Unbreak the build.
[oota-llvm.git] / lib / Analysis / BranchProbabilityInfo.cpp
1 //===-- BranchProbabilityInfo.cpp - Branch Probability Analysis -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Loops should be simplified before this analysis.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Instructions.h"
15 #include "llvm/Analysis/BranchProbabilityInfo.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Support/Debug.h"
18
19 using namespace llvm;
20
21 INITIALIZE_PASS_BEGIN(BranchProbabilityInfo, "branch-prob",
22                       "Branch Probability Analysis", false, true)
23 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
24 INITIALIZE_PASS_END(BranchProbabilityInfo, "branch-prob",
25                     "Branch Probability Analysis", false, true)
26
27 char BranchProbabilityInfo::ID = 0;
28
29 namespace {
30 // Please note that BranchProbabilityAnalysis is not a FunctionPass.
31 // It is created by BranchProbabilityInfo (which is a FunctionPass), which
32 // provides a clear interface. Thanks to that, all heuristics and other
33 // private methods are hidden in the .cpp file.
34 class BranchProbabilityAnalysis {
35
36   typedef std::pair<BasicBlock *, BasicBlock *> Edge;
37
38   DenseMap<Edge, uint32_t> *Weights;
39
40   BranchProbabilityInfo *BP;
41
42   LoopInfo *LI;
43
44
45   // Weights are for internal use only. They are used by heuristics to help to
46   // estimate edges' probability. Example:
47   //
48   // Using "Loop Branch Heuristics" we predict weights of edges for the
49   // block BB2.
50   //         ...
51   //          |
52   //          V
53   //         BB1<-+
54   //          |   |
55   //          |   | (Weight = 128)
56   //          V   |
57   //         BB2--+
58   //          |
59   //          | (Weight = 4)
60   //          V
61   //         BB3
62   //
63   // Probability of the edge BB2->BB1 = 128 / (128 + 4) = 0.9696..
64   // Probability of the edge BB2->BB3 = 4 / (128 + 4) = 0.0303..
65
66   static const uint32_t LBH_TAKEN_WEIGHT = 128;
67   static const uint32_t LBH_NONTAKEN_WEIGHT = 4;
68
69   // Standard weight value. Used when none of the heuristics set weight for
70   // the edge.
71   static const uint32_t NORMAL_WEIGHT = 16;
72
73   // Minimum weight of an edge. Please note, that weight is NEVER 0.
74   static const uint32_t MIN_WEIGHT = 1;
75
76   // Return TRUE if BB leads directly to a Return Instruction.
77   static bool isReturningBlock(BasicBlock *BB) {
78     SmallPtrSet<BasicBlock *, 8> Visited;
79
80     while (true) {
81       TerminatorInst *TI = BB->getTerminator();
82       if (isa<ReturnInst>(TI))
83         return true;
84
85       if (TI->getNumSuccessors() > 1)
86         break;
87
88       // It is unreachable block which we can consider as a return instruction.
89       if (TI->getNumSuccessors() == 0)
90         return true;
91
92       Visited.insert(BB);
93       BB = TI->getSuccessor(0);
94
95       // Stop if cycle is detected.
96       if (Visited.count(BB))
97         return false;
98     }
99
100     return false;
101   }
102
103   // Multiply Edge Weight by two.
104   void incEdgeWeight(BasicBlock *Src, BasicBlock *Dst) {
105     uint32_t Weight = BP->getEdgeWeight(Src, Dst);
106     uint32_t MaxWeight = getMaxWeightFor(Src);
107
108     if (Weight * 2 > MaxWeight)
109       BP->setEdgeWeight(Src, Dst, MaxWeight);
110     else
111       BP->setEdgeWeight(Src, Dst, Weight * 2);
112   }
113
114   // Divide Edge Weight by two.
115   void decEdgeWeight(BasicBlock *Src, BasicBlock *Dst) {
116     uint32_t Weight = BP->getEdgeWeight(Src, Dst);
117
118     assert(Weight > 0);
119     if (Weight / 2 < MIN_WEIGHT)
120       BP->setEdgeWeight(Src, Dst, MIN_WEIGHT);
121     else
122       BP->setEdgeWeight(Src, Dst, Weight / 2);
123   }
124
125
126   uint32_t getMaxWeightFor(BasicBlock *BB) const {
127     return UINT32_MAX / BB->getTerminator()->getNumSuccessors();
128   }
129
130 public:
131   BranchProbabilityAnalysis(DenseMap<Edge, uint32_t> *W,
132                             BranchProbabilityInfo *BP, LoopInfo *LI)
133     : Weights(W), BP(BP), LI(LI) {
134   }
135
136   // Return Heuristics
137   void calcReturnHeuristics(BasicBlock *BB);
138
139   // Pointer Heuristics
140   void calcPointerHeuristics(BasicBlock *BB);
141
142   // Loop Branch Heuristics
143   void calcLoopBranchHeuristics(BasicBlock *BB);
144
145   bool runOnFunction(Function &F);
146 };
147 } // end anonymous namespace
148
149 // Calculate Edge Weights using "Return Heuristics". Predict a successor which
150 // leads directly to Return Instruction will not be taken.
151 void BranchProbabilityAnalysis::calcReturnHeuristics(BasicBlock *BB){
152   if (BB->getTerminator()->getNumSuccessors() == 1)
153     return;
154
155   for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
156     BasicBlock *Succ = *I;
157     if (isReturningBlock(Succ)) {
158       decEdgeWeight(BB, Succ);
159     }
160   }
161 }
162
163 // Calculate Edge Weights using "Pointer Heuristics". Predict a comparsion
164 // between two pointer or pointer and NULL will fail.
165 void BranchProbabilityAnalysis::calcPointerHeuristics(BasicBlock *BB) {
166   BranchInst * BI = dyn_cast<BranchInst>(BB->getTerminator());
167   if (!BI || !BI->isConditional())
168     return;
169
170   Value *Cond = BI->getCondition();
171   ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
172   if (!CI || !CI->isEquality())
173     return;
174
175   Value *LHS = CI->getOperand(0);
176
177   if (!LHS->getType()->isPointerTy())
178     return;
179
180   assert(CI->getOperand(1)->getType()->isPointerTy());
181
182   BasicBlock *Taken = BI->getSuccessor(0);
183   BasicBlock *NonTaken = BI->getSuccessor(1);
184
185   // p != 0   ->   isProb = true
186   // p == 0   ->   isProb = false
187   // p != q   ->   isProb = true
188   // p == q   ->   isProb = false;
189   bool isProb = CI->getPredicate() == ICmpInst::ICMP_NE;
190   if (!isProb)
191     std::swap(Taken, NonTaken);
192
193   incEdgeWeight(BB, Taken);
194   decEdgeWeight(BB, NonTaken);
195 }
196
197 // Calculate Edge Weights using "Loop Branch Heuristics". Predict backedges
198 // as taken, exiting edges as not-taken.
199 void BranchProbabilityAnalysis::calcLoopBranchHeuristics(BasicBlock *BB) {
200   uint32_t numSuccs = BB->getTerminator()->getNumSuccessors();
201
202   Loop *L = LI->getLoopFor(BB);
203   if (!L)
204     return;
205
206   SmallVector<BasicBlock *, 8> BackEdges;
207   SmallVector<BasicBlock *, 8> ExitingEdges;
208
209   for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
210     BasicBlock *Succ = *I;
211     Loop *SuccL = LI->getLoopFor(Succ);
212     if (SuccL != L)
213       ExitingEdges.push_back(Succ);
214     else if (Succ == L->getHeader())
215       BackEdges.push_back(Succ);
216   }
217
218   if (uint32_t numBackEdges = BackEdges.size()) {
219     uint32_t backWeight = LBH_TAKEN_WEIGHT / numBackEdges;
220     if (backWeight < NORMAL_WEIGHT)
221       backWeight = NORMAL_WEIGHT;
222
223     for (SmallVector<BasicBlock *, 8>::iterator EI = BackEdges.begin(),
224          EE = BackEdges.end(); EI != EE; ++EI) {
225       BasicBlock *Back = *EI;
226       BP->setEdgeWeight(BB, Back, backWeight);
227     }
228   }
229
230   uint32_t numExitingEdges = ExitingEdges.size();
231   if (uint32_t numNonExitingEdges = numSuccs - numExitingEdges) {
232     uint32_t exitWeight = LBH_NONTAKEN_WEIGHT / numNonExitingEdges;
233     if (exitWeight < MIN_WEIGHT)
234       exitWeight = MIN_WEIGHT;
235
236     for (SmallVector<BasicBlock *, 8>::iterator EI = ExitingEdges.begin(),
237          EE = ExitingEdges.end(); EI != EE; ++EI) {
238       BasicBlock *Exiting = *EI;
239       BP->setEdgeWeight(BB, Exiting, exitWeight);
240     }
241   }
242 }
243
244 bool BranchProbabilityAnalysis::runOnFunction(Function &F) {
245
246   for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
247     BasicBlock *BB = I++;
248
249     // Only LBH uses setEdgeWeight method.
250     calcLoopBranchHeuristics(BB);
251
252     // PH and RH use only incEdgeWeight and decEwdgeWeight methods to
253     // not efface LBH results.
254     calcPointerHeuristics(BB);
255     calcReturnHeuristics(BB);
256   }
257
258   return false;
259 }
260
261 void BranchProbabilityInfo::getAnalysisUsage(AnalysisUsage &AU) const {
262     AU.addRequired<LoopInfo>();
263     AU.setPreservesAll();
264 }
265
266 bool BranchProbabilityInfo::runOnFunction(Function &F) {
267   LoopInfo &LI = getAnalysis<LoopInfo>();
268   BranchProbabilityAnalysis BPA(&Weights, this, &LI);
269   return BPA.runOnFunction(F);
270 }
271
272 uint32_t BranchProbabilityInfo::getSumForBlock(BasicBlock *BB) const {
273   uint32_t Sum = 0;
274
275   for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
276     BasicBlock *Succ = *I;
277     uint32_t Weight = getEdgeWeight(BB, Succ);
278     uint32_t PrevSum = Sum;
279
280     Sum += Weight;
281     assert(Sum > PrevSum); (void) PrevSum;
282   }
283
284   return Sum;
285 }
286
287 bool BranchProbabilityInfo::isEdgeHot(BasicBlock *Src, BasicBlock *Dst) const {
288   // Hot probability is at least 4/5 = 80%
289   uint32_t Weight = getEdgeWeight(Src, Dst);
290   uint32_t Sum = getSumForBlock(Src);
291
292   // FIXME: Implement BranchProbability::compare then change this code to
293   // compare this BranchProbability against a static "hot" BranchProbability.
294   return (uint64_t)Weight * 5 > (uint64_t)Sum * 4;
295 }
296
297 BasicBlock *BranchProbabilityInfo::getHotSucc(BasicBlock *BB) const {
298   uint32_t Sum = 0;
299   uint32_t MaxWeight = 0;
300   BasicBlock *MaxSucc = 0;
301
302   for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
303     BasicBlock *Succ = *I;
304     uint32_t Weight = getEdgeWeight(BB, Succ);
305     uint32_t PrevSum = Sum;
306
307     Sum += Weight;
308     assert(Sum > PrevSum); (void) PrevSum;
309
310     if (Weight > MaxWeight) {
311       MaxWeight = Weight;
312       MaxSucc = Succ;
313     }
314   }
315
316   // FIXME: Use BranchProbability::compare.
317   if ((uint64_t)MaxWeight * 5 > (uint64_t)Sum * 4)
318     return MaxSucc;
319
320   return 0;
321 }
322
323 // Return edge's weight. If can't find it, return DEFAULT_WEIGHT value.
324 uint32_t
325 BranchProbabilityInfo::getEdgeWeight(BasicBlock *Src, BasicBlock *Dst) const {
326   Edge E(Src, Dst);
327   DenseMap<Edge, uint32_t>::const_iterator I = Weights.find(E);
328
329   if (I != Weights.end())
330     return I->second;
331
332   return DEFAULT_WEIGHT;
333 }
334
335 void BranchProbabilityInfo::setEdgeWeight(BasicBlock *Src, BasicBlock *Dst,
336                                      uint32_t Weight) {
337   Weights[std::make_pair(Src, Dst)] = Weight;
338   DEBUG(dbgs() << "set edge " << Src->getNameStr() << " -> "
339                << Dst->getNameStr() << " weight to " << Weight
340                << (isEdgeHot(Src, Dst) ? " [is HOT now]\n" : "\n"));
341 }
342
343
344 BranchProbability BranchProbabilityInfo::
345 getEdgeProbability(BasicBlock *Src, BasicBlock *Dst) const {
346
347   uint32_t N = getEdgeWeight(Src, Dst);
348   uint32_t D = getSumForBlock(Src);
349
350   return BranchProbability(N, D);
351 }
352
353 raw_ostream &
354 BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS, BasicBlock *Src,
355                                             BasicBlock *Dst) const {
356
357   const BranchProbability Prob = getEdgeProbability(Src, Dst);
358   OS << "edge " << Src->getNameStr() << " -> " << Dst->getNameStr()
359      << " probability is " << Prob
360      << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n");
361
362   return OS;
363 }