1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements routines for folding instructions into simpler forms
11 // that do not require creating new instructions. This does constant folding
12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
14 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been
15 // simplified: This is usually true and assuming it simplifies the logic (if
16 // they have not been simplified then results are correct but maybe suboptimal).
18 //===----------------------------------------------------------------------===//
20 #define DEBUG_TYPE "instsimplify"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/Dominators.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/Analysis/MemoryBuiltins.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/GlobalAlias.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/Support/ConstantRange.h"
32 #include "llvm/Support/GetElementPtrTypeIterator.h"
33 #include "llvm/Support/PatternMatch.h"
34 #include "llvm/Support/ValueHandle.h"
36 using namespace llvm::PatternMatch;
38 enum { RecursionLimit = 3 };
40 STATISTIC(NumExpand, "Number of expansions");
41 STATISTIC(NumFactor , "Number of factorizations");
42 STATISTIC(NumReassoc, "Number of reassociations");
46 const TargetLibraryInfo *TLI;
47 const DominatorTree *DT;
49 Query(const DataLayout *td, const TargetLibraryInfo *tli,
50 const DominatorTree *dt) : TD(td), TLI(tli), DT(dt) {}
53 static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned);
54 static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &,
56 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &,
58 static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned);
59 static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned);
60 static Value *SimplifyTruncInst(Value *, Type *, const Query &, unsigned);
62 /// getFalse - For a boolean type, or a vector of boolean type, return false, or
63 /// a vector with every element false, as appropriate for the type.
64 static Constant *getFalse(Type *Ty) {
65 assert(Ty->getScalarType()->isIntegerTy(1) &&
66 "Expected i1 type or a vector of i1!");
67 return Constant::getNullValue(Ty);
70 /// getTrue - For a boolean type, or a vector of boolean type, return true, or
71 /// a vector with every element true, as appropriate for the type.
72 static Constant *getTrue(Type *Ty) {
73 assert(Ty->getScalarType()->isIntegerTy(1) &&
74 "Expected i1 type or a vector of i1!");
75 return Constant::getAllOnesValue(Ty);
78 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
79 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
81 CmpInst *Cmp = dyn_cast<CmpInst>(V);
84 CmpInst::Predicate CPred = Cmp->getPredicate();
85 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
86 if (CPred == Pred && CLHS == LHS && CRHS == RHS)
88 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
92 /// ValueDominatesPHI - Does the given value dominate the specified phi node?
93 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
94 Instruction *I = dyn_cast<Instruction>(V);
96 // Arguments and constants dominate all instructions.
99 // If we are processing instructions (and/or basic blocks) that have not been
100 // fully added to a function, the parent nodes may still be null. Simply
101 // return the conservative answer in these cases.
102 if (!I->getParent() || !P->getParent() || !I->getParent()->getParent())
105 // If we have a DominatorTree then do a precise test.
107 if (!DT->isReachableFromEntry(P->getParent()))
109 if (!DT->isReachableFromEntry(I->getParent()))
111 return DT->dominates(I, P);
114 // Otherwise, if the instruction is in the entry block, and is not an invoke,
115 // then it obviously dominates all phi nodes.
116 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
123 /// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
124 /// it into "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is
125 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
126 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
127 /// Returns the simplified value, or null if no simplification was performed.
128 static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
129 unsigned OpcToExpand, const Query &Q,
130 unsigned MaxRecurse) {
131 Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
132 // Recursion is always used, so bail out at once if we already hit the limit.
136 // Check whether the expression has the form "(A op' B) op C".
137 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
138 if (Op0->getOpcode() == OpcodeToExpand) {
139 // It does! Try turning it into "(A op C) op' (B op C)".
140 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
141 // Do "A op C" and "B op C" both simplify?
142 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
143 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
144 // They do! Return "L op' R" if it simplifies or is already available.
145 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
146 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
147 && L == B && R == A)) {
151 // Otherwise return "L op' R" if it simplifies.
152 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
159 // Check whether the expression has the form "A op (B op' C)".
160 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
161 if (Op1->getOpcode() == OpcodeToExpand) {
162 // It does! Try turning it into "(A op B) op' (A op C)".
163 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
164 // Do "A op B" and "A op C" both simplify?
165 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
166 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
167 // They do! Return "L op' R" if it simplifies or is already available.
168 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
169 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
170 && L == C && R == B)) {
174 // Otherwise return "L op' R" if it simplifies.
175 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
185 /// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term
186 /// using the operation OpCodeToExtract. For example, when Opcode is Add and
187 /// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)".
188 /// Returns the simplified value, or null if no simplification was performed.
189 static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS,
190 unsigned OpcToExtract, const Query &Q,
191 unsigned MaxRecurse) {
192 Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract;
193 // Recursion is always used, so bail out at once if we already hit the limit.
197 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
198 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
200 if (!Op0 || Op0->getOpcode() != OpcodeToExtract ||
201 !Op1 || Op1->getOpcode() != OpcodeToExtract)
204 // The expression has the form "(A op' B) op (C op' D)".
205 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
206 Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
208 // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)".
209 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
210 // commutative case, "(A op' B) op (C op' A)"?
211 if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) {
212 Value *DD = A == C ? D : C;
213 // Form "A op' (B op DD)" if it simplifies completely.
214 // Does "B op DD" simplify?
215 if (Value *V = SimplifyBinOp(Opcode, B, DD, Q, MaxRecurse)) {
216 // It does! Return "A op' V" if it simplifies or is already available.
217 // If V equals B then "A op' V" is just the LHS. If V equals DD then
218 // "A op' V" is just the RHS.
219 if (V == B || V == DD) {
221 return V == B ? LHS : RHS;
223 // Otherwise return "A op' V" if it simplifies.
224 if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, Q, MaxRecurse)) {
231 // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)".
232 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
233 // commutative case, "(A op' B) op (B op' D)"?
234 if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) {
235 Value *CC = B == D ? C : D;
236 // Form "(A op CC) op' B" if it simplifies completely..
237 // Does "A op CC" simplify?
238 if (Value *V = SimplifyBinOp(Opcode, A, CC, Q, MaxRecurse)) {
239 // It does! Return "V op' B" if it simplifies or is already available.
240 // If V equals A then "V op' B" is just the LHS. If V equals CC then
241 // "V op' B" is just the RHS.
242 if (V == A || V == CC) {
244 return V == A ? LHS : RHS;
246 // Otherwise return "V op' B" if it simplifies.
247 if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, Q, MaxRecurse)) {
257 /// SimplifyAssociativeBinOp - Generic simplifications for associative binary
258 /// operations. Returns the simpler value, or null if none was found.
259 static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
260 const Query &Q, unsigned MaxRecurse) {
261 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
262 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
264 // Recursion is always used, so bail out at once if we already hit the limit.
268 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
269 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
271 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
272 if (Op0 && Op0->getOpcode() == Opcode) {
273 Value *A = Op0->getOperand(0);
274 Value *B = Op0->getOperand(1);
277 // Does "B op C" simplify?
278 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
279 // It does! Return "A op V" if it simplifies or is already available.
280 // If V equals B then "A op V" is just the LHS.
281 if (V == B) return LHS;
282 // Otherwise return "A op V" if it simplifies.
283 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
290 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
291 if (Op1 && Op1->getOpcode() == Opcode) {
293 Value *B = Op1->getOperand(0);
294 Value *C = Op1->getOperand(1);
296 // Does "A op B" simplify?
297 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
298 // It does! Return "V op C" if it simplifies or is already available.
299 // If V equals B then "V op C" is just the RHS.
300 if (V == B) return RHS;
301 // Otherwise return "V op C" if it simplifies.
302 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
309 // The remaining transforms require commutativity as well as associativity.
310 if (!Instruction::isCommutative(Opcode))
313 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
314 if (Op0 && Op0->getOpcode() == Opcode) {
315 Value *A = Op0->getOperand(0);
316 Value *B = Op0->getOperand(1);
319 // Does "C op A" simplify?
320 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
321 // It does! Return "V op B" if it simplifies or is already available.
322 // If V equals A then "V op B" is just the LHS.
323 if (V == A) return LHS;
324 // Otherwise return "V op B" if it simplifies.
325 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
332 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
333 if (Op1 && Op1->getOpcode() == Opcode) {
335 Value *B = Op1->getOperand(0);
336 Value *C = Op1->getOperand(1);
338 // Does "C op A" simplify?
339 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
340 // It does! Return "B op V" if it simplifies or is already available.
341 // If V equals C then "B op V" is just the RHS.
342 if (V == C) return RHS;
343 // Otherwise return "B op V" if it simplifies.
344 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
354 /// ThreadBinOpOverSelect - In the case of a binary operation with a select
355 /// instruction as an operand, try to simplify the binop by seeing whether
356 /// evaluating it on both branches of the select results in the same value.
357 /// Returns the common value if so, otherwise returns null.
358 static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
359 const Query &Q, unsigned MaxRecurse) {
360 // Recursion is always used, so bail out at once if we already hit the limit.
365 if (isa<SelectInst>(LHS)) {
366 SI = cast<SelectInst>(LHS);
368 assert(isa<SelectInst>(RHS) && "No select instruction operand!");
369 SI = cast<SelectInst>(RHS);
372 // Evaluate the BinOp on the true and false branches of the select.
376 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
377 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
379 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
380 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
383 // If they simplified to the same value, then return the common value.
384 // If they both failed to simplify then return null.
388 // If one branch simplified to undef, return the other one.
389 if (TV && isa<UndefValue>(TV))
391 if (FV && isa<UndefValue>(FV))
394 // If applying the operation did not change the true and false select values,
395 // then the result of the binop is the select itself.
396 if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
399 // If one branch simplified and the other did not, and the simplified
400 // value is equal to the unsimplified one, return the simplified value.
401 // For example, select (cond, X, X & Z) & Z -> X & Z.
402 if ((FV && !TV) || (TV && !FV)) {
403 // Check that the simplified value has the form "X op Y" where "op" is the
404 // same as the original operation.
405 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
406 if (Simplified && Simplified->getOpcode() == Opcode) {
407 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
408 // We already know that "op" is the same as for the simplified value. See
409 // if the operands match too. If so, return the simplified value.
410 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
411 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
412 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
413 if (Simplified->getOperand(0) == UnsimplifiedLHS &&
414 Simplified->getOperand(1) == UnsimplifiedRHS)
416 if (Simplified->isCommutative() &&
417 Simplified->getOperand(1) == UnsimplifiedLHS &&
418 Simplified->getOperand(0) == UnsimplifiedRHS)
426 /// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
427 /// try to simplify the comparison by seeing whether both branches of the select
428 /// result in the same value. Returns the common value if so, otherwise returns
430 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
431 Value *RHS, const Query &Q,
432 unsigned MaxRecurse) {
433 // Recursion is always used, so bail out at once if we already hit the limit.
437 // Make sure the select is on the LHS.
438 if (!isa<SelectInst>(LHS)) {
440 Pred = CmpInst::getSwappedPredicate(Pred);
442 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
443 SelectInst *SI = cast<SelectInst>(LHS);
444 Value *Cond = SI->getCondition();
445 Value *TV = SI->getTrueValue();
446 Value *FV = SI->getFalseValue();
448 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
449 // Does "cmp TV, RHS" simplify?
450 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
452 // It not only simplified, it simplified to the select condition. Replace
454 TCmp = getTrue(Cond->getType());
456 // It didn't simplify. However if "cmp TV, RHS" is equal to the select
457 // condition then we can replace it with 'true'. Otherwise give up.
458 if (!isSameCompare(Cond, Pred, TV, RHS))
460 TCmp = getTrue(Cond->getType());
463 // Does "cmp FV, RHS" simplify?
464 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
466 // It not only simplified, it simplified to the select condition. Replace
468 FCmp = getFalse(Cond->getType());
470 // It didn't simplify. However if "cmp FV, RHS" is equal to the select
471 // condition then we can replace it with 'false'. Otherwise give up.
472 if (!isSameCompare(Cond, Pred, FV, RHS))
474 FCmp = getFalse(Cond->getType());
477 // If both sides simplified to the same value, then use it as the result of
478 // the original comparison.
482 // The remaining cases only make sense if the select condition has the same
483 // type as the result of the comparison, so bail out if this is not so.
484 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
486 // If the false value simplified to false, then the result of the compare
487 // is equal to "Cond && TCmp". This also catches the case when the false
488 // value simplified to false and the true value to true, returning "Cond".
489 if (match(FCmp, m_Zero()))
490 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
492 // If the true value simplified to true, then the result of the compare
493 // is equal to "Cond || FCmp".
494 if (match(TCmp, m_One()))
495 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
497 // Finally, if the false value simplified to true and the true value to
498 // false, then the result of the compare is equal to "!Cond".
499 if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
501 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
508 /// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
509 /// is a PHI instruction, try to simplify the binop by seeing whether evaluating
510 /// it on the incoming phi values yields the same result for every value. If so
511 /// returns the common value, otherwise returns null.
512 static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
513 const Query &Q, unsigned MaxRecurse) {
514 // Recursion is always used, so bail out at once if we already hit the limit.
519 if (isa<PHINode>(LHS)) {
520 PI = cast<PHINode>(LHS);
521 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
522 if (!ValueDominatesPHI(RHS, PI, Q.DT))
525 assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
526 PI = cast<PHINode>(RHS);
527 // Bail out if LHS and the phi may be mutually interdependent due to a loop.
528 if (!ValueDominatesPHI(LHS, PI, Q.DT))
532 // Evaluate the BinOp on the incoming phi values.
533 Value *CommonValue = 0;
534 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
535 Value *Incoming = PI->getIncomingValue(i);
536 // If the incoming value is the phi node itself, it can safely be skipped.
537 if (Incoming == PI) continue;
538 Value *V = PI == LHS ?
539 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
540 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
541 // If the operation failed to simplify, or simplified to a different value
542 // to previously, then give up.
543 if (!V || (CommonValue && V != CommonValue))
551 /// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
552 /// try to simplify the comparison by seeing whether comparing with all of the
553 /// incoming phi values yields the same result every time. If so returns the
554 /// common result, otherwise returns null.
555 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
556 const Query &Q, unsigned MaxRecurse) {
557 // Recursion is always used, so bail out at once if we already hit the limit.
561 // Make sure the phi is on the LHS.
562 if (!isa<PHINode>(LHS)) {
564 Pred = CmpInst::getSwappedPredicate(Pred);
566 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
567 PHINode *PI = cast<PHINode>(LHS);
569 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
570 if (!ValueDominatesPHI(RHS, PI, Q.DT))
573 // Evaluate the BinOp on the incoming phi values.
574 Value *CommonValue = 0;
575 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
576 Value *Incoming = PI->getIncomingValue(i);
577 // If the incoming value is the phi node itself, it can safely be skipped.
578 if (Incoming == PI) continue;
579 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
580 // If the operation failed to simplify, or simplified to a different value
581 // to previously, then give up.
582 if (!V || (CommonValue && V != CommonValue))
590 /// SimplifyAddInst - Given operands for an Add, see if we can
591 /// fold the result. If not, this returns null.
592 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
593 const Query &Q, unsigned MaxRecurse) {
594 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
595 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
596 Constant *Ops[] = { CLHS, CRHS };
597 return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(), Ops,
601 // Canonicalize the constant to the RHS.
605 // X + undef -> undef
606 if (match(Op1, m_Undef()))
610 if (match(Op1, m_Zero()))
617 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
618 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
621 // X + ~X -> -1 since ~X = -X-1
622 if (match(Op0, m_Not(m_Specific(Op1))) ||
623 match(Op1, m_Not(m_Specific(Op0))))
624 return Constant::getAllOnesValue(Op0->getType());
627 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
628 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
631 // Try some generic simplifications for associative operations.
632 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
636 // Mul distributes over Add. Try some generic simplifications based on this.
637 if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul,
641 // Threading Add over selects and phi nodes is pointless, so don't bother.
642 // Threading over the select in "A + select(cond, B, C)" means evaluating
643 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
644 // only if B and C are equal. If B and C are equal then (since we assume
645 // that operands have already been simplified) "select(cond, B, C)" should
646 // have been simplified to the common value of B and C already. Analysing
647 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly
648 // for threading over phi nodes.
653 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
654 const DataLayout *TD, const TargetLibraryInfo *TLI,
655 const DominatorTree *DT) {
656 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
660 /// \brief Compute the base pointer and cumulative constant offsets for V.
662 /// This strips all constant offsets off of V, leaving it the base pointer, and
663 /// accumulates the total constant offset applied in the returned constant. It
664 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
665 /// no constant offsets applied.
667 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
668 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
670 static Constant *stripAndComputeConstantOffsets(const DataLayout *TD,
672 assert(V->getType()->getScalarType()->isPointerTy());
674 // Without DataLayout, just be conservative for now. Theoretically, more could
675 // be done in this case.
677 return ConstantInt::get(IntegerType::get(V->getContext(), 64), 0);
679 unsigned IntPtrWidth = TD->getPointerSizeInBits();
680 APInt Offset = APInt::getNullValue(IntPtrWidth);
682 // Even though we don't look through PHI nodes, we could be called on an
683 // instruction in an unreachable block, which may be on a cycle.
684 SmallPtrSet<Value *, 4> Visited;
687 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
688 if (!GEP->isInBounds() || !GEP->accumulateConstantOffset(*TD, Offset))
690 V = GEP->getPointerOperand();
691 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
692 V = cast<Operator>(V)->getOperand(0);
693 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
694 if (GA->mayBeOverridden())
696 V = GA->getAliasee();
700 assert(V->getType()->getScalarType()->isPointerTy() &&
701 "Unexpected operand type!");
702 } while (Visited.insert(V));
704 Type *IntPtrTy = TD->getIntPtrType(V->getContext());
705 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
706 if (V->getType()->isVectorTy())
707 return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
712 /// \brief Compute the constant difference between two pointer values.
713 /// If the difference is not a constant, returns zero.
714 static Constant *computePointerDifference(const DataLayout *TD,
715 Value *LHS, Value *RHS) {
716 Constant *LHSOffset = stripAndComputeConstantOffsets(TD, LHS);
717 Constant *RHSOffset = stripAndComputeConstantOffsets(TD, RHS);
719 // If LHS and RHS are not related via constant offsets to the same base
720 // value, there is nothing we can do here.
724 // Otherwise, the difference of LHS - RHS can be computed as:
726 // = (LHSOffset + Base) - (RHSOffset + Base)
727 // = LHSOffset - RHSOffset
728 return ConstantExpr::getSub(LHSOffset, RHSOffset);
731 /// SimplifySubInst - Given operands for a Sub, see if we can
732 /// fold the result. If not, this returns null.
733 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
734 const Query &Q, unsigned MaxRecurse) {
735 if (Constant *CLHS = dyn_cast<Constant>(Op0))
736 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
737 Constant *Ops[] = { CLHS, CRHS };
738 return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
742 // X - undef -> undef
743 // undef - X -> undef
744 if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
745 return UndefValue::get(Op0->getType());
748 if (match(Op1, m_Zero()))
753 return Constant::getNullValue(Op0->getType());
758 if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>())) ||
759 match(Op0, m_Shl(m_Specific(Op1), m_One())))
762 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
763 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
764 Value *Y = 0, *Z = Op1;
765 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
766 // See if "V === Y - Z" simplifies.
767 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
768 // It does! Now see if "X + V" simplifies.
769 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
770 // It does, we successfully reassociated!
774 // See if "V === X - Z" simplifies.
775 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
776 // It does! Now see if "Y + V" simplifies.
777 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
778 // It does, we successfully reassociated!
784 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
785 // For example, X - (X + 1) -> -1
787 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
788 // See if "V === X - Y" simplifies.
789 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
790 // It does! Now see if "V - Z" simplifies.
791 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
792 // It does, we successfully reassociated!
796 // See if "V === X - Z" simplifies.
797 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
798 // It does! Now see if "V - Y" simplifies.
799 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
800 // It does, we successfully reassociated!
806 // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
807 // For example, X - (X - Y) -> Y.
809 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
810 // See if "V === Z - X" simplifies.
811 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
812 // It does! Now see if "V + Y" simplifies.
813 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
814 // It does, we successfully reassociated!
819 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
820 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
821 match(Op1, m_Trunc(m_Value(Y))))
822 if (X->getType() == Y->getType())
823 // See if "V === X - Y" simplifies.
824 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
825 // It does! Now see if "trunc V" simplifies.
826 if (Value *W = SimplifyTruncInst(V, Op0->getType(), Q, MaxRecurse-1))
827 // It does, return the simplified "trunc V".
830 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
831 if (match(Op0, m_PtrToInt(m_Value(X))) &&
832 match(Op1, m_PtrToInt(m_Value(Y))))
833 if (Constant *Result = computePointerDifference(Q.TD, X, Y))
834 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
836 // Mul distributes over Sub. Try some generic simplifications based on this.
837 if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul,
842 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
843 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
846 // Threading Sub over selects and phi nodes is pointless, so don't bother.
847 // Threading over the select in "A - select(cond, B, C)" means evaluating
848 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
849 // only if B and C are equal. If B and C are equal then (since we assume
850 // that operands have already been simplified) "select(cond, B, C)" should
851 // have been simplified to the common value of B and C already. Analysing
852 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly
853 // for threading over phi nodes.
858 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
859 const DataLayout *TD, const TargetLibraryInfo *TLI,
860 const DominatorTree *DT) {
861 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
865 /// Given operands for an FAdd, see if we can fold the result. If not, this
867 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
868 const Query &Q, unsigned MaxRecurse) {
869 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
870 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
871 Constant *Ops[] = { CLHS, CRHS };
872 return ConstantFoldInstOperands(Instruction::FAdd, CLHS->getType(),
876 // Canonicalize the constant to the RHS.
881 if (match(Op1, m_NegZero()))
884 // fadd X, 0 ==> X, when we know X is not -0
885 if (match(Op1, m_Zero()) &&
886 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0)))
889 // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
890 // where nnan and ninf have to occur at least once somewhere in this
893 if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0))))
895 else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1))))
898 Instruction *FSub = cast<Instruction>(SubOp);
899 if ((FMF.noNaNs() || FSub->hasNoNaNs()) &&
900 (FMF.noInfs() || FSub->hasNoInfs()))
901 return Constant::getNullValue(Op0->getType());
907 /// Given operands for an FSub, see if we can fold the result. If not, this
909 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
910 const Query &Q, unsigned MaxRecurse) {
911 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
912 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
913 Constant *Ops[] = { CLHS, CRHS };
914 return ConstantFoldInstOperands(Instruction::FSub, CLHS->getType(),
920 if (match(Op1, m_Zero()))
923 // fsub X, -0 ==> X, when we know X is not -0
924 if (match(Op1, m_NegZero()) &&
925 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0)))
928 // fsub 0, (fsub -0.0, X) ==> X
930 if (match(Op0, m_AnyZero())) {
931 if (match(Op1, m_FSub(m_NegZero(), m_Value(X))))
933 if (FMF.noSignedZeros() && match(Op1, m_FSub(m_AnyZero(), m_Value(X))))
937 // fsub nnan ninf x, x ==> 0.0
938 if (FMF.noNaNs() && FMF.noInfs() && Op0 == Op1)
939 return Constant::getNullValue(Op0->getType());
944 /// Given the operands for an FMul, see if we can fold the result
945 static Value *SimplifyFMulInst(Value *Op0, Value *Op1,
948 unsigned MaxRecurse) {
949 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
950 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
951 Constant *Ops[] = { CLHS, CRHS };
952 return ConstantFoldInstOperands(Instruction::FMul, CLHS->getType(),
956 // Canonicalize the constant to the RHS.
961 if (match(Op1, m_FPOne()))
964 // fmul nnan nsz X, 0 ==> 0
965 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero()))
971 /// SimplifyMulInst - Given operands for a Mul, see if we can
972 /// fold the result. If not, this returns null.
973 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
974 unsigned MaxRecurse) {
975 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
976 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
977 Constant *Ops[] = { CLHS, CRHS };
978 return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
982 // Canonicalize the constant to the RHS.
987 if (match(Op1, m_Undef()))
988 return Constant::getNullValue(Op0->getType());
991 if (match(Op1, m_Zero()))
995 if (match(Op1, m_One()))
998 // (X / Y) * Y -> X if the division is exact.
1000 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
1001 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y)
1005 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
1006 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
1009 // Try some generic simplifications for associative operations.
1010 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
1014 // Mul distributes over Add. Try some generic simplifications based on this.
1015 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
1019 // If the operation is with the result of a select instruction, check whether
1020 // operating on either branch of the select always yields the same value.
1021 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1022 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
1026 // If the operation is with the result of a phi instruction, check whether
1027 // operating on all incoming values of the phi always yields the same value.
1028 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1029 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
1036 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1037 const DataLayout *TD, const TargetLibraryInfo *TLI,
1038 const DominatorTree *DT) {
1039 return ::SimplifyFAddInst(Op0, Op1, FMF, Query (TD, TLI, DT), RecursionLimit);
1042 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1043 const DataLayout *TD, const TargetLibraryInfo *TLI,
1044 const DominatorTree *DT) {
1045 return ::SimplifyFSubInst(Op0, Op1, FMF, Query (TD, TLI, DT), RecursionLimit);
1048 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1,
1050 const DataLayout *TD,
1051 const TargetLibraryInfo *TLI,
1052 const DominatorTree *DT) {
1053 return ::SimplifyFMulInst(Op0, Op1, FMF, Query (TD, TLI, DT), RecursionLimit);
1056 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout *TD,
1057 const TargetLibraryInfo *TLI,
1058 const DominatorTree *DT) {
1059 return ::SimplifyMulInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1062 /// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
1063 /// fold the result. If not, this returns null.
1064 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1065 const Query &Q, unsigned MaxRecurse) {
1066 if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1067 if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1068 Constant *Ops[] = { C0, C1 };
1069 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
1073 bool isSigned = Opcode == Instruction::SDiv;
1075 // X / undef -> undef
1076 if (match(Op1, m_Undef()))
1080 if (match(Op0, m_Undef()))
1081 return Constant::getNullValue(Op0->getType());
1083 // 0 / X -> 0, we don't need to preserve faults!
1084 if (match(Op0, m_Zero()))
1088 if (match(Op1, m_One()))
1091 if (Op0->getType()->isIntegerTy(1))
1092 // It can't be division by zero, hence it must be division by one.
1097 return ConstantInt::get(Op0->getType(), 1);
1099 // (X * Y) / Y -> X if the multiplication does not overflow.
1100 Value *X = 0, *Y = 0;
1101 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
1102 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
1103 OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
1104 // If the Mul knows it does not overflow, then we are good to go.
1105 if ((isSigned && Mul->hasNoSignedWrap()) ||
1106 (!isSigned && Mul->hasNoUnsignedWrap()))
1108 // If X has the form X = A / Y then X * Y cannot overflow.
1109 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
1110 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
1114 // (X rem Y) / Y -> 0
1115 if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1116 (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1117 return Constant::getNullValue(Op0->getType());
1119 // If the operation is with the result of a select instruction, check whether
1120 // operating on either branch of the select always yields the same value.
1121 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1122 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1125 // If the operation is with the result of a phi instruction, check whether
1126 // operating on all incoming values of the phi always yields the same value.
1127 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1128 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1134 /// SimplifySDivInst - Given operands for an SDiv, see if we can
1135 /// fold the result. If not, this returns null.
1136 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q,
1137 unsigned MaxRecurse) {
1138 if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse))
1144 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout *TD,
1145 const TargetLibraryInfo *TLI,
1146 const DominatorTree *DT) {
1147 return ::SimplifySDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1150 /// SimplifyUDivInst - Given operands for a UDiv, see if we can
1151 /// fold the result. If not, this returns null.
1152 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q,
1153 unsigned MaxRecurse) {
1154 if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse))
1160 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout *TD,
1161 const TargetLibraryInfo *TLI,
1162 const DominatorTree *DT) {
1163 return ::SimplifyUDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1166 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const Query &Q,
1168 // undef / X -> undef (the undef could be a snan).
1169 if (match(Op0, m_Undef()))
1172 // X / undef -> undef
1173 if (match(Op1, m_Undef()))
1179 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const DataLayout *TD,
1180 const TargetLibraryInfo *TLI,
1181 const DominatorTree *DT) {
1182 return ::SimplifyFDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1185 /// SimplifyRem - Given operands for an SRem or URem, see if we can
1186 /// fold the result. If not, this returns null.
1187 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1188 const Query &Q, unsigned MaxRecurse) {
1189 if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1190 if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1191 Constant *Ops[] = { C0, C1 };
1192 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
1196 // X % undef -> undef
1197 if (match(Op1, m_Undef()))
1201 if (match(Op0, m_Undef()))
1202 return Constant::getNullValue(Op0->getType());
1204 // 0 % X -> 0, we don't need to preserve faults!
1205 if (match(Op0, m_Zero()))
1208 // X % 0 -> undef, we don't need to preserve faults!
1209 if (match(Op1, m_Zero()))
1210 return UndefValue::get(Op0->getType());
1213 if (match(Op1, m_One()))
1214 return Constant::getNullValue(Op0->getType());
1216 if (Op0->getType()->isIntegerTy(1))
1217 // It can't be remainder by zero, hence it must be remainder by one.
1218 return Constant::getNullValue(Op0->getType());
1222 return Constant::getNullValue(Op0->getType());
1224 // If the operation is with the result of a select instruction, check whether
1225 // operating on either branch of the select always yields the same value.
1226 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1227 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1230 // If the operation is with the result of a phi instruction, check whether
1231 // operating on all incoming values of the phi always yields the same value.
1232 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1233 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1239 /// SimplifySRemInst - Given operands for an SRem, see if we can
1240 /// fold the result. If not, this returns null.
1241 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q,
1242 unsigned MaxRecurse) {
1243 if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse))
1249 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout *TD,
1250 const TargetLibraryInfo *TLI,
1251 const DominatorTree *DT) {
1252 return ::SimplifySRemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1255 /// SimplifyURemInst - Given operands for a URem, see if we can
1256 /// fold the result. If not, this returns null.
1257 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q,
1258 unsigned MaxRecurse) {
1259 if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse))
1265 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout *TD,
1266 const TargetLibraryInfo *TLI,
1267 const DominatorTree *DT) {
1268 return ::SimplifyURemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1271 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const Query &,
1273 // undef % X -> undef (the undef could be a snan).
1274 if (match(Op0, m_Undef()))
1277 // X % undef -> undef
1278 if (match(Op1, m_Undef()))
1284 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const DataLayout *TD,
1285 const TargetLibraryInfo *TLI,
1286 const DominatorTree *DT) {
1287 return ::SimplifyFRemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1290 /// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
1291 /// fold the result. If not, this returns null.
1292 static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
1293 const Query &Q, unsigned MaxRecurse) {
1294 if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1295 if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1296 Constant *Ops[] = { C0, C1 };
1297 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
1301 // 0 shift by X -> 0
1302 if (match(Op0, m_Zero()))
1305 // X shift by 0 -> X
1306 if (match(Op1, m_Zero()))
1309 // X shift by undef -> undef because it may shift by the bitwidth.
1310 if (match(Op1, m_Undef()))
1313 // Shifting by the bitwidth or more is undefined.
1314 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1))
1315 if (CI->getValue().getLimitedValue() >=
1316 Op0->getType()->getScalarSizeInBits())
1317 return UndefValue::get(Op0->getType());
1319 // If the operation is with the result of a select instruction, check whether
1320 // operating on either branch of the select always yields the same value.
1321 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1322 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1325 // If the operation is with the result of a phi instruction, check whether
1326 // operating on all incoming values of the phi always yields the same value.
1327 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1328 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1334 /// SimplifyShlInst - Given operands for an Shl, see if we can
1335 /// fold the result. If not, this returns null.
1336 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1337 const Query &Q, unsigned MaxRecurse) {
1338 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
1342 if (match(Op0, m_Undef()))
1343 return Constant::getNullValue(Op0->getType());
1345 // (X >> A) << A -> X
1347 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1352 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1353 const DataLayout *TD, const TargetLibraryInfo *TLI,
1354 const DominatorTree *DT) {
1355 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
1359 /// SimplifyLShrInst - Given operands for an LShr, see if we can
1360 /// fold the result. If not, this returns null.
1361 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1362 const Query &Q, unsigned MaxRecurse) {
1363 if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, Q, MaxRecurse))
1368 return Constant::getNullValue(Op0->getType());
1371 if (match(Op0, m_Undef()))
1372 return Constant::getNullValue(Op0->getType());
1374 // (X << A) >> A -> X
1376 if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1377 cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap())
1383 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1384 const DataLayout *TD,
1385 const TargetLibraryInfo *TLI,
1386 const DominatorTree *DT) {
1387 return ::SimplifyLShrInst(Op0, Op1, isExact, Query (TD, TLI, DT),
1391 /// SimplifyAShrInst - Given operands for an AShr, see if we can
1392 /// fold the result. If not, this returns null.
1393 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1394 const Query &Q, unsigned MaxRecurse) {
1395 if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, Q, MaxRecurse))
1400 return Constant::getNullValue(Op0->getType());
1402 // all ones >>a X -> all ones
1403 if (match(Op0, m_AllOnes()))
1406 // undef >>a X -> all ones
1407 if (match(Op0, m_Undef()))
1408 return Constant::getAllOnesValue(Op0->getType());
1410 // (X << A) >> A -> X
1412 if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1413 cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
1419 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1420 const DataLayout *TD,
1421 const TargetLibraryInfo *TLI,
1422 const DominatorTree *DT) {
1423 return ::SimplifyAShrInst(Op0, Op1, isExact, Query (TD, TLI, DT),
1427 /// SimplifyAndInst - Given operands for an And, see if we can
1428 /// fold the result. If not, this returns null.
1429 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
1430 unsigned MaxRecurse) {
1431 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1432 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1433 Constant *Ops[] = { CLHS, CRHS };
1434 return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
1438 // Canonicalize the constant to the RHS.
1439 std::swap(Op0, Op1);
1443 if (match(Op1, m_Undef()))
1444 return Constant::getNullValue(Op0->getType());
1451 if (match(Op1, m_Zero()))
1455 if (match(Op1, m_AllOnes()))
1458 // A & ~A = ~A & A = 0
1459 if (match(Op0, m_Not(m_Specific(Op1))) ||
1460 match(Op1, m_Not(m_Specific(Op0))))
1461 return Constant::getNullValue(Op0->getType());
1464 Value *A = 0, *B = 0;
1465 if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1466 (A == Op1 || B == Op1))
1470 if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
1471 (A == Op0 || B == Op0))
1474 // A & (-A) = A if A is a power of two or zero.
1475 if (match(Op0, m_Neg(m_Specific(Op1))) ||
1476 match(Op1, m_Neg(m_Specific(Op0)))) {
1477 if (isKnownToBeAPowerOfTwo(Op0, /*OrZero*/true))
1479 if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/true))
1483 // Try some generic simplifications for associative operations.
1484 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
1488 // And distributes over Or. Try some generic simplifications based on this.
1489 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1493 // And distributes over Xor. Try some generic simplifications based on this.
1494 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1498 // Or distributes over And. Try some generic simplifications based on this.
1499 if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1503 // If the operation is with the result of a select instruction, check whether
1504 // operating on either branch of the select always yields the same value.
1505 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1506 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
1510 // If the operation is with the result of a phi instruction, check whether
1511 // operating on all incoming values of the phi always yields the same value.
1512 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1513 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
1520 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout *TD,
1521 const TargetLibraryInfo *TLI,
1522 const DominatorTree *DT) {
1523 return ::SimplifyAndInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1526 /// SimplifyOrInst - Given operands for an Or, see if we can
1527 /// fold the result. If not, this returns null.
1528 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
1529 unsigned MaxRecurse) {
1530 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1531 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1532 Constant *Ops[] = { CLHS, CRHS };
1533 return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
1537 // Canonicalize the constant to the RHS.
1538 std::swap(Op0, Op1);
1542 if (match(Op1, m_Undef()))
1543 return Constant::getAllOnesValue(Op0->getType());
1550 if (match(Op1, m_Zero()))
1554 if (match(Op1, m_AllOnes()))
1557 // A | ~A = ~A | A = -1
1558 if (match(Op0, m_Not(m_Specific(Op1))) ||
1559 match(Op1, m_Not(m_Specific(Op0))))
1560 return Constant::getAllOnesValue(Op0->getType());
1563 Value *A = 0, *B = 0;
1564 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1565 (A == Op1 || B == Op1))
1569 if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1570 (A == Op0 || B == Op0))
1573 // ~(A & ?) | A = -1
1574 if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1575 (A == Op1 || B == Op1))
1576 return Constant::getAllOnesValue(Op1->getType());
1578 // A | ~(A & ?) = -1
1579 if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1580 (A == Op0 || B == Op0))
1581 return Constant::getAllOnesValue(Op0->getType());
1583 // Try some generic simplifications for associative operations.
1584 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
1588 // Or distributes over And. Try some generic simplifications based on this.
1589 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
1593 // And distributes over Or. Try some generic simplifications based on this.
1594 if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And,
1598 // If the operation is with the result of a select instruction, check whether
1599 // operating on either branch of the select always yields the same value.
1600 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1601 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
1605 // If the operation is with the result of a phi instruction, check whether
1606 // operating on all incoming values of the phi always yields the same value.
1607 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1608 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
1614 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout *TD,
1615 const TargetLibraryInfo *TLI,
1616 const DominatorTree *DT) {
1617 return ::SimplifyOrInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1620 /// SimplifyXorInst - Given operands for a Xor, see if we can
1621 /// fold the result. If not, this returns null.
1622 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
1623 unsigned MaxRecurse) {
1624 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1625 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1626 Constant *Ops[] = { CLHS, CRHS };
1627 return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
1631 // Canonicalize the constant to the RHS.
1632 std::swap(Op0, Op1);
1635 // A ^ undef -> undef
1636 if (match(Op1, m_Undef()))
1640 if (match(Op1, m_Zero()))
1645 return Constant::getNullValue(Op0->getType());
1647 // A ^ ~A = ~A ^ A = -1
1648 if (match(Op0, m_Not(m_Specific(Op1))) ||
1649 match(Op1, m_Not(m_Specific(Op0))))
1650 return Constant::getAllOnesValue(Op0->getType());
1652 // Try some generic simplifications for associative operations.
1653 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
1657 // And distributes over Xor. Try some generic simplifications based on this.
1658 if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And,
1662 // Threading Xor over selects and phi nodes is pointless, so don't bother.
1663 // Threading over the select in "A ^ select(cond, B, C)" means evaluating
1664 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
1665 // only if B and C are equal. If B and C are equal then (since we assume
1666 // that operands have already been simplified) "select(cond, B, C)" should
1667 // have been simplified to the common value of B and C already. Analysing
1668 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly
1669 // for threading over phi nodes.
1674 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout *TD,
1675 const TargetLibraryInfo *TLI,
1676 const DominatorTree *DT) {
1677 return ::SimplifyXorInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1680 static Type *GetCompareTy(Value *Op) {
1681 return CmpInst::makeCmpResultType(Op->getType());
1684 /// ExtractEquivalentCondition - Rummage around inside V looking for something
1685 /// equivalent to the comparison "LHS Pred RHS". Return such a value if found,
1686 /// otherwise return null. Helper function for analyzing max/min idioms.
1687 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
1688 Value *LHS, Value *RHS) {
1689 SelectInst *SI = dyn_cast<SelectInst>(V);
1692 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
1695 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
1696 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
1698 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
1699 LHS == CmpRHS && RHS == CmpLHS)
1704 // A significant optimization not implemented here is assuming that alloca
1705 // addresses are not equal to incoming argument values. They don't *alias*,
1706 // as we say, but that doesn't mean they aren't equal, so we take a
1707 // conservative approach.
1709 // This is inspired in part by C++11 5.10p1:
1710 // "Two pointers of the same type compare equal if and only if they are both
1711 // null, both point to the same function, or both represent the same
1714 // This is pretty permissive.
1716 // It's also partly due to C11 6.5.9p6:
1717 // "Two pointers compare equal if and only if both are null pointers, both are
1718 // pointers to the same object (including a pointer to an object and a
1719 // subobject at its beginning) or function, both are pointers to one past the
1720 // last element of the same array object, or one is a pointer to one past the
1721 // end of one array object and the other is a pointer to the start of a
1722 // different array object that happens to immediately follow the first array
1723 // object in the address space.)
1725 // C11's version is more restrictive, however there's no reason why an argument
1726 // couldn't be a one-past-the-end value for a stack object in the caller and be
1727 // equal to the beginning of a stack object in the callee.
1729 // If the C and C++ standards are ever made sufficiently restrictive in this
1730 // area, it may be possible to update LLVM's semantics accordingly and reinstate
1731 // this optimization.
1732 static Constant *computePointerICmp(const DataLayout *TD,
1733 const TargetLibraryInfo *TLI,
1734 CmpInst::Predicate Pred,
1735 Value *LHS, Value *RHS) {
1736 // First, skip past any trivial no-ops.
1737 LHS = LHS->stripPointerCasts();
1738 RHS = RHS->stripPointerCasts();
1740 // A non-null pointer is not equal to a null pointer.
1741 if (llvm::isKnownNonNull(LHS) && isa<ConstantPointerNull>(RHS) &&
1742 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
1743 return ConstantInt::get(GetCompareTy(LHS),
1744 !CmpInst::isTrueWhenEqual(Pred));
1746 // We can only fold certain predicates on pointer comparisons.
1751 // Equality comaprisons are easy to fold.
1752 case CmpInst::ICMP_EQ:
1753 case CmpInst::ICMP_NE:
1756 // We can only handle unsigned relational comparisons because 'inbounds' on
1757 // a GEP only protects against unsigned wrapping.
1758 case CmpInst::ICMP_UGT:
1759 case CmpInst::ICMP_UGE:
1760 case CmpInst::ICMP_ULT:
1761 case CmpInst::ICMP_ULE:
1762 // However, we have to switch them to their signed variants to handle
1763 // negative indices from the base pointer.
1764 Pred = ICmpInst::getSignedPredicate(Pred);
1768 // Strip off any constant offsets so that we can reason about them.
1769 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
1770 // here and compare base addresses like AliasAnalysis does, however there are
1771 // numerous hazards. AliasAnalysis and its utilities rely on special rules
1772 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
1773 // doesn't need to guarantee pointer inequality when it says NoAlias.
1774 Constant *LHSOffset = stripAndComputeConstantOffsets(TD, LHS);
1775 Constant *RHSOffset = stripAndComputeConstantOffsets(TD, RHS);
1777 // If LHS and RHS are related via constant offsets to the same base
1778 // value, we can replace it with an icmp which just compares the offsets.
1780 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
1782 // Various optimizations for (in)equality comparisons.
1783 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1784 // Different non-empty allocations that exist at the same time have
1785 // different addresses (if the program can tell). Global variables always
1786 // exist, so they always exist during the lifetime of each other and all
1787 // allocas. Two different allocas usually have different addresses...
1789 // However, if there's an @llvm.stackrestore dynamically in between two
1790 // allocas, they may have the same address. It's tempting to reduce the
1791 // scope of the problem by only looking at *static* allocas here. That would
1792 // cover the majority of allocas while significantly reducing the likelihood
1793 // of having an @llvm.stackrestore pop up in the middle. However, it's not
1794 // actually impossible for an @llvm.stackrestore to pop up in the middle of
1795 // an entry block. Also, if we have a block that's not attached to a
1796 // function, we can't tell if it's "static" under the current definition.
1797 // Theoretically, this problem could be fixed by creating a new kind of
1798 // instruction kind specifically for static allocas. Such a new instruction
1799 // could be required to be at the top of the entry block, thus preventing it
1800 // from being subject to a @llvm.stackrestore. Instcombine could even
1801 // convert regular allocas into these special allocas. It'd be nifty.
1802 // However, until then, this problem remains open.
1804 // So, we'll assume that two non-empty allocas have different addresses
1807 // With all that, if the offsets are within the bounds of their allocations
1808 // (and not one-past-the-end! so we can't use inbounds!), and their
1809 // allocations aren't the same, the pointers are not equal.
1811 // Note that it's not necessary to check for LHS being a global variable
1812 // address, due to canonicalization and constant folding.
1813 if (isa<AllocaInst>(LHS) &&
1814 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
1815 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
1816 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
1817 uint64_t LHSSize, RHSSize;
1818 if (LHSOffsetCI && RHSOffsetCI &&
1819 getObjectSize(LHS, LHSSize, TD, TLI) &&
1820 getObjectSize(RHS, RHSSize, TD, TLI)) {
1821 const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
1822 const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
1823 if (!LHSOffsetValue.isNegative() &&
1824 !RHSOffsetValue.isNegative() &&
1825 LHSOffsetValue.ult(LHSSize) &&
1826 RHSOffsetValue.ult(RHSSize)) {
1827 return ConstantInt::get(GetCompareTy(LHS),
1828 !CmpInst::isTrueWhenEqual(Pred));
1832 // Repeat the above check but this time without depending on DataLayout
1833 // or being able to compute a precise size.
1834 if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
1835 !cast<PointerType>(RHS->getType())->isEmptyTy() &&
1836 LHSOffset->isNullValue() &&
1837 RHSOffset->isNullValue())
1838 return ConstantInt::get(GetCompareTy(LHS),
1839 !CmpInst::isTrueWhenEqual(Pred));
1847 /// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
1848 /// fold the result. If not, this returns null.
1849 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
1850 const Query &Q, unsigned MaxRecurse) {
1851 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
1852 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
1854 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
1855 if (Constant *CRHS = dyn_cast<Constant>(RHS))
1856 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.TD, Q.TLI);
1858 // If we have a constant, make sure it is on the RHS.
1859 std::swap(LHS, RHS);
1860 Pred = CmpInst::getSwappedPredicate(Pred);
1863 Type *ITy = GetCompareTy(LHS); // The return type.
1864 Type *OpTy = LHS->getType(); // The operand type.
1866 // icmp X, X -> true/false
1867 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false
1868 // because X could be 0.
1869 if (LHS == RHS || isa<UndefValue>(RHS))
1870 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
1872 // Special case logic when the operands have i1 type.
1873 if (OpTy->getScalarType()->isIntegerTy(1)) {
1876 case ICmpInst::ICMP_EQ:
1878 if (match(RHS, m_One()))
1881 case ICmpInst::ICMP_NE:
1883 if (match(RHS, m_Zero()))
1886 case ICmpInst::ICMP_UGT:
1888 if (match(RHS, m_Zero()))
1891 case ICmpInst::ICMP_UGE:
1893 if (match(RHS, m_One()))
1896 case ICmpInst::ICMP_SLT:
1898 if (match(RHS, m_Zero()))
1901 case ICmpInst::ICMP_SLE:
1903 if (match(RHS, m_One()))
1909 // If we are comparing with zero then try hard since this is a common case.
1910 if (match(RHS, m_Zero())) {
1911 bool LHSKnownNonNegative, LHSKnownNegative;
1913 default: llvm_unreachable("Unknown ICmp predicate!");
1914 case ICmpInst::ICMP_ULT:
1915 return getFalse(ITy);
1916 case ICmpInst::ICMP_UGE:
1917 return getTrue(ITy);
1918 case ICmpInst::ICMP_EQ:
1919 case ICmpInst::ICMP_ULE:
1920 if (isKnownNonZero(LHS, Q.TD))
1921 return getFalse(ITy);
1923 case ICmpInst::ICMP_NE:
1924 case ICmpInst::ICMP_UGT:
1925 if (isKnownNonZero(LHS, Q.TD))
1926 return getTrue(ITy);
1928 case ICmpInst::ICMP_SLT:
1929 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
1930 if (LHSKnownNegative)
1931 return getTrue(ITy);
1932 if (LHSKnownNonNegative)
1933 return getFalse(ITy);
1935 case ICmpInst::ICMP_SLE:
1936 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
1937 if (LHSKnownNegative)
1938 return getTrue(ITy);
1939 if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.TD))
1940 return getFalse(ITy);
1942 case ICmpInst::ICMP_SGE:
1943 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
1944 if (LHSKnownNegative)
1945 return getFalse(ITy);
1946 if (LHSKnownNonNegative)
1947 return getTrue(ITy);
1949 case ICmpInst::ICMP_SGT:
1950 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
1951 if (LHSKnownNegative)
1952 return getFalse(ITy);
1953 if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.TD))
1954 return getTrue(ITy);
1959 // See if we are doing a comparison with a constant integer.
1960 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1961 // Rule out tautological comparisons (eg., ult 0 or uge 0).
1962 ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue());
1963 if (RHS_CR.isEmptySet())
1964 return ConstantInt::getFalse(CI->getContext());
1965 if (RHS_CR.isFullSet())
1966 return ConstantInt::getTrue(CI->getContext());
1968 // Many binary operators with constant RHS have easy to compute constant
1969 // range. Use them to check whether the comparison is a tautology.
1970 uint32_t Width = CI->getBitWidth();
1971 APInt Lower = APInt(Width, 0);
1972 APInt Upper = APInt(Width, 0);
1974 if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) {
1975 // 'urem x, CI2' produces [0, CI2).
1976 Upper = CI2->getValue();
1977 } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) {
1978 // 'srem x, CI2' produces (-|CI2|, |CI2|).
1979 Upper = CI2->getValue().abs();
1980 Lower = (-Upper) + 1;
1981 } else if (match(LHS, m_UDiv(m_ConstantInt(CI2), m_Value()))) {
1982 // 'udiv CI2, x' produces [0, CI2].
1983 Upper = CI2->getValue() + 1;
1984 } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) {
1985 // 'udiv x, CI2' produces [0, UINT_MAX / CI2].
1986 APInt NegOne = APInt::getAllOnesValue(Width);
1988 Upper = NegOne.udiv(CI2->getValue()) + 1;
1989 } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) {
1990 // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2].
1991 APInt IntMin = APInt::getSignedMinValue(Width);
1992 APInt IntMax = APInt::getSignedMaxValue(Width);
1993 APInt Val = CI2->getValue().abs();
1994 if (!Val.isMinValue()) {
1995 Lower = IntMin.sdiv(Val);
1996 Upper = IntMax.sdiv(Val) + 1;
1998 } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) {
1999 // 'lshr x, CI2' produces [0, UINT_MAX >> CI2].
2000 APInt NegOne = APInt::getAllOnesValue(Width);
2001 if (CI2->getValue().ult(Width))
2002 Upper = NegOne.lshr(CI2->getValue()) + 1;
2003 } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) {
2004 // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2].
2005 APInt IntMin = APInt::getSignedMinValue(Width);
2006 APInt IntMax = APInt::getSignedMaxValue(Width);
2007 if (CI2->getValue().ult(Width)) {
2008 Lower = IntMin.ashr(CI2->getValue());
2009 Upper = IntMax.ashr(CI2->getValue()) + 1;
2011 } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) {
2012 // 'or x, CI2' produces [CI2, UINT_MAX].
2013 Lower = CI2->getValue();
2014 } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) {
2015 // 'and x, CI2' produces [0, CI2].
2016 Upper = CI2->getValue() + 1;
2018 if (Lower != Upper) {
2019 ConstantRange LHS_CR = ConstantRange(Lower, Upper);
2020 if (RHS_CR.contains(LHS_CR))
2021 return ConstantInt::getTrue(RHS->getContext());
2022 if (RHS_CR.inverse().contains(LHS_CR))
2023 return ConstantInt::getFalse(RHS->getContext());
2027 // Compare of cast, for example (zext X) != 0 -> X != 0
2028 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
2029 Instruction *LI = cast<CastInst>(LHS);
2030 Value *SrcOp = LI->getOperand(0);
2031 Type *SrcTy = SrcOp->getType();
2032 Type *DstTy = LI->getType();
2034 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
2035 // if the integer type is the same size as the pointer type.
2036 if (MaxRecurse && Q.TD && isa<PtrToIntInst>(LI) &&
2037 Q.TD->getPointerSizeInBits() == DstTy->getPrimitiveSizeInBits()) {
2038 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
2039 // Transfer the cast to the constant.
2040 if (Value *V = SimplifyICmpInst(Pred, SrcOp,
2041 ConstantExpr::getIntToPtr(RHSC, SrcTy),
2044 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
2045 if (RI->getOperand(0)->getType() == SrcTy)
2046 // Compare without the cast.
2047 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
2053 if (isa<ZExtInst>(LHS)) {
2054 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
2056 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
2057 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
2058 // Compare X and Y. Note that signed predicates become unsigned.
2059 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
2060 SrcOp, RI->getOperand(0), Q,
2064 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
2065 // too. If not, then try to deduce the result of the comparison.
2066 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
2067 // Compute the constant that would happen if we truncated to SrcTy then
2068 // reextended to DstTy.
2069 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
2070 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
2072 // If the re-extended constant didn't change then this is effectively
2073 // also a case of comparing two zero-extended values.
2074 if (RExt == CI && MaxRecurse)
2075 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
2076 SrcOp, Trunc, Q, MaxRecurse-1))
2079 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
2080 // there. Use this to work out the result of the comparison.
2083 default: llvm_unreachable("Unknown ICmp predicate!");
2085 case ICmpInst::ICMP_EQ:
2086 case ICmpInst::ICMP_UGT:
2087 case ICmpInst::ICMP_UGE:
2088 return ConstantInt::getFalse(CI->getContext());
2090 case ICmpInst::ICMP_NE:
2091 case ICmpInst::ICMP_ULT:
2092 case ICmpInst::ICMP_ULE:
2093 return ConstantInt::getTrue(CI->getContext());
2095 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS
2096 // is non-negative then LHS <s RHS.
2097 case ICmpInst::ICMP_SGT:
2098 case ICmpInst::ICMP_SGE:
2099 return CI->getValue().isNegative() ?
2100 ConstantInt::getTrue(CI->getContext()) :
2101 ConstantInt::getFalse(CI->getContext());
2103 case ICmpInst::ICMP_SLT:
2104 case ICmpInst::ICMP_SLE:
2105 return CI->getValue().isNegative() ?
2106 ConstantInt::getFalse(CI->getContext()) :
2107 ConstantInt::getTrue(CI->getContext());
2113 if (isa<SExtInst>(LHS)) {
2114 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
2116 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
2117 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
2118 // Compare X and Y. Note that the predicate does not change.
2119 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
2123 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
2124 // too. If not, then try to deduce the result of the comparison.
2125 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
2126 // Compute the constant that would happen if we truncated to SrcTy then
2127 // reextended to DstTy.
2128 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
2129 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
2131 // If the re-extended constant didn't change then this is effectively
2132 // also a case of comparing two sign-extended values.
2133 if (RExt == CI && MaxRecurse)
2134 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
2137 // Otherwise the upper bits of LHS are all equal, while RHS has varying
2138 // bits there. Use this to work out the result of the comparison.
2141 default: llvm_unreachable("Unknown ICmp predicate!");
2142 case ICmpInst::ICMP_EQ:
2143 return ConstantInt::getFalse(CI->getContext());
2144 case ICmpInst::ICMP_NE:
2145 return ConstantInt::getTrue(CI->getContext());
2147 // If RHS is non-negative then LHS <s RHS. If RHS is negative then
2149 case ICmpInst::ICMP_SGT:
2150 case ICmpInst::ICMP_SGE:
2151 return CI->getValue().isNegative() ?
2152 ConstantInt::getTrue(CI->getContext()) :
2153 ConstantInt::getFalse(CI->getContext());
2154 case ICmpInst::ICMP_SLT:
2155 case ICmpInst::ICMP_SLE:
2156 return CI->getValue().isNegative() ?
2157 ConstantInt::getFalse(CI->getContext()) :
2158 ConstantInt::getTrue(CI->getContext());
2160 // If LHS is non-negative then LHS <u RHS. If LHS is negative then
2162 case ICmpInst::ICMP_UGT:
2163 case ICmpInst::ICMP_UGE:
2164 // Comparison is true iff the LHS <s 0.
2166 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
2167 Constant::getNullValue(SrcTy),
2171 case ICmpInst::ICMP_ULT:
2172 case ICmpInst::ICMP_ULE:
2173 // Comparison is true iff the LHS >=s 0.
2175 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
2176 Constant::getNullValue(SrcTy),
2186 // Special logic for binary operators.
2187 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
2188 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
2189 if (MaxRecurse && (LBO || RBO)) {
2190 // Analyze the case when either LHS or RHS is an add instruction.
2191 Value *A = 0, *B = 0, *C = 0, *D = 0;
2192 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2193 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
2194 if (LBO && LBO->getOpcode() == Instruction::Add) {
2195 A = LBO->getOperand(0); B = LBO->getOperand(1);
2196 NoLHSWrapProblem = ICmpInst::isEquality(Pred) ||
2197 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
2198 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
2200 if (RBO && RBO->getOpcode() == Instruction::Add) {
2201 C = RBO->getOperand(0); D = RBO->getOperand(1);
2202 NoRHSWrapProblem = ICmpInst::isEquality(Pred) ||
2203 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
2204 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
2207 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2208 if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2209 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2210 Constant::getNullValue(RHS->getType()),
2214 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2215 if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2216 if (Value *V = SimplifyICmpInst(Pred,
2217 Constant::getNullValue(LHS->getType()),
2218 C == LHS ? D : C, Q, MaxRecurse-1))
2221 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2222 if (A && C && (A == C || A == D || B == C || B == D) &&
2223 NoLHSWrapProblem && NoRHSWrapProblem) {
2224 // Determine Y and Z in the form icmp (X+Y), (X+Z).
2227 // C + B == C + D -> B == D
2230 } else if (A == D) {
2231 // D + B == C + D -> B == C
2234 } else if (B == C) {
2235 // A + C == C + D -> A == D
2240 // A + D == C + D -> A == C
2244 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1))
2249 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2250 bool KnownNonNegative, KnownNegative;
2254 case ICmpInst::ICMP_SGT:
2255 case ICmpInst::ICMP_SGE:
2256 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.TD);
2257 if (!KnownNonNegative)
2260 case ICmpInst::ICMP_EQ:
2261 case ICmpInst::ICMP_UGT:
2262 case ICmpInst::ICMP_UGE:
2263 return getFalse(ITy);
2264 case ICmpInst::ICMP_SLT:
2265 case ICmpInst::ICMP_SLE:
2266 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.TD);
2267 if (!KnownNonNegative)
2270 case ICmpInst::ICMP_NE:
2271 case ICmpInst::ICMP_ULT:
2272 case ICmpInst::ICMP_ULE:
2273 return getTrue(ITy);
2276 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
2277 bool KnownNonNegative, KnownNegative;
2281 case ICmpInst::ICMP_SGT:
2282 case ICmpInst::ICMP_SGE:
2283 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.TD);
2284 if (!KnownNonNegative)
2287 case ICmpInst::ICMP_NE:
2288 case ICmpInst::ICMP_UGT:
2289 case ICmpInst::ICMP_UGE:
2290 return getTrue(ITy);
2291 case ICmpInst::ICMP_SLT:
2292 case ICmpInst::ICMP_SLE:
2293 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.TD);
2294 if (!KnownNonNegative)
2297 case ICmpInst::ICMP_EQ:
2298 case ICmpInst::ICMP_ULT:
2299 case ICmpInst::ICMP_ULE:
2300 return getFalse(ITy);
2305 if (LBO && match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
2306 // icmp pred (X /u Y), X
2307 if (Pred == ICmpInst::ICMP_UGT)
2308 return getFalse(ITy);
2309 if (Pred == ICmpInst::ICMP_ULE)
2310 return getTrue(ITy);
2313 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
2314 LBO->getOperand(1) == RBO->getOperand(1)) {
2315 switch (LBO->getOpcode()) {
2317 case Instruction::UDiv:
2318 case Instruction::LShr:
2319 if (ICmpInst::isSigned(Pred))
2322 case Instruction::SDiv:
2323 case Instruction::AShr:
2324 if (!LBO->isExact() || !RBO->isExact())
2326 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2327 RBO->getOperand(0), Q, MaxRecurse-1))
2330 case Instruction::Shl: {
2331 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
2332 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
2335 if (!NSW && ICmpInst::isSigned(Pred))
2337 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2338 RBO->getOperand(0), Q, MaxRecurse-1))
2345 // Simplify comparisons involving max/min.
2347 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
2348 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
2350 // Signed variants on "max(a,b)>=a -> true".
2351 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2352 if (A != RHS) std::swap(A, B); // smax(A, B) pred A.
2353 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2354 // We analyze this as smax(A, B) pred A.
2356 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
2357 (A == LHS || B == LHS)) {
2358 if (A != LHS) std::swap(A, B); // A pred smax(A, B).
2359 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2360 // We analyze this as smax(A, B) swapped-pred A.
2361 P = CmpInst::getSwappedPredicate(Pred);
2362 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2363 (A == RHS || B == RHS)) {
2364 if (A != RHS) std::swap(A, B); // smin(A, B) pred A.
2365 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2366 // We analyze this as smax(-A, -B) swapped-pred -A.
2367 // Note that we do not need to actually form -A or -B thanks to EqP.
2368 P = CmpInst::getSwappedPredicate(Pred);
2369 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
2370 (A == LHS || B == LHS)) {
2371 if (A != LHS) std::swap(A, B); // A pred smin(A, B).
2372 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2373 // We analyze this as smax(-A, -B) pred -A.
2374 // Note that we do not need to actually form -A or -B thanks to EqP.
2377 if (P != CmpInst::BAD_ICMP_PREDICATE) {
2378 // Cases correspond to "max(A, B) p A".
2382 case CmpInst::ICMP_EQ:
2383 case CmpInst::ICMP_SLE:
2384 // Equivalent to "A EqP B". This may be the same as the condition tested
2385 // in the max/min; if so, we can just return that.
2386 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2388 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2390 // Otherwise, see if "A EqP B" simplifies.
2392 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
2395 case CmpInst::ICMP_NE:
2396 case CmpInst::ICMP_SGT: {
2397 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2398 // Equivalent to "A InvEqP B". This may be the same as the condition
2399 // tested in the max/min; if so, we can just return that.
2400 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2402 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2404 // Otherwise, see if "A InvEqP B" simplifies.
2406 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
2410 case CmpInst::ICMP_SGE:
2412 return getTrue(ITy);
2413 case CmpInst::ICMP_SLT:
2415 return getFalse(ITy);
2419 // Unsigned variants on "max(a,b)>=a -> true".
2420 P = CmpInst::BAD_ICMP_PREDICATE;
2421 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2422 if (A != RHS) std::swap(A, B); // umax(A, B) pred A.
2423 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2424 // We analyze this as umax(A, B) pred A.
2426 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
2427 (A == LHS || B == LHS)) {
2428 if (A != LHS) std::swap(A, B); // A pred umax(A, B).
2429 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2430 // We analyze this as umax(A, B) swapped-pred A.
2431 P = CmpInst::getSwappedPredicate(Pred);
2432 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2433 (A == RHS || B == RHS)) {
2434 if (A != RHS) std::swap(A, B); // umin(A, B) pred A.
2435 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2436 // We analyze this as umax(-A, -B) swapped-pred -A.
2437 // Note that we do not need to actually form -A or -B thanks to EqP.
2438 P = CmpInst::getSwappedPredicate(Pred);
2439 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
2440 (A == LHS || B == LHS)) {
2441 if (A != LHS) std::swap(A, B); // A pred umin(A, B).
2442 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2443 // We analyze this as umax(-A, -B) pred -A.
2444 // Note that we do not need to actually form -A or -B thanks to EqP.
2447 if (P != CmpInst::BAD_ICMP_PREDICATE) {
2448 // Cases correspond to "max(A, B) p A".
2452 case CmpInst::ICMP_EQ:
2453 case CmpInst::ICMP_ULE:
2454 // Equivalent to "A EqP B". This may be the same as the condition tested
2455 // in the max/min; if so, we can just return that.
2456 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2458 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2460 // Otherwise, see if "A EqP B" simplifies.
2462 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
2465 case CmpInst::ICMP_NE:
2466 case CmpInst::ICMP_UGT: {
2467 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2468 // Equivalent to "A InvEqP B". This may be the same as the condition
2469 // tested in the max/min; if so, we can just return that.
2470 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2472 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2474 // Otherwise, see if "A InvEqP B" simplifies.
2476 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
2480 case CmpInst::ICMP_UGE:
2482 return getTrue(ITy);
2483 case CmpInst::ICMP_ULT:
2485 return getFalse(ITy);
2489 // Variants on "max(x,y) >= min(x,z)".
2491 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
2492 match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
2493 (A == C || A == D || B == C || B == D)) {
2494 // max(x, ?) pred min(x, ?).
2495 if (Pred == CmpInst::ICMP_SGE)
2497 return getTrue(ITy);
2498 if (Pred == CmpInst::ICMP_SLT)
2500 return getFalse(ITy);
2501 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2502 match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
2503 (A == C || A == D || B == C || B == D)) {
2504 // min(x, ?) pred max(x, ?).
2505 if (Pred == CmpInst::ICMP_SLE)
2507 return getTrue(ITy);
2508 if (Pred == CmpInst::ICMP_SGT)
2510 return getFalse(ITy);
2511 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
2512 match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
2513 (A == C || A == D || B == C || B == D)) {
2514 // max(x, ?) pred min(x, ?).
2515 if (Pred == CmpInst::ICMP_UGE)
2517 return getTrue(ITy);
2518 if (Pred == CmpInst::ICMP_ULT)
2520 return getFalse(ITy);
2521 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2522 match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
2523 (A == C || A == D || B == C || B == D)) {
2524 // min(x, ?) pred max(x, ?).
2525 if (Pred == CmpInst::ICMP_ULE)
2527 return getTrue(ITy);
2528 if (Pred == CmpInst::ICMP_UGT)
2530 return getFalse(ITy);
2533 // Simplify comparisons of related pointers using a powerful, recursive
2534 // GEP-walk when we have target data available..
2535 if (LHS->getType()->isPointerTy())
2536 if (Constant *C = computePointerICmp(Q.TD, Q.TLI, Pred, LHS, RHS))
2539 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
2540 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
2541 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
2542 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
2543 (ICmpInst::isEquality(Pred) ||
2544 (GLHS->isInBounds() && GRHS->isInBounds() &&
2545 Pred == ICmpInst::getSignedPredicate(Pred)))) {
2546 // The bases are equal and the indices are constant. Build a constant
2547 // expression GEP with the same indices and a null base pointer to see
2548 // what constant folding can make out of it.
2549 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
2550 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
2551 Constant *NewLHS = ConstantExpr::getGetElementPtr(Null, IndicesLHS);
2553 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
2554 Constant *NewRHS = ConstantExpr::getGetElementPtr(Null, IndicesRHS);
2555 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
2560 // If the comparison is with the result of a select instruction, check whether
2561 // comparing with either branch of the select always yields the same value.
2562 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2563 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
2566 // If the comparison is with the result of a phi instruction, check whether
2567 // doing the compare with each incoming phi value yields a common result.
2568 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2569 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
2575 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2576 const DataLayout *TD,
2577 const TargetLibraryInfo *TLI,
2578 const DominatorTree *DT) {
2579 return ::SimplifyICmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2583 /// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
2584 /// fold the result. If not, this returns null.
2585 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2586 const Query &Q, unsigned MaxRecurse) {
2587 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
2588 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
2590 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
2591 if (Constant *CRHS = dyn_cast<Constant>(RHS))
2592 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.TD, Q.TLI);
2594 // If we have a constant, make sure it is on the RHS.
2595 std::swap(LHS, RHS);
2596 Pred = CmpInst::getSwappedPredicate(Pred);
2599 // Fold trivial predicates.
2600 if (Pred == FCmpInst::FCMP_FALSE)
2601 return ConstantInt::get(GetCompareTy(LHS), 0);
2602 if (Pred == FCmpInst::FCMP_TRUE)
2603 return ConstantInt::get(GetCompareTy(LHS), 1);
2605 if (isa<UndefValue>(RHS)) // fcmp pred X, undef -> undef
2606 return UndefValue::get(GetCompareTy(LHS));
2608 // fcmp x,x -> true/false. Not all compares are foldable.
2610 if (CmpInst::isTrueWhenEqual(Pred))
2611 return ConstantInt::get(GetCompareTy(LHS), 1);
2612 if (CmpInst::isFalseWhenEqual(Pred))
2613 return ConstantInt::get(GetCompareTy(LHS), 0);
2616 // Handle fcmp with constant RHS
2617 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
2618 // If the constant is a nan, see if we can fold the comparison based on it.
2619 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
2620 if (CFP->getValueAPF().isNaN()) {
2621 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo"
2622 return ConstantInt::getFalse(CFP->getContext());
2623 assert(FCmpInst::isUnordered(Pred) &&
2624 "Comparison must be either ordered or unordered!");
2625 // True if unordered.
2626 return ConstantInt::getTrue(CFP->getContext());
2628 // Check whether the constant is an infinity.
2629 if (CFP->getValueAPF().isInfinity()) {
2630 if (CFP->getValueAPF().isNegative()) {
2632 case FCmpInst::FCMP_OLT:
2633 // No value is ordered and less than negative infinity.
2634 return ConstantInt::getFalse(CFP->getContext());
2635 case FCmpInst::FCMP_UGE:
2636 // All values are unordered with or at least negative infinity.
2637 return ConstantInt::getTrue(CFP->getContext());
2643 case FCmpInst::FCMP_OGT:
2644 // No value is ordered and greater than infinity.
2645 return ConstantInt::getFalse(CFP->getContext());
2646 case FCmpInst::FCMP_ULE:
2647 // All values are unordered with and at most infinity.
2648 return ConstantInt::getTrue(CFP->getContext());
2657 // If the comparison is with the result of a select instruction, check whether
2658 // comparing with either branch of the select always yields the same value.
2659 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2660 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
2663 // If the comparison is with the result of a phi instruction, check whether
2664 // doing the compare with each incoming phi value yields a common result.
2665 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2666 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
2672 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2673 const DataLayout *TD,
2674 const TargetLibraryInfo *TLI,
2675 const DominatorTree *DT) {
2676 return ::SimplifyFCmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2680 /// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
2681 /// the result. If not, this returns null.
2682 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
2683 Value *FalseVal, const Query &Q,
2684 unsigned MaxRecurse) {
2685 // select true, X, Y -> X
2686 // select false, X, Y -> Y
2687 if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
2688 return CB->getZExtValue() ? TrueVal : FalseVal;
2690 // select C, X, X -> X
2691 if (TrueVal == FalseVal)
2694 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
2695 if (isa<Constant>(TrueVal))
2699 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
2701 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
2707 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
2708 const DataLayout *TD,
2709 const TargetLibraryInfo *TLI,
2710 const DominatorTree *DT) {
2711 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Query (TD, TLI, DT),
2715 /// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
2716 /// fold the result. If not, this returns null.
2717 static Value *SimplifyGEPInst(ArrayRef<Value *> Ops, const Query &Q, unsigned) {
2718 // The type of the GEP pointer operand.
2719 PointerType *PtrTy = dyn_cast<PointerType>(Ops[0]->getType());
2720 // The GEP pointer operand is not a pointer, it's a vector of pointers.
2724 // getelementptr P -> P.
2725 if (Ops.size() == 1)
2728 if (isa<UndefValue>(Ops[0])) {
2729 // Compute the (pointer) type returned by the GEP instruction.
2730 Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, Ops.slice(1));
2731 Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace());
2732 return UndefValue::get(GEPTy);
2735 if (Ops.size() == 2) {
2736 // getelementptr P, 0 -> P.
2737 if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
2740 // getelementptr P, N -> P if P points to a type of zero size.
2742 Type *Ty = PtrTy->getElementType();
2743 if (Ty->isSized() && Q.TD->getTypeAllocSize(Ty) == 0)
2748 // Check to see if this is constant foldable.
2749 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2750 if (!isa<Constant>(Ops[i]))
2753 return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), Ops.slice(1));
2756 Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops, const DataLayout *TD,
2757 const TargetLibraryInfo *TLI,
2758 const DominatorTree *DT) {
2759 return ::SimplifyGEPInst(Ops, Query (TD, TLI, DT), RecursionLimit);
2762 /// SimplifyInsertValueInst - Given operands for an InsertValueInst, see if we
2763 /// can fold the result. If not, this returns null.
2764 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
2765 ArrayRef<unsigned> Idxs, const Query &Q,
2767 if (Constant *CAgg = dyn_cast<Constant>(Agg))
2768 if (Constant *CVal = dyn_cast<Constant>(Val))
2769 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
2771 // insertvalue x, undef, n -> x
2772 if (match(Val, m_Undef()))
2775 // insertvalue x, (extractvalue y, n), n
2776 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
2777 if (EV->getAggregateOperand()->getType() == Agg->getType() &&
2778 EV->getIndices() == Idxs) {
2779 // insertvalue undef, (extractvalue y, n), n -> y
2780 if (match(Agg, m_Undef()))
2781 return EV->getAggregateOperand();
2783 // insertvalue y, (extractvalue y, n), n -> y
2784 if (Agg == EV->getAggregateOperand())
2791 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
2792 ArrayRef<unsigned> Idxs,
2793 const DataLayout *TD,
2794 const TargetLibraryInfo *TLI,
2795 const DominatorTree *DT) {
2796 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query (TD, TLI, DT),
2800 /// SimplifyPHINode - See if we can fold the given phi. If not, returns null.
2801 static Value *SimplifyPHINode(PHINode *PN, const Query &Q) {
2802 // If all of the PHI's incoming values are the same then replace the PHI node
2803 // with the common value.
2804 Value *CommonValue = 0;
2805 bool HasUndefInput = false;
2806 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2807 Value *Incoming = PN->getIncomingValue(i);
2808 // If the incoming value is the phi node itself, it can safely be skipped.
2809 if (Incoming == PN) continue;
2810 if (isa<UndefValue>(Incoming)) {
2811 // Remember that we saw an undef value, but otherwise ignore them.
2812 HasUndefInput = true;
2815 if (CommonValue && Incoming != CommonValue)
2816 return 0; // Not the same, bail out.
2817 CommonValue = Incoming;
2820 // If CommonValue is null then all of the incoming values were either undef or
2821 // equal to the phi node itself.
2823 return UndefValue::get(PN->getType());
2825 // If we have a PHI node like phi(X, undef, X), where X is defined by some
2826 // instruction, we cannot return X as the result of the PHI node unless it
2827 // dominates the PHI block.
2829 return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : 0;
2834 static Value *SimplifyTruncInst(Value *Op, Type *Ty, const Query &Q, unsigned) {
2835 if (Constant *C = dyn_cast<Constant>(Op))
2836 return ConstantFoldInstOperands(Instruction::Trunc, Ty, C, Q.TD, Q.TLI);
2841 Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const DataLayout *TD,
2842 const TargetLibraryInfo *TLI,
2843 const DominatorTree *DT) {
2844 return ::SimplifyTruncInst(Op, Ty, Query (TD, TLI, DT), RecursionLimit);
2847 //=== Helper functions for higher up the class hierarchy.
2849 /// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
2850 /// fold the result. If not, this returns null.
2851 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
2852 const Query &Q, unsigned MaxRecurse) {
2854 case Instruction::Add:
2855 return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2857 case Instruction::FAdd:
2858 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
2860 case Instruction::Sub:
2861 return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2863 case Instruction::FSub:
2864 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
2866 case Instruction::Mul: return SimplifyMulInst (LHS, RHS, Q, MaxRecurse);
2867 case Instruction::FMul:
2868 return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse);
2869 case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
2870 case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
2871 case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, Q, MaxRecurse);
2872 case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
2873 case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
2874 case Instruction::FRem: return SimplifyFRemInst(LHS, RHS, Q, MaxRecurse);
2875 case Instruction::Shl:
2876 return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2878 case Instruction::LShr:
2879 return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
2880 case Instruction::AShr:
2881 return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
2882 case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
2883 case Instruction::Or: return SimplifyOrInst (LHS, RHS, Q, MaxRecurse);
2884 case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
2886 if (Constant *CLHS = dyn_cast<Constant>(LHS))
2887 if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
2888 Constant *COps[] = {CLHS, CRHS};
2889 return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, Q.TD,
2893 // If the operation is associative, try some generic simplifications.
2894 if (Instruction::isAssociative(Opcode))
2895 if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse))
2898 // If the operation is with the result of a select instruction check whether
2899 // operating on either branch of the select always yields the same value.
2900 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2901 if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse))
2904 // If the operation is with the result of a phi instruction, check whether
2905 // operating on all incoming values of the phi always yields the same value.
2906 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2907 if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse))
2914 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
2915 const DataLayout *TD, const TargetLibraryInfo *TLI,
2916 const DominatorTree *DT) {
2917 return ::SimplifyBinOp(Opcode, LHS, RHS, Query (TD, TLI, DT), RecursionLimit);
2920 /// SimplifyCmpInst - Given operands for a CmpInst, see if we can
2921 /// fold the result.
2922 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2923 const Query &Q, unsigned MaxRecurse) {
2924 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
2925 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
2926 return SimplifyFCmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
2929 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2930 const DataLayout *TD, const TargetLibraryInfo *TLI,
2931 const DominatorTree *DT) {
2932 return ::SimplifyCmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2936 static bool IsIdempotent(Intrinsic::ID ID) {
2938 default: return false;
2940 // Unary idempotent: f(f(x)) = f(x)
2941 case Intrinsic::fabs:
2942 case Intrinsic::floor:
2943 case Intrinsic::ceil:
2944 case Intrinsic::trunc:
2945 case Intrinsic::rint:
2946 case Intrinsic::nearbyint:
2951 template <typename IterTy>
2952 static Value *SimplifyIntrinsic(Intrinsic::ID IID, IterTy ArgBegin, IterTy ArgEnd,
2953 const Query &Q, unsigned MaxRecurse) {
2954 // Perform idempotent optimizations
2955 if (!IsIdempotent(IID))
2959 if (std::distance(ArgBegin, ArgEnd) == 1)
2960 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin))
2961 if (II->getIntrinsicID() == IID)
2967 template <typename IterTy>
2968 static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd,
2969 const Query &Q, unsigned MaxRecurse) {
2970 Type *Ty = V->getType();
2971 if (PointerType *PTy = dyn_cast<PointerType>(Ty))
2972 Ty = PTy->getElementType();
2973 FunctionType *FTy = cast<FunctionType>(Ty);
2975 // call undef -> undef
2976 if (isa<UndefValue>(V))
2977 return UndefValue::get(FTy->getReturnType());
2979 Function *F = dyn_cast<Function>(V);
2983 if (unsigned IID = F->getIntrinsicID())
2985 SimplifyIntrinsic((Intrinsic::ID) IID, ArgBegin, ArgEnd, Q, MaxRecurse))
2988 if (!canConstantFoldCallTo(F))
2991 SmallVector<Constant *, 4> ConstantArgs;
2992 ConstantArgs.reserve(ArgEnd - ArgBegin);
2993 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) {
2994 Constant *C = dyn_cast<Constant>(*I);
2997 ConstantArgs.push_back(C);
3000 return ConstantFoldCall(F, ConstantArgs, Q.TLI);
3003 Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin,
3004 User::op_iterator ArgEnd, const DataLayout *TD,
3005 const TargetLibraryInfo *TLI,
3006 const DominatorTree *DT) {
3007 return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(TD, TLI, DT),
3011 Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args,
3012 const DataLayout *TD, const TargetLibraryInfo *TLI,
3013 const DominatorTree *DT) {
3014 return ::SimplifyCall(V, Args.begin(), Args.end(), Query(TD, TLI, DT),
3018 /// SimplifyInstruction - See if we can compute a simplified version of this
3019 /// instruction. If not, this returns null.
3020 Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout *TD,
3021 const TargetLibraryInfo *TLI,
3022 const DominatorTree *DT) {
3025 switch (I->getOpcode()) {
3027 Result = ConstantFoldInstruction(I, TD, TLI);
3029 case Instruction::FAdd:
3030 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
3031 I->getFastMathFlags(), TD, TLI, DT);
3033 case Instruction::Add:
3034 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
3035 cast<BinaryOperator>(I)->hasNoSignedWrap(),
3036 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
3039 case Instruction::FSub:
3040 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
3041 I->getFastMathFlags(), TD, TLI, DT);
3043 case Instruction::Sub:
3044 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
3045 cast<BinaryOperator>(I)->hasNoSignedWrap(),
3046 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
3049 case Instruction::FMul:
3050 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
3051 I->getFastMathFlags(), TD, TLI, DT);
3053 case Instruction::Mul:
3054 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3056 case Instruction::SDiv:
3057 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3059 case Instruction::UDiv:
3060 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3062 case Instruction::FDiv:
3063 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3065 case Instruction::SRem:
3066 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3068 case Instruction::URem:
3069 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3071 case Instruction::FRem:
3072 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3074 case Instruction::Shl:
3075 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
3076 cast<BinaryOperator>(I)->hasNoSignedWrap(),
3077 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
3080 case Instruction::LShr:
3081 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
3082 cast<BinaryOperator>(I)->isExact(),
3085 case Instruction::AShr:
3086 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
3087 cast<BinaryOperator>(I)->isExact(),
3090 case Instruction::And:
3091 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3093 case Instruction::Or:
3094 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3096 case Instruction::Xor:
3097 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3099 case Instruction::ICmp:
3100 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
3101 I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3103 case Instruction::FCmp:
3104 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
3105 I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3107 case Instruction::Select:
3108 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
3109 I->getOperand(2), TD, TLI, DT);
3111 case Instruction::GetElementPtr: {
3112 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
3113 Result = SimplifyGEPInst(Ops, TD, TLI, DT);
3116 case Instruction::InsertValue: {
3117 InsertValueInst *IV = cast<InsertValueInst>(I);
3118 Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
3119 IV->getInsertedValueOperand(),
3120 IV->getIndices(), TD, TLI, DT);
3123 case Instruction::PHI:
3124 Result = SimplifyPHINode(cast<PHINode>(I), Query (TD, TLI, DT));
3126 case Instruction::Call: {
3127 CallSite CS(cast<CallInst>(I));
3128 Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(),
3132 case Instruction::Trunc:
3133 Result = SimplifyTruncInst(I->getOperand(0), I->getType(), TD, TLI, DT);
3137 /// If called on unreachable code, the above logic may report that the
3138 /// instruction simplified to itself. Make life easier for users by
3139 /// detecting that case here, returning a safe value instead.
3140 return Result == I ? UndefValue::get(I->getType()) : Result;
3143 /// \brief Implementation of recursive simplification through an instructions
3146 /// This is the common implementation of the recursive simplification routines.
3147 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
3148 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
3149 /// instructions to process and attempt to simplify it using
3150 /// InstructionSimplify.
3152 /// This routine returns 'true' only when *it* simplifies something. The passed
3153 /// in simplified value does not count toward this.
3154 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
3155 const DataLayout *TD,
3156 const TargetLibraryInfo *TLI,
3157 const DominatorTree *DT) {
3158 bool Simplified = false;
3159 SmallSetVector<Instruction *, 8> Worklist;
3161 // If we have an explicit value to collapse to, do that round of the
3162 // simplification loop by hand initially.
3164 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
3167 Worklist.insert(cast<Instruction>(*UI));
3169 // Replace the instruction with its simplified value.
3170 I->replaceAllUsesWith(SimpleV);
3172 // Gracefully handle edge cases where the instruction is not wired into any
3175 I->eraseFromParent();
3180 // Note that we must test the size on each iteration, the worklist can grow.
3181 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
3184 // See if this instruction simplifies.
3185 SimpleV = SimplifyInstruction(I, TD, TLI, DT);
3191 // Stash away all the uses of the old instruction so we can check them for
3192 // recursive simplifications after a RAUW. This is cheaper than checking all
3193 // uses of To on the recursive step in most cases.
3194 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
3196 Worklist.insert(cast<Instruction>(*UI));
3198 // Replace the instruction with its simplified value.
3199 I->replaceAllUsesWith(SimpleV);
3201 // Gracefully handle edge cases where the instruction is not wired into any
3204 I->eraseFromParent();
3209 bool llvm::recursivelySimplifyInstruction(Instruction *I,
3210 const DataLayout *TD,
3211 const TargetLibraryInfo *TLI,
3212 const DominatorTree *DT) {
3213 return replaceAndRecursivelySimplifyImpl(I, 0, TD, TLI, DT);
3216 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
3217 const DataLayout *TD,
3218 const TargetLibraryInfo *TLI,
3219 const DominatorTree *DT) {
3220 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
3221 assert(SimpleV && "Must provide a simplified value.");
3222 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TD, TLI, DT);