1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements routines for folding instructions into simpler forms
11 // that do not require creating new instructions. For example, this does
12 // constant folding, and can handle identities like (X&0)->0.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/Analysis/ConstantFolding.h"
18 #include "llvm/Support/ValueHandle.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Support/PatternMatch.h"
22 using namespace llvm::PatternMatch;
24 /// SimplifyAddInst - Given operands for an Add, see if we can
25 /// fold the result. If not, this returns null.
26 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
27 const TargetData *TD) {
28 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
29 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
30 Constant *Ops[] = { CLHS, CRHS };
31 return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(),
35 // Canonicalize the constant to the RHS.
39 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
41 if (isa<UndefValue>(Op1C))
45 if (Op1C->isNullValue())
49 // FIXME: Could pull several more out of instcombine.
53 /// SimplifyAndInst - Given operands for an And, see if we can
54 /// fold the result. If not, this returns null.
55 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD) {
56 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
57 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
58 Constant *Ops[] = { CLHS, CRHS };
59 return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
63 // Canonicalize the constant to the RHS.
68 if (isa<UndefValue>(Op1))
69 return Constant::getNullValue(Op0->getType());
76 if (isa<ConstantAggregateZero>(Op1))
80 if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1))
81 if (CP->isAllOnesValue())
84 if (ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1)) {
89 if (Op1CI->isAllOnesValue())
93 // A & ~A = ~A & A = 0
95 if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
96 (match(Op1, m_Not(m_Value(A))) && A == Op0))
97 return Constant::getNullValue(Op0->getType());
100 if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
101 (A == Op1 || B == Op1))
105 if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
106 (A == Op0 || B == Op0))
112 /// SimplifyOrInst - Given operands for an Or, see if we can
113 /// fold the result. If not, this returns null.
114 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD) {
115 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
116 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
117 Constant *Ops[] = { CLHS, CRHS };
118 return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
122 // Canonicalize the constant to the RHS.
127 if (isa<UndefValue>(Op1))
128 return Constant::getAllOnesValue(Op0->getType());
135 if (isa<ConstantAggregateZero>(Op1))
138 // X | <-1,-1> = <-1,-1>
139 if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1))
140 if (CP->isAllOnesValue())
143 if (ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1)) {
148 if (Op1CI->isAllOnesValue())
152 // A | ~A = ~A | A = -1
154 if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
155 (match(Op1, m_Not(m_Value(A))) && A == Op0))
156 return Constant::getAllOnesValue(Op0->getType());
159 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
160 (A == Op1 || B == Op1))
164 if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
165 (A == Op0 || B == Op0))
172 static const Type *GetCompareTy(Value *Op) {
173 return CmpInst::makeCmpResultType(Op->getType());
177 /// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
178 /// fold the result. If not, this returns null.
179 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
180 const TargetData *TD) {
181 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
182 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
184 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
185 if (Constant *CRHS = dyn_cast<Constant>(RHS))
186 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
188 // If we have a constant, make sure it is on the RHS.
190 Pred = CmpInst::getSwappedPredicate(Pred);
193 // ITy - This is the return type of the compare we're considering.
194 const Type *ITy = GetCompareTy(LHS);
196 // icmp X, X -> true/false
197 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false
198 // because X could be 0.
199 if (LHS == RHS || isa<UndefValue>(RHS))
200 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
202 // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
203 // addresses never equal each other! We already know that Op0 != Op1.
204 if ((isa<GlobalValue>(LHS) || isa<AllocaInst>(LHS) ||
205 isa<ConstantPointerNull>(LHS)) &&
206 (isa<GlobalValue>(RHS) || isa<AllocaInst>(RHS) ||
207 isa<ConstantPointerNull>(RHS)))
208 return ConstantInt::get(ITy, CmpInst::isFalseWhenEqual(Pred));
210 // See if we are doing a comparison with a constant.
211 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
212 // If we have an icmp le or icmp ge instruction, turn it into the
213 // appropriate icmp lt or icmp gt instruction. This allows us to rely on
214 // them being folded in the code below.
217 case ICmpInst::ICMP_ULE:
218 if (CI->isMaxValue(false)) // A <=u MAX -> TRUE
219 return ConstantInt::getTrue(CI->getContext());
221 case ICmpInst::ICMP_SLE:
222 if (CI->isMaxValue(true)) // A <=s MAX -> TRUE
223 return ConstantInt::getTrue(CI->getContext());
225 case ICmpInst::ICMP_UGE:
226 if (CI->isMinValue(false)) // A >=u MIN -> TRUE
227 return ConstantInt::getTrue(CI->getContext());
229 case ICmpInst::ICMP_SGE:
230 if (CI->isMinValue(true)) // A >=s MIN -> TRUE
231 return ConstantInt::getTrue(CI->getContext());
240 /// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
241 /// fold the result. If not, this returns null.
242 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
243 const TargetData *TD) {
244 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
245 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
247 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
248 if (Constant *CRHS = dyn_cast<Constant>(RHS))
249 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
251 // If we have a constant, make sure it is on the RHS.
253 Pred = CmpInst::getSwappedPredicate(Pred);
256 // Fold trivial predicates.
257 if (Pred == FCmpInst::FCMP_FALSE)
258 return ConstantInt::get(GetCompareTy(LHS), 0);
259 if (Pred == FCmpInst::FCMP_TRUE)
260 return ConstantInt::get(GetCompareTy(LHS), 1);
262 if (isa<UndefValue>(RHS)) // fcmp pred X, undef -> undef
263 return UndefValue::get(GetCompareTy(LHS));
265 // fcmp x,x -> true/false. Not all compares are foldable.
267 if (CmpInst::isTrueWhenEqual(Pred))
268 return ConstantInt::get(GetCompareTy(LHS), 1);
269 if (CmpInst::isFalseWhenEqual(Pred))
270 return ConstantInt::get(GetCompareTy(LHS), 0);
273 // Handle fcmp with constant RHS
274 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
275 // If the constant is a nan, see if we can fold the comparison based on it.
276 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
277 if (CFP->getValueAPF().isNaN()) {
278 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo"
279 return ConstantInt::getFalse(CFP->getContext());
280 assert(FCmpInst::isUnordered(Pred) &&
281 "Comparison must be either ordered or unordered!");
282 // True if unordered.
283 return ConstantInt::getTrue(CFP->getContext());
285 // Check whether the constant is an infinity.
286 if (CFP->getValueAPF().isInfinity()) {
287 if (CFP->getValueAPF().isNegative()) {
289 case FCmpInst::FCMP_OLT:
290 // No value is ordered and less than negative infinity.
291 return ConstantInt::getFalse(CFP->getContext());
292 case FCmpInst::FCMP_UGE:
293 // All values are unordered with or at least negative infinity.
294 return ConstantInt::getTrue(CFP->getContext());
300 case FCmpInst::FCMP_OGT:
301 // No value is ordered and greater than infinity.
302 return ConstantInt::getFalse(CFP->getContext());
303 case FCmpInst::FCMP_ULE:
304 // All values are unordered with and at most infinity.
305 return ConstantInt::getTrue(CFP->getContext());
317 /// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
318 /// the result. If not, this returns null.
319 Value *llvm::SimplifySelectInst(Value *CondVal, Value *TrueVal, Value *FalseVal,
320 const TargetData *TD) {
321 // select true, X, Y -> X
322 // select false, X, Y -> Y
323 if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
324 return CB->getZExtValue() ? TrueVal : FalseVal;
326 // select C, X, X -> X
327 if (TrueVal == FalseVal)
330 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
332 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
334 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
335 if (isa<Constant>(TrueVal))
346 /// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
347 /// fold the result. If not, this returns null.
348 Value *llvm::SimplifyGEPInst(Value *const *Ops, unsigned NumOps,
349 const TargetData *TD) {
350 // getelementptr P -> P.
355 //if (isa<UndefValue>(Ops[0]))
356 // return UndefValue::get(GEP.getType());
358 // getelementptr P, 0 -> P.
360 if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
364 // Check to see if this is constant foldable.
365 for (unsigned i = 0; i != NumOps; ++i)
366 if (!isa<Constant>(Ops[i]))
369 return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]),
370 (Constant *const*)Ops+1, NumOps-1);
374 //=== Helper functions for higher up the class hierarchy.
376 /// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
377 /// fold the result. If not, this returns null.
378 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
379 const TargetData *TD) {
381 case Instruction::And: return SimplifyAndInst(LHS, RHS, TD);
382 case Instruction::Or: return SimplifyOrInst(LHS, RHS, TD);
384 if (Constant *CLHS = dyn_cast<Constant>(LHS))
385 if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
386 Constant *COps[] = {CLHS, CRHS};
387 return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, 2, TD);
393 /// SimplifyCmpInst - Given operands for a CmpInst, see if we can
395 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
396 const TargetData *TD) {
397 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
398 return SimplifyICmpInst(Predicate, LHS, RHS, TD);
399 return SimplifyFCmpInst(Predicate, LHS, RHS, TD);
403 /// SimplifyInstruction - See if we can compute a simplified version of this
404 /// instruction. If not, this returns null.
405 Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD) {
406 switch (I->getOpcode()) {
408 return ConstantFoldInstruction(I, TD);
409 case Instruction::Add:
410 return SimplifyAddInst(I->getOperand(0), I->getOperand(1),
411 cast<BinaryOperator>(I)->hasNoSignedWrap(),
412 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), TD);
413 case Instruction::And:
414 return SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD);
415 case Instruction::Or:
416 return SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD);
417 case Instruction::ICmp:
418 return SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
419 I->getOperand(0), I->getOperand(1), TD);
420 case Instruction::FCmp:
421 return SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
422 I->getOperand(0), I->getOperand(1), TD);
423 case Instruction::Select:
424 return SimplifySelectInst(I->getOperand(0), I->getOperand(1),
425 I->getOperand(2), TD);
426 case Instruction::GetElementPtr: {
427 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
428 return SimplifyGEPInst(&Ops[0], Ops.size(), TD);
433 /// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then
434 /// delete the From instruction. In addition to a basic RAUW, this does a
435 /// recursive simplification of the newly formed instructions. This catches
436 /// things where one simplification exposes other opportunities. This only
437 /// simplifies and deletes scalar operations, it does not change the CFG.
439 void llvm::ReplaceAndSimplifyAllUses(Instruction *From, Value *To,
440 const TargetData *TD) {
441 assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!");
443 // FromHandle/ToHandle - This keeps a WeakVH on the from/to values so that
444 // we can know if it gets deleted out from under us or replaced in a
445 // recursive simplification.
446 WeakVH FromHandle(From);
449 while (!From->use_empty()) {
450 // Update the instruction to use the new value.
451 Use &TheUse = From->use_begin().getUse();
452 Instruction *User = cast<Instruction>(TheUse.getUser());
455 // Check to see if the instruction can be folded due to the operand
456 // replacement. For example changing (or X, Y) into (or X, -1) can replace
458 Value *SimplifiedVal;
460 // Sanity check to make sure 'User' doesn't dangle across
461 // SimplifyInstruction.
462 AssertingVH<> UserHandle(User);
464 SimplifiedVal = SimplifyInstruction(User, TD);
465 if (SimplifiedVal == 0) continue;
468 // Recursively simplify this user to the new value.
469 ReplaceAndSimplifyAllUses(User, SimplifiedVal, TD);
470 From = dyn_cast_or_null<Instruction>((Value*)FromHandle);
473 assert(ToHandle && "To value deleted by recursive simplification?");
475 // If the recursive simplification ended up revisiting and deleting
476 // 'From' then we're done.
481 // If 'From' has value handles referring to it, do a real RAUW to update them.
482 From->replaceAllUsesWith(To);
484 From->eraseFromParent();