1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation --*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements an analysis that determines, for a given memory
11 // operation, what preceding memory operations it depends on. It builds on
12 // alias analysis information, and tries to provide a lazy, caching interface to
13 // a common kind of alias information query.
15 //===----------------------------------------------------------------------===//
17 #define DEBUG_TYPE "memdep"
18 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/IntrinsicInst.h"
21 #include "llvm/Function.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/MemoryBuiltins.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/Support/PredIteratorCache.h"
27 #include "llvm/Support/Debug.h"
30 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
31 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
32 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
34 STATISTIC(NumCacheNonLocalPtr,
35 "Number of fully cached non-local ptr responses");
36 STATISTIC(NumCacheDirtyNonLocalPtr,
37 "Number of cached, but dirty, non-local ptr responses");
38 STATISTIC(NumUncacheNonLocalPtr,
39 "Number of uncached non-local ptr responses");
40 STATISTIC(NumCacheCompleteNonLocalPtr,
41 "Number of block queries that were completely cached");
43 char MemoryDependenceAnalysis::ID = 0;
45 // Register this pass...
46 static RegisterPass<MemoryDependenceAnalysis> X("memdep",
47 "Memory Dependence Analysis", false, true);
49 MemoryDependenceAnalysis::MemoryDependenceAnalysis()
50 : FunctionPass(&ID), PredCache(0) {
52 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
55 /// Clean up memory in between runs
56 void MemoryDependenceAnalysis::releaseMemory() {
59 NonLocalPointerDeps.clear();
60 ReverseLocalDeps.clear();
61 ReverseNonLocalDeps.clear();
62 ReverseNonLocalPtrDeps.clear();
68 /// getAnalysisUsage - Does not modify anything. It uses Alias Analysis.
70 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
72 AU.addRequiredTransitive<AliasAnalysis>();
75 bool MemoryDependenceAnalysis::runOnFunction(Function &) {
76 AA = &getAnalysis<AliasAnalysis>();
78 PredCache.reset(new PredIteratorCache());
82 /// RemoveFromReverseMap - This is a helper function that removes Val from
83 /// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry.
84 template <typename KeyTy>
85 static void RemoveFromReverseMap(DenseMap<Instruction*,
86 SmallPtrSet<KeyTy, 4> > &ReverseMap,
87 Instruction *Inst, KeyTy Val) {
88 typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
89 InstIt = ReverseMap.find(Inst);
90 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
91 bool Found = InstIt->second.erase(Val);
92 assert(Found && "Invalid reverse map!"); Found=Found;
93 if (InstIt->second.empty())
94 ReverseMap.erase(InstIt);
98 /// getCallSiteDependencyFrom - Private helper for finding the local
99 /// dependencies of a call site.
100 MemDepResult MemoryDependenceAnalysis::
101 getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
102 BasicBlock::iterator ScanIt, BasicBlock *BB) {
103 // Walk backwards through the block, looking for dependencies
104 while (ScanIt != BB->begin()) {
105 Instruction *Inst = --ScanIt;
107 // If this inst is a memory op, get the pointer it accessed
109 uint64_t PointerSize = 0;
110 if (StoreInst *S = dyn_cast<StoreInst>(Inst)) {
111 Pointer = S->getPointerOperand();
112 PointerSize = AA->getTypeStoreSize(S->getOperand(0)->getType());
113 } else if (VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
114 Pointer = V->getOperand(0);
115 PointerSize = AA->getTypeStoreSize(V->getType());
116 } else if (isFreeCall(Inst)) {
117 Pointer = Inst->getOperand(1);
118 // calls to free() erase the entire structure
120 } else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
121 // Debug intrinsics don't cause dependences.
122 if (isa<DbgInfoIntrinsic>(Inst)) continue;
123 CallSite InstCS = CallSite::get(Inst);
124 // If these two calls do not interfere, look past it.
125 switch (AA->getModRefInfo(CS, InstCS)) {
126 case AliasAnalysis::NoModRef:
127 // If the two calls don't interact (e.g. InstCS is readnone) keep
130 case AliasAnalysis::Ref:
131 // If the two calls read the same memory locations and CS is a readonly
132 // function, then we have two cases: 1) the calls may not interfere with
133 // each other at all. 2) the calls may produce the same value. In case
134 // #1 we want to ignore the values, in case #2, we want to return Inst
135 // as a Def dependence. This allows us to CSE in cases like:
138 // Y = strlen(P); // Y = X
139 if (isReadOnlyCall) {
140 if (CS.getCalledFunction() != 0 &&
141 CS.getCalledFunction() == InstCS.getCalledFunction())
142 return MemDepResult::getDef(Inst);
143 // Ignore unrelated read/read call dependences.
148 return MemDepResult::getClobber(Inst);
151 // Non-memory instruction.
155 if (AA->getModRefInfo(CS, Pointer, PointerSize) != AliasAnalysis::NoModRef)
156 return MemDepResult::getClobber(Inst);
159 // No dependence found. If this is the entry block of the function, it is a
160 // clobber, otherwise it is non-local.
161 if (BB != &BB->getParent()->getEntryBlock())
162 return MemDepResult::getNonLocal();
163 return MemDepResult::getClobber(ScanIt);
166 /// getPointerDependencyFrom - Return the instruction on which a memory
167 /// location depends. If isLoad is true, this routine ignore may-aliases with
168 /// read-only operations.
169 MemDepResult MemoryDependenceAnalysis::
170 getPointerDependencyFrom(Value *MemPtr, uint64_t MemSize, bool isLoad,
171 BasicBlock::iterator ScanIt, BasicBlock *BB) {
173 Value *invariantTag = 0;
175 // Walk backwards through the basic block, looking for dependencies.
176 while (ScanIt != BB->begin()) {
177 Instruction *Inst = --ScanIt;
179 // If we're in an invariant region, no dependencies can be found before
180 // we pass an invariant-begin marker.
181 if (invariantTag == Inst) {
184 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
185 // If we pass an invariant-end marker, then we've just entered an
186 // invariant region and can start ignoring dependencies.
187 if (II->getIntrinsicID() == Intrinsic::invariant_end) {
188 uint64_t invariantSize = ~0ULL;
189 if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getOperand(2)))
190 invariantSize = CI->getZExtValue();
192 AliasAnalysis::AliasResult R =
193 AA->alias(II->getOperand(3), invariantSize, MemPtr, MemSize);
194 if (R == AliasAnalysis::MustAlias) {
195 invariantTag = II->getOperand(1);
199 // If we reach a lifetime begin or end marker, then the query ends here
200 // because the value is undefined.
201 } else if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
202 II->getIntrinsicID() == Intrinsic::lifetime_end) {
203 uint64_t invariantSize = ~0ULL;
204 if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getOperand(1)))
205 invariantSize = CI->getZExtValue();
207 AliasAnalysis::AliasResult R =
208 AA->alias(II->getOperand(2), invariantSize, MemPtr, MemSize);
209 if (R == AliasAnalysis::MustAlias)
210 return MemDepResult::getDef(II);
214 // If we're querying on a load and we're in an invariant region, we're done
215 // at this point. Nothing a load depends on can live in an invariant region.
216 if (isLoad && invariantTag) continue;
218 // Debug intrinsics don't cause dependences.
219 if (isa<DbgInfoIntrinsic>(Inst)) continue;
221 // Values depend on loads if the pointers are must aliased. This means that
222 // a load depends on another must aliased load from the same value.
223 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
224 Value *Pointer = LI->getPointerOperand();
225 uint64_t PointerSize = AA->getTypeStoreSize(LI->getType());
227 // If we found a pointer, check if it could be the same as our pointer.
228 AliasAnalysis::AliasResult R =
229 AA->alias(Pointer, PointerSize, MemPtr, MemSize);
230 if (R == AliasAnalysis::NoAlias)
233 // May-alias loads don't depend on each other without a dependence.
234 if (isLoad && R == AliasAnalysis::MayAlias)
236 // Stores depend on may and must aliased loads, loads depend on must-alias
238 return MemDepResult::getDef(Inst);
241 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
242 // There can't be stores to the value we care about inside an
244 if (invariantTag) continue;
246 // If alias analysis can tell that this store is guaranteed to not modify
247 // the query pointer, ignore it. Use getModRefInfo to handle cases where
248 // the query pointer points to constant memory etc.
249 if (AA->getModRefInfo(SI, MemPtr, MemSize) == AliasAnalysis::NoModRef)
252 // Ok, this store might clobber the query pointer. Check to see if it is
253 // a must alias: in this case, we want to return this as a def.
254 Value *Pointer = SI->getPointerOperand();
255 uint64_t PointerSize = AA->getTypeStoreSize(SI->getOperand(0)->getType());
257 // If we found a pointer, check if it could be the same as our pointer.
258 AliasAnalysis::AliasResult R =
259 AA->alias(Pointer, PointerSize, MemPtr, MemSize);
261 if (R == AliasAnalysis::NoAlias)
263 if (R == AliasAnalysis::MayAlias)
264 return MemDepResult::getClobber(Inst);
265 return MemDepResult::getDef(Inst);
268 // If this is an allocation, and if we know that the accessed pointer is to
269 // the allocation, return Def. This means that there is no dependence and
270 // the access can be optimized based on that. For example, a load could
272 // Note: Only determine this to be a malloc if Inst is the malloc call, not
273 // a subsequent bitcast of the malloc call result. There can be stores to
274 // the malloced memory between the malloc call and its bitcast uses, and we
275 // need to continue scanning until the malloc call.
276 if (isa<AllocaInst>(Inst) || extractMallocCall(Inst)) {
277 Value *AccessPtr = MemPtr->getUnderlyingObject();
279 if (AccessPtr == Inst ||
280 AA->alias(Inst, 1, AccessPtr, 1) == AliasAnalysis::MustAlias)
281 return MemDepResult::getDef(Inst);
285 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
286 switch (AA->getModRefInfo(Inst, MemPtr, MemSize)) {
287 case AliasAnalysis::NoModRef:
288 // If the call has no effect on the queried pointer, just ignore it.
290 case AliasAnalysis::Mod:
291 // If we're in an invariant region, we can ignore calls that ONLY
292 // modify the pointer.
293 if (invariantTag) continue;
294 return MemDepResult::getClobber(Inst);
295 case AliasAnalysis::Ref:
296 // If the call is known to never store to the pointer, and if this is a
297 // load query, we can safely ignore it (scan past it).
301 // Otherwise, there is a potential dependence. Return a clobber.
302 return MemDepResult::getClobber(Inst);
306 // No dependence found. If this is the entry block of the function, it is a
307 // clobber, otherwise it is non-local.
308 if (BB != &BB->getParent()->getEntryBlock())
309 return MemDepResult::getNonLocal();
310 return MemDepResult::getClobber(ScanIt);
313 /// getDependency - Return the instruction on which a memory operation
315 MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
316 Instruction *ScanPos = QueryInst;
318 // Check for a cached result
319 MemDepResult &LocalCache = LocalDeps[QueryInst];
321 // If the cached entry is non-dirty, just return it. Note that this depends
322 // on MemDepResult's default constructing to 'dirty'.
323 if (!LocalCache.isDirty())
326 // Otherwise, if we have a dirty entry, we know we can start the scan at that
327 // instruction, which may save us some work.
328 if (Instruction *Inst = LocalCache.getInst()) {
331 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
334 BasicBlock *QueryParent = QueryInst->getParent();
337 uint64_t MemSize = 0;
340 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
341 // No dependence found. If this is the entry block of the function, it is a
342 // clobber, otherwise it is non-local.
343 if (QueryParent != &QueryParent->getParent()->getEntryBlock())
344 LocalCache = MemDepResult::getNonLocal();
346 LocalCache = MemDepResult::getClobber(QueryInst);
347 } else if (StoreInst *SI = dyn_cast<StoreInst>(QueryInst)) {
348 // If this is a volatile store, don't mess around with it. Just return the
349 // previous instruction as a clobber.
350 if (SI->isVolatile())
351 LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
353 MemPtr = SI->getPointerOperand();
354 MemSize = AA->getTypeStoreSize(SI->getOperand(0)->getType());
356 } else if (LoadInst *LI = dyn_cast<LoadInst>(QueryInst)) {
357 // If this is a volatile load, don't mess around with it. Just return the
358 // previous instruction as a clobber.
359 if (LI->isVolatile())
360 LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
362 MemPtr = LI->getPointerOperand();
363 MemSize = AA->getTypeStoreSize(LI->getType());
365 } else if (isFreeCall(QueryInst)) {
366 MemPtr = QueryInst->getOperand(1);
367 // calls to free() erase the entire structure, not just a field.
369 } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
370 CallSite QueryCS = CallSite::get(QueryInst);
371 bool isReadOnly = AA->onlyReadsMemory(QueryCS);
372 LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
375 // Non-memory instruction.
376 LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
379 // If we need to do a pointer scan, make it happen.
381 LocalCache = getPointerDependencyFrom(MemPtr, MemSize,
382 isa<LoadInst>(QueryInst),
383 ScanPos, QueryParent);
385 // Remember the result!
386 if (Instruction *I = LocalCache.getInst())
387 ReverseLocalDeps[I].insert(QueryInst);
393 /// AssertSorted - This method is used when -debug is specified to verify that
394 /// cache arrays are properly kept sorted.
395 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
397 if (Count == -1) Count = Cache.size();
398 if (Count == 0) return;
400 for (unsigned i = 1; i != unsigned(Count); ++i)
401 assert(Cache[i-1] <= Cache[i] && "Cache isn't sorted!");
405 /// getNonLocalCallDependency - Perform a full dependency query for the
406 /// specified call, returning the set of blocks that the value is
407 /// potentially live across. The returned set of results will include a
408 /// "NonLocal" result for all blocks where the value is live across.
410 /// This method assumes the instruction returns a "NonLocal" dependency
411 /// within its own block.
413 /// This returns a reference to an internal data structure that may be
414 /// invalidated on the next non-local query or when an instruction is
415 /// removed. Clients must copy this data if they want it around longer than
417 const MemoryDependenceAnalysis::NonLocalDepInfo &
418 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
419 assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
420 "getNonLocalCallDependency should only be used on calls with non-local deps!");
421 PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
422 NonLocalDepInfo &Cache = CacheP.first;
424 /// DirtyBlocks - This is the set of blocks that need to be recomputed. In
425 /// the cached case, this can happen due to instructions being deleted etc. In
426 /// the uncached case, this starts out as the set of predecessors we care
428 SmallVector<BasicBlock*, 32> DirtyBlocks;
430 if (!Cache.empty()) {
431 // Okay, we have a cache entry. If we know it is not dirty, just return it
432 // with no computation.
433 if (!CacheP.second) {
438 // If we already have a partially computed set of results, scan them to
439 // determine what is dirty, seeding our initial DirtyBlocks worklist.
440 for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
442 if (I->second.isDirty())
443 DirtyBlocks.push_back(I->first);
445 // Sort the cache so that we can do fast binary search lookups below.
446 std::sort(Cache.begin(), Cache.end());
448 ++NumCacheDirtyNonLocal;
449 //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
450 // << Cache.size() << " cached: " << *QueryInst;
452 // Seed DirtyBlocks with each of the preds of QueryInst's block.
453 BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
454 for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI)
455 DirtyBlocks.push_back(*PI);
456 NumUncacheNonLocal++;
459 // isReadonlyCall - If this is a read-only call, we can be more aggressive.
460 bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
462 SmallPtrSet<BasicBlock*, 64> Visited;
464 unsigned NumSortedEntries = Cache.size();
465 DEBUG(AssertSorted(Cache));
467 // Iterate while we still have blocks to update.
468 while (!DirtyBlocks.empty()) {
469 BasicBlock *DirtyBB = DirtyBlocks.back();
470 DirtyBlocks.pop_back();
472 // Already processed this block?
473 if (!Visited.insert(DirtyBB))
476 // Do a binary search to see if we already have an entry for this block in
477 // the cache set. If so, find it.
478 DEBUG(AssertSorted(Cache, NumSortedEntries));
479 NonLocalDepInfo::iterator Entry =
480 std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
481 std::make_pair(DirtyBB, MemDepResult()));
482 if (Entry != Cache.begin() && prior(Entry)->first == DirtyBB)
485 MemDepResult *ExistingResult = 0;
486 if (Entry != Cache.begin()+NumSortedEntries &&
487 Entry->first == DirtyBB) {
488 // If we already have an entry, and if it isn't already dirty, the block
490 if (!Entry->second.isDirty())
493 // Otherwise, remember this slot so we can update the value.
494 ExistingResult = &Entry->second;
497 // If the dirty entry has a pointer, start scanning from it so we don't have
498 // to rescan the entire block.
499 BasicBlock::iterator ScanPos = DirtyBB->end();
500 if (ExistingResult) {
501 if (Instruction *Inst = ExistingResult->getInst()) {
503 // We're removing QueryInst's use of Inst.
504 RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
505 QueryCS.getInstruction());
509 // Find out if this block has a local dependency for QueryInst.
512 if (ScanPos != DirtyBB->begin()) {
513 Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
514 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
515 // No dependence found. If this is the entry block of the function, it is
516 // a clobber, otherwise it is non-local.
517 Dep = MemDepResult::getNonLocal();
519 Dep = MemDepResult::getClobber(ScanPos);
522 // If we had a dirty entry for the block, update it. Otherwise, just add
525 *ExistingResult = Dep;
527 Cache.push_back(std::make_pair(DirtyBB, Dep));
529 // If the block has a dependency (i.e. it isn't completely transparent to
530 // the value), remember the association!
531 if (!Dep.isNonLocal()) {
532 // Keep the ReverseNonLocalDeps map up to date so we can efficiently
533 // update this when we remove instructions.
534 if (Instruction *Inst = Dep.getInst())
535 ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
538 // If the block *is* completely transparent to the load, we need to check
539 // the predecessors of this block. Add them to our worklist.
540 for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI)
541 DirtyBlocks.push_back(*PI);
548 /// getNonLocalPointerDependency - Perform a full dependency query for an
549 /// access to the specified (non-volatile) memory location, returning the
550 /// set of instructions that either define or clobber the value.
552 /// This method assumes the pointer has a "NonLocal" dependency within its
555 void MemoryDependenceAnalysis::
556 getNonLocalPointerDependency(Value *Pointer, bool isLoad, BasicBlock *FromBB,
557 SmallVectorImpl<NonLocalDepEntry> &Result) {
558 assert(isa<PointerType>(Pointer->getType()) &&
559 "Can't get pointer deps of a non-pointer!");
562 // We know that the pointer value is live into FromBB find the def/clobbers
563 // from presecessors.
564 const Type *EltTy = cast<PointerType>(Pointer->getType())->getElementType();
565 uint64_t PointeeSize = AA->getTypeStoreSize(EltTy);
567 // This is the set of blocks we've inspected, and the pointer we consider in
568 // each block. Because of critical edges, we currently bail out if querying
569 // a block with multiple different pointers. This can happen during PHI
571 DenseMap<BasicBlock*, Value*> Visited;
572 if (!getNonLocalPointerDepFromBB(Pointer, PointeeSize, isLoad, FromBB,
573 Result, Visited, true))
576 Result.push_back(std::make_pair(FromBB,
577 MemDepResult::getClobber(FromBB->begin())));
580 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with
581 /// Pointer/PointeeSize using either cached information in Cache or by doing a
582 /// lookup (which may use dirty cache info if available). If we do a lookup,
583 /// add the result to the cache.
584 MemDepResult MemoryDependenceAnalysis::
585 GetNonLocalInfoForBlock(Value *Pointer, uint64_t PointeeSize,
586 bool isLoad, BasicBlock *BB,
587 NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
589 // Do a binary search to see if we already have an entry for this block in
590 // the cache set. If so, find it.
591 NonLocalDepInfo::iterator Entry =
592 std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
593 std::make_pair(BB, MemDepResult()));
594 if (Entry != Cache->begin() && prior(Entry)->first == BB)
597 MemDepResult *ExistingResult = 0;
598 if (Entry != Cache->begin()+NumSortedEntries && Entry->first == BB)
599 ExistingResult = &Entry->second;
601 // If we have a cached entry, and it is non-dirty, use it as the value for
603 if (ExistingResult && !ExistingResult->isDirty()) {
604 ++NumCacheNonLocalPtr;
605 return *ExistingResult;
608 // Otherwise, we have to scan for the value. If we have a dirty cache
609 // entry, start scanning from its position, otherwise we scan from the end
611 BasicBlock::iterator ScanPos = BB->end();
612 if (ExistingResult && ExistingResult->getInst()) {
613 assert(ExistingResult->getInst()->getParent() == BB &&
614 "Instruction invalidated?");
615 ++NumCacheDirtyNonLocalPtr;
616 ScanPos = ExistingResult->getInst();
618 // Eliminating the dirty entry from 'Cache', so update the reverse info.
619 ValueIsLoadPair CacheKey(Pointer, isLoad);
620 RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey);
622 ++NumUncacheNonLocalPtr;
625 // Scan the block for the dependency.
626 MemDepResult Dep = getPointerDependencyFrom(Pointer, PointeeSize, isLoad,
629 // If we had a dirty entry for the block, update it. Otherwise, just add
632 *ExistingResult = Dep;
634 Cache->push_back(std::make_pair(BB, Dep));
636 // If the block has a dependency (i.e. it isn't completely transparent to
637 // the value), remember the reverse association because we just added it
639 if (Dep.isNonLocal())
642 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
643 // update MemDep when we remove instructions.
644 Instruction *Inst = Dep.getInst();
645 assert(Inst && "Didn't depend on anything?");
646 ValueIsLoadPair CacheKey(Pointer, isLoad);
647 ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
651 /// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain
652 /// number of elements in the array that are already properly ordered. This is
653 /// optimized for the case when only a few entries are added.
655 SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
656 unsigned NumSortedEntries) {
657 switch (Cache.size() - NumSortedEntries) {
659 // done, no new entries.
662 // Two new entries, insert the last one into place.
663 MemoryDependenceAnalysis::NonLocalDepEntry Val = Cache.back();
665 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
666 std::upper_bound(Cache.begin(), Cache.end()-1, Val);
667 Cache.insert(Entry, Val);
671 // One new entry, Just insert the new value at the appropriate position.
672 if (Cache.size() != 1) {
673 MemoryDependenceAnalysis::NonLocalDepEntry Val = Cache.back();
675 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
676 std::upper_bound(Cache.begin(), Cache.end(), Val);
677 Cache.insert(Entry, Val);
681 // Added many values, do a full scale sort.
682 std::sort(Cache.begin(), Cache.end());
687 /// isPHITranslatable - Return true if the specified computation is derived from
688 /// a PHI node in the current block and if it is simple enough for us to handle.
689 static bool isPHITranslatable(Instruction *Inst) {
690 if (isa<PHINode>(Inst))
693 // We can handle bitcast of a PHI, but the PHI needs to be in the same block
695 if (BitCastInst *BC = dyn_cast<BitCastInst>(Inst))
696 if (PHINode *PN = dyn_cast<PHINode>(BC->getOperand(0)))
697 if (PN->getParent() == BC->getParent())
700 // We can translate a GEP that uses a PHI in the current block for at least
701 // one of its operands.
702 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
703 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
704 if (PHINode *PN = dyn_cast<PHINode>(GEP->getOperand(i)))
705 if (PN->getParent() == GEP->getParent())
709 // cerr << "MEMDEP: Could not PHI translate: " << *Pointer;
710 // if (isa<BitCastInst>(PtrInst) || isa<GetElementPtrInst>(PtrInst))
711 // cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0);
716 /// PHITranslateForPred - Given a computation that satisfied the
717 /// isPHITranslatable predicate, see if we can translate the computation into
718 /// the specified predecessor block. If so, return that value.
719 static Value *PHITranslateForPred(Instruction *Inst, BasicBlock *Pred) {
720 if (PHINode *PN = dyn_cast<PHINode>(Inst))
721 return PN->getIncomingValueForBlock(Pred);
723 // Handle bitcast of PHI.
724 if (BitCastInst *BC = dyn_cast<BitCastInst>(Inst)) {
725 PHINode *BCPN = cast<PHINode>(BC->getOperand(0));
726 Value *PHIIn = BCPN->getIncomingValueForBlock(Pred);
728 // Constants are trivial to phi translate.
729 if (Constant *C = dyn_cast<Constant>(PHIIn))
730 return ConstantExpr::getBitCast(C, BC->getType());
732 // Otherwise we have to see if a bitcasted version of the incoming pointer
733 // is available. If so, we can use it, otherwise we have to fail.
734 for (Value::use_iterator UI = PHIIn->use_begin(), E = PHIIn->use_end();
736 if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI))
737 if (BCI->getType() == BC->getType())
743 // Handle getelementptr with at least one PHI operand.
744 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
745 SmallVector<Value*, 8> GEPOps;
747 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
748 GEPOps.push_back(GEP->getOperand(i));
749 if (PHINode *PN = dyn_cast<PHINode>(GEP->getOperand(i)))
750 if (PN->getParent() == GEP->getParent())
751 GEPOps.back() = APHIOp = PN->getIncomingValueForBlock(Pred);
754 // TODO: Simplify the GEP to handle 'gep x, 0' -> x etc.
756 // Scan to see if we have this GEP available.
757 for (Value::use_iterator UI = APHIOp->use_begin(), E = APHIOp->use_end();
759 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI))
760 if (GEPI->getType() == GEPI->getType() &&
761 GEPI->getNumOperands() == GEPOps.size() &&
762 GEPI->getParent()->getParent() == Inst->getParent()->getParent()) {
763 bool Mismatch = false;
764 for (unsigned i = 0, e = GEPOps.size(); i != e; ++i)
765 if (GEPI->getOperand(i) != GEPOps[i]) {
780 /// getNonLocalPointerDepFromBB - Perform a dependency query based on
781 /// pointer/pointeesize starting at the end of StartBB. Add any clobber/def
782 /// results to the results vector and keep track of which blocks are visited in
785 /// This has special behavior for the first block queries (when SkipFirstBlock
786 /// is true). In this special case, it ignores the contents of the specified
787 /// block and starts returning dependence info for its predecessors.
789 /// This function returns false on success, or true to indicate that it could
790 /// not compute dependence information for some reason. This should be treated
791 /// as a clobber dependence on the first instruction in the predecessor block.
792 bool MemoryDependenceAnalysis::
793 getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize,
794 bool isLoad, BasicBlock *StartBB,
795 SmallVectorImpl<NonLocalDepEntry> &Result,
796 DenseMap<BasicBlock*, Value*> &Visited,
797 bool SkipFirstBlock) {
799 // Look up the cached info for Pointer.
800 ValueIsLoadPair CacheKey(Pointer, isLoad);
802 std::pair<BBSkipFirstBlockPair, NonLocalDepInfo> *CacheInfo =
803 &NonLocalPointerDeps[CacheKey];
804 NonLocalDepInfo *Cache = &CacheInfo->second;
806 // If we have valid cached information for exactly the block we are
807 // investigating, just return it with no recomputation.
808 if (CacheInfo->first == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
809 // We have a fully cached result for this query then we can just return the
810 // cached results and populate the visited set. However, we have to verify
811 // that we don't already have conflicting results for these blocks. Check
812 // to ensure that if a block in the results set is in the visited set that
813 // it was for the same pointer query.
814 if (!Visited.empty()) {
815 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
817 DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->first);
818 if (VI == Visited.end() || VI->second == Pointer) continue;
820 // We have a pointer mismatch in a block. Just return clobber, saying
821 // that something was clobbered in this result. We could also do a
822 // non-fully cached query, but there is little point in doing this.
827 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
829 Visited.insert(std::make_pair(I->first, Pointer));
830 if (!I->second.isNonLocal())
831 Result.push_back(*I);
833 ++NumCacheCompleteNonLocalPtr;
837 // Otherwise, either this is a new block, a block with an invalid cache
838 // pointer or one that we're about to invalidate by putting more info into it
839 // than its valid cache info. If empty, the result will be valid cache info,
840 // otherwise it isn't.
842 CacheInfo->first = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
844 CacheInfo->first = BBSkipFirstBlockPair();
846 SmallVector<BasicBlock*, 32> Worklist;
847 Worklist.push_back(StartBB);
849 // Keep track of the entries that we know are sorted. Previously cached
850 // entries will all be sorted. The entries we add we only sort on demand (we
851 // don't insert every element into its sorted position). We know that we
852 // won't get any reuse from currently inserted values, because we don't
853 // revisit blocks after we insert info for them.
854 unsigned NumSortedEntries = Cache->size();
855 DEBUG(AssertSorted(*Cache));
857 while (!Worklist.empty()) {
858 BasicBlock *BB = Worklist.pop_back_val();
860 // Skip the first block if we have it.
861 if (!SkipFirstBlock) {
862 // Analyze the dependency of *Pointer in FromBB. See if we already have
864 assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
866 // Get the dependency info for Pointer in BB. If we have cached
867 // information, we will use it, otherwise we compute it.
868 DEBUG(AssertSorted(*Cache, NumSortedEntries));
869 MemDepResult Dep = GetNonLocalInfoForBlock(Pointer, PointeeSize, isLoad,
870 BB, Cache, NumSortedEntries);
872 // If we got a Def or Clobber, add this to the list of results.
873 if (!Dep.isNonLocal()) {
874 Result.push_back(NonLocalDepEntry(BB, Dep));
879 // If 'Pointer' is an instruction defined in this block, then we need to do
880 // phi translation to change it into a value live in the predecessor block.
881 // If phi translation fails, then we can't continue dependence analysis.
882 Instruction *PtrInst = dyn_cast<Instruction>(Pointer);
883 bool NeedsPHITranslation = PtrInst && PtrInst->getParent() == BB;
885 // If no PHI translation is needed, just add all the predecessors of this
886 // block to scan them as well.
887 if (!NeedsPHITranslation) {
888 SkipFirstBlock = false;
889 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
890 // Verify that we haven't looked at this block yet.
891 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
892 InsertRes = Visited.insert(std::make_pair(*PI, Pointer));
893 if (InsertRes.second) {
894 // First time we've looked at *PI.
895 Worklist.push_back(*PI);
899 // If we have seen this block before, but it was with a different
900 // pointer then we have a phi translation failure and we have to treat
901 // this as a clobber.
902 if (InsertRes.first->second != Pointer)
903 goto PredTranslationFailure;
908 // If we do need to do phi translation, then there are a bunch of different
909 // cases, because we have to find a Value* live in the predecessor block. We
910 // know that PtrInst is defined in this block at least.
912 // We may have added values to the cache list before this PHI translation.
913 // If so, we haven't done anything to ensure that the cache remains sorted.
914 // Sort it now (if needed) so that recursive invocations of
915 // getNonLocalPointerDepFromBB and other routines that could reuse the cache
916 // value will only see properly sorted cache arrays.
917 if (Cache && NumSortedEntries != Cache->size()) {
918 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
919 NumSortedEntries = Cache->size();
922 // If this is a computation derived from a PHI node, use the suitably
923 // translated incoming values for each pred as the phi translated version.
924 if (isPHITranslatable(PtrInst)) {
927 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
928 BasicBlock *Pred = *PI;
929 Value *PredPtr = PHITranslateForPred(PtrInst, Pred);
931 // If PHI translation fails, bail out.
933 goto PredTranslationFailure;
935 // Check to see if we have already visited this pred block with another
936 // pointer. If so, we can't do this lookup. This failure can occur
937 // with PHI translation when a critical edge exists and the PHI node in
938 // the successor translates to a pointer value different than the
939 // pointer the block was first analyzed with.
940 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
941 InsertRes = Visited.insert(std::make_pair(Pred, PredPtr));
943 if (!InsertRes.second) {
944 // If the predecessor was visited with PredPtr, then we already did
945 // the analysis and can ignore it.
946 if (InsertRes.first->second == PredPtr)
949 // Otherwise, the block was previously analyzed with a different
950 // pointer. We can't represent the result of this case, so we just
951 // treat this as a phi translation failure.
952 goto PredTranslationFailure;
955 // FIXME: it is entirely possible that PHI translating will end up with
956 // the same value. Consider PHI translating something like:
957 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need*
958 // to recurse here, pedantically speaking.
960 // If we have a problem phi translating, fall through to the code below
961 // to handle the failure condition.
962 if (getNonLocalPointerDepFromBB(PredPtr, PointeeSize, isLoad, Pred,
964 goto PredTranslationFailure;
967 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
968 CacheInfo = &NonLocalPointerDeps[CacheKey];
969 Cache = &CacheInfo->second;
970 NumSortedEntries = Cache->size();
972 // Since we did phi translation, the "Cache" set won't contain all of the
973 // results for the query. This is ok (we can still use it to accelerate
974 // specific block queries) but we can't do the fastpath "return all
975 // results from the set" Clear out the indicator for this.
976 CacheInfo->first = BBSkipFirstBlockPair();
977 SkipFirstBlock = false;
981 PredTranslationFailure:
984 // Refresh the CacheInfo/Cache pointer if it got invalidated.
985 CacheInfo = &NonLocalPointerDeps[CacheKey];
986 Cache = &CacheInfo->second;
987 NumSortedEntries = Cache->size();
990 // Since we did phi translation, the "Cache" set won't contain all of the
991 // results for the query. This is ok (we can still use it to accelerate
992 // specific block queries) but we can't do the fastpath "return all
993 // results from the set" Clear out the indicator for this.
994 CacheInfo->first = BBSkipFirstBlockPair();
996 // If *nothing* works, mark the pointer as being clobbered by the first
997 // instruction in this block.
999 // If this is the magic first block, return this as a clobber of the whole
1000 // incoming value. Since we can't phi translate to one of the predecessors,
1001 // we have to bail out.
1005 for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
1006 assert(I != Cache->rend() && "Didn't find current block??");
1010 assert(I->second.isNonLocal() &&
1011 "Should only be here with transparent block");
1012 I->second = MemDepResult::getClobber(BB->begin());
1013 ReverseNonLocalPtrDeps[BB->begin()].insert(CacheKey);
1014 Result.push_back(*I);
1019 // Okay, we're done now. If we added new values to the cache, re-sort it.
1020 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1021 DEBUG(AssertSorted(*Cache));
1025 /// RemoveCachedNonLocalPointerDependencies - If P exists in
1026 /// CachedNonLocalPointerInfo, remove it.
1027 void MemoryDependenceAnalysis::
1028 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
1029 CachedNonLocalPointerInfo::iterator It =
1030 NonLocalPointerDeps.find(P);
1031 if (It == NonLocalPointerDeps.end()) return;
1033 // Remove all of the entries in the BB->val map. This involves removing
1034 // instructions from the reverse map.
1035 NonLocalDepInfo &PInfo = It->second.second;
1037 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1038 Instruction *Target = PInfo[i].second.getInst();
1039 if (Target == 0) continue; // Ignore non-local dep results.
1040 assert(Target->getParent() == PInfo[i].first);
1042 // Eliminating the dirty entry from 'Cache', so update the reverse info.
1043 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1046 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1047 NonLocalPointerDeps.erase(It);
1051 /// invalidateCachedPointerInfo - This method is used to invalidate cached
1052 /// information about the specified pointer, because it may be too
1053 /// conservative in memdep. This is an optional call that can be used when
1054 /// the client detects an equivalence between the pointer and some other
1055 /// value and replaces the other value with ptr. This can make Ptr available
1056 /// in more places that cached info does not necessarily keep.
1057 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
1058 // If Ptr isn't really a pointer, just ignore it.
1059 if (!isa<PointerType>(Ptr->getType())) return;
1060 // Flush store info for the pointer.
1061 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1062 // Flush load info for the pointer.
1063 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1066 /// removeInstruction - Remove an instruction from the dependence analysis,
1067 /// updating the dependence of instructions that previously depended on it.
1068 /// This method attempts to keep the cache coherent using the reverse map.
1069 void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
1070 // Walk through the Non-local dependencies, removing this one as the value
1071 // for any cached queries.
1072 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1073 if (NLDI != NonLocalDeps.end()) {
1074 NonLocalDepInfo &BlockMap = NLDI->second.first;
1075 for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
1077 if (Instruction *Inst = DI->second.getInst())
1078 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1079 NonLocalDeps.erase(NLDI);
1082 // If we have a cached local dependence query for this instruction, remove it.
1084 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1085 if (LocalDepEntry != LocalDeps.end()) {
1086 // Remove us from DepInst's reverse set now that the local dep info is gone.
1087 if (Instruction *Inst = LocalDepEntry->second.getInst())
1088 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1090 // Remove this local dependency info.
1091 LocalDeps.erase(LocalDepEntry);
1094 // If we have any cached pointer dependencies on this instruction, remove
1095 // them. If the instruction has non-pointer type, then it can't be a pointer
1098 // Remove it from both the load info and the store info. The instruction
1099 // can't be in either of these maps if it is non-pointer.
1100 if (isa<PointerType>(RemInst->getType())) {
1101 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1102 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1105 // Loop over all of the things that depend on the instruction we're removing.
1107 SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
1109 // If we find RemInst as a clobber or Def in any of the maps for other values,
1110 // we need to replace its entry with a dirty version of the instruction after
1111 // it. If RemInst is a terminator, we use a null dirty value.
1113 // Using a dirty version of the instruction after RemInst saves having to scan
1114 // the entire block to get to this point.
1115 MemDepResult NewDirtyVal;
1116 if (!RemInst->isTerminator())
1117 NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
1119 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1120 if (ReverseDepIt != ReverseLocalDeps.end()) {
1121 SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
1122 // RemInst can't be the terminator if it has local stuff depending on it.
1123 assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
1124 "Nothing can locally depend on a terminator");
1126 for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
1127 E = ReverseDeps.end(); I != E; ++I) {
1128 Instruction *InstDependingOnRemInst = *I;
1129 assert(InstDependingOnRemInst != RemInst &&
1130 "Already removed our local dep info");
1132 LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1134 // Make sure to remember that new things depend on NewDepInst.
1135 assert(NewDirtyVal.getInst() && "There is no way something else can have "
1136 "a local dep on this if it is a terminator!");
1137 ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
1138 InstDependingOnRemInst));
1141 ReverseLocalDeps.erase(ReverseDepIt);
1143 // Add new reverse deps after scanning the set, to avoid invalidating the
1144 // 'ReverseDeps' reference.
1145 while (!ReverseDepsToAdd.empty()) {
1146 ReverseLocalDeps[ReverseDepsToAdd.back().first]
1147 .insert(ReverseDepsToAdd.back().second);
1148 ReverseDepsToAdd.pop_back();
1152 ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1153 if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1154 SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second;
1155 for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end();
1157 assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
1159 PerInstNLInfo &INLD = NonLocalDeps[*I];
1160 // The information is now dirty!
1163 for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
1164 DE = INLD.first.end(); DI != DE; ++DI) {
1165 if (DI->second.getInst() != RemInst) continue;
1167 // Convert to a dirty entry for the subsequent instruction.
1168 DI->second = NewDirtyVal;
1170 if (Instruction *NextI = NewDirtyVal.getInst())
1171 ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
1175 ReverseNonLocalDeps.erase(ReverseDepIt);
1177 // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1178 while (!ReverseDepsToAdd.empty()) {
1179 ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
1180 .insert(ReverseDepsToAdd.back().second);
1181 ReverseDepsToAdd.pop_back();
1185 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1186 // value in the NonLocalPointerDeps info.
1187 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1188 ReverseNonLocalPtrDeps.find(RemInst);
1189 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1190 SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second;
1191 SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
1193 for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(),
1194 E = Set.end(); I != E; ++I) {
1195 ValueIsLoadPair P = *I;
1196 assert(P.getPointer() != RemInst &&
1197 "Already removed NonLocalPointerDeps info for RemInst");
1199 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].second;
1201 // The cache is not valid for any specific block anymore.
1202 NonLocalPointerDeps[P].first = BBSkipFirstBlockPair();
1204 // Update any entries for RemInst to use the instruction after it.
1205 for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
1207 if (DI->second.getInst() != RemInst) continue;
1209 // Convert to a dirty entry for the subsequent instruction.
1210 DI->second = NewDirtyVal;
1212 if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1213 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1216 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its
1217 // subsequent value may invalidate the sortedness.
1218 std::sort(NLPDI.begin(), NLPDI.end());
1221 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1223 while (!ReversePtrDepsToAdd.empty()) {
1224 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
1225 .insert(ReversePtrDepsToAdd.back().second);
1226 ReversePtrDepsToAdd.pop_back();
1231 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1232 AA->deleteValue(RemInst);
1233 DEBUG(verifyRemoved(RemInst));
1235 /// verifyRemoved - Verify that the specified instruction does not occur
1236 /// in our internal data structures.
1237 void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
1238 for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
1239 E = LocalDeps.end(); I != E; ++I) {
1240 assert(I->first != D && "Inst occurs in data structures");
1241 assert(I->second.getInst() != D &&
1242 "Inst occurs in data structures");
1245 for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
1246 E = NonLocalPointerDeps.end(); I != E; ++I) {
1247 assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
1248 const NonLocalDepInfo &Val = I->second.second;
1249 for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
1251 assert(II->second.getInst() != D && "Inst occurs as NLPD value");
1254 for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
1255 E = NonLocalDeps.end(); I != E; ++I) {
1256 assert(I->first != D && "Inst occurs in data structures");
1257 const PerInstNLInfo &INLD = I->second;
1258 for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
1259 EE = INLD.first.end(); II != EE; ++II)
1260 assert(II->second.getInst() != D && "Inst occurs in data structures");
1263 for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
1264 E = ReverseLocalDeps.end(); I != E; ++I) {
1265 assert(I->first != D && "Inst occurs in data structures");
1266 for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1267 EE = I->second.end(); II != EE; ++II)
1268 assert(*II != D && "Inst occurs in data structures");
1271 for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
1272 E = ReverseNonLocalDeps.end();
1274 assert(I->first != D && "Inst occurs in data structures");
1275 for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1276 EE = I->second.end(); II != EE; ++II)
1277 assert(*II != D && "Inst occurs in data structures");
1280 for (ReverseNonLocalPtrDepTy::const_iterator
1281 I = ReverseNonLocalPtrDeps.begin(),
1282 E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
1283 assert(I->first != D && "Inst occurs in rev NLPD map");
1285 for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(),
1286 E = I->second.end(); II != E; ++II)
1287 assert(*II != ValueIsLoadPair(D, false) &&
1288 *II != ValueIsLoadPair(D, true) &&
1289 "Inst occurs in ReverseNonLocalPtrDeps map");