1 //===- ProfileEstimatorPass.cpp - LLVM Pass to estimate profile info ------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements a concrete implementation of profiling information that
11 // estimates the profiling information in a very crude and unimaginative way.
13 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "profile-estimator"
15 #include "llvm/Pass.h"
16 #include "llvm/Analysis/Passes.h"
17 #include "llvm/Analysis/ProfileInfo.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/Support/CommandLine.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include "llvm/Support/Format.h"
25 static cl::opt<double>
27 "profile-estimator-loop-weight", cl::init(10),
28 cl::value_desc("loop-weight"),
29 cl::desc("Number of loop executions used for profile-estimator")
33 class ProfileEstimatorPass : public FunctionPass, public ProfileInfo {
36 std::set<BasicBlock*> BBToVisit;
37 std::map<Loop*,double> LoopExitWeights;
38 std::map<Edge,double> MinimalWeight;
40 static char ID; // Class identification, replacement for typeinfo
41 explicit ProfileEstimatorPass(const double execcount = 0)
42 : FunctionPass(&ID), ExecCount(execcount) {
43 if (execcount == 0) ExecCount = LoopWeight;
46 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
48 AU.addRequired<LoopInfo>();
51 virtual const char *getPassName() const {
52 return "Profiling information estimator";
55 /// run - Estimate the profile information from the specified file.
56 virtual bool runOnFunction(Function &F);
58 /// getAdjustedAnalysisPointer - This method is used when a pass implements
59 /// an analysis interface through multiple inheritance. If needed, it
60 /// should override this to adjust the this pointer as needed for the
61 /// specified pass info.
62 virtual void *getAdjustedAnalysisPointer(const PassInfo *PI) {
63 if (PI->isPassID(&ProfileInfo::ID))
64 return (ProfileInfo*)this;
68 virtual void recurseBasicBlock(BasicBlock *BB);
70 void inline printEdgeWeight(Edge);
72 } // End of anonymous namespace
74 char ProfileEstimatorPass::ID = 0;
75 static RegisterPass<ProfileEstimatorPass>
76 X("profile-estimator", "Estimate profiling information", false, true);
78 static RegisterAnalysisGroup<ProfileInfo> Y(X);
81 const PassInfo *ProfileEstimatorPassID = &X;
83 FunctionPass *createProfileEstimatorPass() {
84 return new ProfileEstimatorPass();
87 /// createProfileEstimatorPass - This function returns a Pass that estimates
88 /// profiling information using the given loop execution count.
89 Pass *createProfileEstimatorPass(const unsigned execcount) {
90 return new ProfileEstimatorPass(execcount);
94 static double ignoreMissing(double w) {
95 if (w == ProfileInfo::MissingValue) return 0;
99 static void inline printEdgeError(ProfileInfo::Edge e, const char *M) {
100 DEBUG(dbgs() << "-- Edge " << e << " is not calculated, " << M << "\n");
103 void inline ProfileEstimatorPass::printEdgeWeight(Edge E) {
104 DEBUG(dbgs() << "-- Weight of Edge " << E << ":"
105 << format("%20.20g", getEdgeWeight(E)) << "\n");
108 // recurseBasicBlock() - This calculates the ProfileInfo estimation for a
109 // single block and then recurses into the successors.
110 // The algorithm preserves the flow condition, meaning that the sum of the
111 // weight of the incoming edges must be equal the block weight which must in
112 // turn be equal to the sume of the weights of the outgoing edges.
113 // Since the flow of an block is deterimined from the current state of the
114 // flow, once an edge has a flow assigned this flow is never changed again,
115 // otherwise it would be possible to violate the flow condition in another
117 void ProfileEstimatorPass::recurseBasicBlock(BasicBlock *BB) {
119 // Break the recursion if this BasicBlock was already visited.
120 if (BBToVisit.find(BB) == BBToVisit.end()) return;
122 // Read the LoopInfo for this block.
123 bool BBisHeader = LI->isLoopHeader(BB);
124 Loop* BBLoop = LI->getLoopFor(BB);
126 // To get the block weight, read all incoming edges.
128 std::set<BasicBlock*> ProcessedPreds;
129 for ( pred_iterator bbi = pred_begin(BB), bbe = pred_end(BB);
130 bbi != bbe; ++bbi ) {
131 // If this block was not considered already, add weight.
132 Edge edge = getEdge(*bbi,BB);
133 double w = getEdgeWeight(edge);
134 if (ProcessedPreds.insert(*bbi).second) {
135 BBWeight += ignoreMissing(w);
137 // If this block is a loop header and the predecessor is contained in this
138 // loop, thus the edge is a backedge, continue and do not check if the
140 if (BBisHeader && BBLoop->contains(*bbi)) {
141 printEdgeError(edge, "but is backedge, continueing");
144 // If the edges value is missing (and this is no loop header, and this is
145 // no backedge) return, this block is currently non estimatable.
146 if (w == MissingValue) {
147 printEdgeError(edge, "returning");
151 if (getExecutionCount(BB) != MissingValue) {
152 BBWeight = getExecutionCount(BB);
155 // Fetch all necessary information for current block.
156 SmallVector<Edge, 8> ExitEdges;
157 SmallVector<Edge, 8> Edges;
159 BBLoop->getExitEdges(ExitEdges);
162 // If this is a loop header, consider the following:
163 // Exactly the flow that is entering this block, must exit this block too. So
165 // *) get all the exit edges, read the flow that is already leaving this
166 // loop, remember the edges that do not have any flow on them right now.
167 // (The edges that have already flow on them are most likely exiting edges of
168 // other loops, do not touch those flows because the previously caclulated
169 // loopheaders would not be exact anymore.)
170 // *) In case there is not a single exiting edge left, create one at the loop
171 // latch to prevent the flow from building up in the loop.
172 // *) Take the flow that is not leaving the loop already and distribute it on
173 // the remaining exiting edges.
174 // (This ensures that all flow that enters the loop also leaves it.)
175 // *) Increase the flow into the loop by increasing the weight of this block.
176 // There is at least one incoming backedge that will bring us this flow later
177 // on. (So that the flow condition in this node is valid again.)
179 double incoming = BBWeight;
180 // Subtract the flow leaving the loop.
181 std::set<Edge> ProcessedExits;
182 for (SmallVector<Edge, 8>::iterator ei = ExitEdges.begin(),
183 ee = ExitEdges.end(); ei != ee; ++ei) {
184 if (ProcessedExits.insert(*ei).second) {
185 double w = getEdgeWeight(*ei);
186 if (w == MissingValue) {
187 Edges.push_back(*ei);
188 // Check if there is a necessary minimal weight, if yes, subtract it
190 if (MinimalWeight.find(*ei) != MinimalWeight.end()) {
191 incoming -= MinimalWeight[*ei];
192 DEBUG(dbgs() << "Reserving " << format("%.20g",MinimalWeight[*ei]) << " at " << (*ei) << "\n");
199 // If no exit edges, create one:
200 if (Edges.size() == 0) {
201 BasicBlock *Latch = BBLoop->getLoopLatch();
203 Edge edge = getEdge(Latch,0);
204 EdgeInformation[BB->getParent()][edge] = BBWeight;
205 printEdgeWeight(edge);
206 edge = getEdge(Latch, BB);
207 EdgeInformation[BB->getParent()][edge] = BBWeight * ExecCount;
208 printEdgeWeight(edge);
212 // Distribute remaining weight to the exting edges. To prevent fractions
213 // from building up and provoking precision problems the weight which is to
214 // be distributed is split and the rounded, the last edge gets a somewhat
215 // bigger value, but we are close enough for an estimation.
216 double fraction = floor(incoming/Edges.size());
217 for (SmallVector<Edge, 8>::iterator ei = Edges.begin(), ee = Edges.end();
222 incoming -= fraction;
226 EdgeInformation[BB->getParent()][*ei] += w;
227 // Read necessary minimal weight.
228 if (MinimalWeight.find(*ei) != MinimalWeight.end()) {
229 EdgeInformation[BB->getParent()][*ei] += MinimalWeight[*ei];
230 DEBUG(dbgs() << "Additionally " << format("%.20g",MinimalWeight[*ei]) << " at " << (*ei) << "\n");
232 printEdgeWeight(*ei);
234 // Add minimal weight to paths to all exit edges, this is used to ensure
235 // that enough flow is reaching this edges.
237 const BasicBlock *Dest = GetPath(BB, (*ei).first, p, GetPathToDest);
239 const BasicBlock *Parent = p.find(Dest)->second;
240 Edge e = getEdge(Parent, Dest);
241 if (MinimalWeight.find(e) == MinimalWeight.end()) {
242 MinimalWeight[e] = 0;
244 MinimalWeight[e] += w;
245 DEBUG(dbgs() << "Minimal Weight for " << e << ": " << format("%.20g",MinimalWeight[e]) << "\n");
249 // Increase flow into the loop.
250 BBWeight *= (ExecCount+1);
253 BlockInformation[BB->getParent()][BB] = BBWeight;
254 // Up until now we considered only the loop exiting edges, now we have a
255 // definite block weight and must distribute this onto the outgoing edges.
256 // Since there may be already flow attached to some of the edges, read this
257 // flow first and remember the edges that have still now flow attached.
259 std::set<BasicBlock*> ProcessedSuccs;
261 succ_iterator bbi = succ_begin(BB), bbe = succ_end(BB);
262 // Also check for (BB,0) edges that may already contain some flow. (But only
263 // in case there are no successors.)
265 Edge edge = getEdge(BB,0);
266 EdgeInformation[BB->getParent()][edge] = BBWeight;
267 printEdgeWeight(edge);
269 for ( ; bbi != bbe; ++bbi ) {
270 if (ProcessedSuccs.insert(*bbi).second) {
271 Edge edge = getEdge(BB,*bbi);
272 double w = getEdgeWeight(edge);
273 if (w != MissingValue) {
274 BBWeight -= getEdgeWeight(edge);
276 Edges.push_back(edge);
277 // If minimal weight is necessary, reserve weight by subtracting weight
278 // from block weight, this is readded later on.
279 if (MinimalWeight.find(edge) != MinimalWeight.end()) {
280 BBWeight -= MinimalWeight[edge];
281 DEBUG(dbgs() << "Reserving " << format("%.20g",MinimalWeight[edge]) << " at " << edge << "\n");
287 double fraction = floor(BBWeight/Edges.size());
288 // Finally we know what flow is still not leaving the block, distribute this
289 // flow onto the empty edges.
290 for (SmallVector<Edge, 8>::iterator ei = Edges.begin(), ee = Edges.end();
293 EdgeInformation[BB->getParent()][*ei] += fraction;
294 BBWeight -= fraction;
296 EdgeInformation[BB->getParent()][*ei] += BBWeight;
298 // Readd minial necessary weight.
299 if (MinimalWeight.find(*ei) != MinimalWeight.end()) {
300 EdgeInformation[BB->getParent()][*ei] += MinimalWeight[*ei];
301 DEBUG(dbgs() << "Additionally " << format("%.20g",MinimalWeight[*ei]) << " at " << (*ei) << "\n");
303 printEdgeWeight(*ei);
306 // This block is visited, mark this before the recursion.
309 // Recurse into successors.
310 for (succ_iterator bbi = succ_begin(BB), bbe = succ_end(BB);
312 recurseBasicBlock(*bbi);
316 bool ProfileEstimatorPass::runOnFunction(Function &F) {
317 if (F.isDeclaration()) return false;
319 // Fetch LoopInfo and clear ProfileInfo for this function.
320 LI = &getAnalysis<LoopInfo>();
321 FunctionInformation.erase(&F);
322 BlockInformation[&F].clear();
323 EdgeInformation[&F].clear();
325 // Mark all blocks as to visit.
326 for (Function::iterator bi = F.begin(), be = F.end(); bi != be; ++bi)
327 BBToVisit.insert(bi);
329 // Clear Minimal Edges.
330 MinimalWeight.clear();
332 DEBUG(dbgs() << "Working on function " << F.getNameStr() << "\n");
334 // Since the entry block is the first one and has no predecessors, the edge
335 // (0,entry) is inserted with the starting weight of 1.
336 BasicBlock *entry = &F.getEntryBlock();
337 BlockInformation[&F][entry] = pow(2.0, 32.0);
338 Edge edge = getEdge(0,entry);
339 EdgeInformation[&F][edge] = BlockInformation[&F][entry];
340 printEdgeWeight(edge);
342 // Since recurseBasicBlock() maybe returns with a block which was not fully
343 // estimated, use recurseBasicBlock() until everything is calculated.
344 bool cleanup = false;
345 recurseBasicBlock(entry);
346 while (BBToVisit.size() > 0 && !cleanup) {
347 // Remember number of open blocks, this is later used to check if progress
349 unsigned size = BBToVisit.size();
351 // Try to calculate all blocks in turn.
352 for (std::set<BasicBlock*>::iterator bi = BBToVisit.begin(),
353 be = BBToVisit.end(); bi != be; ++bi) {
354 recurseBasicBlock(*bi);
355 // If at least one block was finished, break because iterator may be
357 if (BBToVisit.size() < size) break;
360 // If there was not a single block resolved, make some assumptions.
361 if (BBToVisit.size() == size) {
363 for (std::set<BasicBlock*>::iterator BBI = BBToVisit.begin(), BBE = BBToVisit.end();
364 (BBI != BBE) && (!found); ++BBI) {
365 BasicBlock *BB = *BBI;
366 // Try each predecessor if it can be assumend.
367 for (pred_iterator bbi = pred_begin(BB), bbe = pred_end(BB);
368 (bbi != bbe) && (!found); ++bbi) {
369 Edge e = getEdge(*bbi,BB);
370 double w = getEdgeWeight(e);
371 // Check that edge from predecessor is still free.
372 if (w == MissingValue) {
373 // Check if there is a circle from this block to predecessor.
375 const BasicBlock *Dest = GetPath(BB, *bbi, P, GetPathToDest);
377 // If there is no circle, just set edge weight to 0
378 EdgeInformation[&F][e] = 0;
379 DEBUG(dbgs() << "Assuming edge weight: ");
388 DEBUG(dbgs() << "No assumption possible in Fuction "<<F.getName()<<", setting all to zero\n");
392 // In case there was no safe way to assume edges, set as a last measure,
393 // set _everything_ to zero.
395 FunctionInformation[&F] = 0;
396 BlockInformation[&F].clear();
397 EdgeInformation[&F].clear();
398 for (Function::const_iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
399 const BasicBlock *BB = &(*FI);
400 BlockInformation[&F][BB] = 0;
401 pred_const_iterator predi = pred_begin(BB), prede = pred_end(BB);
402 if (predi == prede) {
403 Edge e = getEdge(0,BB);
406 for (;predi != prede; ++predi) {
407 Edge e = getEdge(*predi,BB);
410 succ_const_iterator succi = succ_begin(BB), succe = succ_end(BB);
411 if (succi == succe) {
412 Edge e = getEdge(BB,0);
415 for (;succi != succe; ++succi) {
416 Edge e = getEdge(*succi,BB);