1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the primary stateless implementation of the
11 // Alias Analysis interface that implements identities (two different
12 // globals cannot alias, etc), but does no stateful analysis.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Analysis/Passes.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/CaptureTracking.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/Analysis/MemoryBuiltins.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/GlobalAlias.h"
29 #include "llvm/IR/GlobalVariable.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/Pass.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/GetElementPtrTypeIterator.h"
37 #include "llvm/Target/TargetLibraryInfo.h"
41 //===----------------------------------------------------------------------===//
43 //===----------------------------------------------------------------------===//
45 /// isNonEscapingLocalObject - Return true if the pointer is to a function-local
46 /// object that never escapes from the function.
47 static bool isNonEscapingLocalObject(const Value *V) {
48 // If this is a local allocation, check to see if it escapes.
49 if (isa<AllocaInst>(V) || isNoAliasCall(V))
50 // Set StoreCaptures to True so that we can assume in our callers that the
51 // pointer is not the result of a load instruction. Currently
52 // PointerMayBeCaptured doesn't have any special analysis for the
53 // StoreCaptures=false case; if it did, our callers could be refined to be
55 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
57 // If this is an argument that corresponds to a byval or noalias argument,
58 // then it has not escaped before entering the function. Check if it escapes
59 // inside the function.
60 if (const Argument *A = dyn_cast<Argument>(V))
61 if (A->hasByValAttr() || A->hasNoAliasAttr())
62 // Note even if the argument is marked nocapture we still need to check
63 // for copies made inside the function. The nocapture attribute only
64 // specifies that there are no copies made that outlive the function.
65 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
70 /// isEscapeSource - Return true if the pointer is one which would have
71 /// been considered an escape by isNonEscapingLocalObject.
72 static bool isEscapeSource(const Value *V) {
73 if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
76 // The load case works because isNonEscapingLocalObject considers all
77 // stores to be escapes (it passes true for the StoreCaptures argument
78 // to PointerMayBeCaptured).
85 /// getObjectSize - Return the size of the object specified by V, or
86 /// UnknownSize if unknown.
87 static uint64_t getObjectSize(const Value *V, const DataLayout &TD,
88 const TargetLibraryInfo &TLI,
89 bool RoundToAlign = false) {
91 if (getObjectSize(V, Size, &TD, &TLI, RoundToAlign))
93 return AliasAnalysis::UnknownSize;
96 /// isObjectSmallerThan - Return true if we can prove that the object specified
97 /// by V is smaller than Size.
98 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
100 const TargetLibraryInfo &TLI) {
101 // Note that the meanings of the "object" are slightly different in the
102 // following contexts:
103 // c1: llvm::getObjectSize()
104 // c2: llvm.objectsize() intrinsic
105 // c3: isObjectSmallerThan()
106 // c1 and c2 share the same meaning; however, the meaning of "object" in c3
107 // refers to the "entire object".
109 // Consider this example:
110 // char *p = (char*)malloc(100)
113 // In the context of c1 and c2, the "object" pointed by q refers to the
114 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
116 // However, in the context of c3, the "object" refers to the chunk of memory
117 // being allocated. So, the "object" has 100 bytes, and q points to the middle
118 // the "object". In case q is passed to isObjectSmallerThan() as the 1st
119 // parameter, before the llvm::getObjectSize() is called to get the size of
120 // entire object, we should:
121 // - either rewind the pointer q to the base-address of the object in
122 // question (in this case rewind to p), or
123 // - just give up. It is up to caller to make sure the pointer is pointing
124 // to the base address the object.
126 // We go for 2nd option for simplicity.
127 if (!isIdentifiedObject(V))
130 // This function needs to use the aligned object size because we allow
131 // reads a bit past the end given sufficient alignment.
132 uint64_t ObjectSize = getObjectSize(V, TD, TLI, /*RoundToAlign*/true);
134 return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize < Size;
137 /// isObjectSize - Return true if we can prove that the object specified
138 /// by V has size Size.
139 static bool isObjectSize(const Value *V, uint64_t Size,
140 const DataLayout &TD, const TargetLibraryInfo &TLI) {
141 uint64_t ObjectSize = getObjectSize(V, TD, TLI);
142 return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize == Size;
145 /// isIdentifiedFunctionLocal - Return true if V is umabigously identified
146 /// at the function-level. Different IdentifiedFunctionLocals can't alias.
147 /// Further, an IdentifiedFunctionLocal can not alias with any function
148 /// arguments other than itself, which is not neccessarily true for
149 /// IdentifiedObjects.
150 static bool isIdentifiedFunctionLocal(const Value *V)
152 return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
156 //===----------------------------------------------------------------------===//
157 // GetElementPtr Instruction Decomposition and Analysis
158 //===----------------------------------------------------------------------===//
167 struct VariableGEPIndex {
169 ExtensionKind Extension;
172 bool operator==(const VariableGEPIndex &Other) const {
173 return V == Other.V && Extension == Other.Extension &&
174 Scale == Other.Scale;
177 bool operator!=(const VariableGEPIndex &Other) const {
178 return !operator==(Other);
184 /// GetLinearExpression - Analyze the specified value as a linear expression:
185 /// "A*V + B", where A and B are constant integers. Return the scale and offset
186 /// values as APInts and return V as a Value*, and return whether we looked
187 /// through any sign or zero extends. The incoming Value is known to have
188 /// IntegerType and it may already be sign or zero extended.
190 /// Note that this looks through extends, so the high bits may not be
191 /// represented in the result.
192 static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
193 ExtensionKind &Extension,
194 const DataLayout &TD, unsigned Depth) {
195 assert(V->getType()->isIntegerTy() && "Not an integer value");
197 // Limit our recursion depth.
204 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
205 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
206 switch (BOp->getOpcode()) {
208 case Instruction::Or:
209 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't
211 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &TD))
214 case Instruction::Add:
215 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
217 Offset += RHSC->getValue();
219 case Instruction::Mul:
220 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
222 Offset *= RHSC->getValue();
223 Scale *= RHSC->getValue();
225 case Instruction::Shl:
226 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
228 Offset <<= RHSC->getValue().getLimitedValue();
229 Scale <<= RHSC->getValue().getLimitedValue();
235 // Since GEP indices are sign extended anyway, we don't care about the high
236 // bits of a sign or zero extended value - just scales and offsets. The
237 // extensions have to be consistent though.
238 if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) ||
239 (isa<ZExtInst>(V) && Extension != EK_SignExt)) {
240 Value *CastOp = cast<CastInst>(V)->getOperand(0);
241 unsigned OldWidth = Scale.getBitWidth();
242 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
243 Scale = Scale.trunc(SmallWidth);
244 Offset = Offset.trunc(SmallWidth);
245 Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt;
247 Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension,
249 Scale = Scale.zext(OldWidth);
250 Offset = Offset.zext(OldWidth);
260 /// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it
261 /// into a base pointer with a constant offset and a number of scaled symbolic
264 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale in
265 /// the VarIndices vector) are Value*'s that are known to be scaled by the
266 /// specified amount, but which may have other unrepresented high bits. As such,
267 /// the gep cannot necessarily be reconstructed from its decomposed form.
269 /// When DataLayout is around, this function is capable of analyzing everything
270 /// that GetUnderlyingObject can look through. When not, it just looks
271 /// through pointer casts.
274 DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
275 SmallVectorImpl<VariableGEPIndex> &VarIndices,
276 const DataLayout *TD) {
277 // Limit recursion depth to limit compile time in crazy cases.
278 unsigned MaxLookup = 6;
282 // See if this is a bitcast or GEP.
283 const Operator *Op = dyn_cast<Operator>(V);
285 // The only non-operator case we can handle are GlobalAliases.
286 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
287 if (!GA->mayBeOverridden()) {
288 V = GA->getAliasee();
295 if (Op->getOpcode() == Instruction::BitCast) {
296 V = Op->getOperand(0);
300 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
302 // If it's not a GEP, hand it off to SimplifyInstruction to see if it
303 // can come up with something. This matches what GetUnderlyingObject does.
304 if (const Instruction *I = dyn_cast<Instruction>(V))
305 // TODO: Get a DominatorTree and use it here.
306 if (const Value *Simplified =
307 SimplifyInstruction(const_cast<Instruction *>(I), TD)) {
315 // Don't attempt to analyze GEPs over unsized objects.
316 if (!GEPOp->getOperand(0)->getType()->getPointerElementType()->isSized())
319 // If we are lacking DataLayout information, we can't compute the offets of
320 // elements computed by GEPs. However, we can handle bitcast equivalent
323 if (!GEPOp->hasAllZeroIndices())
325 V = GEPOp->getOperand(0);
329 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
330 gep_type_iterator GTI = gep_type_begin(GEPOp);
331 for (User::const_op_iterator I = GEPOp->op_begin()+1,
332 E = GEPOp->op_end(); I != E; ++I) {
334 // Compute the (potentially symbolic) offset in bytes for this index.
335 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
336 // For a struct, add the member offset.
337 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
338 if (FieldNo == 0) continue;
340 BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo);
344 // For an array/pointer, add the element offset, explicitly scaled.
345 if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
346 if (CIdx->isZero()) continue;
347 BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue();
351 uint64_t Scale = TD->getTypeAllocSize(*GTI);
352 ExtensionKind Extension = EK_NotExtended;
354 // If the integer type is smaller than the pointer size, it is implicitly
355 // sign extended to pointer size.
356 unsigned Width = Index->getType()->getIntegerBitWidth();
357 if (TD->getPointerSizeInBits() > Width)
358 Extension = EK_SignExt;
360 // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
361 APInt IndexScale(Width, 0), IndexOffset(Width, 0);
362 Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension,
365 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
366 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
367 BaseOffs += IndexOffset.getSExtValue()*Scale;
368 Scale *= IndexScale.getSExtValue();
370 // If we already had an occurrence of this index variable, merge this
371 // scale into it. For example, we want to handle:
372 // A[x][x] -> x*16 + x*4 -> x*20
373 // This also ensures that 'x' only appears in the index list once.
374 for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
375 if (VarIndices[i].V == Index &&
376 VarIndices[i].Extension == Extension) {
377 Scale += VarIndices[i].Scale;
378 VarIndices.erase(VarIndices.begin()+i);
383 // Make sure that we have a scale that makes sense for this target's
385 if (unsigned ShiftBits = 64-TD->getPointerSizeInBits()) {
387 Scale = (int64_t)Scale >> ShiftBits;
391 VariableGEPIndex Entry = {Index, Extension,
392 static_cast<int64_t>(Scale)};
393 VarIndices.push_back(Entry);
397 // Analyze the base pointer next.
398 V = GEPOp->getOperand(0);
399 } while (--MaxLookup);
401 // If the chain of expressions is too deep, just return early.
405 /// GetIndexDifference - Dest and Src are the variable indices from two
406 /// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
407 /// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic
408 /// difference between the two pointers.
409 static void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest,
410 const SmallVectorImpl<VariableGEPIndex> &Src) {
411 if (Src.empty()) return;
413 for (unsigned i = 0, e = Src.size(); i != e; ++i) {
414 const Value *V = Src[i].V;
415 ExtensionKind Extension = Src[i].Extension;
416 int64_t Scale = Src[i].Scale;
418 // Find V in Dest. This is N^2, but pointer indices almost never have more
419 // than a few variable indexes.
420 for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
421 if (Dest[j].V != V || Dest[j].Extension != Extension) continue;
423 // If we found it, subtract off Scale V's from the entry in Dest. If it
424 // goes to zero, remove the entry.
425 if (Dest[j].Scale != Scale)
426 Dest[j].Scale -= Scale;
428 Dest.erase(Dest.begin()+j);
433 // If we didn't consume this entry, add it to the end of the Dest list.
435 VariableGEPIndex Entry = { V, Extension, -Scale };
436 Dest.push_back(Entry);
441 //===----------------------------------------------------------------------===//
442 // BasicAliasAnalysis Pass
443 //===----------------------------------------------------------------------===//
446 static const Function *getParent(const Value *V) {
447 if (const Instruction *inst = dyn_cast<Instruction>(V))
448 return inst->getParent()->getParent();
450 if (const Argument *arg = dyn_cast<Argument>(V))
451 return arg->getParent();
456 static bool notDifferentParent(const Value *O1, const Value *O2) {
458 const Function *F1 = getParent(O1);
459 const Function *F2 = getParent(O2);
461 return !F1 || !F2 || F1 == F2;
466 /// BasicAliasAnalysis - This is the primary alias analysis implementation.
467 struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis {
468 static char ID; // Class identification, replacement for typeinfo
469 BasicAliasAnalysis() : ImmutablePass(ID) {
470 initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry());
473 virtual void initializePass() {
474 InitializeAliasAnalysis(this);
477 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
478 AU.addRequired<AliasAnalysis>();
479 AU.addRequired<TargetLibraryInfo>();
482 virtual AliasResult alias(const Location &LocA,
483 const Location &LocB) {
484 assert(AliasCache.empty() && "AliasCache must be cleared after use!");
485 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
486 "BasicAliasAnalysis doesn't support interprocedural queries.");
487 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.TBAATag,
488 LocB.Ptr, LocB.Size, LocB.TBAATag);
489 // AliasCache rarely has more than 1 or 2 elements, always use
490 // shrink_and_clear so it quickly returns to the inline capacity of the
491 // SmallDenseMap if it ever grows larger.
492 // FIXME: This should really be shrink_to_inline_capacity_and_clear().
493 AliasCache.shrink_and_clear();
497 virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
498 const Location &Loc);
500 virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
501 ImmutableCallSite CS2) {
502 // The AliasAnalysis base class has some smarts, lets use them.
503 return AliasAnalysis::getModRefInfo(CS1, CS2);
506 /// pointsToConstantMemory - Chase pointers until we find a (constant
508 virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal);
510 /// getModRefBehavior - Return the behavior when calling the given
512 virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
514 /// getModRefBehavior - Return the behavior when calling the given function.
515 /// For use when the call site is not known.
516 virtual ModRefBehavior getModRefBehavior(const Function *F);
518 /// getAdjustedAnalysisPointer - This method is used when a pass implements
519 /// an analysis interface through multiple inheritance. If needed, it
520 /// should override this to adjust the this pointer as needed for the
521 /// specified pass info.
522 virtual void *getAdjustedAnalysisPointer(const void *ID) {
523 if (ID == &AliasAnalysis::ID)
524 return (AliasAnalysis*)this;
529 // AliasCache - Track alias queries to guard against recursion.
530 typedef std::pair<Location, Location> LocPair;
531 typedef SmallDenseMap<LocPair, AliasResult, 8> AliasCacheTy;
532 AliasCacheTy AliasCache;
534 // Visited - Track instructions visited by pointsToConstantMemory.
535 SmallPtrSet<const Value*, 16> Visited;
537 // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP
538 // instruction against another.
539 AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size,
540 const MDNode *V1TBAAInfo,
541 const Value *V2, uint64_t V2Size,
542 const MDNode *V2TBAAInfo,
543 const Value *UnderlyingV1, const Value *UnderlyingV2);
545 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI
546 // instruction against another.
547 AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize,
548 const MDNode *PNTBAAInfo,
549 const Value *V2, uint64_t V2Size,
550 const MDNode *V2TBAAInfo);
552 /// aliasSelect - Disambiguate a Select instruction against another value.
553 AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize,
554 const MDNode *SITBAAInfo,
555 const Value *V2, uint64_t V2Size,
556 const MDNode *V2TBAAInfo);
558 AliasResult aliasCheck(const Value *V1, uint64_t V1Size,
559 const MDNode *V1TBAATag,
560 const Value *V2, uint64_t V2Size,
561 const MDNode *V2TBAATag);
563 } // End of anonymous namespace
565 // Register this pass...
566 char BasicAliasAnalysis::ID = 0;
567 INITIALIZE_AG_PASS_BEGIN(BasicAliasAnalysis, AliasAnalysis, "basicaa",
568 "Basic Alias Analysis (stateless AA impl)",
570 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
571 INITIALIZE_AG_PASS_END(BasicAliasAnalysis, AliasAnalysis, "basicaa",
572 "Basic Alias Analysis (stateless AA impl)",
576 ImmutablePass *llvm::createBasicAliasAnalysisPass() {
577 return new BasicAliasAnalysis();
580 /// pointsToConstantMemory - Returns whether the given pointer value
581 /// points to memory that is local to the function, with global constants being
582 /// considered local to all functions.
584 BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) {
585 assert(Visited.empty() && "Visited must be cleared after use!");
587 unsigned MaxLookup = 8;
588 SmallVector<const Value *, 16> Worklist;
589 Worklist.push_back(Loc.Ptr);
591 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), TD);
592 if (!Visited.insert(V)) {
594 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
597 // An alloca instruction defines local memory.
598 if (OrLocal && isa<AllocaInst>(V))
601 // A global constant counts as local memory for our purposes.
602 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
603 // Note: this doesn't require GV to be "ODR" because it isn't legal for a
604 // global to be marked constant in some modules and non-constant in
605 // others. GV may even be a declaration, not a definition.
606 if (!GV->isConstant()) {
608 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
613 // If both select values point to local memory, then so does the select.
614 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
615 Worklist.push_back(SI->getTrueValue());
616 Worklist.push_back(SI->getFalseValue());
620 // If all values incoming to a phi node point to local memory, then so does
622 if (const PHINode *PN = dyn_cast<PHINode>(V)) {
623 // Don't bother inspecting phi nodes with many operands.
624 if (PN->getNumIncomingValues() > MaxLookup) {
626 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
628 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
629 Worklist.push_back(PN->getIncomingValue(i));
633 // Otherwise be conservative.
635 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
637 } while (!Worklist.empty() && --MaxLookup);
640 return Worklist.empty();
643 /// getModRefBehavior - Return the behavior when calling the given call site.
644 AliasAnalysis::ModRefBehavior
645 BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
646 if (CS.doesNotAccessMemory())
647 // Can't do better than this.
648 return DoesNotAccessMemory;
650 ModRefBehavior Min = UnknownModRefBehavior;
652 // If the callsite knows it only reads memory, don't return worse
654 if (CS.onlyReadsMemory())
655 Min = OnlyReadsMemory;
657 // The AliasAnalysis base class has some smarts, lets use them.
658 return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
661 /// getModRefBehavior - Return the behavior when calling the given function.
662 /// For use when the call site is not known.
663 AliasAnalysis::ModRefBehavior
664 BasicAliasAnalysis::getModRefBehavior(const Function *F) {
665 // If the function declares it doesn't access memory, we can't do better.
666 if (F->doesNotAccessMemory())
667 return DoesNotAccessMemory;
669 // For intrinsics, we can check the table.
670 if (unsigned iid = F->getIntrinsicID()) {
671 #define GET_INTRINSIC_MODREF_BEHAVIOR
672 #include "llvm/IR/Intrinsics.gen"
673 #undef GET_INTRINSIC_MODREF_BEHAVIOR
676 ModRefBehavior Min = UnknownModRefBehavior;
678 // If the function declares it only reads memory, go with that.
679 if (F->onlyReadsMemory())
680 Min = OnlyReadsMemory;
682 // Otherwise be conservative.
683 return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
686 /// getModRefInfo - Check to see if the specified callsite can clobber the
687 /// specified memory object. Since we only look at local properties of this
688 /// function, we really can't say much about this query. We do, however, use
689 /// simple "address taken" analysis on local objects.
690 AliasAnalysis::ModRefResult
691 BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
692 const Location &Loc) {
693 assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
694 "AliasAnalysis query involving multiple functions!");
696 const Value *Object = GetUnderlyingObject(Loc.Ptr, TD);
698 // If this is a tail call and Loc.Ptr points to a stack location, we know that
699 // the tail call cannot access or modify the local stack.
700 // We cannot exclude byval arguments here; these belong to the caller of
701 // the current function not to the current function, and a tail callee
702 // may reference them.
703 if (isa<AllocaInst>(Object))
704 if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
705 if (CI->isTailCall())
708 // If the pointer is to a locally allocated object that does not escape,
709 // then the call can not mod/ref the pointer unless the call takes the pointer
710 // as an argument, and itself doesn't capture it.
711 if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
712 isNonEscapingLocalObject(Object)) {
713 bool PassedAsArg = false;
715 for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
716 CI != CE; ++CI, ++ArgNo) {
717 // Only look at the no-capture or byval pointer arguments. If this
718 // pointer were passed to arguments that were neither of these, then it
719 // couldn't be no-capture.
720 if (!(*CI)->getType()->isPointerTy() ||
721 (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
724 // If this is a no-capture pointer argument, see if we can tell that it
725 // is impossible to alias the pointer we're checking. If not, we have to
726 // assume that the call could touch the pointer, even though it doesn't
728 if (!isNoAlias(Location(*CI), Location(Object))) {
738 const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfo>();
739 ModRefResult Min = ModRef;
741 // Finally, handle specific knowledge of intrinsics.
742 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
744 switch (II->getIntrinsicID()) {
746 case Intrinsic::memcpy:
747 case Intrinsic::memmove: {
748 uint64_t Len = UnknownSize;
749 if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2)))
750 Len = LenCI->getZExtValue();
751 Value *Dest = II->getArgOperand(0);
752 Value *Src = II->getArgOperand(1);
753 // If it can't overlap the source dest, then it doesn't modref the loc.
754 if (isNoAlias(Location(Dest, Len), Loc)) {
755 if (isNoAlias(Location(Src, Len), Loc))
757 // If it can't overlap the dest, then worst case it reads the loc.
759 } else if (isNoAlias(Location(Src, Len), Loc)) {
760 // If it can't overlap the source, then worst case it mutates the loc.
765 case Intrinsic::memset:
766 // Since memset is 'accesses arguments' only, the AliasAnalysis base class
767 // will handle it for the variable length case.
768 if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
769 uint64_t Len = LenCI->getZExtValue();
770 Value *Dest = II->getArgOperand(0);
771 if (isNoAlias(Location(Dest, Len), Loc))
774 // We know that memset doesn't load anything.
777 case Intrinsic::lifetime_start:
778 case Intrinsic::lifetime_end:
779 case Intrinsic::invariant_start: {
781 cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
782 if (isNoAlias(Location(II->getArgOperand(1),
784 II->getMetadata(LLVMContext::MD_tbaa)),
789 case Intrinsic::invariant_end: {
791 cast<ConstantInt>(II->getArgOperand(1))->getZExtValue();
792 if (isNoAlias(Location(II->getArgOperand(2),
794 II->getMetadata(LLVMContext::MD_tbaa)),
799 case Intrinsic::arm_neon_vld1: {
800 // LLVM's vld1 and vst1 intrinsics currently only support a single
803 TD ? TD->getTypeStoreSize(II->getType()) : UnknownSize;
804 if (isNoAlias(Location(II->getArgOperand(0), Size,
805 II->getMetadata(LLVMContext::MD_tbaa)),
810 case Intrinsic::arm_neon_vst1: {
812 TD ? TD->getTypeStoreSize(II->getArgOperand(1)->getType()) : UnknownSize;
813 if (isNoAlias(Location(II->getArgOperand(0), Size,
814 II->getMetadata(LLVMContext::MD_tbaa)),
821 // We can bound the aliasing properties of memset_pattern16 just as we can
822 // for memcpy/memset. This is particularly important because the
823 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
824 // whenever possible.
825 else if (TLI.has(LibFunc::memset_pattern16) &&
826 CS.getCalledFunction() &&
827 CS.getCalledFunction()->getName() == "memset_pattern16") {
828 const Function *MS = CS.getCalledFunction();
829 FunctionType *MemsetType = MS->getFunctionType();
830 if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 &&
831 isa<PointerType>(MemsetType->getParamType(0)) &&
832 isa<PointerType>(MemsetType->getParamType(1)) &&
833 isa<IntegerType>(MemsetType->getParamType(2))) {
834 uint64_t Len = UnknownSize;
835 if (const ConstantInt *LenCI = dyn_cast<ConstantInt>(CS.getArgument(2)))
836 Len = LenCI->getZExtValue();
837 const Value *Dest = CS.getArgument(0);
838 const Value *Src = CS.getArgument(1);
839 // If it can't overlap the source dest, then it doesn't modref the loc.
840 if (isNoAlias(Location(Dest, Len), Loc)) {
841 // Always reads 16 bytes of the source.
842 if (isNoAlias(Location(Src, 16), Loc))
844 // If it can't overlap the dest, then worst case it reads the loc.
846 // Always reads 16 bytes of the source.
847 } else if (isNoAlias(Location(Src, 16), Loc)) {
848 // If it can't overlap the source, then worst case it mutates the loc.
854 // The AliasAnalysis base class has some smarts, lets use them.
855 return ModRefResult(AliasAnalysis::getModRefInfo(CS, Loc) & Min);
858 static bool areVarIndicesEqual(SmallVectorImpl<VariableGEPIndex> &Indices1,
859 SmallVectorImpl<VariableGEPIndex> &Indices2) {
860 unsigned Size1 = Indices1.size();
861 unsigned Size2 = Indices2.size();
866 for (unsigned I = 0; I != Size1; ++I)
867 if (Indices1[I] != Indices2[I])
873 /// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
874 /// against another pointer. We know that V1 is a GEP, but we don't know
875 /// anything about V2. UnderlyingV1 is GetUnderlyingObject(GEP1, TD),
876 /// UnderlyingV2 is the same for V2.
878 AliasAnalysis::AliasResult
879 BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
880 const MDNode *V1TBAAInfo,
881 const Value *V2, uint64_t V2Size,
882 const MDNode *V2TBAAInfo,
883 const Value *UnderlyingV1,
884 const Value *UnderlyingV2) {
885 int64_t GEP1BaseOffset;
886 SmallVector<VariableGEPIndex, 4> GEP1VariableIndices;
888 // If we have two gep instructions with must-alias or not-alias'ing base
889 // pointers, figure out if the indexes to the GEP tell us anything about the
891 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
892 // Do the base pointers alias?
893 AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, 0,
894 UnderlyingV2, UnknownSize, 0);
896 // Check for geps of non-aliasing underlying pointers where the offsets are
898 if ((BaseAlias == MayAlias) && V1Size == V2Size) {
899 // Do the base pointers alias assuming type and size.
900 AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size,
901 V1TBAAInfo, UnderlyingV2,
903 if (PreciseBaseAlias == NoAlias) {
904 // See if the computed offset from the common pointer tells us about the
905 // relation of the resulting pointer.
906 int64_t GEP2BaseOffset;
907 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
908 const Value *GEP2BasePtr =
909 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD);
910 const Value *GEP1BasePtr =
911 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
912 // DecomposeGEPExpression and GetUnderlyingObject should return the
913 // same result except when DecomposeGEPExpression has no DataLayout.
914 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
916 "DecomposeGEPExpression and GetUnderlyingObject disagree!");
920 if (GEP1BaseOffset == GEP2BaseOffset &&
921 areVarIndicesEqual(GEP1VariableIndices, GEP2VariableIndices))
923 GEP1VariableIndices.clear();
927 // If we get a No or May, then return it immediately, no amount of analysis
928 // will improve this situation.
929 if (BaseAlias != MustAlias) return BaseAlias;
931 // Otherwise, we have a MustAlias. Since the base pointers alias each other
932 // exactly, see if the computed offset from the common pointer tells us
933 // about the relation of the resulting pointer.
934 const Value *GEP1BasePtr =
935 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
937 int64_t GEP2BaseOffset;
938 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
939 const Value *GEP2BasePtr =
940 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD);
942 // DecomposeGEPExpression and GetUnderlyingObject should return the
943 // same result except when DecomposeGEPExpression has no DataLayout.
944 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
946 "DecomposeGEPExpression and GetUnderlyingObject disagree!");
950 // Subtract the GEP2 pointer from the GEP1 pointer to find out their
951 // symbolic difference.
952 GEP1BaseOffset -= GEP2BaseOffset;
953 GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices);
956 // Check to see if these two pointers are related by the getelementptr
957 // instruction. If one pointer is a GEP with a non-zero index of the other
958 // pointer, we know they cannot alias.
960 // If both accesses are unknown size, we can't do anything useful here.
961 if (V1Size == UnknownSize && V2Size == UnknownSize)
964 AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, 0,
965 V2, V2Size, V2TBAAInfo);
967 // If V2 may alias GEP base pointer, conservatively returns MayAlias.
968 // If V2 is known not to alias GEP base pointer, then the two values
969 // cannot alias per GEP semantics: "A pointer value formed from a
970 // getelementptr instruction is associated with the addresses associated
971 // with the first operand of the getelementptr".
974 const Value *GEP1BasePtr =
975 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
977 // DecomposeGEPExpression and GetUnderlyingObject should return the
978 // same result except when DecomposeGEPExpression has no DataLayout.
979 if (GEP1BasePtr != UnderlyingV1) {
981 "DecomposeGEPExpression and GetUnderlyingObject disagree!");
986 // In the two GEP Case, if there is no difference in the offsets of the
987 // computed pointers, the resultant pointers are a must alias. This
988 // hapens when we have two lexically identical GEP's (for example).
990 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
991 // must aliases the GEP, the end result is a must alias also.
992 if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
995 // If there is a constant difference between the pointers, but the difference
996 // is less than the size of the associated memory object, then we know
997 // that the objects are partially overlapping. If the difference is
998 // greater, we know they do not overlap.
999 if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) {
1000 if (GEP1BaseOffset >= 0) {
1001 if (V2Size != UnknownSize) {
1002 if ((uint64_t)GEP1BaseOffset < V2Size)
1003 return PartialAlias;
1007 if (V1Size != UnknownSize) {
1008 if (-(uint64_t)GEP1BaseOffset < V1Size)
1009 return PartialAlias;
1015 // Try to distinguish something like &A[i][1] against &A[42][0].
1016 // Grab the least significant bit set in any of the scales.
1017 if (!GEP1VariableIndices.empty()) {
1018 uint64_t Modulo = 0;
1019 for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i)
1020 Modulo |= (uint64_t)GEP1VariableIndices[i].Scale;
1021 Modulo = Modulo ^ (Modulo & (Modulo - 1));
1023 // We can compute the difference between the two addresses
1024 // mod Modulo. Check whether that difference guarantees that the
1025 // two locations do not alias.
1026 uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1);
1027 if (V1Size != UnknownSize && V2Size != UnknownSize &&
1028 ModOffset >= V2Size && V1Size <= Modulo - ModOffset)
1032 // Statically, we can see that the base objects are the same, but the
1033 // pointers have dynamic offsets which we can't resolve. And none of our
1034 // little tricks above worked.
1036 // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the
1037 // practical effect of this is protecting TBAA in the case of dynamic
1038 // indices into arrays of unions or malloc'd memory.
1039 return PartialAlias;
1042 static AliasAnalysis::AliasResult
1043 MergeAliasResults(AliasAnalysis::AliasResult A, AliasAnalysis::AliasResult B) {
1044 // If the results agree, take it.
1047 // A mix of PartialAlias and MustAlias is PartialAlias.
1048 if ((A == AliasAnalysis::PartialAlias && B == AliasAnalysis::MustAlias) ||
1049 (B == AliasAnalysis::PartialAlias && A == AliasAnalysis::MustAlias))
1050 return AliasAnalysis::PartialAlias;
1051 // Otherwise, we don't know anything.
1052 return AliasAnalysis::MayAlias;
1055 /// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select
1056 /// instruction against another.
1057 AliasAnalysis::AliasResult
1058 BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize,
1059 const MDNode *SITBAAInfo,
1060 const Value *V2, uint64_t V2Size,
1061 const MDNode *V2TBAAInfo) {
1062 // If the values are Selects with the same condition, we can do a more precise
1063 // check: just check for aliases between the values on corresponding arms.
1064 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1065 if (SI->getCondition() == SI2->getCondition()) {
1067 aliasCheck(SI->getTrueValue(), SISize, SITBAAInfo,
1068 SI2->getTrueValue(), V2Size, V2TBAAInfo);
1069 if (Alias == MayAlias)
1071 AliasResult ThisAlias =
1072 aliasCheck(SI->getFalseValue(), SISize, SITBAAInfo,
1073 SI2->getFalseValue(), V2Size, V2TBAAInfo);
1074 return MergeAliasResults(ThisAlias, Alias);
1077 // If both arms of the Select node NoAlias or MustAlias V2, then returns
1078 // NoAlias / MustAlias. Otherwise, returns MayAlias.
1080 aliasCheck(V2, V2Size, V2TBAAInfo, SI->getTrueValue(), SISize, SITBAAInfo);
1081 if (Alias == MayAlias)
1084 AliasResult ThisAlias =
1085 aliasCheck(V2, V2Size, V2TBAAInfo, SI->getFalseValue(), SISize, SITBAAInfo);
1086 return MergeAliasResults(ThisAlias, Alias);
1089 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
1091 AliasAnalysis::AliasResult
1092 BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize,
1093 const MDNode *PNTBAAInfo,
1094 const Value *V2, uint64_t V2Size,
1095 const MDNode *V2TBAAInfo) {
1096 // If the values are PHIs in the same block, we can do a more precise
1097 // as well as efficient check: just check for aliases between the values
1098 // on corresponding edges.
1099 if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1100 if (PN2->getParent() == PN->getParent()) {
1101 LocPair Locs(Location(PN, PNSize, PNTBAAInfo),
1102 Location(V2, V2Size, V2TBAAInfo));
1104 std::swap(Locs.first, Locs.second);
1105 // Analyse the PHIs' inputs under the assumption that the PHIs are
1107 // If the PHIs are May/MustAlias there must be (recursively) an input
1108 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
1109 // there must be an operation on the PHIs within the PHIs' value cycle
1110 // that causes a MayAlias.
1111 // Pretend the phis do not alias.
1112 AliasResult Alias = NoAlias;
1113 assert(AliasCache.count(Locs) &&
1114 "There must exist an entry for the phi node");
1115 AliasResult OrigAliasResult = AliasCache[Locs];
1116 AliasCache[Locs] = NoAlias;
1118 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1119 AliasResult ThisAlias =
1120 aliasCheck(PN->getIncomingValue(i), PNSize, PNTBAAInfo,
1121 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1122 V2Size, V2TBAAInfo);
1123 Alias = MergeAliasResults(ThisAlias, Alias);
1124 if (Alias == MayAlias)
1128 // Reset if speculation failed.
1129 if (Alias != NoAlias)
1130 AliasCache[Locs] = OrigAliasResult;
1135 SmallPtrSet<Value*, 4> UniqueSrc;
1136 SmallVector<Value*, 4> V1Srcs;
1137 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1138 Value *PV1 = PN->getIncomingValue(i);
1139 if (isa<PHINode>(PV1))
1140 // If any of the source itself is a PHI, return MayAlias conservatively
1141 // to avoid compile time explosion. The worst possible case is if both
1142 // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1143 // and 'n' are the number of PHI sources.
1145 if (UniqueSrc.insert(PV1))
1146 V1Srcs.push_back(PV1);
1149 AliasResult Alias = aliasCheck(V2, V2Size, V2TBAAInfo,
1150 V1Srcs[0], PNSize, PNTBAAInfo);
1151 // Early exit if the check of the first PHI source against V2 is MayAlias.
1152 // Other results are not possible.
1153 if (Alias == MayAlias)
1156 // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1157 // NoAlias / MustAlias. Otherwise, returns MayAlias.
1158 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1159 Value *V = V1Srcs[i];
1161 AliasResult ThisAlias = aliasCheck(V2, V2Size, V2TBAAInfo,
1162 V, PNSize, PNTBAAInfo);
1163 Alias = MergeAliasResults(ThisAlias, Alias);
1164 if (Alias == MayAlias)
1171 // aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
1172 // such as array references.
1174 AliasAnalysis::AliasResult
1175 BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
1176 const MDNode *V1TBAAInfo,
1177 const Value *V2, uint64_t V2Size,
1178 const MDNode *V2TBAAInfo) {
1179 // If either of the memory references is empty, it doesn't matter what the
1180 // pointer values are.
1181 if (V1Size == 0 || V2Size == 0)
1184 // Strip off any casts if they exist.
1185 V1 = V1->stripPointerCasts();
1186 V2 = V2->stripPointerCasts();
1188 // Are we checking for alias of the same value?
1189 if (V1 == V2) return MustAlias;
1191 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1192 return NoAlias; // Scalars cannot alias each other
1194 // Figure out what objects these things are pointing to if we can.
1195 const Value *O1 = GetUnderlyingObject(V1, TD);
1196 const Value *O2 = GetUnderlyingObject(V2, TD);
1198 // Null values in the default address space don't point to any object, so they
1199 // don't alias any other pointer.
1200 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1201 if (CPN->getType()->getAddressSpace() == 0)
1203 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1204 if (CPN->getType()->getAddressSpace() == 0)
1208 // If V1/V2 point to two different objects we know that we have no alias.
1209 if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1212 // Constant pointers can't alias with non-const isIdentifiedObject objects.
1213 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1214 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1217 // Function arguments can't alias with things that are known to be
1218 // unambigously identified at the function level.
1219 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1220 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1223 // Most objects can't alias null.
1224 if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
1225 (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
1228 // If one pointer is the result of a call/invoke or load and the other is a
1229 // non-escaping local object within the same function, then we know the
1230 // object couldn't escape to a point where the call could return it.
1232 // Note that if the pointers are in different functions, there are a
1233 // variety of complications. A call with a nocapture argument may still
1234 // temporary store the nocapture argument's value in a temporary memory
1235 // location if that memory location doesn't escape. Or it may pass a
1236 // nocapture value to other functions as long as they don't capture it.
1237 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
1239 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
1242 // If one object is a global variable without address taken, the other one
1243 // is a different object, they will not alias because the global variable
1244 // in question cannot be indirectly accessed.
1245 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(O1))
1246 if (!GV->AddressMaybeTaken())
1249 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(O2))
1250 if (!GV->AddressMaybeTaken())
1254 // If the size of one access is larger than the entire object on the other
1255 // side, then we know such behavior is undefined and can assume no alias.
1257 if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *TD, *TLI)) ||
1258 (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *TD, *TLI)))
1261 // Check the cache before climbing up use-def chains. This also terminates
1262 // otherwise infinitely recursive queries.
1263 LocPair Locs(Location(V1, V1Size, V1TBAAInfo),
1264 Location(V2, V2Size, V2TBAAInfo));
1266 std::swap(Locs.first, Locs.second);
1267 std::pair<AliasCacheTy::iterator, bool> Pair =
1268 AliasCache.insert(std::make_pair(Locs, MayAlias));
1270 return Pair.first->second;
1272 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1273 // GEP can't simplify, we don't even look at the PHI cases.
1274 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
1276 std::swap(V1Size, V2Size);
1278 std::swap(V1TBAAInfo, V2TBAAInfo);
1280 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1281 AliasResult Result = aliasGEP(GV1, V1Size, V1TBAAInfo, V2, V2Size, V2TBAAInfo, O1, O2);
1282 if (Result != MayAlias) return AliasCache[Locs] = Result;
1285 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
1287 std::swap(V1Size, V2Size);
1288 std::swap(V1TBAAInfo, V2TBAAInfo);
1290 if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1291 AliasResult Result = aliasPHI(PN, V1Size, V1TBAAInfo,
1292 V2, V2Size, V2TBAAInfo);
1293 if (Result != MayAlias) return AliasCache[Locs] = Result;
1296 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
1298 std::swap(V1Size, V2Size);
1299 std::swap(V1TBAAInfo, V2TBAAInfo);
1301 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1302 AliasResult Result = aliasSelect(S1, V1Size, V1TBAAInfo,
1303 V2, V2Size, V2TBAAInfo);
1304 if (Result != MayAlias) return AliasCache[Locs] = Result;
1307 // If both pointers are pointing into the same object and one of them
1308 // accesses is accessing the entire object, then the accesses must
1309 // overlap in some way.
1311 if ((V1Size != UnknownSize && isObjectSize(O1, V1Size, *TD, *TLI)) ||
1312 (V2Size != UnknownSize && isObjectSize(O2, V2Size, *TD, *TLI)))
1313 return AliasCache[Locs] = PartialAlias;
1315 AliasResult Result =
1316 AliasAnalysis::alias(Location(V1, V1Size, V1TBAAInfo),
1317 Location(V2, V2Size, V2TBAAInfo));
1318 return AliasCache[Locs] = Result;