool *get_work_pool(struct work_struct *work)
716 unsigned long data = atomic_long_read(&work->data);
719 assert_rcu_or_pool_mutex();
721 if (data & WORK_STRUCT_PWQ)
722 return ((struct pool_workqueue *)
723 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
725 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
726 if (pool_id == WORK_OFFQ_POOL_NONE)
729 return idr_find(&worker_pool_idr, pool_id);
733 * get_work_pool_id - return the worker pool ID a given work is associated with
734 * @work: the work item of interest
736 * Return: The worker_pool ID @work was last associated with.
737 * %WORK_OFFQ_POOL_NONE if none.
739 static int get_work_pool_id(struct work_struct *work)
741 unsigned long data = atomic_long_read(&work->data);
743 if (data & WORK_STRUCT_PWQ)
744 return ((struct pool_workqueue *)
745 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
747 return data >> WORK_OFFQ_POOL_SHIFT;
750 static void mark_work_canceling(struct work_struct *work)
752 unsigned long pool_id = get_work_pool_id(work);
754 pool_id <<= WORK_OFFQ_POOL_SHIFT;
755 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
758 static bool work_is_canceling(struct work_struct *work)
760 unsigned long data = atomic_long_read(&work->data);
762 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
766 * Policy functions. These define the policies on how the global worker
767 * pools are managed. Unless noted otherwise, these functions assume that
768 * they're being called with pool->lock held.
771 static bool __need_more_worker(struct worker_pool *pool)
773 return !atomic_read(&pool->nr_running);
777 * Need to wake up a worker? Called from anything but currently
780 * Note that, because unbound workers never contribute to nr_running, this
781 * function will always return %true for unbound pools as long as the
782 * worklist isn't empty.
784 static bool need_more_worker(struct worker_pool *pool)
786 return !list_empty(&pool->worklist) && __need_more_worker(pool);
789 /* Can I start working? Called from busy but !running workers. */
790 static bool may_start_working(struct worker_pool *pool)
792 return pool->nr_idle;
795 /* Do I need to keep working? Called from currently running workers. */
796 static bool keep_working(struct worker_pool *pool)
798 return !list_empty(&pool->worklist) &&
799 atomic_read(&pool->nr_running) <= 1;
802 /* Do we need a new worker? Called from manager. */
803 static bool need_to_create_worker(struct worker_pool *pool)
805 return need_more_worker(pool) && !may_start_working(pool);
808 /* Do we have too many workers and should some go away? */
809 static bool too_many_workers(struct worker_pool *pool)
811 bool managing = mutex_is_locked(&pool->manager_arb);
812 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
813 int nr_busy = pool->nr_workers - nr_idle;
815 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
822 /* Return the first idle worker. Safe with preemption disabled */
823 static struct worker *first_idle_worker(struct worker_pool *pool)
825 if (unlikely(list_empty(&pool->idle_list)))
828 return list_first_entry(&pool->idle_list, struct worker, entry);
832 * wake_up_worker - wake up an idle worker
833 * @pool: worker pool to wake worker from
835 * Wake up the first idle worker of @pool.
838 * spin_lock_irq(pool->lock).
840 static void wake_up_worker(struct worker_pool *pool)
842 struct worker *worker = first_idle_worker(pool);
845 wake_up_process(worker->task);
849 * wq_worker_waking_up - a worker is waking up
850 * @task: task waking up
851 * @cpu: CPU @task is waking up to
853 * This function is called during try_to_wake_up() when a worker is
857 * spin_lock_irq(rq->lock)
859 void wq_worker_waking_up(struct task_struct *task, int cpu)
861 struct worker *worker = kthread_data(task);
863 if (!(worker->flags & WORKER_NOT_RUNNING)) {
864 WARN_ON_ONCE(worker->pool->cpu != cpu);
865 atomic_inc(&worker->pool->nr_running);
870 * wq_worker_sleeping - a worker is going to sleep
871 * @task: task going to sleep
872 * @cpu: CPU in question, must be the current CPU number
874 * This function is called during schedule() when a busy worker is
875 * going to sleep. Worker on the same cpu can be woken up by
876 * returning pointer to its task.
879 * spin_lock_irq(rq->lock)
882 * Worker task on @cpu to wake up, %NULL if none.
884 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
886 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
887 struct worker_pool *pool;
890 * Rescuers, which may not have all the fields set up like normal
891 * workers, also reach here, let's not access anything before
892 * checking NOT_RUNNING.
894 if (worker->flags & WORKER_NOT_RUNNING)
899 /* this can only happen on the local cpu */
900 if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
904 * The counterpart of the following dec_and_test, implied mb,
905 * worklist not empty test sequence is in insert_work().
906 * Please read comment there.
908 * NOT_RUNNING is clear. This means that we're bound to and
909 * running on the local cpu w/ rq lock held and preemption
910 * disabled, which in turn means that none else could be
911 * manipulating idle_list, so dereferencing idle_list without pool
914 if (atomic_dec_and_test(&pool->nr_running) &&
915 !list_empty(&pool->worklist))
916 to_wakeup = first_idle_worker(pool);
917 return to_wakeup ? to_wakeup->task : NULL;
921 * worker_set_flags - set worker flags and adjust nr_running accordingly
923 * @flags: flags to set
925 * Set @flags in @worker->flags and adjust nr_running accordingly.
928 * spin_lock_irq(pool->lock)
930 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
932 struct worker_pool *pool = worker->pool;
934 WARN_ON_ONCE(worker->task != current);
936 /* If transitioning into NOT_RUNNING, adjust nr_running. */
937 if ((flags & WORKER_NOT_RUNNING) &&
938 !(worker->flags & WORKER_NOT_RUNNING)) {
939 atomic_dec(&pool->nr_running);
942 worker->flags |= flags;
946 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
948 * @flags: flags to clear
950 * Clear @flags in @worker->flags and adjust nr_running accordingly.
953 * spin_lock_irq(pool->lock)
955 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
957 struct worker_pool *pool = worker->pool;
958 unsigned int oflags = worker->flags;
960 WARN_ON_ONCE(worker->task != current);
962 worker->flags &= ~flags;
965 * If transitioning out of NOT_RUNNING, increment nr_running. Note
966 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
967 * of multiple flags, not a single flag.
969 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
970 if (!(worker->flags & WORKER_NOT_RUNNING))
971 atomic_inc(&pool->nr_running);
975 * find_worker_executing_work - find worker which is executing a work
976 * @pool: pool of interest
977 * @work: work to find worker for
979 * Find a worker which is executing @work on @pool by searching
980 * @pool->busy_hash which is keyed by the address of @work. For a worker
981 * to match, its current execution should match the address of @work and
982 * its work function. This is to avoid unwanted dependency between
983 * unrelated work executions through a work item being recycled while still
986 * This is a bit tricky. A work item may be freed once its execution
987 * starts and nothing prevents the freed area from being recycled for
988 * another work item. If the same work item address ends up being reused
989 * before the original execution finishes, workqueue will identify the
990 * recycled work item as currently executing and make it wait until the
991 * current execution finishes, introducing an unwanted dependency.
993 * This function checks the work item address and work function to avoid
994 * false positives. Note that this isn't complete as one may construct a
995 * work function which can introduce dependency onto itself through a
996 * recycled work item. Well, if somebody wants to shoot oneself in the
997 * foot that badly, there's only so much we can do, and if such deadlock
998 * actually occurs, it should be easy to locate the culprit work function.
1001 * spin_lock_irq(pool->lock).
1004 * Pointer to worker which is executing @work if found, %NULL
1007 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1008 struct work_struct *work)
1010 struct worker *worker;
1012 hash_for_each_possible(pool->busy_hash, worker, hentry,
1013 (unsigned long)work)
1014 if (worker->current_work == work &&
1015 worker->current_func == work->func)
1022 * move_linked_works - move linked works to a list
1023 * @work: start of series of works to be scheduled
1024 * @head: target list to append @work to
1025 * @nextp: out parameter for nested worklist walking
1027 * Schedule linked works starting from @work to @head. Work series to
1028 * be scheduled starts at @work and includes any consecutive work with
1029 * WORK_STRUCT_LINKED set in its predecessor.
1031 * If @nextp is not NULL, it's updated to point to the next work of
1032 * the last scheduled work. This allows move_linked_works() to be
1033 * nested inside outer list_for_each_entry_safe().
1036 * spin_lock_irq(pool->lock).
1038 static void move_linked_works(struct work_struct *work, struct list_head *head,
1039 struct work_struct **nextp)
1041 struct work_struct *n;
1044 * Linked worklist will always end before the end of the list,
1045 * use NULL for list head.
1047 list_for_each_entry_safe_from(work, n, NULL, entry) {
1048 list_move_tail(&work->entry, head);
1049 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1054 * If we're already inside safe list traversal and have moved
1055 * multiple works to the scheduled queue, the next position
1056 * needs to be updated.
1063 * get_pwq - get an extra reference on the specified pool_workqueue
1064 * @pwq: pool_workqueue to get
1066 * Obtain an extra reference on @pwq. The caller should guarantee that
1067 * @pwq has positive refcnt and be holding the matching pool->lock.
1069 static void get_pwq(struct pool_workqueue *pwq)
1071 lockdep_assert_held(&pwq->pool->lock);
1072 WARN_ON_ONCE(pwq->refcnt <= 0);
1077 * put_pwq - put a pool_workqueue reference
1078 * @pwq: pool_workqueue to put
1080 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1081 * destruction. The caller should be holding the matching pool->lock.
1083 static void put_pwq(struct pool_workqueue *pwq)
1085 lockdep_assert_held(&pwq->pool->lock);
1086 if (likely(--pwq->refcnt))
1088 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1091 * @pwq can't be released under pool->lock, bounce to
1092 * pwq_unbound_release_workfn(). This never recurses on the same
1093 * pool->lock as this path is taken only for unbound workqueues and
1094 * the release work item is scheduled on a per-cpu workqueue. To
1095 * avoid lockdep warning, unbound pool->locks are given lockdep
1096 * subclass of 1 in get_unbound_pool().
1098 schedule_work(&pwq->unbound_release_work);
1102 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1103 * @pwq: pool_workqueue to put (can be %NULL)
1105 * put_pwq() with locking. This function also allows %NULL @pwq.
1107 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1111 * As both pwqs and pools are sched-RCU protected, the
1112 * following lock operations are safe.
1114 spin_lock_irq(&pwq->pool->lock);
1116 spin_unlock_irq(&pwq->pool->lock);
1120 static void pwq_activate_delayed_work(struct work_struct *work)
1122 struct pool_workqueue *pwq = get_work_pwq(work);
1124 trace_workqueue_activate_work(work);
1125 move_linked_works(work, &pwq->pool->worklist, NULL);
1126 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1130 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1132 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1133 struct work_struct, entry);
1135 pwq_activate_delayed_work(work);
1139 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1140 * @pwq: pwq of interest
1141 * @color: color of work which left the queue
1143 * A work either has completed or is removed from pending queue,
1144 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1147 * spin_lock_irq(pool->lock).
1149 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1151 /* uncolored work items don't participate in flushing or nr_active */
1152 if (color == WORK_NO_COLOR)
1155 pwq->nr_in_flight[color]--;
1158 if (!list_empty(&pwq->delayed_works)) {
1159 /* one down, submit a delayed one */
1160 if (pwq->nr_active < pwq->max_active)
1161 pwq_activate_first_delayed(pwq);
1164 /* is flush in progress and are we at the flushing tip? */
1165 if (likely(pwq->flush_color != color))
1168 /* are there still in-flight works? */
1169 if (pwq->nr_in_flight[color])
1172 /* this pwq is done, clear flush_color */
1173 pwq->flush_color = -1;
1176 * If this was the last pwq, wake up the first flusher. It
1177 * will handle the rest.
1179 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1180 complete(&pwq->wq->first_flusher->done);
1186 * try_to_grab_pending - steal work item from worklist and disable irq
1187 * @work: work item to steal
1188 * @is_dwork: @work is a delayed_work
1189 * @flags: place to store irq state
1191 * Try to grab PENDING bit of @work. This function can handle @work in any
1192 * stable state - idle, on timer or on worklist.
1195 * 1 if @work was pending and we successfully stole PENDING
1196 * 0 if @work was idle and we claimed PENDING
1197 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1198 * -ENOENT if someone else is canceling @work, this state may persist
1199 * for arbitrarily long
1202 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1203 * interrupted while holding PENDING and @work off queue, irq must be
1204 * disabled on entry. This, combined with delayed_work->timer being
1205 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1207 * On successful return, >= 0, irq is disabled and the caller is
1208 * responsible for releasing it using local_irq_restore(*@flags).
1210 * This function is safe to call from any context including IRQ handler.
1212 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1213 unsigned long *flags)
1215 struct worker_pool *pool;
1216 struct pool_workqueue *pwq;
1218 local_irq_save(*flags);
1220 /* try to steal the timer if it exists */
1222 struct delayed_work *dwork = to_delayed_work(work);
1225 * dwork->timer is irqsafe. If del_timer() fails, it's
1226 * guaranteed that the timer is not queued anywhere and not
1227 * running on the local CPU.
1229 if (likely(del_timer(&dwork->timer)))
1233 /* try to claim PENDING the normal way */
1234 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1238 * The queueing is in progress, or it is already queued. Try to
1239 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1241 pool = get_work_pool(work);
1245 spin_lock(&pool->lock);
1247 * work->data is guaranteed to point to pwq only while the work
1248 * item is queued on pwq->wq, and both updating work->data to point
1249 * to pwq on queueing and to pool on dequeueing are done under
1250 * pwq->pool->lock. This in turn guarantees that, if work->data
1251 * points to pwq which is associated with a locked pool, the work
1252 * item is currently queued on that pool.
1254 pwq = get_work_pwq(work);
1255 if (pwq && pwq->pool == pool) {
1256 debug_work_deactivate(work);
1259 * A delayed work item cannot be grabbed directly because
1260 * it might have linked NO_COLOR work items which, if left
1261 * on the delayed_list, will confuse pwq->nr_active
1262 * management later on and cause stall. Make sure the work
1263 * item is activated before grabbing.
1265 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1266 pwq_activate_delayed_work(work);
1268 list_del_init(&work->entry);
1269 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1271 /* work->data points to pwq iff queued, point to pool */
1272 set_work_pool_and_keep_pending(work, pool->id);
1274 spin_unlock(&pool->lock);
1277 spin_unlock(&pool->lock);
1279 local_irq_restore(*flags);
1280 if (work_is_canceling(work))
1287 * insert_work - insert a work into a pool
1288 * @pwq: pwq @work belongs to
1289 * @work: work to insert
1290 * @head: insertion point
1291 * @extra_flags: extra WORK_STRUCT_* flags to set
1293 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1294 * work_struct flags.
1297 * spin_lock_irq(pool->lock).
1299 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1300 struct list_head *head, unsigned int extra_flags)
1302 struct worker_pool *pool = pwq->pool;
1304 /* we own @work, set data and link */
1305 set_work_pwq(work, pwq, extra_flags);
1306 list_add_tail(&work->entry, head);
1310 * Ensure either wq_worker_sleeping() sees the above
1311 * list_add_tail() or we see zero nr_running to avoid workers lying
1312 * around lazily while there are works to be processed.
1316 if (__need_more_worker(pool))
1317 wake_up_worker(pool);
1321 * Test whether @work is being queued from another work executing on the
1324 static bool is_chained_work(struct workqueue_struct *wq)
1326 struct worker *worker;
1328 worker = current_wq_worker();
1330 * Return %true iff I'm a worker execuing a work item on @wq. If
1331 * I'm @worker, it's safe to dereference it without locking.
1333 return worker && worker->current_pwq->wq == wq;
1336 static void __queue_work(int cpu, struct workqueue_struct *wq,
1337 struct work_struct *work)
1339 struct pool_workqueue *pwq;
1340 struct worker_pool *last_pool;
1341 struct list_head *worklist;
1342 unsigned int work_flags;
1343 unsigned int req_cpu = cpu;
1346 * While a work item is PENDING && off queue, a task trying to
1347 * steal the PENDING will busy-loop waiting for it to either get
1348 * queued or lose PENDING. Grabbing PENDING and queueing should
1349 * happen with IRQ disabled.
1351 WARN_ON_ONCE(!irqs_disabled());
1353 debug_work_activate(work);
1355 /* if draining, only works from the same workqueue are allowed */
1356 if (unlikely(wq->flags & __WQ_DRAINING) &&
1357 WARN_ON_ONCE(!is_chained_work(wq)))
1360 if (req_cpu == WORK_CPU_UNBOUND)
1361 cpu = raw_smp_processor_id();
1363 /* pwq which will be used unless @work is executing elsewhere */
1364 if (!(wq->flags & WQ_UNBOUND))
1365 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1367 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1370 * If @work was previously on a different pool, it might still be
1371 * running there, in which case the work needs to be queued on that
1372 * pool to guarantee non-reentrancy.
1374 last_pool = get_work_pool(work);
1375 if (last_pool && last_pool != pwq->pool) {
1376 struct worker *worker;
1378 spin_lock(&last_pool->lock);
1380 worker = find_worker_executing_work(last_pool, work);
1382 if (worker && worker->current_pwq->wq == wq) {
1383 pwq = worker->current_pwq;
1385 /* meh... not running there, queue here */
1386 spin_unlock(&last_pool->lock);
1387 spin_lock(&pwq->pool->lock);
1390 spin_lock(&pwq->pool->lock);
1394 * pwq is determined and locked. For unbound pools, we could have
1395 * raced with pwq release and it could already be dead. If its
1396 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1397 * without another pwq replacing it in the numa_pwq_tbl or while
1398 * work items are executing on it, so the retrying is guaranteed to
1399 * make forward-progress.
1401 if (unlikely(!pwq->refcnt)) {
1402 if (wq->flags & WQ_UNBOUND) {
1403 spin_unlock(&pwq->pool->lock);
1408 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1412 /* pwq determined, queue */
1413 trace_workqueue_queue_work(req_cpu, pwq, work);
1415 if (WARN_ON(!list_empty(&work->entry))) {
1416 spin_unlock(&pwq->pool->lock);
1420 pwq->nr_in_flight[pwq->work_color]++;
1421 work_flags = work_color_to_flags(pwq->work_color);
1423 if (likely(pwq->nr_active < pwq->max_active)) {
1424 trace_workqueue_activate_work(work);
1426 worklist = &pwq->pool->worklist;
1428 work_flags |= WORK_STRUCT_DELAYED;
1429 worklist = &pwq->delayed_works;
1432 insert_work(pwq, work, worklist, work_flags);
1434 spin_unlock(&pwq->pool->lock);
1438 * queue_work_on - queue work on specific cpu
1439 * @cpu: CPU number to execute work on
1440 * @wq: workqueue to use
1441 * @work: work to queue
1443 * We queue the work to a specific CPU, the caller must ensure it
1446 * Return: %false if @work was already on a queue, %true otherwise.
1448 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1449 struct work_struct *work)
1452 unsigned long flags;
1454 local_irq_save(flags);
1456 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1457 __queue_work(cpu, wq, work);
1461 local_irq_restore(flags);
1464 EXPORT_SYMBOL(queue_work_on);
1466 void delayed_work_timer_fn(unsigned long __data)
1468 struct delayed_work *dwork = (struct delayed_work *)__data;
1470 /* should have been called from irqsafe timer with irq already off */
1471 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1473 EXPORT_SYMBOL(delayed_work_timer_fn);
1475 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1476 struct delayed_work *dwork, unsigned long delay)
1478 struct timer_list *timer = &dwork->timer;
1479 struct work_struct *work = &dwork->work;
1481 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1482 timer->data != (unsigned long)dwork);
1483 WARN_ON_ONCE(timer_pending(timer));
1484 WARN_ON_ONCE(!list_empty(&work->entry));
1487 * If @delay is 0, queue @dwork->work immediately. This is for
1488 * both optimization and correctness. The earliest @timer can
1489 * expire is on the closest next tick and delayed_work users depend
1490 * on that there's no such delay when @delay is 0.
1493 __queue_work(cpu, wq, &dwork->work);
1497 timer_stats_timer_set_start_info(&dwork->timer);
1501 timer->expires = jiffies + delay;
1503 if (unlikely(cpu != WORK_CPU_UNBOUND))
1504 add_timer_on(timer, cpu);
1510 * queue_delayed_work_on - queue work on specific CPU after delay
1511 * @cpu: CPU number to execute work on
1512 * @wq: workqueue to use
1513 * @dwork: work to queue
1514 * @delay: number of jiffies to wait before queueing
1516 * Return: %false if @work was already on a queue, %true otherwise. If
1517 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1520 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1521 struct delayed_work *dwork, unsigned long delay)
1523 struct work_struct *work = &dwork->work;
1525 unsigned long flags;
1527 /* read the comment in __queue_work() */
1528 local_irq_save(flags);
1530 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1531 __queue_delayed_work(cpu, wq, dwork, delay);
1535 local_irq_restore(flags);
1538 EXPORT_SYMBOL(queue_delayed_work_on);
1541 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1542 * @cpu: CPU number to execute work on
1543 * @wq: workqueue to use
1544 * @dwork: work to queue
1545 * @delay: number of jiffies to wait before queueing
1547 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1548 * modify @dwork's timer so that it expires after @delay. If @delay is
1549 * zero, @work is guaranteed to be scheduled immediately regardless of its
1552 * Return: %false if @dwork was idle and queued, %true if @dwork was
1553 * pending and its timer was modified.
1555 * This function is safe to call from any context including IRQ handler.
1556 * See try_to_grab_pending() for details.
1558 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1559 struct delayed_work *dwork, unsigned long delay)
1561 unsigned long flags;
1565 ret = try_to_grab_pending(&dwork->work, true, &flags);
1566 } while (unlikely(ret == -EAGAIN));
1568 if (likely(ret >= 0)) {
1569 __queue_delayed_work(cpu, wq, dwork, delay);
1570 local_irq_restore(flags);
1573 /* -ENOENT from try_to_grab_pending() becomes %true */
1576 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1579 * worker_enter_idle - enter idle state
1580 * @worker: worker which is entering idle state
1582 * @worker is entering idle state. Update stats and idle timer if
1586 * spin_lock_irq(pool->lock).
1588 static void worker_enter_idle(struct worker *worker)
1590 struct worker_pool *pool = worker->pool;
1592 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1593 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1594 (worker->hentry.next || worker->hentry.pprev)))
1597 /* can't use worker_set_flags(), also called from create_worker() */
1598 worker->flags |= WORKER_IDLE;
1600 worker->last_active = jiffies;
1602 /* idle_list is LIFO */
1603 list_add(&worker->entry, &pool->idle_list);
1605 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1606 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1609 * Sanity check nr_running. Because wq_unbind_fn() releases
1610 * pool->lock between setting %WORKER_UNBOUND and zapping
1611 * nr_running, the warning may trigger spuriously. Check iff
1612 * unbind is not in progress.
1614 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1615 pool->nr_workers == pool->nr_idle &&
1616 atomic_read(&pool->nr_running));
1620 * worker_leave_idle - leave idle state
1621 * @worker: worker which is leaving idle state
1623 * @worker is leaving idle state. Update stats.
1626 * spin_lock_irq(pool->lock).
1628 static void worker_leave_idle(struct worker *worker)
1630 struct worker_pool *pool = worker->pool;
1632 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1634 worker_clr_flags(worker, WORKER_IDLE);
1636 list_del_init(&worker->entry);
1639 static struct worker *alloc_worker(int node)
1641 struct worker *worker;
1643 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1645 INIT_LIST_HEAD(&worker->entry);
1646 INIT_LIST_HEAD(&worker->scheduled);
1647 INIT_LIST_HEAD(&worker->node);
1648 /* on creation a worker is in !idle && prep state */
1649 worker->flags = WORKER_PREP;
1655 * worker_attach_to_pool() - attach a worker to a pool
1656 * @worker: worker to be attached
1657 * @pool: the target pool
1659 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1660 * cpu-binding of @worker are kept coordinated with the pool across
1663 static void worker_attach_to_pool(struct worker *worker,
1664 struct worker_pool *pool)
1666 mutex_lock(&pool->attach_mutex);
1669 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1670 * online CPUs. It'll be re-applied when any of the CPUs come up.
1672 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1675 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1676 * stable across this function. See the comments above the
1677 * flag definition for details.
1679 if (pool->flags & POOL_DISASSOCIATED)
1680 worker->flags |= WORKER_UNBOUND;
1682 list_add_tail(&worker->node, &pool->workers);
1684 mutex_unlock(&pool->attach_mutex);
1688 * worker_detach_from_pool() - detach a worker from its pool
1689 * @worker: worker which is attached to its pool
1690 * @pool: the pool @worker is attached to
1692 * Undo the attaching which had been done in worker_attach_to_pool(). The
1693 * caller worker shouldn't access to the pool after detached except it has
1694 * other reference to the pool.
1696 static void worker_detach_from_pool(struct worker *worker,
1697 struct worker_pool *pool)
1699 struct completion *detach_completion = NULL;
1701 mutex_lock(&pool->attach_mutex);
1702 list_del(&worker->node);
1703 if (list_empty(&pool->workers))
1704 detach_completion = pool->detach_completion;
1705 mutex_unlock(&pool->attach_mutex);
1707 /* clear leftover flags without pool->lock after it is detached */
1708 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1710 if (detach_completion)
1711 complete(detach_completion);
1715 * create_worker - create a new workqueue worker
1716 * @pool: pool the new worker will belong to
1718 * Create and start a new worker which is attached to @pool.
1721 * Might sleep. Does GFP_KERNEL allocations.
1724 * Pointer to the newly created worker.
1726 static struct worker *create_worker(struct worker_pool *pool)
1728 struct worker *worker = NULL;
1732 /* ID is needed to determine kthread name */
1733 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1737 worker = alloc_worker(pool->node);
1741 worker->pool = pool;
1745 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1746 pool->attrs->nice < 0 ? "H" : "");
1748 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1750 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1751 "kworker/%s", id_buf);
1752 if (IS_ERR(worker->task))
1755 set_user_nice(worker->task, pool->attrs->nice);
1756 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1758 /* successful, attach the worker to the pool */
1759 worker_attach_to_pool(worker, pool);
1761 /* start the newly created worker */
1762 spin_lock_irq(&pool->lock);
1763 worker->pool->nr_workers++;
1764 worker_enter_idle(worker);
1765 wake_up_process(worker->task);
1766 spin_unlock_irq(&pool->lock);
1772 ida_simple_remove(&pool->worker_ida, id);
1778 * destroy_worker - destroy a workqueue worker
1779 * @worker: worker to be destroyed
1781 * Destroy @worker and adjust @pool stats accordingly. The worker should
1785 * spin_lock_irq(pool->lock).
1787 static void destroy_worker(struct worker *worker)
1789 struct worker_pool *pool = worker->pool;
1791 lockdep_assert_held(&pool->lock);
1793 /* sanity check frenzy */
1794 if (WARN_ON(worker->current_work) ||
1795 WARN_ON(!list_empty(&worker->scheduled)) ||
1796 WARN_ON(!(worker->flags & WORKER_IDLE)))
1802 list_del_init(&worker->entry);
1803 worker->flags |= WORKER_DIE;
1804 wake_up_process(worker->task);
1807 static void idle_worker_timeout(unsigned long __pool)
1809 struct worker_pool *pool = (void *)__pool;
1811 spin_lock_irq(&pool->lock);
1813 while (too_many_workers(pool)) {
1814 struct worker *worker;
1815 unsigned long expires;
1817 /* idle_list is kept in LIFO order, check the last one */
1818 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1819 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1821 if (time_before(jiffies, expires)) {
1822 mod_timer(&pool->idle_timer, expires);
1826 destroy_worker(worker);
1829 spin_unlock_irq(&pool->lock);
1832 static void send_mayday(struct work_struct *work)
1834 struct pool_workqueue *pwq = get_work_pwq(work);
1835 struct workqueue_struct *wq = pwq->wq;
1837 lockdep_assert_held(&wq_mayday_lock);
1842 /* mayday mayday mayday */
1843 if (list_empty(&pwq->mayday_node)) {
1845 * If @pwq is for an unbound wq, its base ref may be put at
1846 * any time due to an attribute change. Pin @pwq until the
1847 * rescuer is done with it.
1850 list_add_tail(&pwq->mayday_node, &wq->maydays);
1851 wake_up_process(wq->rescuer->task);
1855 static void pool_mayday_timeout(unsigned long __pool)
1857 struct worker_pool *pool = (void *)__pool;
1858 struct work_struct *work;
1860 spin_lock_irq(&pool->lock);
1861 spin_lock(&wq_mayday_lock); /* for wq->maydays */
1863 if (need_to_create_worker(pool)) {
1865 * We've been trying to create a new worker but
1866 * haven't been successful. We might be hitting an
1867 * allocation deadlock. Send distress signals to
1870 list_for_each_entry(work, &pool->worklist, entry)
1874 spin_unlock(&wq_mayday_lock);
1875 spin_unlock_irq(&pool->lock);
1877 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1881 * maybe_create_worker - create a new worker if necessary
1882 * @pool: pool to create a new worker for
1884 * Create a new worker for @pool if necessary. @pool is guaranteed to
1885 * have at least one idle worker on return from this function. If
1886 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1887 * sent to all rescuers with works scheduled on @pool to resolve
1888 * possible allocation deadlock.
1890 * On return, need_to_create_worker() is guaranteed to be %false and
1891 * may_start_working() %true.
1894 * spin_lock_irq(pool->lock) which may be released and regrabbed
1895 * multiple times. Does GFP_KERNEL allocations. Called only from
1898 static void maybe_create_worker(struct worker_pool *pool)
1899 __releases(&pool->lock)
1900 __acquires(&pool->lock)
1903 spin_unlock_irq(&pool->lock);
1905 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1906 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1909 if (create_worker(pool) || !need_to_create_worker(pool))
1912 schedule_timeout_interruptible(CREATE_COOLDOWN);
1914 if (!need_to_create_worker(pool))
1918 del_timer_sync(&pool->mayday_timer);
1919 spin_lock_irq(&pool->lock);
1921 * This is necessary even after a new worker was just successfully
1922 * created as @pool->lock was dropped and the new worker might have
1923 * already become busy.
1925 if (need_to_create_worker(pool))
1930 * manage_workers - manage worker pool
1933 * Assume the manager role and manage the worker pool @worker belongs
1934 * to. At any given time, there can be only zero or one manager per
1935 * pool. The exclusion is handled automatically by this function.
1937 * The caller can safely start processing works on false return. On
1938 * true return, it's guaranteed that need_to_create_worker() is false
1939 * and may_start_working() is true.
1942 * spin_lock_irq(pool->lock) which may be released and regrabbed
1943 * multiple times. Does GFP_KERNEL allocations.
1946 * %false if the pool doesn't need management and the caller can safely
1947 * start processing works, %true if management function was performed and
1948 * the conditions that the caller verified before calling the function may
1949 * no longer be true.
1951 static bool manage_workers(struct worker *worker)
1953 struct worker_pool *pool = worker->pool;
1956 * Anyone who successfully grabs manager_arb wins the arbitration
1957 * and becomes the manager. mutex_trylock() on pool->manager_arb
1958 * failure while holding pool->lock reliably indicates that someone
1959 * else is managing the pool and the worker which failed trylock
1960 * can proceed to executing work items. This means that anyone
1961 * grabbing manager_arb is responsible for actually performing
1962 * manager duties. If manager_arb is grabbed and released without
1963 * actual management, the pool may stall indefinitely.
1965 if (!mutex_trylock(&pool->manager_arb))
1967 pool->manager = worker;
1969 maybe_create_worker(pool);
1971 pool->manager = NULL;
1972 mutex_unlock(&pool->manager_arb);
1977 * process_one_work - process single work
1979 * @work: work to process
1981 * Process @work. This function contains all the logics necessary to
1982 * process a single work including synchronization against and
1983 * interaction with other workers on the same cpu, queueing and
1984 * flushing. As long as context requirement is met, any worker can
1985 * call this function to process a work.
1988 * spin_lock_irq(pool->lock) which is released and regrabbed.
1990 static void process_one_work(struct worker *worker, struct work_struct *work)
1991 __releases(&pool->lock)
1992 __acquires(&pool->lock)
1994 struct pool_workqueue *pwq = get_work_pwq(work);
1995 struct worker_pool *pool = worker->pool;
1996 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
1998 struct worker *collision;
1999 #ifdef CONFIG_LOCKDEP
2001 * It is permissible to free the struct work_struct from
2002 * inside the function that is called from it, this we need to
2003 * take into account for lockdep too. To avoid bogus "held
2004 * lock freed" warnings as well as problems when looking into
2005 * work->lockdep_map, make a copy and use that here.
2007 struct lockdep_map lockdep_map;
2009 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2011 /* ensure we're on the correct CPU */
2012 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2013 raw_smp_processor_id() != pool->cpu);
2016 * A single work shouldn't be executed concurrently by
2017 * multiple workers on a single cpu. Check whether anyone is
2018 * already processing the work. If so, defer the work to the
2019 * currently executing one.
2021 collision = find_worker_executing_work(pool, work);
2022 if (unlikely(collision)) {
2023 move_linked_works(work, &collision->scheduled, NULL);
2027 /* claim and dequeue */
2028 debug_work_deactivate(work);
2029 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2030 worker->current_work = work;
2031 worker->current_func = work->func;
2032 worker->current_pwq = pwq;
2033 work_color = get_work_color(work);
2035 list_del_init(&work->entry);
2038 * CPU intensive works don't participate in concurrency management.
2039 * They're the scheduler's responsibility. This takes @worker out
2040 * of concurrency management and the next code block will chain
2041 * execution of the pending work items.
2043 if (unlikely(cpu_intensive))
2044 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2047 * Wake up another worker if necessary. The condition is always
2048 * false for normal per-cpu workers since nr_running would always
2049 * be >= 1 at this point. This is used to chain execution of the
2050 * pending work items for WORKER_NOT_RUNNING workers such as the
2051 * UNBOUND and CPU_INTENSIVE ones.
2053 if (need_more_worker(pool))
2054 wake_up_worker(pool);
2057 * Record the last pool and clear PENDING which should be the last
2058 * update to @work. Also, do this inside @pool->lock so that
2059 * PENDING and queued state changes happen together while IRQ is
2062 set_work_pool_and_clear_pending(work, pool->id);
2064 spin_unlock_irq(&pool->lock);
2066 lock_map_acquire_read(&pwq->wq->lockdep_map);
2067 lock_map_acquire(&lockdep_map);
2068 trace_workqueue_execute_start(work);
2069 worker->current_func(work);
2071 * While we must be careful to not use "work" after this, the trace
2072 * point will only record its address.
2074 trace_workqueue_execute_end(work);
2075 lock_map_release(&lockdep_map);
2076 lock_map_release(&pwq->wq->lockdep_map);
2078 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2079 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2080 " last function: %pf\n",
2081 current->comm, preempt_count(), task_pid_nr(current),
2082 worker->current_func);
2083 debug_show_held_locks(current);
2088 * The following prevents a kworker from hogging CPU on !PREEMPT
2089 * kernels, where a requeueing work item waiting for something to
2090 * happen could deadlock with stop_machine as such work item could
2091 * indefinitely requeue itself while all other CPUs are trapped in
2092 * stop_machine. At the same time, report a quiescent RCU state so
2093 * the same condition doesn't freeze RCU.
2095 cond_resched_rcu_qs();
2097 spin_lock_irq(&pool->lock);
2099 /* clear cpu intensive status */
2100 if (unlikely(cpu_intensive))
2101 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2103 /* we're done with it, release */
2104 hash_del(&worker->hentry);
2105 worker->current_work = NULL;
2106 worker->current_func = NULL;
2107 worker->current_pwq = NULL;
2108 worker->desc_valid = false;
2109 pwq_dec_nr_in_flight(pwq, work_color);
2113 * process_scheduled_works - process scheduled works
2116 * Process all scheduled works. Please note that the scheduled list
2117 * may change while processing a work, so this function repeatedly
2118 * fetches a work from the top and executes it.
2121 * spin_lock_irq(pool->lock) which may be released and regrabbed
2124 static void process_scheduled_works(struct worker *worker)
2126 while (!list_empty(&worker->scheduled)) {
2127 struct work_struct *work = list_first_entry(&worker->scheduled,
2128 struct work_struct, entry);
2129 process_one_work(worker, work);
2134 * worker_thread - the worker thread function
2137 * The worker thread function. All workers belong to a worker_pool -
2138 * either a per-cpu one or dynamic unbound one. These workers process all
2139 * work items regardless of their specific target workqueue. The only
2140 * exception is work items which belong to workqueues with a rescuer which
2141 * will be explained in rescuer_thread().
2145 static int worker_thread(void *__worker)
2147 struct worker *worker = __worker;
2148 struct worker_pool *pool = worker->pool;
2150 /* tell the scheduler that this is a workqueue worker */
2151 worker->task->flags |= PF_WQ_WORKER;
2153 spin_lock_irq(&pool->lock);
2155 /* am I supposed to die? */
2156 if (unlikely(worker->flags & WORKER_DIE)) {
2157 spin_unlock_irq(&pool->lock);
2158 WARN_ON_ONCE(!list_empty(&worker->entry));
2159 worker->task->flags &= ~PF_WQ_WORKER;
2161 set_task_comm(worker->task, "kworker/dying");
2162 ida_simple_remove(&pool->worker_ida, worker->id);
2163 worker_detach_from_pool(worker, pool);
2168 worker_leave_idle(worker);
2170 /* no more worker necessary? */
2171 if (!need_more_worker(pool))
2174 /* do we need to manage? */
2175 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2179 * ->scheduled list can only be filled while a worker is
2180 * preparing to process a work or actually processing it.
2181 * Make sure nobody diddled with it while I was sleeping.
2183 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2186 * Finish PREP stage. We're guaranteed to have at least one idle
2187 * worker or that someone else has already assumed the manager
2188 * role. This is where @worker starts participating in concurrency
2189 * management if applicable and concurrency management is restored
2190 * after being rebound. See rebind_workers() for details.
2192 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2195 struct work_struct *work =
2196 list_first_entry(&pool->worklist,
2197 struct work_struct, entry);
2199 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2200 /* optimization path, not strictly necessary */
2201 process_one_work(worker, work);
2202 if (unlikely(!list_empty(&worker->scheduled)))
2203 process_scheduled_works(worker);
2205 move_linked_works(work, &worker->scheduled, NULL);
2206 process_scheduled_works(worker);
2208 } while (keep_working(pool));
2210 worker_set_flags(worker, WORKER_PREP);
2213 * pool->lock is held and there's no work to process and no need to
2214 * manage, sleep. Workers are woken up only while holding
2215 * pool->lock or from local cpu, so setting the current state
2216 * before releasing pool->lock is enough to prevent losing any
2219 worker_enter_idle(worker);
2220 __set_current_state(TASK_INTERRUPTIBLE);
2221 spin_unlock_irq(&pool->lock);
2227 * rescuer_thread - the rescuer thread function
2230 * Workqueue rescuer thread function. There's one rescuer for each
2231 * workqueue which has WQ_MEM_RECLAIM set.
2233 * Regular work processing on a pool may block trying to create a new
2234 * worker which uses GFP_KERNEL allocation which has slight chance of
2235 * developing into deadlock if some works currently on the same queue
2236 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2237 * the problem rescuer solves.
2239 * When such condition is possible, the pool summons rescuers of all
2240 * workqueues which have works queued on the pool and let them process
2241 * those works so that forward progress can be guaranteed.
2243 * This should happen rarely.
2247 static int rescuer_thread(void *__rescuer)
2249 struct worker *rescuer = __rescuer;
2250 struct workqueue_struct *wq = rescuer->rescue_wq;
2251 struct list_head *scheduled = &rescuer->scheduled;
2254 set_user_nice(current, RESCUER_NICE_LEVEL);
2257 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2258 * doesn't participate in concurrency management.
2260 rescuer->task->flags |= PF_WQ_WORKER;
2262 set_current_state(TASK_INTERRUPTIBLE);
2265 * By the time the rescuer is requested to stop, the workqueue
2266 * shouldn't have any work pending, but @wq->maydays may still have
2267 * pwq(s) queued. This can happen by non-rescuer workers consuming
2268 * all the work items before the rescuer got to them. Go through
2269 * @wq->maydays processing before acting on should_stop so that the
2270 * list is always empty on exit.
2272 should_stop = kthread_should_stop();
2274 /* see whether any pwq is asking for help */
2275 spin_lock_irq(&wq_mayday_lock);
2277 while (!list_empty(&wq->maydays)) {
2278 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2279 struct pool_workqueue, mayday_node);
2280 struct worker_pool *pool = pwq->pool;
2281 struct work_struct *work, *n;
2283 __set_current_state(TASK_RUNNING);
2284 list_del_init(&pwq->mayday_node);
2286 spin_unlock_irq(&wq_mayday_lock);
2288 worker_attach_to_pool(rescuer, pool);
2290 spin_lock_irq(&pool->lock);
2291 rescuer->pool = pool;
2294 * Slurp in all works issued via this workqueue and
2297 WARN_ON_ONCE(!list_empty(scheduled));
2298 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2299 if (get_work_pwq(work) == pwq)
2300 move_linked_works(work, scheduled, &n);
2302 if (!list_empty(scheduled)) {
2303 process_scheduled_works(rescuer);
2306 * The above execution of rescued work items could
2307 * have created more to rescue through
2308 * pwq_activate_first_delayed() or chained
2309 * queueing. Let's put @pwq back on mayday list so
2310 * that such back-to-back work items, which may be
2311 * being used to relieve memory pressure, don't
2312 * incur MAYDAY_INTERVAL delay inbetween.
2314 if (need_to_create_worker(pool)) {
2315 spin_lock(&wq_mayday_lock);
2317 list_move_tail(&pwq->mayday_node, &wq->maydays);
2318 spin_unlock(&wq_mayday_lock);
2323 * Put the reference grabbed by send_mayday(). @pool won't
2324 * go away while we're still attached to it.
2329 * Leave this pool. If need_more_worker() is %true, notify a
2330 * regular worker; otherwise, we end up with 0 concurrency
2331 * and stalling the execution.
2333 if (need_more_worker(pool))
2334 wake_up_worker(pool);
2336 rescuer->pool = NULL;
2337 spin_unlock_irq(&pool->lock);
2339 worker_detach_from_pool(rescuer, pool);
2341 spin_lock_irq(&wq_mayday_lock);
2344 spin_unlock_irq(&wq_mayday_lock);
2347 __set_current_state(TASK_RUNNING);
2348 rescuer->task->flags &= ~PF_WQ_WORKER;
2352 /* rescuers should never participate in concurrency management */
2353 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2359 struct work_struct work;
2360 struct completion done;
2361 struct task_struct *task; /* purely informational */
2364 static void wq_barrier_func(struct work_struct *work)
2366 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2367 complete(&barr->done);
2371 * insert_wq_barrier - insert a barrier work
2372 * @pwq: pwq to insert barrier into
2373 * @barr: wq_barrier to insert
2374 * @target: target work to attach @barr to
2375 * @worker: worker currently executing @target, NULL if @target is not executing
2377 * @barr is linked to @target such that @barr is completed only after
2378 * @target finishes execution. Please note that the ordering
2379 * guarantee is observed only with respect to @target and on the local
2382 * Currently, a queued barrier can't be canceled. This is because
2383 * try_to_grab_pending() can't determine whether the work to be
2384 * grabbed is at the head of the queue and thus can't clear LINKED
2385 * flag of the previous work while there must be a valid next work
2386 * after a work with LINKED flag set.
2388 * Note that when @worker is non-NULL, @target may be modified
2389 * underneath us, so we can't reliably determine pwq from @target.
2392 * spin_lock_irq(pool->lock).
2394 static void insert_wq_barrier(struct pool_workqueue *pwq,
2395 struct wq_barrier *barr,
2396 struct work_struct *target, struct worker *worker)
2398 struct list_head *head;
2399 unsigned int linked = 0;
2402 * debugobject calls are safe here even with pool->lock locked
2403 * as we know for sure that this will not trigger any of the
2404 * checks and call back into the fixup functions where we
2407 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2408 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2409 init_completion(&barr->done);
2410 barr->task = current;
2413 * If @target is currently being executed, schedule the
2414 * barrier to the worker; otherwise, put it after @target.
2417 head = worker->scheduled.next;
2419 unsigned long *bits = work_data_bits(target);
2421 head = target->entry.next;
2422 /* there can already be other linked works, inherit and set */
2423 linked = *bits & WORK_STRUCT_LINKED;
2424 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2427 debug_work_activate(&barr->work);
2428 insert_work(pwq, &barr->work, head,
2429 work_color_to_flags(WORK_NO_COLOR) | linked);
2433 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2434 * @wq: workqueue being flushed
2435 * @flush_color: new flush color, < 0 for no-op
2436 * @work_color: new work color, < 0 for no-op
2438 * Prepare pwqs for workqueue flushing.
2440 * If @flush_color is non-negative, flush_color on all pwqs should be
2441 * -1. If no pwq has in-flight commands at the specified color, all
2442 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2443 * has in flight commands, its pwq->flush_color is set to
2444 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2445 * wakeup logic is armed and %true is returned.
2447 * The caller should have initialized @wq->first_flusher prior to
2448 * calling this function with non-negative @flush_color. If
2449 * @flush_color is negative, no flush color update is done and %false
2452 * If @work_color is non-negative, all pwqs should have the same
2453 * work_color which is previous to @work_color and all will be
2454 * advanced to @work_color.
2457 * mutex_lock(wq->mutex).
2460 * %true if @flush_color >= 0 and there's something to flush. %false
2463 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2464 int flush_color, int work_color)
2467 struct pool_workqueue *pwq;
2469 if (flush_color >= 0) {
2470 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2471 atomic_set(&wq->nr_pwqs_to_flush, 1);
2474 for_each_pwq(pwq, wq) {
2475 struct worker_pool *pool = pwq->pool;
2477 spin_lock_irq(&pool->lock);
2479 if (flush_color >= 0) {
2480 WARN_ON_ONCE(pwq->flush_color != -1);
2482 if (pwq->nr_in_flight[flush_color]) {
2483 pwq->flush_color = flush_color;
2484 atomic_inc(&wq->nr_pwqs_to_flush);
2489 if (work_color >= 0) {
2490 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2491 pwq->work_color = work_color;
2494 spin_unlock_irq(&pool->lock);
2497 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2498 complete(&wq->first_flusher->done);
2504 * flush_workqueue - ensure that any scheduled work has run to completion.
2505 * @wq: workqueue to flush
2507 * This function sleeps until all work items which were queued on entry
2508 * have finished execution, but it is not livelocked by new incoming ones.
2510 void flush_workqueue(struct workqueue_struct *wq)
2512 struct wq_flusher this_flusher = {
2513 .list = LIST_HEAD_INIT(this_flusher.list),
2515 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2519 lock_map_acquire(&wq->lockdep_map);
2520 lock_map_release(&wq->lockdep_map);
2522 mutex_lock(&wq->mutex);
2525 * Start-to-wait phase
2527 next_color = work_next_color(wq->work_color);
2529 if (next_color != wq->flush_color) {
2531 * Color space is not full. The current work_color
2532 * becomes our flush_color and work_color is advanced
2535 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2536 this_flusher.flush_color = wq->work_color;
2537 wq->work_color = next_color;
2539 if (!wq->first_flusher) {
2540 /* no flush in progress, become the first flusher */
2541 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2543 wq->first_flusher = &this_flusher;
2545 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2547 /* nothing to flush, done */
2548 wq->flush_color = next_color;
2549 wq->first_flusher = NULL;
2554 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2555 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2556 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2560 * Oops, color space is full, wait on overflow queue.
2561 * The next flush completion will assign us
2562 * flush_color and transfer to flusher_queue.
2564 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2567 mutex_unlock(&wq->mutex);
2569 wait_for_completion(&this_flusher.done);
2572 * Wake-up-and-cascade phase
2574 * First flushers are responsible for cascading flushes and
2575 * handling overflow. Non-first flushers can simply return.
2577 if (wq->first_flusher != &this_flusher)
2580 mutex_lock(&wq->mutex);
2582 /* we might have raced, check again with mutex held */
2583 if (wq->first_flusher != &this_flusher)
2586 wq->first_flusher = NULL;
2588 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2589 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2592 struct wq_flusher *next, *tmp;
2594 /* complete all the flushers sharing the current flush color */
2595 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2596 if (next->flush_color != wq->flush_color)
2598 list_del_init(&next->list);
2599 complete(&next->done);
2602 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2603 wq->flush_color != work_next_color(wq->work_color));
2605 /* this flush_color is finished, advance by one */
2606 wq->flush_color = work_next_color(wq->flush_color);
2608 /* one color has been freed, handle overflow queue */
2609 if (!list_empty(&wq->flusher_overflow)) {
2611 * Assign the same color to all overflowed
2612 * flushers, advance work_color and append to
2613 * flusher_queue. This is the start-to-wait
2614 * phase for these overflowed flushers.
2616 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2617 tmp->flush_color = wq->work_color;
2619 wq->work_color = work_next_color(wq->work_color);
2621 list_splice_tail_init(&wq->flusher_overflow,
2622 &wq->flusher_queue);
2623 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2626 if (list_empty(&wq->flusher_queue)) {
2627 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2632 * Need to flush more colors. Make the next flusher
2633 * the new first flusher and arm pwqs.
2635 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2636 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2638 list_del_init(&next->list);
2639 wq->first_flusher = next;
2641 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2645 * Meh... this color is already done, clear first
2646 * flusher and repeat cascading.
2648 wq->first_flusher = NULL;
2652 mutex_unlock(&wq->mutex);
2654 EXPORT_SYMBOL(flush_workqueue);
2657 * drain_workqueue - drain a workqueue
2658 * @wq: workqueue to drain
2660 * Wait until the workqueue becomes empty. While draining is in progress,
2661 * only chain queueing is allowed. IOW, only currently pending or running
2662 * work items on @wq can queue further work items on it. @wq is flushed
2663 * repeatedly until it becomes empty. The number of flushing is determined
2664 * by the depth of chaining and should be relatively short. Whine if it
2667 void drain_workqueue(struct workqueue_struct *wq)
2669 unsigned int flush_cnt = 0;
2670 struct pool_workqueue *pwq;
2673 * __queue_work() needs to test whether there are drainers, is much
2674 * hotter than drain_workqueue() and already looks at @wq->flags.
2675 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2677 mutex_lock(&wq->mutex);
2678 if (!wq->nr_drainers++)
2679 wq->flags |= __WQ_DRAINING;
2680 mutex_unlock(&wq->mutex);
2682 flush_workqueue(wq);
2684 mutex_lock(&wq->mutex);
2686 for_each_pwq(pwq, wq) {
2689 spin_lock_irq(&pwq->pool->lock);
2690 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2691 spin_unlock_irq(&pwq->pool->lock);
2696 if (++flush_cnt == 10 ||
2697 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2698 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2699 wq->name, flush_cnt);
2701 mutex_unlock(&wq->mutex);
2705 if (!--wq->nr_drainers)
2706 wq->flags &= ~__WQ_DRAINING;
2707 mutex_unlock(&wq->mutex);
2709 EXPORT_SYMBOL_GPL(drain_workqueue);
2711 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2713 struct worker *worker = NULL;
2714 struct worker_pool *pool;
2715 struct pool_workqueue *pwq;
2719 local_irq_disable();
2720 pool = get_work_pool(work);
2726 spin_lock(&pool->lock);
2727 /* see the comment in try_to_grab_pending() with the same code */
2728 pwq = get_work_pwq(work);
2730 if (unlikely(pwq->pool != pool))
2733 worker = find_worker_executing_work(pool, work);
2736 pwq = worker->current_pwq;
2739 insert_wq_barrier(pwq, barr, work, worker);
2740 spin_unlock_irq(&pool->lock);
2743 * If @max_active is 1 or rescuer is in use, flushing another work
2744 * item on the same workqueue may lead to deadlock. Make sure the
2745 * flusher is not running on the same workqueue by verifying write
2748 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2749 lock_map_acquire(&pwq->wq->lockdep_map);
2751 lock_map_acquire_read(&pwq->wq->lockdep_map);
2752 lock_map_release(&pwq->wq->lockdep_map);
2756 spin_unlock_irq(&pool->lock);
2761 * flush_work - wait for a work to finish executing the last queueing instance
2762 * @work: the work to flush
2764 * Wait until @work has finished execution. @work is guaranteed to be idle
2765 * on return if it hasn't been requeued since flush started.
2768 * %true if flush_work() waited for the work to finish execution,
2769 * %false if it was already idle.
2771 bool flush_work(struct work_struct *work)
2773 struct wq_barrier barr;
2775 lock_map_acquire(&work->lockdep_map);
2776 lock_map_release(&work->lockdep_map);
2778 if (start_flush_work(work, &barr)) {
2779 wait_for_completion(&barr.done);
2780 destroy_work_on_stack(&barr.work);
2786 EXPORT_SYMBOL_GPL(flush_work);
2790 struct work_struct *work;
2793 static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2795 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2797 if (cwait->work != key)
2799 return autoremove_wake_function(wait, mode, sync, key);
2802 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2804 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2805 unsigned long flags;
2809 ret = try_to_grab_pending(work, is_dwork, &flags);
2811 * If someone else is already canceling, wait for it to
2812 * finish. flush_work() doesn't work for PREEMPT_NONE
2813 * because we may get scheduled between @work's completion
2814 * and the other canceling task resuming and clearing
2815 * CANCELING - flush_work() will return false immediately
2816 * as @work is no longer busy, try_to_grab_pending() will
2817 * return -ENOENT as @work is still being canceled and the
2818 * other canceling task won't be able to clear CANCELING as
2819 * we're hogging the CPU.
2821 * Let's wait for completion using a waitqueue. As this
2822 * may lead to the thundering herd problem, use a custom
2823 * wake function which matches @work along with exclusive
2826 if (unlikely(ret == -ENOENT)) {
2827 struct cwt_wait cwait;
2829 init_wait(&cwait.wait);
2830 cwait.wait.func = cwt_wakefn;
2833 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2834 TASK_UNINTERRUPTIBLE);
2835 if (work_is_canceling(work))
2837 finish_wait(&cancel_waitq, &cwait.wait);
2839 } while (unlikely(ret < 0));
2841 /* tell other tasks trying to grab @work to back off */
2842 mark_work_canceling(work);
2843 local_irq_restore(flags);
2846 clear_work_data(work);
2849 * Paired with prepare_to_wait() above so that either
2850 * waitqueue_active() is visible here or !work_is_canceling() is
2854 if (waitqueue_active(&cancel_waitq))
2855 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2861 * cancel_work_sync - cancel a work and wait for it to finish
2862 * @work: the work to cancel
2864 * Cancel @work and wait for its execution to finish. This function
2865 * can be used even if the work re-queues itself or migrates to
2866 * another workqueue. On return from this function, @work is
2867 * guaranteed to be not pending or executing on any CPU.
2869 * cancel_work_sync(&delayed_work->work) must not be used for
2870 * delayed_work's. Use cancel_delayed_work_sync() instead.
2872 * The caller must ensure that the workqueue on which @work was last
2873 * queued can't be destroyed before this function returns.
2876 * %true if @work was pending, %false otherwise.
2878 bool cancel_work_sync(struct work_struct *work)
2880 return __cancel_work_timer(work, false);
2882 EXPORT_SYMBOL_GPL(cancel_work_sync);
2885 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2886 * @dwork: the delayed work to flush
2888 * Delayed timer is cancelled and the pending work is queued for
2889 * immediate execution. Like flush_work(), this function only
2890 * considers the last queueing instance of @dwork.
2893 * %true if flush_work() waited for the work to finish execution,
2894 * %false if it was already idle.
2896 bool flush_delayed_work(struct delayed_work *dwork)
2898 local_irq_disable();
2899 if (del_timer_sync(&dwork->timer))
2900 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2902 return flush_work(&dwork->work);
2904 EXPORT_SYMBOL(flush_delayed_work);
2907 * cancel_delayed_work - cancel a delayed work
2908 * @dwork: delayed_work to cancel
2910 * Kill off a pending delayed_work.
2912 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2916 * The work callback function may still be running on return, unless
2917 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2918 * use cancel_delayed_work_sync() to wait on it.
2920 * This function is safe to call from any context including IRQ handler.
2922 bool cancel_delayed_work(struct delayed_work *dwork)
2924 unsigned long flags;
2928 ret = try_to_grab_pending(&dwork->work, true, &flags);
2929 } while (unlikely(ret == -EAGAIN));
2931 if (unlikely(ret < 0))
2934 set_work_pool_and_clear_pending(&dwork->work,
2935 get_work_pool_id(&dwork->work));
2936 local_irq_restore(flags);
2939 EXPORT_SYMBOL(cancel_delayed_work);
2942 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2943 * @dwork: the delayed work cancel
2945 * This is cancel_work_sync() for delayed works.
2948 * %true if @dwork was pending, %false otherwise.
2950 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2952 return __cancel_work_timer(&dwork->work, true);
2954 EXPORT_SYMBOL(cancel_delayed_work_sync);
2957 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2958 * @func: the function to call
2960 * schedule_on_each_cpu() executes @func on each online CPU using the
2961 * system workqueue and blocks until all CPUs have completed.
2962 * schedule_on_each_cpu() is very slow.
2965 * 0 on success, -errno on failure.
2967 int schedule_on_each_cpu(work_func_t func)
2970 struct work_struct __percpu *works;
2972 works = alloc_percpu(struct work_struct);
2978 for_each_online_cpu(cpu) {
2979 struct work_struct *work = per_cpu_ptr(works, cpu);
2981 INIT_WORK(work, func);
2982 schedule_work_on(cpu, work);
2985 for_each_online_cpu(cpu)
2986 flush_work(per_cpu_ptr(works, cpu));
2994 * execute_in_process_context - reliably execute the routine with user context
2995 * @fn: the function to execute
2996 * @ew: guaranteed storage for the execute work structure (must
2997 * be available when the work executes)
2999 * Executes the function immediately if process context is available,
3000 * otherwise schedules the function for delayed execution.
3002 * Return: 0 - function was executed
3003 * 1 - function was scheduled for execution
3005 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3007 if (!in_interrupt()) {
3012 INIT_WORK(&ew->work, fn);
3013 schedule_work(&ew->work);
3017 EXPORT_SYMBOL_GPL(execute_in_process_context);
3020 * free_workqueue_attrs - free a workqueue_attrs
3021 * @attrs: workqueue_attrs to free
3023 * Undo alloc_workqueue_attrs().
3025 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3028 free_cpumask_var(attrs->cpumask);
3034 * alloc_workqueue_attrs - allocate a workqueue_attrs
3035 * @gfp_mask: allocation mask to use
3037 * Allocate a new workqueue_attrs, initialize with default settings and
3040 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3042 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3044 struct workqueue_attrs *attrs;
3046 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3049 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3052 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3055 free_workqueue_attrs(attrs);
3059 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3060 const struct workqueue_attrs *from)
3062 to->nice = from->nice;
3063 cpumask_copy(to->cpumask, from->cpumask);
3065 * Unlike hash and equality test, this function doesn't ignore
3066 * ->no_numa as it is used for both pool and wq attrs. Instead,
3067 * get_unbound_pool() explicitly clears ->no_numa after copying.
3069 to->no_numa = from->no_numa;
3072 /* hash value of the content of @attr */
3073 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3077 hash = jhash_1word(attrs->nice, hash);
3078 hash = jhash(cpumask_bits(attrs->cpumask),
3079 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3083 /* content equality test */
3084 static bool wqattrs_equal(const struct workqueue_attrs *a,
3085 const struct workqueue_attrs *b)
3087 if (a->nice != b->nice)
3089 if (!cpumask_equal(a->cpumask, b->cpumask))
3095 * init_worker_pool - initialize a newly zalloc'd worker_pool
3096 * @pool: worker_pool to initialize
3098 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3100 * Return: 0 on success, -errno on failure. Even on failure, all fields
3101 * inside @pool proper are initialized and put_unbound_pool() can be called
3102 * on @pool safely to release it.
3104 static int init_worker_pool(struct worker_pool *pool)
3106 spin_lock_init(&pool->lock);
3109 pool->node = NUMA_NO_NODE;
3110 pool->flags |= POOL_DISASSOCIATED;
3111 INIT_LIST_HEAD(&pool->worklist);
3112 INIT_LIST_HEAD(&pool->idle_list);
3113 hash_init(pool->busy_hash);
3115 init_timer_deferrable(&pool->idle_timer);
3116 pool->idle_timer.function = idle_worker_timeout;
3117 pool->idle_timer.data = (unsigned long)pool;
3119 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3120 (unsigned long)pool);
3122 mutex_init(&pool->manager_arb);
3123 mutex_init(&pool->attach_mutex);
3124 INIT_LIST_HEAD(&pool->workers);
3126 ida_init(&pool->worker_ida);
3127 INIT_HLIST_NODE(&pool->hash_node);
3130 /* shouldn't fail above this point */
3131 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3137 static void rcu_free_wq(struct rcu_head *rcu)
3139 struct workqueue_struct *wq =
3140 container_of(rcu, struct workqueue_struct, rcu);
3142 if (!(wq->flags & WQ_UNBOUND))
3143 free_percpu(wq->cpu_pwqs);
3145 free_workqueue_attrs(wq->unbound_attrs);
3151 static void rcu_free_pool(struct rcu_head *rcu)
3153 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3155 ida_destroy(&pool->worker_ida);
3156 free_workqueue_attrs(pool->attrs);
3161 * put_unbound_pool - put a worker_pool
3162 * @pool: worker_pool to put
3164 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3165 * safe manner. get_unbound_pool() calls this function on its failure path
3166 * and this function should be able to release pools which went through,
3167 * successfully or not, init_worker_pool().
3169 * Should be called with wq_pool_mutex held.
3171 static void put_unbound_pool(struct worker_pool *pool)
3173 DECLARE_COMPLETION_ONSTACK(detach_completion);
3174 struct worker *worker;
3176 lockdep_assert_held(&wq_pool_mutex);
3182 if (WARN_ON(!(pool->cpu < 0)) ||
3183 WARN_ON(!list_empty(&pool->worklist)))
3186 /* release id and unhash */
3188 idr_remove(&worker_pool_idr, pool->id);
3189 hash_del(&pool->hash_node);
3192 * Become the manager and destroy all workers. Grabbing
3193 * manager_arb prevents @pool's workers from blocking on
3196 mutex_lock(&pool->manager_arb);
3198 spin_lock_irq(&pool->lock);
3199 while ((worker = first_idle_worker(pool)))
3200 destroy_worker(worker);
3201 WARN_ON(pool->nr_workers || pool->nr_idle);
3202 spin_unlock_irq(&pool->lock);
3204 mutex_lock(&pool->attach_mutex);
3205 if (!list_empty(&pool->workers))
3206 pool->detach_completion = &detach_completion;
3207 mutex_unlock(&pool->attach_mutex);
3209 if (pool->detach_completion)
3210 wait_for_completion(pool->detach_completion);
3212 mutex_unlock(&pool->manager_arb);
3214 /* shut down the timers */
3215 del_timer_sync(&pool->idle_timer);
3216 del_timer_sync(&pool->mayday_timer);
3218 /* sched-RCU protected to allow dereferences from get_work_pool() */
3219 call_rcu_sched(&pool->rcu, rcu_free_pool);
3223 * get_unbound_pool - get a worker_pool with the specified attributes
3224 * @attrs: the attributes of the worker_pool to get
3226 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3227 * reference count and return it. If there already is a matching
3228 * worker_pool, it will be used; otherwise, this function attempts to
3231 * Should be called with wq_pool_mutex held.
3233 * Return: On success, a worker_pool with the same attributes as @attrs.
3234 * On failure, %NULL.
3236 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3238 u32 hash = wqattrs_hash(attrs);
3239 struct worker_pool *pool;
3241 int target_node = NUMA_NO_NODE;
3243 lockdep_assert_held(&wq_pool_mutex);
3245 /* do we already have a matching pool? */
3246 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3247 if (wqattrs_equal(pool->attrs, attrs)) {
3253 /* if cpumask is contained inside a NUMA node, we belong to that node */
3254 if (wq_numa_enabled) {
3255 for_each_node(node) {
3256 if (cpumask_subset(attrs->cpumask,
3257 wq_numa_possible_cpumask[node])) {
3264 /* nope, create a new one */
3265 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3266 if (!pool || init_worker_pool(pool) < 0)
3269 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3270 copy_workqueue_attrs(pool->attrs, attrs);
3271 pool->node = target_node;
3274 * no_numa isn't a worker_pool attribute, always clear it. See
3275 * 'struct workqueue_attrs' comments for detail.
3277 pool->attrs->no_numa = false;
3279 if (worker_pool_assign_id(pool) < 0)
3282 /* create and start the initial worker */
3283 if (!create_worker(pool))
3287 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3292 put_unbound_pool(pool);
3296 static void rcu_free_pwq(struct rcu_head *rcu)
3298 kmem_cache_free(pwq_cache,
3299 container_of(rcu, struct pool_workqueue, rcu));
3303 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3304 * and needs to be destroyed.
3306 static void pwq_unbound_release_workfn(struct work_struct *work)
3308 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3309 unbound_release_work);
3310 struct workqueue_struct *wq = pwq->wq;
3311 struct worker_pool *pool = pwq->pool;
3314 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3317 mutex_lock(&wq->mutex);
3318 list_del_rcu(&pwq->pwqs_node);
3319 is_last = list_empty(&wq->pwqs);
3320 mutex_unlock(&wq->mutex);
3322 mutex_lock(&wq_pool_mutex);
3323 put_unbound_pool(pool);
3324 mutex_unlock(&wq_pool_mutex);
3326 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3329 * If we're the last pwq going away, @wq is already dead and no one
3330 * is gonna access it anymore. Schedule RCU free.
3333 call_rcu_sched(&wq->rcu, rcu_free_wq);
3337 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3338 * @pwq: target pool_workqueue
3340 * If @pwq isn't freezing, set @pwq->max_active to the associated
3341 * workqueue's saved_max_active and activate delayed work items
3342 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3344 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3346 struct workqueue_struct *wq = pwq->wq;
3347 bool freezable = wq->flags & WQ_FREEZABLE;
3349 /* for @wq->saved_max_active */
3350 lockdep_assert_held(&wq->mutex);
3352 /* fast exit for non-freezable wqs */
3353 if (!freezable && pwq->max_active == wq->saved_max_active)
3356 spin_lock_irq(&pwq->pool->lock);
3359 * During [un]freezing, the caller is responsible for ensuring that
3360 * this function is called at least once after @workqueue_freezing
3361 * is updated and visible.
3363 if (!freezable || !workqueue_freezing) {
3364 pwq->max_active = wq->saved_max_active;
3366 while (!list_empty(&pwq->delayed_works) &&
3367 pwq->nr_active < pwq->max_active)
3368 pwq_activate_first_delayed(pwq);
3371 * Need to kick a worker after thawed or an unbound wq's
3372 * max_active is bumped. It's a slow path. Do it always.
3374 wake_up_worker(pwq->pool);
3376 pwq->max_active = 0;
3379 spin_unlock_irq(&pwq->pool->lock);
3382 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3383 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3384 struct worker_pool *pool)
3386 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3388 memset(pwq, 0, sizeof(*pwq));
3392 pwq->flush_color = -1;
3394 INIT_LIST_HEAD(&pwq->delayed_works);
3395 INIT_LIST_HEAD(&pwq->pwqs_node);
3396 INIT_LIST_HEAD(&pwq->mayday_node);
3397 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3400 /* sync @pwq with the current state of its associated wq and link it */
3401 static void link_pwq(struct pool_workqueue *pwq)
3403 struct workqueue_struct *wq = pwq->wq;
3405 lockdep_assert_held(&wq->mutex);
3407 /* may be called multiple times, ignore if already linked */
3408 if (!list_empty(&pwq->pwqs_node))
3411 /* set the matching work_color */
3412 pwq->work_color = wq->work_color;
3414 /* sync max_active to the current setting */
3415 pwq_adjust_max_active(pwq);
3418 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3421 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3422 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3423 const struct workqueue_attrs *attrs)
3425 struct worker_pool *pool;
3426 struct pool_workqueue *pwq;
3428 lockdep_assert_held(&wq_pool_mutex);
3430 pool = get_unbound_pool(attrs);
3434 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3436 put_unbound_pool(pool);
3440 init_pwq(pwq, wq, pool);
3445 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3446 * @attrs: the wq_attrs of the default pwq of the target workqueue
3447 * @node: the target NUMA node
3448 * @cpu_going_down: if >= 0, the CPU to consider as offline
3449 * @cpumask: outarg, the resulting cpumask
3451 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3452 * @cpu_going_down is >= 0, that cpu is considered offline during
3453 * calculation. The result is stored in @cpumask.
3455 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3456 * enabled and @node has online CPUs requested by @attrs, the returned
3457 * cpumask is the intersection of the possible CPUs of @node and
3460 * The caller is responsible for ensuring that the cpumask of @node stays
3463 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3466 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3467 int cpu_going_down, cpumask_t *cpumask)
3469 if (!wq_numa_enabled || attrs->no_numa)
3472 /* does @node have any online CPUs @attrs wants? */
3473 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3474 if (cpu_going_down >= 0)
3475 cpumask_clear_cpu(cpu_going_down, cpumask);
3477 if (cpumask_empty(cpumask))
3480 /* yeap, return possible CPUs in @node that @attrs wants */
3481 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3482 return !cpumask_equal(cpumask, attrs->cpumask);
3485 cpumask_copy(cpumask, attrs->cpumask);
3489 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3490 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3492 struct pool_workqueue *pwq)
3494 struct pool_workqueue *old_pwq;
3496 lockdep_assert_held(&wq_pool_mutex);
3497 lockdep_assert_held(&wq->mutex);
3499 /* link_pwq() can handle duplicate calls */
3502 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3503 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3507 /* context to store the prepared attrs & pwqs before applying */
3508 struct apply_wqattrs_ctx {
3509 struct workqueue_struct *wq; /* target workqueue */
3510 struct workqueue_attrs *attrs; /* attrs to apply */
3511 struct list_head list; /* queued for batching commit */
3512 struct pool_workqueue *dfl_pwq;
3513 struct pool_workqueue *pwq_tbl[];
3516 /* free the resources after success or abort */
3517 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3523 put_pwq_unlocked(ctx->pwq_tbl[node]);
3524 put_pwq_unlocked(ctx->dfl_pwq);
3526 free_workqueue_attrs(ctx->attrs);
3532 /* allocate the attrs and pwqs for later installation */
3533 static struct apply_wqattrs_ctx *
3534 apply_wqattrs_prepare(struct workqueue_struct *wq,
3535 const struct workqueue_attrs *attrs)
3537 struct apply_wqattrs_ctx *ctx;
3538 struct workqueue_attrs *new_attrs, *tmp_attrs;
3541 lockdep_assert_held(&wq_pool_mutex);
3543 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3546 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3547 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3548 if (!ctx || !new_attrs || !tmp_attrs)
3552 * Calculate the attrs of the default pwq.
3553 * If the user configured cpumask doesn't overlap with the
3554 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3556 copy_workqueue_attrs(new_attrs, attrs);
3557 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3558 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3559 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3562 * We may create multiple pwqs with differing cpumasks. Make a
3563 * copy of @new_attrs which will be modified and used to obtain
3566 copy_workqueue_attrs(tmp_attrs, new_attrs);
3569 * If something goes wrong during CPU up/down, we'll fall back to
3570 * the default pwq covering whole @attrs->cpumask. Always create
3571 * it even if we don't use it immediately.
3573 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3577 for_each_node(node) {
3578 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3579 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3580 if (!ctx->pwq_tbl[node])
3583 ctx->dfl_pwq->refcnt++;
3584 ctx->pwq_tbl[node] = ctx->dfl_pwq;
3588 /* save the user configured attrs and sanitize it. */
3589 copy_workqueue_attrs(new_attrs, attrs);
3590 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3591 ctx->attrs = new_attrs;
3594 free_workqueue_attrs(tmp_attrs);
3598 free_workqueue_attrs(tmp_attrs);
3599 free_workqueue_attrs(new_attrs);
3600 apply_wqattrs_cleanup(ctx);
3604 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3605 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3609 /* all pwqs have been created successfully, let's install'em */
3610 mutex_lock(&ctx->wq->mutex);
3612 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3614 /* save the previous pwq and install the new one */
3616 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3617 ctx->pwq_tbl[node]);
3619 /* @dfl_pwq might not have been used, ensure it's linked */
3620 link_pwq(ctx->dfl_pwq);
3621 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3623 mutex_unlock(&ctx->wq->mutex);
3626 static void apply_wqattrs_lock(void)
3628 /* CPUs should stay stable across pwq creations and installations */
3630 mutex_lock(&wq_pool_mutex);
3633 static void apply_wqattrs_unlock(void)
3635 mutex_unlock(&wq_pool_mutex);
3639 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3640 const struct workqueue_attrs *attrs)
3642 struct apply_wqattrs_ctx *ctx;
3645 /* only unbound workqueues can change attributes */
3646 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3649 /* creating multiple pwqs breaks ordering guarantee */
3650 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3653 ctx = apply_wqattrs_prepare(wq, attrs);
3655 /* the ctx has been prepared successfully, let's commit it */
3657 apply_wqattrs_commit(ctx);
3661 apply_wqattrs_cleanup(ctx);
3667 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3668 * @wq: the target workqueue
3669 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3671 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3672 * machines, this function maps a separate pwq to each NUMA node with
3673 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3674 * NUMA node it was issued on. Older pwqs are released as in-flight work
3675 * items finish. Note that a work item which repeatedly requeues itself
3676 * back-to-back will stay on its current pwq.
3678 * Performs GFP_KERNEL allocations.
3680 * Return: 0 on success and -errno on failure.
3682 int apply_workqueue_attrs(struct workqueue_struct *wq,
3683 const struct workqueue_attrs *attrs)
3687 apply_wqattrs_lock();
3688 ret = apply_workqueue_attrs_locked(wq, attrs);
3689 apply_wqattrs_unlock();
3695 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3696 * @wq: the target workqueue
3697 * @cpu: the CPU coming up or going down
3698 * @online: whether @cpu is coming up or going down
3700 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3701 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3704 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3705 * falls back to @wq->dfl_pwq which may not be optimal but is always
3708 * Note that when the last allowed CPU of a NUMA node goes offline for a
3709 * workqueue with a cpumask spanning multiple nodes, the workers which were
3710 * already executing the work items for the workqueue will lose their CPU
3711 * affinity and may execute on any CPU. This is similar to how per-cpu
3712 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3713 * affinity, it's the user's responsibility to flush the work item from
3716 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3719 int node = cpu_to_node(cpu);
3720 int cpu_off = online ? -1 : cpu;
3721 struct pool_workqueue *old_pwq = NULL, *pwq;
3722 struct workqueue_attrs *target_attrs;
3725 lockdep_assert_held(&wq_pool_mutex);
3727 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3728 wq->unbound_attrs->no_numa)
3732 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3733 * Let's use a preallocated one. The following buf is protected by
3734 * CPU hotplug exclusion.
3736 target_attrs = wq_update_unbound_numa_attrs_buf;
3737 cpumask = target_attrs->cpumask;
3739 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3740 pwq = unbound_pwq_by_node(wq, node);
3743 * Let's determine what needs to be done. If the target cpumask is
3744 * different from the default pwq's, we need to compare it to @pwq's
3745 * and create a new one if they don't match. If the target cpumask
3746 * equals the default pwq's, the default pwq should be used.
3748 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3749 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3755 /* create a new pwq */
3756 pwq = alloc_unbound_pwq(wq, target_attrs);
3758 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3763 /* Install the new pwq. */
3764 mutex_lock(&wq->mutex);
3765 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3769 mutex_lock(&wq->mutex);
3770 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3771 get_pwq(wq->dfl_pwq);
3772 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3773 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3775 mutex_unlock(&wq->mutex);
3776 put_pwq_unlocked(old_pwq);
3779 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3781 bool highpri = wq->flags & WQ_HIGHPRI;
3784 if (!(wq->flags & WQ_UNBOUND)) {
3785 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3789 for_each_possible_cpu(cpu) {
3790 struct pool_workqueue *pwq =
3791 per_cpu_ptr(wq->cpu_pwqs, cpu);
3792 struct worker_pool *cpu_pools =
3793 per_cpu(cpu_worker_pools, cpu);
3795 init_pwq(pwq, wq, &cpu_pools[highpri]);
3797 mutex_lock(&wq->mutex);
3799 mutex_unlock(&wq->mutex);
3802 } else if (wq->flags & __WQ_ORDERED) {
3803 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3804 /* there should only be single pwq for ordering guarantee */
3805 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3806 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3807 "ordering guarantee broken for workqueue %s\n", wq->name);
3810 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3814 static int wq_clamp_max_active(int max_active, unsigned int flags,
3817 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3819 if (max_active < 1 || max_active > lim)
3820 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3821 max_active, name, 1, lim);
3823 return clamp_val(max_active, 1, lim);
3826 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3829 struct lock_class_key *key,
3830 const char *lock_name, ...)
3832 size_t tbl_size = 0;
3834 struct workqueue_struct *wq;
3835 struct pool_workqueue *pwq;
3837 /* see the comment above the definition of WQ_POWER_EFFICIENT */
3838 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3839 flags |= WQ_UNBOUND;
3841 /* allocate wq and format name */
3842 if (flags & WQ_UNBOUND)
3843 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3845 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3849 if (flags & WQ_UNBOUND) {
3850 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3851 if (!wq->unbound_attrs)
3855 va_start(args, lock_name);
3856 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3859 max_active = max_active ?: WQ_DFL_ACTIVE;
3860 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3864 wq->saved_max_active = max_active;
3865 mutex_init(&wq->mutex);
3866 atomic_set(&wq->nr_pwqs_to_flush, 0);
3867 INIT_LIST_HEAD(&wq->pwqs);
3868 INIT_LIST_HEAD(&wq->flusher_queue);
3869 INIT_LIST_HEAD(&wq->flusher_overflow);
3870 INIT_LIST_HEAD(&wq->maydays);
3872 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3873 INIT_LIST_HEAD(&wq->list);
3875 if (alloc_and_link_pwqs(wq) < 0)
3879 * Workqueues which may be used during memory reclaim should
3880 * have a rescuer to guarantee forward progress.
3882 if (flags & WQ_MEM_RECLAIM) {
3883 struct worker *rescuer;
3885 rescuer = alloc_worker(NUMA_NO_NODE);
3889 rescuer->rescue_wq = wq;
3890 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3892 if (IS_ERR(rescuer->task)) {
3897 wq->rescuer = rescuer;
3898 kthread_bind_mask(rescuer->task, cpu_possible_mask);
3899 wake_up_process(rescuer->task);
3902 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3906 * wq_pool_mutex protects global freeze state and workqueues list.
3907 * Grab it, adjust max_active and add the new @wq to workqueues
3910 mutex_lock(&wq_pool_mutex);
3912 mutex_lock(&wq->mutex);
3913 for_each_pwq(pwq, wq)
3914 pwq_adjust_max_active(pwq);
3915 mutex_unlock(&wq->mutex);
3917 list_add_tail_rcu(&wq->list, &workqueues);
3919 mutex_unlock(&wq_pool_mutex);
3924 free_workqueue_attrs(wq->unbound_attrs);
3928 destroy_workqueue(wq);
3931 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3934 * destroy_workqueue - safely terminate a workqueue
3935 * @wq: target workqueue
3937 * Safely destroy a workqueue. All work currently pending will be done first.
3939 void destroy_workqueue(struct workqueue_struct *wq)
3941 struct pool_workqueue *pwq;
3944 /* drain it before proceeding with destruction */
3945 drain_workqueue(wq);
3948 mutex_lock(&wq->mutex);
3949 for_each_pwq(pwq, wq) {
3952 for (i = 0; i < WORK_NR_COLORS; i++) {
3953 if (WARN_ON(pwq->nr_in_flight[i])) {
3954 mutex_unlock(&wq->mutex);
3959 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
3960 WARN_ON(pwq->nr_active) ||
3961 WARN_ON(!list_empty(&pwq->delayed_works))) {
3962 mutex_unlock(&wq->mutex);
3966 mutex_unlock(&wq->mutex);
3969 * wq list is used to freeze wq, remove from list after
3970 * flushing is complete in case freeze races us.
3972 mutex_lock(&wq_pool_mutex);
3973 list_del_rcu(&wq->list);
3974 mutex_unlock(&wq_pool_mutex);
3976 workqueue_sysfs_unregister(wq);
3979 kthread_stop(wq->rescuer->task);
3981 if (!(wq->flags & WQ_UNBOUND)) {
3983 * The base ref is never dropped on per-cpu pwqs. Directly
3984 * schedule RCU free.
3986 call_rcu_sched(&wq->rcu, rcu_free_wq);
3989 * We're the sole accessor of @wq at this point. Directly
3990 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
3991 * @wq will be freed when the last pwq is released.
3993 for_each_node(node) {
3994 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3995 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
3996 put_pwq_unlocked(pwq);
4000 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4001 * put. Don't access it afterwards.
4005 put_pwq_unlocked(pwq);
4008 EXPORT_SYMBOL_GPL(destroy_workqueue);
4011 * workqueue_set_max_active - adjust max_active of a workqueue
4012 * @wq: target workqueue
4013 * @max_active: new max_active value.
4015 * Set max_active of @wq to @max_active.
4018 * Don't call from IRQ context.
4020 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4022 struct pool_workqueue *pwq;
4024 /* disallow meddling with max_active for ordered workqueues */
4025 if (WARN_ON(wq->flags & __WQ_ORDERED))
4028 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4030 mutex_lock(&wq->mutex);
4032 wq->saved_max_active = max_active;
4034 for_each_pwq(pwq, wq)
4035 pwq_adjust_max_active(pwq);
4037 mutex_unlock(&wq->mutex);
4039 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4042 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4044 * Determine whether %current is a workqueue rescuer. Can be used from
4045 * work functions to determine whether it's being run off the rescuer task.
4047 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4049 bool current_is_workqueue_rescuer(void)
4051 struct worker *worker = current_wq_worker();
4053 return worker && worker->rescue_wq;
4057 * workqueue_congested - test whether a workqueue is congested
4058 * @cpu: CPU in question
4059 * @wq: target workqueue
4061 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4062 * no synchronization around this function and the test result is
4063 * unreliable and only useful as advisory hints or for debugging.
4065 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4066 * Note that both per-cpu and unbound workqueues may be associated with
4067 * multiple pool_workqueues which have separate congested states. A
4068 * workqueue being congested on one CPU doesn't mean the workqueue is also
4069 * contested on other CPUs / NUMA nodes.
4072 * %true if congested, %false otherwise.
4074 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4076 struct pool_workqueue *pwq;
4079 rcu_read_lock_sched();
4081 if (cpu == WORK_CPU_UNBOUND)
4082 cpu = smp_processor_id();
4084 if (!(wq->flags & WQ_UNBOUND))
4085 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4087 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4089 ret = !list_empty(&pwq->delayed_works);
4090 rcu_read_unlock_sched();
4094 EXPORT_SYMBOL_GPL(workqueue_congested);
4097 * work_busy - test whether a work is currently pending or running
4098 * @work: the work to be tested
4100 * Test whether @work is currently pending or running. There is no
4101 * synchronization around this function and the test result is
4102 * unreliable and only useful as advisory hints or for debugging.
4105 * OR'd bitmask of WORK_BUSY_* bits.
4107 unsigned int work_busy(struct work_struct *work)
4109 struct worker_pool *pool;
4110 unsigned long flags;
4111 unsigned int ret = 0;
4113 if (work_pending(work))
4114 ret |= WORK_BUSY_PENDING;
4116 local_irq_save(flags);
4117 pool = get_work_pool(work);
4119 spin_lock(&pool->lock);
4120 if (find_worker_executing_work(pool, work))
4121 ret |= WORK_BUSY_RUNNING;
4122 spin_unlock(&pool->lock);
4124 local_irq_restore(flags);
4128 EXPORT_SYMBOL_GPL(work_busy);
4131 * set_worker_desc - set description for the current work item
4132 * @fmt: printf-style format string
4133 * @...: arguments for the format string
4135 * This function can be called by a running work function to describe what
4136 * the work item is about. If the worker task gets dumped, this
4137 * information will be printed out together to help debugging. The
4138 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4140 void set_worker_desc(const char *fmt, ...)
4142 struct worker *worker = current_wq_worker();
4146 va_start(args, fmt);
4147 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4149 worker->desc_valid = true;
4154 * print_worker_info - print out worker information and description
4155 * @log_lvl: the log level to use when printing
4156 * @task: target task
4158 * If @task is a worker and currently executing a work item, print out the
4159 * name of the workqueue being serviced and worker description set with
4160 * set_worker_desc() by the currently executing work item.
4162 * This function can be safely called on any task as long as the
4163 * task_struct itself is accessible. While safe, this function isn't
4164 * synchronized and may print out mixups or garbages of limited length.
4166 void print_worker_info(const char *log_lvl, struct task_struct *task)
4168 work_func_t *fn = NULL;
4169 char name[WQ_NAME_LEN] = { };
4170 char desc[WORKER_DESC_LEN] = { };
4171 struct pool_workqueue *pwq = NULL;
4172 struct workqueue_struct *wq = NULL;
4173 bool desc_valid = false;
4174 struct worker *worker;
4176 if (!(task->flags & PF_WQ_WORKER))
4180 * This function is called without any synchronization and @task
4181 * could be in any state. Be careful with dereferences.
4183 worker = probe_kthread_data(task);
4186 * Carefully copy the associated workqueue's workfn and name. Keep
4187 * the original last '\0' in case the original contains garbage.
4189 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4190 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4191 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4192 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4194 /* copy worker description */
4195 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4197 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4199 if (fn || name[0] || desc[0]) {
4200 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4202 pr_cont(" (%s)", desc);
4207 static void pr_cont_pool_info(struct worker_pool *pool)
4209 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4210 if (pool->node != NUMA_NO_NODE)
4211 pr_cont(" node=%d", pool->node);
4212 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4215 static void pr_cont_work(bool comma, struct work_struct *work)
4217 if (work->func == wq_barrier_func) {
4218 struct wq_barrier *barr;
4220 barr = container_of(work, struct wq_barrier, work);
4222 pr_cont("%s BAR(%d)", comma ? "," : "",
4223 task_pid_nr(barr->task));
4225 pr_cont("%s %pf", comma ? "," : "", work->func);
4229 static void show_pwq(struct pool_workqueue *pwq)
4231 struct worker_pool *pool = pwq->pool;
4232 struct work_struct *work;
4233 struct worker *worker;
4234 bool has_in_flight = false, has_pending = false;
4237 pr_info(" pwq %d:", pool->id);
4238 pr_cont_pool_info(pool);
4240 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4241 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4243 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4244 if (worker->current_pwq == pwq) {
4245 has_in_flight = true;
4249 if (has_in_flight) {
4252 pr_info(" in-flight:");
4253 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4254 if (worker->current_pwq != pwq)
4257 pr_cont("%s %d%s:%pf", comma ? "," : "",
4258 task_pid_nr(worker->task),
4259 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4260 worker->current_func);
4261 list_for_each_entry(work, &worker->scheduled, entry)
4262 pr_cont_work(false, work);
4268 list_for_each_entry(work, &pool->worklist, entry) {
4269 if (get_work_pwq(work) == pwq) {
4277 pr_info(" pending:");
4278 list_for_each_entry(work, &pool->worklist, entry) {
4279 if (get_work_pwq(work) != pwq)
4282 pr_cont_work(comma, work);
4283 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4288 if (!list_empty(&pwq->delayed_works)) {
4291 pr_info(" delayed:");
4292 list_for_each_entry(work, &pwq->delayed_works, entry) {
4293 pr_cont_work(comma, work);
4294 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4301 * show_workqueue_state - dump workqueue state
4303 * Called from a sysrq handler and prints out all busy workqueues and
4306 void show_workqueue_state(void)
4308 struct workqueue_struct *wq;
4309 struct worker_pool *pool;
4310 unsigned long flags;
4313 rcu_read_lock_sched();
4315 pr_info("Showing busy workqueues and worker pools:\n");
4317 list_for_each_entry_rcu(wq, &workqueues, list) {
4318 struct pool_workqueue *pwq;
4321 for_each_pwq(pwq, wq) {
4322 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4330 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4332 for_each_pwq(pwq, wq) {
4333 spin_lock_irqsave(&pwq->pool->lock, flags);
4334 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4336 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4340 for_each_pool(pool, pi) {
4341 struct worker *worker;
4344 spin_lock_irqsave(&pool->lock, flags);
4345 if (pool->nr_workers == pool->nr_idle)
4348 pr_info("pool %d:", pool->id);
4349 pr_cont_pool_info(pool);
4350 pr_cont(" workers=%d", pool->nr_workers);
4352 pr_cont(" manager: %d",
4353 task_pid_nr(pool->manager->task));
4354 list_for_each_entry(worker, &pool->idle_list, entry) {
4355 pr_cont(" %s%d", first ? "idle: " : "",
4356 task_pid_nr(worker->task));
4361 spin_unlock_irqrestore(&pool->lock, flags);
4364 rcu_read_unlock_sched();
4370 * There are two challenges in supporting CPU hotplug. Firstly, there
4371 * are a lot of assumptions on strong associations among work, pwq and
4372 * pool which make migrating pending and scheduled works very
4373 * difficult to implement without impacting hot paths. Secondly,
4374 * worker pools serve mix of short, long and very long running works making
4375 * blocked draining impractical.
4377 * This is solved by allowing the pools to be disassociated from the CPU
4378 * running as an unbound one and allowing it to be reattached later if the
4379 * cpu comes back online.
4382 static void wq_unbind_fn(struct work_struct *work)
4384 int cpu = smp_processor_id();
4385 struct worker_pool *pool;
4386 struct worker *worker;
4388 for_each_cpu_worker_pool(pool, cpu) {
4389 mutex_lock(&pool->attach_mutex);
4390 spin_lock_irq(&pool->lock);
4393 * We've blocked all attach/detach operations. Make all workers
4394 * unbound and set DISASSOCIATED. Before this, all workers
4395 * except for the ones which are still executing works from
4396 * before the last CPU down must be on the cpu. After
4397 * this, they may become diasporas.
4399 for_each_pool_worker(worker, pool)
4400 worker->flags |= WORKER_UNBOUND;
4402 pool->flags |= POOL_DISASSOCIATED;
4404 spin_unlock_irq(&pool->lock);
4405 mutex_unlock(&pool->attach_mutex);
4408 * Call schedule() so that we cross rq->lock and thus can
4409 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4410 * This is necessary as scheduler callbacks may be invoked
4416 * Sched callbacks are disabled now. Zap nr_running.
4417 * After this, nr_running stays zero and need_more_worker()
4418 * and keep_working() are always true as long as the
4419 * worklist is not empty. This pool now behaves as an
4420 * unbound (in terms of concurrency management) pool which
4421 * are served by workers tied to the pool.
4423 atomic_set(&pool->nr_running, 0);
4426 * With concurrency management just turned off, a busy
4427 * worker blocking could lead to lengthy stalls. Kick off
4428 * unbound chain execution of currently pending work items.
4430 spin_lock_irq(&pool->lock);
4431 wake_up_worker(pool);
4432 spin_unlock_irq(&pool->lock);
4437 * rebind_workers - rebind all workers of a pool to the associated CPU
4438 * @pool: pool of interest
4440 * @pool->cpu is coming online. Rebind all workers to the CPU.
4442 static void rebind_workers(struct worker_pool *pool)
4444 struct worker *worker;
4446 lockdep_assert_held(&pool->attach_mutex);
4449 * Restore CPU affinity of all workers. As all idle workers should
4450 * be on the run-queue of the associated CPU before any local
4451 * wake-ups for concurrency management happen, restore CPU affinity
4452 * of all workers first and then clear UNBOUND. As we're called
4453 * from CPU_ONLINE, the following shouldn't fail.
4455 for_each_pool_worker(worker, pool)
4456 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4457 pool->attrs->cpumask) < 0);
4459 spin_lock_irq(&pool->lock);
4462 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED
4463 * w/o preceding DOWN_PREPARE. Work around it. CPU hotplug is
4464 * being reworked and this can go away in time.
4466 if (!(pool->flags & POOL_DISASSOCIATED)) {
4467 spin_unlock_irq(&pool->lock);
4471 pool->flags &= ~POOL_DISASSOCIATED;
4473 for_each_pool_worker(worker, pool) {
4474 unsigned int worker_flags = worker->flags;
4477 * A bound idle worker should actually be on the runqueue
4478 * of the associated CPU for local wake-ups targeting it to
4479 * work. Kick all idle workers so that they migrate to the
4480 * associated CPU. Doing this in the same loop as
4481 * replacing UNBOUND with REBOUND is safe as no worker will
4482 * be bound before @pool->lock is released.
4484 if (worker_flags & WORKER_IDLE)
4485 wake_up_process(worker->task);
4488 * We want to clear UNBOUND but can't directly call
4489 * worker_clr_flags() or adjust nr_running. Atomically
4490 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4491 * @worker will clear REBOUND using worker_clr_flags() when
4492 * it initiates the next execution cycle thus restoring
4493 * concurrency management. Note that when or whether
4494 * @worker clears REBOUND doesn't affect correctness.
4496 * ACCESS_ONCE() is necessary because @worker->flags may be
4497 * tested without holding any lock in
4498 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4499 * fail incorrectly leading to premature concurrency
4500 * management operations.
4502 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4503 worker_flags |= WORKER_REBOUND;
4504 worker_flags &= ~WORKER_UNBOUND;
4505 ACCESS_ONCE(worker->flags) = worker_flags;
4508 spin_unlock_irq(&pool->lock);
4512 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4513 * @pool: unbound pool of interest
4514 * @cpu: the CPU which is coming up
4516 * An unbound pool may end up with a cpumask which doesn't have any online
4517 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4518 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4519 * online CPU before, cpus_allowed of all its workers should be restored.
4521 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4523 static cpumask_t cpumask;
4524 struct worker *worker;
4526 lockdep_assert_held(&pool->attach_mutex);
4528 /* is @cpu allowed for @pool? */
4529 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4532 /* is @cpu the only online CPU? */
4533 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4534 if (cpumask_weight(&cpumask) != 1)
4537 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4538 for_each_pool_worker(worker, pool)
4539 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4540 pool->attrs->cpumask) < 0);
4544 * Workqueues should be brought up before normal priority CPU notifiers.
4545 * This will be registered high priority CPU notifier.
4547 static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4548 unsigned long action,
4551 int cpu = (unsigned long)hcpu;
4552 struct worker_pool *pool;
4553 struct workqueue_struct *wq;
4556 switch (action & ~CPU_TASKS_FROZEN) {
4557 case CPU_UP_PREPARE:
4558 for_each_cpu_worker_pool(pool, cpu) {
4559 if (pool->nr_workers)
4561 if (!create_worker(pool))
4566 case CPU_DOWN_FAILED:
4568 mutex_lock(&wq_pool_mutex);
4570 for_each_pool(pool, pi) {
4571 mutex_lock(&pool->attach_mutex);
4573 if (pool->cpu == cpu)
4574 rebind_workers(pool);
4575 else if (pool->cpu < 0)
4576 restore_unbound_workers_cpumask(pool, cpu);
4578 mutex_unlock(&pool->attach_mutex);
4581 /* update NUMA affinity of unbound workqueues */
4582 list_for_each_entry(wq, &workqueues, list)
4583 wq_update_unbound_numa(wq, cpu, true);
4585 mutex_unlock(&wq_pool_mutex);
4592 * Workqueues should be brought down after normal priority CPU notifiers.
4593 * This will be registered as low priority CPU notifier.
4595 static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4596 unsigned long action,
4599 int cpu = (unsigned long)hcpu;
4600 struct work_struct unbind_work;
4601 struct workqueue_struct *wq;
4603 switch (action & ~CPU_TASKS_FROZEN) {
4604 case CPU_DOWN_PREPARE:
4605 /* unbinding per-cpu workers should happen on the local CPU */
4606 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4607 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4609 /* update NUMA affinity of unbound workqueues */
4610 mutex_lock(&wq_pool_mutex);
4611 list_for_each_entry(wq, &workqueues, list)
4612 wq_update_unbound_numa(wq, cpu, false);
4613 mutex_unlock(&wq_pool_mutex);
4615 /* wait for per-cpu unbinding to finish */
4616 flush_work(&unbind_work);
4617 destroy_work_on_stack(&unbind_work);
4625 struct work_for_cpu {
4626 struct work_struct work;
4632 static void work_for_cpu_fn(struct work_struct *work)
4634 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4636 wfc->ret = wfc->fn(wfc->arg);
4640 * work_on_cpu - run a function in user context on a particular cpu
4641 * @cpu: the cpu to run on
4642 * @fn: the function to run
4643 * @arg: the function arg
4645 * It is up to the caller to ensure that the cpu doesn't go offline.
4646 * The caller must not hold any locks which would prevent @fn from completing.
4648 * Return: The value @fn returns.
4650 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4652 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4654 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4655 schedule_work_on(cpu, &wfc.work);
4656 flush_work(&wfc.work);
4657 destroy_work_on_stack(&wfc.work);
4660 EXPORT_SYMBOL_GPL(work_on_cpu);
4661 #endif /* CONFIG_SMP */
4663 #ifdef CONFIG_FREEZER
4666 * freeze_workqueues_begin - begin freezing workqueues
4668 * Start freezing workqueues. After this function returns, all freezable
4669 * workqueues will queue new works to their delayed_works list instead of
4673 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4675 void freeze_workqueues_begin(void)
4677 struct workqueue_struct *wq;
4678 struct pool_workqueue *pwq;
4680 mutex_lock(&wq_pool_mutex);
4682 WARN_ON_ONCE(workqueue_freezing);
4683 workqueue_freezing = true;
4685 list_for_each_entry(wq, &workqueues, list) {
4686 mutex_lock(&wq->mutex);
4687 for_each_pwq(pwq, wq)
4688 pwq_adjust_max_active(pwq);
4689 mutex_unlock(&wq->mutex);
4692 mutex_unlock(&wq_pool_mutex);
4696 * freeze_workqueues_busy - are freezable workqueues still busy?
4698 * Check whether freezing is complete. This function must be called
4699 * between freeze_workqueues_begin() and thaw_workqueues().
4702 * Grabs and releases wq_pool_mutex.
4705 * %true if some freezable workqueues are still busy. %false if freezing
4708 bool freeze_workqueues_busy(void)
4711 struct workqueue_struct *wq;
4712 struct pool_workqueue *pwq;
4714 mutex_lock(&wq_pool_mutex);
4716 WARN_ON_ONCE(!workqueue_freezing);
4718 list_for_each_entry(wq, &workqueues, list) {
4719 if (!(wq->flags & WQ_FREEZABLE))
4722 * nr_active is monotonically decreasing. It's safe
4723 * to peek without lock.
4725 rcu_read_lock_sched();
4726 for_each_pwq(pwq, wq) {
4727 WARN_ON_ONCE(pwq->nr_active < 0);
4728 if (pwq->nr_active) {
4730 rcu_read_unlock_sched();
4734 rcu_read_unlock_sched();
4737 mutex_unlock(&wq_pool_mutex);
4742 * thaw_workqueues - thaw workqueues
4744 * Thaw workqueues. Normal queueing is restored and all collected
4745 * frozen works are transferred to their respective pool worklists.
4748 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4750 void thaw_workqueues(void)
4752 struct workqueue_struct *wq;
4753 struct pool_workqueue *pwq;
4755 mutex_lock(&wq_pool_mutex);
4757 if (!workqueue_freezing)
4760 workqueue_freezing = false;
4762 /* restore max_active and repopulate worklist */
4763 list_for_each_entry(wq, &workqueues, list) {
4764 mutex_lock(&wq->mutex);
4765 for_each_pwq(pwq, wq)
4766 pwq_adjust_max_active(pwq);
4767 mutex_unlock(&wq->mutex);
4771 mutex_unlock(&wq_pool_mutex);
4773 #endif /* CONFIG_FREEZER */
4775 static int workqueue_apply_unbound_cpumask(void)
4779 struct workqueue_struct *wq;
4780 struct apply_wqattrs_ctx *ctx, *n;
4782 lockdep_assert_held(&wq_pool_mutex);
4784 list_for_each_entry(wq, &workqueues, list) {
4785 if (!(wq->flags & WQ_UNBOUND))
4787 /* creating multiple pwqs breaks ordering guarantee */
4788 if (wq->flags & __WQ_ORDERED)
4791 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4797 list_add_tail(&ctx->list, &ctxs);
4800 list_for_each_entry_safe(ctx, n, &ctxs, list) {
4802 apply_wqattrs_commit(ctx);
4803 apply_wqattrs_cleanup(ctx);
4810 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4811 * @cpumask: the cpumask to set
4813 * The low-level workqueues cpumask is a global cpumask that limits
4814 * the affinity of all unbound workqueues. This function check the @cpumask
4815 * and apply it to all unbound workqueues and updates all pwqs of them.
4817 * Retun: 0 - Success
4818 * -EINVAL - Invalid @cpumask
4819 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
4821 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4824 cpumask_var_t saved_cpumask;
4826 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4829 cpumask_and(cpumask, cpumask, cpu_possible_mask);
4830 if (!cpumask_empty(cpumask)) {
4831 apply_wqattrs_lock();
4833 /* save the old wq_unbound_cpumask. */
4834 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4836 /* update wq_unbound_cpumask at first and apply it to wqs. */
4837 cpumask_copy(wq_unbound_cpumask, cpumask);
4838 ret = workqueue_apply_unbound_cpumask();
4840 /* restore the wq_unbound_cpumask when failed. */
4842 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4844 apply_wqattrs_unlock();
4847 free_cpumask_var(saved_cpumask);
4853 * Workqueues with WQ_SYSFS flag set is visible to userland via
4854 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
4855 * following attributes.
4857 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
4858 * max_active RW int : maximum number of in-flight work items
4860 * Unbound workqueues have the following extra attributes.
4862 * id RO int : the associated pool ID
4863 * nice RW int : nice value of the workers
4864 * cpumask RW mask : bitmask of allowed CPUs for the workers
4867 struct workqueue_struct *wq;
4871 static struct workqueue_struct *dev_to_wq(struct device *dev)
4873 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4878 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
4881 struct workqueue_struct *wq = dev_to_wq(dev);
4883 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
4885 static DEVICE_ATTR_RO(per_cpu);
4887 static ssize_t max_active_show(struct device *dev,
4888 struct device_attribute *attr, char *buf)
4890 struct workqueue_struct *wq = dev_to_wq(dev);
4892 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
4895 static ssize_t max_active_store(struct device *dev,
4896 struct device_attribute *attr, const char *buf,
4899 struct workqueue_struct *wq = dev_to_wq(dev);
4902 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
4905 workqueue_set_max_active(wq, val);
4908 static DEVICE_ATTR_RW(max_active);
4910 static struct attribute *wq_sysfs_attrs[] = {
4911 &dev_attr_per_cpu.attr,
4912 &dev_attr_max_active.attr,
4915 ATTRIBUTE_GROUPS(wq_sysfs);
4917 static ssize_t wq_pool_ids_show(struct device *dev,
4918 struct device_attribute *attr, char *buf)
4920 struct workqueue_struct *wq = dev_to_wq(dev);
4921 const char *delim = "";
4922 int node, written = 0;
4924 rcu_read_lock_sched();
4925 for_each_node(node) {
4926 written += scnprintf(buf + written, PAGE_SIZE - written,
4927 "%s%d:%d", delim, node,
4928 unbound_pwq_by_node(wq, node)->pool->id);
4931 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
4932 rcu_read_unlock_sched();
4937 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
4940 struct workqueue_struct *wq = dev_to_wq(dev);
4943 mutex_lock(&wq->mutex);
4944 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
4945 mutex_unlock(&wq->mutex);
4950 /* prepare workqueue_attrs for sysfs store operations */
4951 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
4953 struct workqueue_attrs *attrs;
4955 lockdep_assert_held(&wq_pool_mutex);
4957 attrs = alloc_workqueue_attrs(GFP_KERNEL);
4961 copy_workqueue_attrs(attrs, wq->unbound_attrs);
4965 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
4966 const char *buf, size_t count)
4968 struct workqueue_struct *wq = dev_to_wq(dev);
4969 struct workqueue_attrs *attrs;
4972 apply_wqattrs_lock();
4974 attrs = wq_sysfs_prep_attrs(wq);
4978 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
4979 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
4980 ret = apply_workqueue_attrs_locked(wq, attrs);
4985 apply_wqattrs_unlock();
4986 free_workqueue_attrs(attrs);
4987 return ret ?: count;
4990 static ssize_t wq_cpumask_show(struct device *dev,
4991 struct device_attribute *attr, char *buf)
4993 struct workqueue_struct *wq = dev_to_wq(dev);
4996 mutex_lock(&wq->mutex);
4997 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
4998 cpumask_pr_args(wq->unbound_attrs->cpumask));
4999 mutex_unlock(&wq->mutex);
5003 static ssize_t wq_cpumask_store(struct device *dev,
5004 struct device_attribute *attr,
5005 const char *buf, size_t count)
5007 struct workqueue_struct *wq = dev_to_wq(dev);
5008 struct workqueue_attrs *attrs;
5011 apply_wqattrs_lock();
5013 attrs = wq_sysfs_prep_attrs(wq);
5017 ret = cpumask_parse(buf, attrs->cpumask);
5019 ret = apply_workqueue_attrs_locked(wq, attrs);
5022 apply_wqattrs_unlock();
5023 free_workqueue_attrs(attrs);
5024 return ret ?: count;
5027 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5030 struct workqueue_struct *wq = dev_to_wq(dev);
5033 mutex_lock(&wq->mutex);
5034 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5035 !wq->unbound_attrs->no_numa);
5036 mutex_unlock(&wq->mutex);
5041 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5042 const char *buf, size_t count)
5044 struct workqueue_struct *wq = dev_to_wq(dev);
5045 struct workqueue_attrs *attrs;
5046 int v, ret = -ENOMEM;
5048 apply_wqattrs_lock();
5050 attrs = wq_sysfs_prep_attrs(wq);
5055 if (sscanf(buf, "%d", &v) == 1) {
5056 attrs->no_numa = !v;
5057 ret = apply_workqueue_attrs_locked(wq, attrs);
5061 apply_wqattrs_unlock();
5062 free_workqueue_attrs(attrs);
5063 return ret ?: count;
5066 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5067 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5068 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5069 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5070 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5074 static struct bus_type wq_subsys = {
5075 .name = "workqueue",
5076 .dev_groups = wq_sysfs_groups,
5079 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5080 struct device_attribute *attr, char *buf)
5084 mutex_lock(&wq_pool_mutex);
5085 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5086 cpumask_pr_args(wq_unbound_cpumask));
5087 mutex_unlock(&wq_pool_mutex);
5092 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5093 struct device_attribute *attr, const char *buf, size_t count)
5095 cpumask_var_t cpumask;
5098 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5101 ret = cpumask_parse(buf, cpumask);
5103 ret = workqueue_set_unbound_cpumask(cpumask);
5105 free_cpumask_var(cpumask);
5106 return ret ? ret : count;
5109 static struct device_attribute wq_sysfs_cpumask_attr =
5110 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5111 wq_unbound_cpumask_store);
5113 static int __init wq_sysfs_init(void)
5117 err = subsys_virtual_register(&wq_subsys, NULL);
5121 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5123 core_initcall(wq_sysfs_init);
5125 static void wq_device_release(struct device *dev)
5127 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5133 * workqueue_sysfs_register - make a workqueue visible in sysfs
5134 * @wq: the workqueue to register
5136 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5137 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5138 * which is the preferred method.
5140 * Workqueue user should use this function directly iff it wants to apply
5141 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5142 * apply_workqueue_attrs() may race against userland updating the
5145 * Return: 0 on success, -errno on failure.
5147 int workqueue_sysfs_register(struct workqueue_struct *wq)
5149 struct wq_device *wq_dev;
5153 * Adjusting max_active or creating new pwqs by applying
5154 * attributes breaks ordering guarantee. Disallow exposing ordered
5157 if (WARN_ON(wq->flags & __WQ_ORDERED))
5160 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5165 wq_dev->dev.bus = &wq_subsys;
5166 wq_dev->dev.init_name = wq->name;
5167 wq_dev->dev.release = wq_device_release;
5170 * unbound_attrs are created separately. Suppress uevent until
5171 * everything is ready.
5173 dev_set_uevent_suppress(&wq_dev->dev, true);
5175 ret = device_register(&wq_dev->dev);
5182 if (wq->flags & WQ_UNBOUND) {
5183 struct device_attribute *attr;
5185 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5186 ret = device_create_file(&wq_dev->dev, attr);
5188 device_unregister(&wq_dev->dev);
5195 dev_set_uevent_suppress(&wq_dev->dev, false);
5196 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5201 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5202 * @wq: the workqueue to unregister
5204 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5206 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5208 struct wq_device *wq_dev = wq->wq_dev;
5214 device_unregister(&wq_dev->dev);
5216 #else /* CONFIG_SYSFS */
5217 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5218 #endif /* CONFIG_SYSFS */
5220 static void __init wq_numa_init(void)
5225 if (num_possible_nodes() <= 1)
5228 if (wq_disable_numa) {
5229 pr_info("workqueue: NUMA affinity support disabled\n");
5233 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5234 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5237 * We want masks of possible CPUs of each node which isn't readily
5238 * available. Build one from cpu_to_node() which should have been
5239 * fully initialized by now.
5241 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5245 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5246 node_online(node) ? node : NUMA_NO_NODE));
5248 for_each_possible_cpu(cpu) {
5249 node = cpu_to_node(cpu);
5250 if (WARN_ON(node == NUMA_NO_NODE)) {
5251 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5252 /* happens iff arch is bonkers, let's just proceed */
5255 cpumask_set_cpu(cpu, tbl[node]);
5258 wq_numa_possible_cpumask = tbl;
5259 wq_numa_enabled = true;
5262 static int __init init_workqueues(void)
5264 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5267 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5269 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5270 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5272 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5274 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5275 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5279 /* initialize CPU pools */
5280 for_each_possible_cpu(cpu) {
5281 struct worker_pool *pool;
5284 for_each_cpu_worker_pool(pool, cpu) {
5285 BUG_ON(init_worker_pool(pool));
5287 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5288 pool->attrs->nice = std_nice[i++];
5289 pool->node = cpu_to_node(cpu);
5292 mutex_lock(&wq_pool_mutex);
5293 BUG_ON(worker_pool_assign_id(pool));
5294 mutex_unlock(&wq_pool_mutex);
5298 /* create the initial worker */
5299 for_each_online_cpu(cpu) {
5300 struct worker_pool *pool;
5302 for_each_cpu_worker_pool(pool, cpu) {
5303 pool->flags &= ~POOL_DISASSOCIATED;
5304 BUG_ON(!create_worker(pool));
5308 /* create default unbound and ordered wq attrs */
5309 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5310 struct workqueue_attrs *attrs;
5312 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5313 attrs->nice = std_nice[i];
5314 unbound_std_wq_attrs[i] = attrs;
5317 * An ordered wq should have only one pwq as ordering is
5318 * guaranteed by max_active which is enforced by pwqs.
5319 * Turn off NUMA so that dfl_pwq is used for all nodes.
5321 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5322 attrs->nice = std_nice[i];
5323 attrs->no_numa = true;
5324 ordered_wq_attrs[i] = attrs;
5327 system_wq = alloc_workqueue("events", 0, 0);
5328 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5329 system_long_wq = alloc_workqueue("events_long", 0, 0);
5330 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5331 WQ_UNBOUND_MAX_ACTIVE);
5332 system_freezable_wq = alloc_workqueue("events_freezable",
5334 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5335 WQ_POWER_EFFICIENT, 0);
5336 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5337 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5339 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5340 !system_unbound_wq || !system_freezable_wq ||
5341 !system_power_efficient_wq ||
5342 !system_freezable_power_efficient_wq);
5345 early_initcall(init_workqueues);