1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation --*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements an analysis that determines, for a given memory
11 // operation, what preceding memory operations it depends on. It builds on
12 // alias analysis information, and tries to provide a lazy, caching interface to
13 // a common kind of alias information query.
15 //===----------------------------------------------------------------------===//
17 #define DEBUG_TYPE "memdep"
18 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/IntrinsicInst.h"
21 #include "llvm/Function.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/MemoryBuiltins.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/Support/PredIteratorCache.h"
27 #include "llvm/Support/Debug.h"
30 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
31 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
32 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
34 STATISTIC(NumCacheNonLocalPtr,
35 "Number of fully cached non-local ptr responses");
36 STATISTIC(NumCacheDirtyNonLocalPtr,
37 "Number of cached, but dirty, non-local ptr responses");
38 STATISTIC(NumUncacheNonLocalPtr,
39 "Number of uncached non-local ptr responses");
40 STATISTIC(NumCacheCompleteNonLocalPtr,
41 "Number of block queries that were completely cached");
43 char MemoryDependenceAnalysis::ID = 0;
45 // Register this pass...
46 static RegisterPass<MemoryDependenceAnalysis> X("memdep",
47 "Memory Dependence Analysis", false, true);
49 MemoryDependenceAnalysis::MemoryDependenceAnalysis()
50 : FunctionPass(&ID), PredCache(0) {
52 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
55 /// Clean up memory in between runs
56 void MemoryDependenceAnalysis::releaseMemory() {
59 NonLocalPointerDeps.clear();
60 ReverseLocalDeps.clear();
61 ReverseNonLocalDeps.clear();
62 ReverseNonLocalPtrDeps.clear();
68 /// getAnalysisUsage - Does not modify anything. It uses Alias Analysis.
70 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
72 AU.addRequiredTransitive<AliasAnalysis>();
75 bool MemoryDependenceAnalysis::runOnFunction(Function &) {
76 AA = &getAnalysis<AliasAnalysis>();
78 PredCache.reset(new PredIteratorCache());
82 /// RemoveFromReverseMap - This is a helper function that removes Val from
83 /// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry.
84 template <typename KeyTy>
85 static void RemoveFromReverseMap(DenseMap<Instruction*,
86 SmallPtrSet<KeyTy, 4> > &ReverseMap,
87 Instruction *Inst, KeyTy Val) {
88 typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
89 InstIt = ReverseMap.find(Inst);
90 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
91 bool Found = InstIt->second.erase(Val);
92 assert(Found && "Invalid reverse map!"); Found=Found;
93 if (InstIt->second.empty())
94 ReverseMap.erase(InstIt);
98 /// getCallSiteDependencyFrom - Private helper for finding the local
99 /// dependencies of a call site.
100 MemDepResult MemoryDependenceAnalysis::
101 getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
102 BasicBlock::iterator ScanIt, BasicBlock *BB) {
103 // Walk backwards through the block, looking for dependencies
104 while (ScanIt != BB->begin()) {
105 Instruction *Inst = --ScanIt;
107 // If this inst is a memory op, get the pointer it accessed
109 uint64_t PointerSize = 0;
110 if (StoreInst *S = dyn_cast<StoreInst>(Inst)) {
111 Pointer = S->getPointerOperand();
112 PointerSize = AA->getTypeStoreSize(S->getOperand(0)->getType());
113 } else if (VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
114 Pointer = V->getOperand(0);
115 PointerSize = AA->getTypeStoreSize(V->getType());
116 } else if (isFreeCall(Inst)) {
117 Pointer = Inst->getOperand(1);
118 // calls to free() erase the entire structure
120 } else if (isFreeCall(Inst)) {
121 Pointer = Inst->getOperand(0);
122 // calls to free() erase the entire structure
124 } else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
125 // Debug intrinsics don't cause dependences.
126 if (isa<DbgInfoIntrinsic>(Inst)) continue;
127 CallSite InstCS = CallSite::get(Inst);
128 // If these two calls do not interfere, look past it.
129 switch (AA->getModRefInfo(CS, InstCS)) {
130 case AliasAnalysis::NoModRef:
131 // If the two calls don't interact (e.g. InstCS is readnone) keep
134 case AliasAnalysis::Ref:
135 // If the two calls read the same memory locations and CS is a readonly
136 // function, then we have two cases: 1) the calls may not interfere with
137 // each other at all. 2) the calls may produce the same value. In case
138 // #1 we want to ignore the values, in case #2, we want to return Inst
139 // as a Def dependence. This allows us to CSE in cases like:
142 // Y = strlen(P); // Y = X
143 if (isReadOnlyCall) {
144 if (CS.getCalledFunction() != 0 &&
145 CS.getCalledFunction() == InstCS.getCalledFunction())
146 return MemDepResult::getDef(Inst);
147 // Ignore unrelated read/read call dependences.
152 return MemDepResult::getClobber(Inst);
155 // Non-memory instruction.
159 if (AA->getModRefInfo(CS, Pointer, PointerSize) != AliasAnalysis::NoModRef)
160 return MemDepResult::getClobber(Inst);
163 // No dependence found. If this is the entry block of the function, it is a
164 // clobber, otherwise it is non-local.
165 if (BB != &BB->getParent()->getEntryBlock())
166 return MemDepResult::getNonLocal();
167 return MemDepResult::getClobber(ScanIt);
170 /// getPointerDependencyFrom - Return the instruction on which a memory
171 /// location depends. If isLoad is true, this routine ignore may-aliases with
172 /// read-only operations.
173 MemDepResult MemoryDependenceAnalysis::
174 getPointerDependencyFrom(Value *MemPtr, uint64_t MemSize, bool isLoad,
175 BasicBlock::iterator ScanIt, BasicBlock *BB) {
177 // Walk backwards through the basic block, looking for dependencies.
178 while (ScanIt != BB->begin()) {
179 Instruction *Inst = --ScanIt;
181 // Debug intrinsics don't cause dependences.
182 if (isa<DbgInfoIntrinsic>(Inst)) continue;
184 // Values depend on loads if the pointers are must aliased. This means that
185 // a load depends on another must aliased load from the same value.
186 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
187 Value *Pointer = LI->getPointerOperand();
188 uint64_t PointerSize = AA->getTypeStoreSize(LI->getType());
190 // If we found a pointer, check if it could be the same as our pointer.
191 AliasAnalysis::AliasResult R =
192 AA->alias(Pointer, PointerSize, MemPtr, MemSize);
193 if (R == AliasAnalysis::NoAlias)
196 // May-alias loads don't depend on each other without a dependence.
197 if (isLoad && R == AliasAnalysis::MayAlias)
199 // Stores depend on may and must aliased loads, loads depend on must-alias
201 return MemDepResult::getDef(Inst);
204 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
205 // If alias analysis can tell that this store is guaranteed to not modify
206 // the query pointer, ignore it. Use getModRefInfo to handle cases where
207 // the query pointer points to constant memory etc.
208 if (AA->getModRefInfo(SI, MemPtr, MemSize) == AliasAnalysis::NoModRef)
211 // Ok, this store might clobber the query pointer. Check to see if it is
212 // a must alias: in this case, we want to return this as a def.
213 Value *Pointer = SI->getPointerOperand();
214 uint64_t PointerSize = AA->getTypeStoreSize(SI->getOperand(0)->getType());
216 // If we found a pointer, check if it could be the same as our pointer.
217 AliasAnalysis::AliasResult R =
218 AA->alias(Pointer, PointerSize, MemPtr, MemSize);
220 if (R == AliasAnalysis::NoAlias)
222 if (R == AliasAnalysis::MayAlias)
223 return MemDepResult::getClobber(Inst);
224 return MemDepResult::getDef(Inst);
227 // If this is an allocation, and if we know that the accessed pointer is to
228 // the allocation, return Def. This means that there is no dependence and
229 // the access can be optimized based on that. For example, a load could
231 // Note: Only determine this to be a malloc if Inst is the malloc call, not
232 // a subsequent bitcast of the malloc call result. There can be stores to
233 // the malloced memory between the malloc call and its bitcast uses, and we
234 // need to continue scanning until the malloc call.
235 if (isa<AllocaInst>(Inst) || extractMallocCall(Inst)) {
236 Value *AccessPtr = MemPtr->getUnderlyingObject();
238 if (AccessPtr == Inst ||
239 AA->alias(Inst, 1, AccessPtr, 1) == AliasAnalysis::MustAlias)
240 return MemDepResult::getDef(Inst);
244 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
245 switch (AA->getModRefInfo(Inst, MemPtr, MemSize)) {
246 case AliasAnalysis::NoModRef:
247 // If the call has no effect on the queried pointer, just ignore it.
249 case AliasAnalysis::Ref:
250 // If the call is known to never store to the pointer, and if this is a
251 // load query, we can safely ignore it (scan past it).
256 // Otherwise, there is a potential dependence. Return a clobber.
257 return MemDepResult::getClobber(Inst);
261 // No dependence found. If this is the entry block of the function, it is a
262 // clobber, otherwise it is non-local.
263 if (BB != &BB->getParent()->getEntryBlock())
264 return MemDepResult::getNonLocal();
265 return MemDepResult::getClobber(ScanIt);
268 /// getDependency - Return the instruction on which a memory operation
270 MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
271 Instruction *ScanPos = QueryInst;
273 // Check for a cached result
274 MemDepResult &LocalCache = LocalDeps[QueryInst];
276 // If the cached entry is non-dirty, just return it. Note that this depends
277 // on MemDepResult's default constructing to 'dirty'.
278 if (!LocalCache.isDirty())
281 // Otherwise, if we have a dirty entry, we know we can start the scan at that
282 // instruction, which may save us some work.
283 if (Instruction *Inst = LocalCache.getInst()) {
286 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
289 BasicBlock *QueryParent = QueryInst->getParent();
292 uint64_t MemSize = 0;
295 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
296 // No dependence found. If this is the entry block of the function, it is a
297 // clobber, otherwise it is non-local.
298 if (QueryParent != &QueryParent->getParent()->getEntryBlock())
299 LocalCache = MemDepResult::getNonLocal();
301 LocalCache = MemDepResult::getClobber(QueryInst);
302 } else if (StoreInst *SI = dyn_cast<StoreInst>(QueryInst)) {
303 // If this is a volatile store, don't mess around with it. Just return the
304 // previous instruction as a clobber.
305 if (SI->isVolatile())
306 LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
308 MemPtr = SI->getPointerOperand();
309 MemSize = AA->getTypeStoreSize(SI->getOperand(0)->getType());
311 } else if (LoadInst *LI = dyn_cast<LoadInst>(QueryInst)) {
312 // If this is a volatile load, don't mess around with it. Just return the
313 // previous instruction as a clobber.
314 if (LI->isVolatile())
315 LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
317 MemPtr = LI->getPointerOperand();
318 MemSize = AA->getTypeStoreSize(LI->getType());
320 } else if (isFreeCall(QueryInst)) {
321 MemPtr = QueryInst->getOperand(1);
322 // calls to free() erase the entire structure, not just a field.
324 } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
325 CallSite QueryCS = CallSite::get(QueryInst);
326 bool isReadOnly = AA->onlyReadsMemory(QueryCS);
327 LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
330 // Non-memory instruction.
331 LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
334 // If we need to do a pointer scan, make it happen.
336 LocalCache = getPointerDependencyFrom(MemPtr, MemSize,
337 isa<LoadInst>(QueryInst),
338 ScanPos, QueryParent);
340 // Remember the result!
341 if (Instruction *I = LocalCache.getInst())
342 ReverseLocalDeps[I].insert(QueryInst);
348 /// AssertSorted - This method is used when -debug is specified to verify that
349 /// cache arrays are properly kept sorted.
350 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
352 if (Count == -1) Count = Cache.size();
353 if (Count == 0) return;
355 for (unsigned i = 1; i != unsigned(Count); ++i)
356 assert(Cache[i-1] <= Cache[i] && "Cache isn't sorted!");
360 /// getNonLocalCallDependency - Perform a full dependency query for the
361 /// specified call, returning the set of blocks that the value is
362 /// potentially live across. The returned set of results will include a
363 /// "NonLocal" result for all blocks where the value is live across.
365 /// This method assumes the instruction returns a "NonLocal" dependency
366 /// within its own block.
368 /// This returns a reference to an internal data structure that may be
369 /// invalidated on the next non-local query or when an instruction is
370 /// removed. Clients must copy this data if they want it around longer than
372 const MemoryDependenceAnalysis::NonLocalDepInfo &
373 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
374 assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
375 "getNonLocalCallDependency should only be used on calls with non-local deps!");
376 PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
377 NonLocalDepInfo &Cache = CacheP.first;
379 /// DirtyBlocks - This is the set of blocks that need to be recomputed. In
380 /// the cached case, this can happen due to instructions being deleted etc. In
381 /// the uncached case, this starts out as the set of predecessors we care
383 SmallVector<BasicBlock*, 32> DirtyBlocks;
385 if (!Cache.empty()) {
386 // Okay, we have a cache entry. If we know it is not dirty, just return it
387 // with no computation.
388 if (!CacheP.second) {
393 // If we already have a partially computed set of results, scan them to
394 // determine what is dirty, seeding our initial DirtyBlocks worklist.
395 for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
397 if (I->second.isDirty())
398 DirtyBlocks.push_back(I->first);
400 // Sort the cache so that we can do fast binary search lookups below.
401 std::sort(Cache.begin(), Cache.end());
403 ++NumCacheDirtyNonLocal;
404 //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
405 // << Cache.size() << " cached: " << *QueryInst;
407 // Seed DirtyBlocks with each of the preds of QueryInst's block.
408 BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
409 for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI)
410 DirtyBlocks.push_back(*PI);
411 NumUncacheNonLocal++;
414 // isReadonlyCall - If this is a read-only call, we can be more aggressive.
415 bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
417 SmallPtrSet<BasicBlock*, 64> Visited;
419 unsigned NumSortedEntries = Cache.size();
420 DEBUG(AssertSorted(Cache));
422 // Iterate while we still have blocks to update.
423 while (!DirtyBlocks.empty()) {
424 BasicBlock *DirtyBB = DirtyBlocks.back();
425 DirtyBlocks.pop_back();
427 // Already processed this block?
428 if (!Visited.insert(DirtyBB))
431 // Do a binary search to see if we already have an entry for this block in
432 // the cache set. If so, find it.
433 DEBUG(AssertSorted(Cache, NumSortedEntries));
434 NonLocalDepInfo::iterator Entry =
435 std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
436 std::make_pair(DirtyBB, MemDepResult()));
437 if (Entry != Cache.begin() && prior(Entry)->first == DirtyBB)
440 MemDepResult *ExistingResult = 0;
441 if (Entry != Cache.begin()+NumSortedEntries &&
442 Entry->first == DirtyBB) {
443 // If we already have an entry, and if it isn't already dirty, the block
445 if (!Entry->second.isDirty())
448 // Otherwise, remember this slot so we can update the value.
449 ExistingResult = &Entry->second;
452 // If the dirty entry has a pointer, start scanning from it so we don't have
453 // to rescan the entire block.
454 BasicBlock::iterator ScanPos = DirtyBB->end();
455 if (ExistingResult) {
456 if (Instruction *Inst = ExistingResult->getInst()) {
458 // We're removing QueryInst's use of Inst.
459 RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
460 QueryCS.getInstruction());
464 // Find out if this block has a local dependency for QueryInst.
467 if (ScanPos != DirtyBB->begin()) {
468 Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
469 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
470 // No dependence found. If this is the entry block of the function, it is
471 // a clobber, otherwise it is non-local.
472 Dep = MemDepResult::getNonLocal();
474 Dep = MemDepResult::getClobber(ScanPos);
477 // If we had a dirty entry for the block, update it. Otherwise, just add
480 *ExistingResult = Dep;
482 Cache.push_back(std::make_pair(DirtyBB, Dep));
484 // If the block has a dependency (i.e. it isn't completely transparent to
485 // the value), remember the association!
486 if (!Dep.isNonLocal()) {
487 // Keep the ReverseNonLocalDeps map up to date so we can efficiently
488 // update this when we remove instructions.
489 if (Instruction *Inst = Dep.getInst())
490 ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
493 // If the block *is* completely transparent to the load, we need to check
494 // the predecessors of this block. Add them to our worklist.
495 for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI)
496 DirtyBlocks.push_back(*PI);
503 /// getNonLocalPointerDependency - Perform a full dependency query for an
504 /// access to the specified (non-volatile) memory location, returning the
505 /// set of instructions that either define or clobber the value.
507 /// This method assumes the pointer has a "NonLocal" dependency within its
510 void MemoryDependenceAnalysis::
511 getNonLocalPointerDependency(Value *Pointer, bool isLoad, BasicBlock *FromBB,
512 SmallVectorImpl<NonLocalDepEntry> &Result) {
513 assert(isa<PointerType>(Pointer->getType()) &&
514 "Can't get pointer deps of a non-pointer!");
517 // We know that the pointer value is live into FromBB find the def/clobbers
518 // from presecessors.
519 const Type *EltTy = cast<PointerType>(Pointer->getType())->getElementType();
520 uint64_t PointeeSize = AA->getTypeStoreSize(EltTy);
522 // This is the set of blocks we've inspected, and the pointer we consider in
523 // each block. Because of critical edges, we currently bail out if querying
524 // a block with multiple different pointers. This can happen during PHI
526 DenseMap<BasicBlock*, Value*> Visited;
527 if (!getNonLocalPointerDepFromBB(Pointer, PointeeSize, isLoad, FromBB,
528 Result, Visited, true))
531 Result.push_back(std::make_pair(FromBB,
532 MemDepResult::getClobber(FromBB->begin())));
535 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with
536 /// Pointer/PointeeSize using either cached information in Cache or by doing a
537 /// lookup (which may use dirty cache info if available). If we do a lookup,
538 /// add the result to the cache.
539 MemDepResult MemoryDependenceAnalysis::
540 GetNonLocalInfoForBlock(Value *Pointer, uint64_t PointeeSize,
541 bool isLoad, BasicBlock *BB,
542 NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
544 // Do a binary search to see if we already have an entry for this block in
545 // the cache set. If so, find it.
546 NonLocalDepInfo::iterator Entry =
547 std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
548 std::make_pair(BB, MemDepResult()));
549 if (Entry != Cache->begin() && prior(Entry)->first == BB)
552 MemDepResult *ExistingResult = 0;
553 if (Entry != Cache->begin()+NumSortedEntries && Entry->first == BB)
554 ExistingResult = &Entry->second;
556 // If we have a cached entry, and it is non-dirty, use it as the value for
558 if (ExistingResult && !ExistingResult->isDirty()) {
559 ++NumCacheNonLocalPtr;
560 return *ExistingResult;
563 // Otherwise, we have to scan for the value. If we have a dirty cache
564 // entry, start scanning from its position, otherwise we scan from the end
566 BasicBlock::iterator ScanPos = BB->end();
567 if (ExistingResult && ExistingResult->getInst()) {
568 assert(ExistingResult->getInst()->getParent() == BB &&
569 "Instruction invalidated?");
570 ++NumCacheDirtyNonLocalPtr;
571 ScanPos = ExistingResult->getInst();
573 // Eliminating the dirty entry from 'Cache', so update the reverse info.
574 ValueIsLoadPair CacheKey(Pointer, isLoad);
575 RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey);
577 ++NumUncacheNonLocalPtr;
580 // Scan the block for the dependency.
581 MemDepResult Dep = getPointerDependencyFrom(Pointer, PointeeSize, isLoad,
584 // If we had a dirty entry for the block, update it. Otherwise, just add
587 *ExistingResult = Dep;
589 Cache->push_back(std::make_pair(BB, Dep));
591 // If the block has a dependency (i.e. it isn't completely transparent to
592 // the value), remember the reverse association because we just added it
594 if (Dep.isNonLocal())
597 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
598 // update MemDep when we remove instructions.
599 Instruction *Inst = Dep.getInst();
600 assert(Inst && "Didn't depend on anything?");
601 ValueIsLoadPair CacheKey(Pointer, isLoad);
602 ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
606 /// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain
607 /// number of elements in the array that are already properly ordered. This is
608 /// optimized for the case when only a few entries are added.
610 SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
611 unsigned NumSortedEntries) {
612 switch (Cache.size() - NumSortedEntries) {
614 // done, no new entries.
617 // Two new entries, insert the last one into place.
618 MemoryDependenceAnalysis::NonLocalDepEntry Val = Cache.back();
620 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
621 std::upper_bound(Cache.begin(), Cache.end()-1, Val);
622 Cache.insert(Entry, Val);
626 // One new entry, Just insert the new value at the appropriate position.
627 if (Cache.size() != 1) {
628 MemoryDependenceAnalysis::NonLocalDepEntry Val = Cache.back();
630 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
631 std::upper_bound(Cache.begin(), Cache.end(), Val);
632 Cache.insert(Entry, Val);
636 // Added many values, do a full scale sort.
637 std::sort(Cache.begin(), Cache.end());
643 /// getNonLocalPointerDepFromBB - Perform a dependency query based on
644 /// pointer/pointeesize starting at the end of StartBB. Add any clobber/def
645 /// results to the results vector and keep track of which blocks are visited in
648 /// This has special behavior for the first block queries (when SkipFirstBlock
649 /// is true). In this special case, it ignores the contents of the specified
650 /// block and starts returning dependence info for its predecessors.
652 /// This function returns false on success, or true to indicate that it could
653 /// not compute dependence information for some reason. This should be treated
654 /// as a clobber dependence on the first instruction in the predecessor block.
655 bool MemoryDependenceAnalysis::
656 getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize,
657 bool isLoad, BasicBlock *StartBB,
658 SmallVectorImpl<NonLocalDepEntry> &Result,
659 DenseMap<BasicBlock*, Value*> &Visited,
660 bool SkipFirstBlock) {
662 // Look up the cached info for Pointer.
663 ValueIsLoadPair CacheKey(Pointer, isLoad);
665 std::pair<BBSkipFirstBlockPair, NonLocalDepInfo> *CacheInfo =
666 &NonLocalPointerDeps[CacheKey];
667 NonLocalDepInfo *Cache = &CacheInfo->second;
669 // If we have valid cached information for exactly the block we are
670 // investigating, just return it with no recomputation.
671 if (CacheInfo->first == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
672 // We have a fully cached result for this query then we can just return the
673 // cached results and populate the visited set. However, we have to verify
674 // that we don't already have conflicting results for these blocks. Check
675 // to ensure that if a block in the results set is in the visited set that
676 // it was for the same pointer query.
677 if (!Visited.empty()) {
678 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
680 DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->first);
681 if (VI == Visited.end() || VI->second == Pointer) continue;
683 // We have a pointer mismatch in a block. Just return clobber, saying
684 // that something was clobbered in this result. We could also do a
685 // non-fully cached query, but there is little point in doing this.
690 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
692 Visited.insert(std::make_pair(I->first, Pointer));
693 if (!I->second.isNonLocal())
694 Result.push_back(*I);
696 ++NumCacheCompleteNonLocalPtr;
700 // Otherwise, either this is a new block, a block with an invalid cache
701 // pointer or one that we're about to invalidate by putting more info into it
702 // than its valid cache info. If empty, the result will be valid cache info,
703 // otherwise it isn't.
705 CacheInfo->first = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
707 CacheInfo->first = BBSkipFirstBlockPair();
709 SmallVector<BasicBlock*, 32> Worklist;
710 Worklist.push_back(StartBB);
712 // Keep track of the entries that we know are sorted. Previously cached
713 // entries will all be sorted. The entries we add we only sort on demand (we
714 // don't insert every element into its sorted position). We know that we
715 // won't get any reuse from currently inserted values, because we don't
716 // revisit blocks after we insert info for them.
717 unsigned NumSortedEntries = Cache->size();
718 DEBUG(AssertSorted(*Cache));
720 while (!Worklist.empty()) {
721 BasicBlock *BB = Worklist.pop_back_val();
723 // Skip the first block if we have it.
724 if (!SkipFirstBlock) {
725 // Analyze the dependency of *Pointer in FromBB. See if we already have
727 assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
729 // Get the dependency info for Pointer in BB. If we have cached
730 // information, we will use it, otherwise we compute it.
731 DEBUG(AssertSorted(*Cache, NumSortedEntries));
732 MemDepResult Dep = GetNonLocalInfoForBlock(Pointer, PointeeSize, isLoad,
733 BB, Cache, NumSortedEntries);
735 // If we got a Def or Clobber, add this to the list of results.
736 if (!Dep.isNonLocal()) {
737 Result.push_back(NonLocalDepEntry(BB, Dep));
742 // If 'Pointer' is an instruction defined in this block, then we need to do
743 // phi translation to change it into a value live in the predecessor block.
744 // If phi translation fails, then we can't continue dependence analysis.
745 Instruction *PtrInst = dyn_cast<Instruction>(Pointer);
746 bool NeedsPHITranslation = PtrInst && PtrInst->getParent() == BB;
748 // If no PHI translation is needed, just add all the predecessors of this
749 // block to scan them as well.
750 if (!NeedsPHITranslation) {
751 SkipFirstBlock = false;
752 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
753 // Verify that we haven't looked at this block yet.
754 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
755 InsertRes = Visited.insert(std::make_pair(*PI, Pointer));
756 if (InsertRes.second) {
757 // First time we've looked at *PI.
758 Worklist.push_back(*PI);
762 // If we have seen this block before, but it was with a different
763 // pointer then we have a phi translation failure and we have to treat
764 // this as a clobber.
765 if (InsertRes.first->second != Pointer)
766 goto PredTranslationFailure;
771 // If we do need to do phi translation, then there are a bunch of different
772 // cases, because we have to find a Value* live in the predecessor block. We
773 // know that PtrInst is defined in this block at least.
775 // We may have added values to the cache list before this PHI translation.
776 // If so, we haven't done anything to ensure that the cache remains sorted.
777 // Sort it now (if needed) so that recursive invocations of
778 // getNonLocalPointerDepFromBB and other routines that could reuse the cache
779 // value will only see properly sorted cache arrays.
780 if (Cache && NumSortedEntries != Cache->size()) {
781 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
782 NumSortedEntries = Cache->size();
785 // If this is directly a PHI node, just use the incoming values for each
786 // pred as the phi translated version.
787 if (PHINode *PtrPHI = dyn_cast<PHINode>(PtrInst)) {
790 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
791 BasicBlock *Pred = *PI;
792 Value *PredPtr = PtrPHI->getIncomingValueForBlock(Pred);
794 // Check to see if we have already visited this pred block with another
795 // pointer. If so, we can't do this lookup. This failure can occur
796 // with PHI translation when a critical edge exists and the PHI node in
797 // the successor translates to a pointer value different than the
798 // pointer the block was first analyzed with.
799 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
800 InsertRes = Visited.insert(std::make_pair(Pred, PredPtr));
802 if (!InsertRes.second) {
803 // If the predecessor was visited with PredPtr, then we already did
804 // the analysis and can ignore it.
805 if (InsertRes.first->second == PredPtr)
808 // Otherwise, the block was previously analyzed with a different
809 // pointer. We can't represent the result of this case, so we just
810 // treat this as a phi translation failure.
811 goto PredTranslationFailure;
814 // FIXME: it is entirely possible that PHI translating will end up with
815 // the same value. Consider PHI translating something like:
816 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need*
817 // to recurse here, pedantically speaking.
819 // If we have a problem phi translating, fall through to the code below
820 // to handle the failure condition.
821 if (getNonLocalPointerDepFromBB(PredPtr, PointeeSize, isLoad, Pred,
823 goto PredTranslationFailure;
826 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
827 CacheInfo = &NonLocalPointerDeps[CacheKey];
828 Cache = &CacheInfo->second;
829 NumSortedEntries = Cache->size();
831 // Since we did phi translation, the "Cache" set won't contain all of the
832 // results for the query. This is ok (we can still use it to accelerate
833 // specific block queries) but we can't do the fastpath "return all
834 // results from the set" Clear out the indicator for this.
835 CacheInfo->first = BBSkipFirstBlockPair();
836 SkipFirstBlock = false;
840 // TODO: BITCAST, GEP.
842 // cerr << "MEMDEP: Could not PHI translate: " << *Pointer;
843 // if (isa<BitCastInst>(PtrInst) || isa<GetElementPtrInst>(PtrInst))
844 // cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0);
845 PredTranslationFailure:
848 // Refresh the CacheInfo/Cache pointer if it got invalidated.
849 CacheInfo = &NonLocalPointerDeps[CacheKey];
850 Cache = &CacheInfo->second;
851 NumSortedEntries = Cache->size();
854 // Since we did phi translation, the "Cache" set won't contain all of the
855 // results for the query. This is ok (we can still use it to accelerate
856 // specific block queries) but we can't do the fastpath "return all
857 // results from the set" Clear out the indicator for this.
858 CacheInfo->first = BBSkipFirstBlockPair();
860 // If *nothing* works, mark the pointer as being clobbered by the first
861 // instruction in this block.
863 // If this is the magic first block, return this as a clobber of the whole
864 // incoming value. Since we can't phi translate to one of the predecessors,
865 // we have to bail out.
869 for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
870 assert(I != Cache->rend() && "Didn't find current block??");
874 assert(I->second.isNonLocal() &&
875 "Should only be here with transparent block");
876 I->second = MemDepResult::getClobber(BB->begin());
877 ReverseNonLocalPtrDeps[BB->begin()].insert(CacheKey);
878 Result.push_back(*I);
883 // Okay, we're done now. If we added new values to the cache, re-sort it.
884 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
885 DEBUG(AssertSorted(*Cache));
889 /// RemoveCachedNonLocalPointerDependencies - If P exists in
890 /// CachedNonLocalPointerInfo, remove it.
891 void MemoryDependenceAnalysis::
892 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
893 CachedNonLocalPointerInfo::iterator It =
894 NonLocalPointerDeps.find(P);
895 if (It == NonLocalPointerDeps.end()) return;
897 // Remove all of the entries in the BB->val map. This involves removing
898 // instructions from the reverse map.
899 NonLocalDepInfo &PInfo = It->second.second;
901 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
902 Instruction *Target = PInfo[i].second.getInst();
903 if (Target == 0) continue; // Ignore non-local dep results.
904 assert(Target->getParent() == PInfo[i].first);
906 // Eliminating the dirty entry from 'Cache', so update the reverse info.
907 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
910 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
911 NonLocalPointerDeps.erase(It);
915 /// invalidateCachedPointerInfo - This method is used to invalidate cached
916 /// information about the specified pointer, because it may be too
917 /// conservative in memdep. This is an optional call that can be used when
918 /// the client detects an equivalence between the pointer and some other
919 /// value and replaces the other value with ptr. This can make Ptr available
920 /// in more places that cached info does not necessarily keep.
921 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
922 // If Ptr isn't really a pointer, just ignore it.
923 if (!isa<PointerType>(Ptr->getType())) return;
924 // Flush store info for the pointer.
925 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
926 // Flush load info for the pointer.
927 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
930 /// removeInstruction - Remove an instruction from the dependence analysis,
931 /// updating the dependence of instructions that previously depended on it.
932 /// This method attempts to keep the cache coherent using the reverse map.
933 void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
934 // Walk through the Non-local dependencies, removing this one as the value
935 // for any cached queries.
936 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
937 if (NLDI != NonLocalDeps.end()) {
938 NonLocalDepInfo &BlockMap = NLDI->second.first;
939 for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
941 if (Instruction *Inst = DI->second.getInst())
942 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
943 NonLocalDeps.erase(NLDI);
946 // If we have a cached local dependence query for this instruction, remove it.
948 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
949 if (LocalDepEntry != LocalDeps.end()) {
950 // Remove us from DepInst's reverse set now that the local dep info is gone.
951 if (Instruction *Inst = LocalDepEntry->second.getInst())
952 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
954 // Remove this local dependency info.
955 LocalDeps.erase(LocalDepEntry);
958 // If we have any cached pointer dependencies on this instruction, remove
959 // them. If the instruction has non-pointer type, then it can't be a pointer
962 // Remove it from both the load info and the store info. The instruction
963 // can't be in either of these maps if it is non-pointer.
964 if (isa<PointerType>(RemInst->getType())) {
965 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
966 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
969 // Loop over all of the things that depend on the instruction we're removing.
971 SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
973 // If we find RemInst as a clobber or Def in any of the maps for other values,
974 // we need to replace its entry with a dirty version of the instruction after
975 // it. If RemInst is a terminator, we use a null dirty value.
977 // Using a dirty version of the instruction after RemInst saves having to scan
978 // the entire block to get to this point.
979 MemDepResult NewDirtyVal;
980 if (!RemInst->isTerminator())
981 NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
983 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
984 if (ReverseDepIt != ReverseLocalDeps.end()) {
985 SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
986 // RemInst can't be the terminator if it has local stuff depending on it.
987 assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
988 "Nothing can locally depend on a terminator");
990 for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
991 E = ReverseDeps.end(); I != E; ++I) {
992 Instruction *InstDependingOnRemInst = *I;
993 assert(InstDependingOnRemInst != RemInst &&
994 "Already removed our local dep info");
996 LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
998 // Make sure to remember that new things depend on NewDepInst.
999 assert(NewDirtyVal.getInst() && "There is no way something else can have "
1000 "a local dep on this if it is a terminator!");
1001 ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
1002 InstDependingOnRemInst));
1005 ReverseLocalDeps.erase(ReverseDepIt);
1007 // Add new reverse deps after scanning the set, to avoid invalidating the
1008 // 'ReverseDeps' reference.
1009 while (!ReverseDepsToAdd.empty()) {
1010 ReverseLocalDeps[ReverseDepsToAdd.back().first]
1011 .insert(ReverseDepsToAdd.back().second);
1012 ReverseDepsToAdd.pop_back();
1016 ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1017 if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1018 SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second;
1019 for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end();
1021 assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
1023 PerInstNLInfo &INLD = NonLocalDeps[*I];
1024 // The information is now dirty!
1027 for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
1028 DE = INLD.first.end(); DI != DE; ++DI) {
1029 if (DI->second.getInst() != RemInst) continue;
1031 // Convert to a dirty entry for the subsequent instruction.
1032 DI->second = NewDirtyVal;
1034 if (Instruction *NextI = NewDirtyVal.getInst())
1035 ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
1039 ReverseNonLocalDeps.erase(ReverseDepIt);
1041 // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1042 while (!ReverseDepsToAdd.empty()) {
1043 ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
1044 .insert(ReverseDepsToAdd.back().second);
1045 ReverseDepsToAdd.pop_back();
1049 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1050 // value in the NonLocalPointerDeps info.
1051 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1052 ReverseNonLocalPtrDeps.find(RemInst);
1053 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1054 SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second;
1055 SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
1057 for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(),
1058 E = Set.end(); I != E; ++I) {
1059 ValueIsLoadPair P = *I;
1060 assert(P.getPointer() != RemInst &&
1061 "Already removed NonLocalPointerDeps info for RemInst");
1063 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].second;
1065 // The cache is not valid for any specific block anymore.
1066 NonLocalPointerDeps[P].first = BBSkipFirstBlockPair();
1068 // Update any entries for RemInst to use the instruction after it.
1069 for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
1071 if (DI->second.getInst() != RemInst) continue;
1073 // Convert to a dirty entry for the subsequent instruction.
1074 DI->second = NewDirtyVal;
1076 if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1077 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1080 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its
1081 // subsequent value may invalidate the sortedness.
1082 std::sort(NLPDI.begin(), NLPDI.end());
1085 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1087 while (!ReversePtrDepsToAdd.empty()) {
1088 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
1089 .insert(ReversePtrDepsToAdd.back().second);
1090 ReversePtrDepsToAdd.pop_back();
1095 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1096 AA->deleteValue(RemInst);
1097 DEBUG(verifyRemoved(RemInst));
1099 /// verifyRemoved - Verify that the specified instruction does not occur
1100 /// in our internal data structures.
1101 void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
1102 for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
1103 E = LocalDeps.end(); I != E; ++I) {
1104 assert(I->first != D && "Inst occurs in data structures");
1105 assert(I->second.getInst() != D &&
1106 "Inst occurs in data structures");
1109 for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
1110 E = NonLocalPointerDeps.end(); I != E; ++I) {
1111 assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
1112 const NonLocalDepInfo &Val = I->second.second;
1113 for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
1115 assert(II->second.getInst() != D && "Inst occurs as NLPD value");
1118 for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
1119 E = NonLocalDeps.end(); I != E; ++I) {
1120 assert(I->first != D && "Inst occurs in data structures");
1121 const PerInstNLInfo &INLD = I->second;
1122 for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
1123 EE = INLD.first.end(); II != EE; ++II)
1124 assert(II->second.getInst() != D && "Inst occurs in data structures");
1127 for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
1128 E = ReverseLocalDeps.end(); I != E; ++I) {
1129 assert(I->first != D && "Inst occurs in data structures");
1130 for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1131 EE = I->second.end(); II != EE; ++II)
1132 assert(*II != D && "Inst occurs in data structures");
1135 for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
1136 E = ReverseNonLocalDeps.end();
1138 assert(I->first != D && "Inst occurs in data structures");
1139 for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1140 EE = I->second.end(); II != EE; ++II)
1141 assert(*II != D && "Inst occurs in data structures");
1144 for (ReverseNonLocalPtrDepTy::const_iterator
1145 I = ReverseNonLocalPtrDeps.begin(),
1146 E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
1147 assert(I->first != D && "Inst occurs in rev NLPD map");
1149 for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(),
1150 E = I->second.end(); II != E; ++II)
1151 assert(*II != ValueIsLoadPair(D, false) &&
1152 *II != ValueIsLoadPair(D, true) &&
1153 "Inst occurs in ReverseNonLocalPtrDeps map");