1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the implementation of the scalar evolution expander,
11 // which is used to generate the code corresponding to a given scalar evolution
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Analysis/ScalarEvolutionExpander.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/LLVMContext.h"
19 #include "llvm/Target/TargetData.h"
20 #include "llvm/ADT/STLExtras.h"
23 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
24 /// which must be possible with a noop cast, doing what we can to share
26 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, const Type *Ty) {
27 Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
28 assert((Op == Instruction::BitCast ||
29 Op == Instruction::PtrToInt ||
30 Op == Instruction::IntToPtr) &&
31 "InsertNoopCastOfTo cannot perform non-noop casts!");
32 assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
33 "InsertNoopCastOfTo cannot change sizes!");
35 // Short-circuit unnecessary bitcasts.
36 if (Op == Instruction::BitCast && V->getType() == Ty)
39 // Short-circuit unnecessary inttoptr<->ptrtoint casts.
40 if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
41 SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
42 if (CastInst *CI = dyn_cast<CastInst>(V))
43 if ((CI->getOpcode() == Instruction::PtrToInt ||
44 CI->getOpcode() == Instruction::IntToPtr) &&
45 SE.getTypeSizeInBits(CI->getType()) ==
46 SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
47 return CI->getOperand(0);
48 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
49 if ((CE->getOpcode() == Instruction::PtrToInt ||
50 CE->getOpcode() == Instruction::IntToPtr) &&
51 SE.getTypeSizeInBits(CE->getType()) ==
52 SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
53 return CE->getOperand(0);
56 if (Constant *C = dyn_cast<Constant>(V))
57 return ConstantExpr::getCast(Op, C, Ty);
59 if (Argument *A = dyn_cast<Argument>(V)) {
60 // Check to see if there is already a cast!
61 for (Value::use_iterator UI = A->use_begin(), E = A->use_end();
63 if ((*UI)->getType() == Ty)
64 if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI)))
65 if (CI->getOpcode() == Op) {
66 // If the cast isn't the first instruction of the function, move it.
67 if (BasicBlock::iterator(CI) !=
68 A->getParent()->getEntryBlock().begin()) {
69 // Recreate the cast at the beginning of the entry block.
70 // The old cast is left in place in case it is being used
71 // as an insert point.
73 CastInst::Create(Op, V, Ty, "",
74 A->getParent()->getEntryBlock().begin());
76 CI->replaceAllUsesWith(NewCI);
82 Instruction *I = CastInst::Create(Op, V, Ty, V->getName(),
83 A->getParent()->getEntryBlock().begin());
84 rememberInstruction(I);
88 Instruction *I = cast<Instruction>(V);
90 // Check to see if there is already a cast. If there is, use it.
91 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
93 if ((*UI)->getType() == Ty)
94 if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI)))
95 if (CI->getOpcode() == Op) {
96 BasicBlock::iterator It = I; ++It;
97 if (isa<InvokeInst>(I))
98 It = cast<InvokeInst>(I)->getNormalDest()->begin();
99 while (isa<PHINode>(It)) ++It;
100 if (It != BasicBlock::iterator(CI)) {
101 // Recreate the cast after the user.
102 // The old cast is left in place in case it is being used
103 // as an insert point.
104 Instruction *NewCI = CastInst::Create(Op, V, Ty, "", It);
106 CI->replaceAllUsesWith(NewCI);
107 rememberInstruction(NewCI);
110 rememberInstruction(CI);
114 BasicBlock::iterator IP = I; ++IP;
115 if (InvokeInst *II = dyn_cast<InvokeInst>(I))
116 IP = II->getNormalDest()->begin();
117 while (isa<PHINode>(IP)) ++IP;
118 Instruction *CI = CastInst::Create(Op, V, Ty, V->getName(), IP);
119 rememberInstruction(CI);
123 /// InsertBinop - Insert the specified binary operator, doing a small amount
124 /// of work to avoid inserting an obviously redundant operation.
125 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
126 Value *LHS, Value *RHS) {
127 // Fold a binop with constant operands.
128 if (Constant *CLHS = dyn_cast<Constant>(LHS))
129 if (Constant *CRHS = dyn_cast<Constant>(RHS))
130 return ConstantExpr::get(Opcode, CLHS, CRHS);
132 // Do a quick scan to see if we have this binop nearby. If so, reuse it.
133 unsigned ScanLimit = 6;
134 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
135 // Scanning starts from the last instruction before the insertion point.
136 BasicBlock::iterator IP = Builder.GetInsertPoint();
137 if (IP != BlockBegin) {
139 for (; ScanLimit; --IP, --ScanLimit) {
140 if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
141 IP->getOperand(1) == RHS)
143 if (IP == BlockBegin) break;
147 // If we haven't found this binop, insert it.
148 Value *BO = Builder.CreateBinOp(Opcode, LHS, RHS, "tmp");
149 rememberInstruction(BO);
153 /// FactorOutConstant - Test if S is divisible by Factor, using signed
154 /// division. If so, update S with Factor divided out and return true.
155 /// S need not be evenly divisible if a reasonable remainder can be
157 /// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
158 /// unnecessary; in its place, just signed-divide Ops[i] by the scale and
159 /// check to see if the divide was folded.
160 static bool FactorOutConstant(const SCEV *&S,
161 const SCEV *&Remainder,
164 const TargetData *TD) {
165 // Everything is divisible by one.
171 S = SE.getIntegerSCEV(1, S->getType());
175 // For a Constant, check for a multiple of the given factor.
176 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
180 // Check for divisibility.
181 if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
183 ConstantInt::get(SE.getContext(),
184 C->getValue()->getValue().sdiv(
185 FC->getValue()->getValue()));
186 // If the quotient is zero and the remainder is non-zero, reject
187 // the value at this scale. It will be considered for subsequent
190 const SCEV *Div = SE.getConstant(CI);
193 SE.getAddExpr(Remainder,
194 SE.getConstant(C->getValue()->getValue().srem(
195 FC->getValue()->getValue())));
201 // In a Mul, check if there is a constant operand which is a multiple
202 // of the given factor.
203 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
205 // With TargetData, the size is known. Check if there is a constant
206 // operand which is a multiple of the given factor. If so, we can
208 const SCEVConstant *FC = cast<SCEVConstant>(Factor);
209 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
210 if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) {
211 const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
212 SmallVector<const SCEV *, 4> NewMulOps(MOperands.begin(),
215 SE.getConstant(C->getValue()->getValue().sdiv(
216 FC->getValue()->getValue()));
217 S = SE.getMulExpr(NewMulOps);
221 // Without TargetData, check if Factor can be factored out of any of the
222 // Mul's operands. If so, we can just remove it.
223 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
224 const SCEV *SOp = M->getOperand(i);
225 const SCEV *Remainder = SE.getIntegerSCEV(0, SOp->getType());
226 if (FactorOutConstant(SOp, Remainder, Factor, SE, TD) &&
227 Remainder->isZero()) {
228 const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
229 SmallVector<const SCEV *, 4> NewMulOps(MOperands.begin(),
232 S = SE.getMulExpr(NewMulOps);
239 // In an AddRec, check if both start and step are divisible.
240 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
241 const SCEV *Step = A->getStepRecurrence(SE);
242 const SCEV *StepRem = SE.getIntegerSCEV(0, Step->getType());
243 if (!FactorOutConstant(Step, StepRem, Factor, SE, TD))
245 if (!StepRem->isZero())
247 const SCEV *Start = A->getStart();
248 if (!FactorOutConstant(Start, Remainder, Factor, SE, TD))
250 S = SE.getAddRecExpr(Start, Step, A->getLoop());
257 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
258 /// is the number of SCEVAddRecExprs present, which are kept at the end of
261 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
263 ScalarEvolution &SE) {
264 unsigned NumAddRecs = 0;
265 for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
267 // Group Ops into non-addrecs and addrecs.
268 SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
269 SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
270 // Let ScalarEvolution sort and simplify the non-addrecs list.
271 const SCEV *Sum = NoAddRecs.empty() ?
272 SE.getIntegerSCEV(0, Ty) :
273 SE.getAddExpr(NoAddRecs);
274 // If it returned an add, use the operands. Otherwise it simplified
275 // the sum into a single value, so just use that.
276 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
277 Ops = Add->getOperands();
283 // Then append the addrecs.
284 Ops.insert(Ops.end(), AddRecs.begin(), AddRecs.end());
287 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
288 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
289 /// This helps expose more opportunities for folding parts of the expressions
290 /// into GEP indices.
292 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
294 ScalarEvolution &SE) {
296 SmallVector<const SCEV *, 8> AddRecs;
297 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
298 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
299 const SCEV *Start = A->getStart();
300 if (Start->isZero()) break;
301 const SCEV *Zero = SE.getIntegerSCEV(0, Ty);
302 AddRecs.push_back(SE.getAddRecExpr(Zero,
303 A->getStepRecurrence(SE),
305 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
307 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
308 e += Add->getNumOperands();
313 if (!AddRecs.empty()) {
314 // Add the addrecs onto the end of the list.
315 Ops.insert(Ops.end(), AddRecs.begin(), AddRecs.end());
316 // Resort the operand list, moving any constants to the front.
317 SimplifyAddOperands(Ops, Ty, SE);
321 /// expandAddToGEP - Expand an addition expression with a pointer type into
322 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
323 /// BasicAliasAnalysis and other passes analyze the result. See the rules
324 /// for getelementptr vs. inttoptr in
325 /// http://llvm.org/docs/LangRef.html#pointeraliasing
328 /// Design note: The correctness of using getelementptr here depends on
329 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
330 /// they may introduce pointer arithmetic which may not be safely converted
331 /// into getelementptr.
333 /// Design note: It might seem desirable for this function to be more
334 /// loop-aware. If some of the indices are loop-invariant while others
335 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
336 /// loop-invariant portions of the overall computation outside the loop.
337 /// However, there are a few reasons this is not done here. Hoisting simple
338 /// arithmetic is a low-level optimization that often isn't very
339 /// important until late in the optimization process. In fact, passes
340 /// like InstructionCombining will combine GEPs, even if it means
341 /// pushing loop-invariant computation down into loops, so even if the
342 /// GEPs were split here, the work would quickly be undone. The
343 /// LoopStrengthReduction pass, which is usually run quite late (and
344 /// after the last InstructionCombining pass), takes care of hoisting
345 /// loop-invariant portions of expressions, after considering what
346 /// can be folded using target addressing modes.
348 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
349 const SCEV *const *op_end,
350 const PointerType *PTy,
353 const Type *ElTy = PTy->getElementType();
354 SmallVector<Value *, 4> GepIndices;
355 SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
356 bool AnyNonZeroIndices = false;
358 // Split AddRecs up into parts as either of the parts may be usable
359 // without the other.
360 SplitAddRecs(Ops, Ty, SE);
362 // Descend down the pointer's type and attempt to convert the other
363 // operands into GEP indices, at each level. The first index in a GEP
364 // indexes into the array implied by the pointer operand; the rest of
365 // the indices index into the element or field type selected by the
368 // If the scale size is not 0, attempt to factor out a scale for
370 SmallVector<const SCEV *, 8> ScaledOps;
371 if (ElTy->isSized()) {
372 const SCEV *ElSize = SE.getSizeOfExpr(ElTy);
373 if (!ElSize->isZero()) {
374 SmallVector<const SCEV *, 8> NewOps;
375 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
376 const SCEV *Op = Ops[i];
377 const SCEV *Remainder = SE.getIntegerSCEV(0, Ty);
378 if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.TD)) {
379 // Op now has ElSize factored out.
380 ScaledOps.push_back(Op);
381 if (!Remainder->isZero())
382 NewOps.push_back(Remainder);
383 AnyNonZeroIndices = true;
385 // The operand was not divisible, so add it to the list of operands
386 // we'll scan next iteration.
387 NewOps.push_back(Ops[i]);
390 // If we made any changes, update Ops.
391 if (!ScaledOps.empty()) {
393 SimplifyAddOperands(Ops, Ty, SE);
398 // Record the scaled array index for this level of the type. If
399 // we didn't find any operands that could be factored, tentatively
400 // assume that element zero was selected (since the zero offset
401 // would obviously be folded away).
402 Value *Scaled = ScaledOps.empty() ?
403 Constant::getNullValue(Ty) :
404 expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
405 GepIndices.push_back(Scaled);
407 // Collect struct field index operands.
408 while (const StructType *STy = dyn_cast<StructType>(ElTy)) {
409 bool FoundFieldNo = false;
410 // An empty struct has no fields.
411 if (STy->getNumElements() == 0) break;
413 // With TargetData, field offsets are known. See if a constant offset
414 // falls within any of the struct fields.
415 if (Ops.empty()) break;
416 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
417 if (SE.getTypeSizeInBits(C->getType()) <= 64) {
418 const StructLayout &SL = *SE.TD->getStructLayout(STy);
419 uint64_t FullOffset = C->getValue()->getZExtValue();
420 if (FullOffset < SL.getSizeInBytes()) {
421 unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
422 GepIndices.push_back(
423 ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
424 ElTy = STy->getTypeAtIndex(ElIdx);
426 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
427 AnyNonZeroIndices = true;
432 // Without TargetData, just check for an offsetof expression of the
433 // appropriate struct type.
434 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
435 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Ops[i])) {
438 if (U->isOffsetOf(CTy, FieldNo) && CTy == STy) {
439 GepIndices.push_back(FieldNo);
441 STy->getTypeAtIndex(cast<ConstantInt>(FieldNo)->getZExtValue());
442 Ops[i] = SE.getConstant(Ty, 0);
443 AnyNonZeroIndices = true;
449 // If no struct field offsets were found, tentatively assume that
450 // field zero was selected (since the zero offset would obviously
453 ElTy = STy->getTypeAtIndex(0u);
454 GepIndices.push_back(
455 Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
459 if (const ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
460 ElTy = ATy->getElementType();
465 // If none of the operands were convertible to proper GEP indices, cast
466 // the base to i8* and do an ugly getelementptr with that. It's still
467 // better than ptrtoint+arithmetic+inttoptr at least.
468 if (!AnyNonZeroIndices) {
469 // Cast the base to i8*.
470 V = InsertNoopCastOfTo(V,
471 Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
473 // Expand the operands for a plain byte offset.
474 Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
476 // Fold a GEP with constant operands.
477 if (Constant *CLHS = dyn_cast<Constant>(V))
478 if (Constant *CRHS = dyn_cast<Constant>(Idx))
479 return ConstantExpr::getGetElementPtr(CLHS, &CRHS, 1);
481 // Do a quick scan to see if we have this GEP nearby. If so, reuse it.
482 unsigned ScanLimit = 6;
483 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
484 // Scanning starts from the last instruction before the insertion point.
485 BasicBlock::iterator IP = Builder.GetInsertPoint();
486 if (IP != BlockBegin) {
488 for (; ScanLimit; --IP, --ScanLimit) {
489 if (IP->getOpcode() == Instruction::GetElementPtr &&
490 IP->getOperand(0) == V && IP->getOperand(1) == Idx)
492 if (IP == BlockBegin) break;
497 Value *GEP = Builder.CreateGEP(V, Idx, "uglygep");
498 rememberInstruction(GEP);
502 // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
503 // because ScalarEvolution may have changed the address arithmetic to
504 // compute a value which is beyond the end of the allocated object.
506 if (V->getType() != PTy)
507 Casted = InsertNoopCastOfTo(Casted, PTy);
508 Value *GEP = Builder.CreateGEP(Casted,
512 Ops.push_back(SE.getUnknown(GEP));
513 rememberInstruction(GEP);
514 return expand(SE.getAddExpr(Ops));
517 /// isNonConstantNegative - Return true if the specified scev is negated, but
519 static bool isNonConstantNegative(const SCEV *F) {
520 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(F);
521 if (!Mul) return false;
523 // If there is a constant factor, it will be first.
524 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
525 if (!SC) return false;
527 // Return true if the value is negative, this matches things like (-42 * V).
528 return SC->getValue()->getValue().isNegative();
531 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
532 /// SCEV expansion. If they are nested, this is the most nested. If they are
533 /// neighboring, pick the later.
534 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
538 if (A->contains(B)) return B;
539 if (B->contains(A)) return A;
540 if (DT.dominates(A->getHeader(), B->getHeader())) return B;
541 if (DT.dominates(B->getHeader(), A->getHeader())) return A;
542 return A; // Arbitrarily break the tie.
545 /// GetRelevantLoop - Get the most relevant loop associated with the given
546 /// expression, according to PickMostRelevantLoop.
547 static const Loop *GetRelevantLoop(const SCEV *S, LoopInfo &LI,
549 if (isa<SCEVConstant>(S))
551 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
552 if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
553 return LI.getLoopFor(I->getParent());
556 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
558 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
560 for (SCEVNAryExpr::op_iterator I = N->op_begin(), E = N->op_end();
562 L = PickMostRelevantLoop(L, GetRelevantLoop(*I, LI, DT), DT);
565 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
566 return GetRelevantLoop(C->getOperand(), LI, DT);
567 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S))
568 return PickMostRelevantLoop(GetRelevantLoop(D->getLHS(), LI, DT),
569 GetRelevantLoop(D->getRHS(), LI, DT),
571 llvm_unreachable("Unexpected SCEV type!");
576 /// LoopCompare - Compare loops by PickMostRelevantLoop.
580 explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
582 bool operator()(std::pair<const Loop *, const SCEV *> LHS,
583 std::pair<const Loop *, const SCEV *> RHS) const {
584 // Compare loops with PickMostRelevantLoop.
585 if (LHS.first != RHS.first)
586 return PickMostRelevantLoop(LHS.first, RHS.first, DT) == LHS.first;
588 // If one operand is a non-constant negative and the other is not,
589 // put the non-constant negative on the right so that a sub can
590 // be used instead of a negate and add.
591 if (isNonConstantNegative(LHS.second)) {
592 if (!isNonConstantNegative(RHS.second))
594 } else if (isNonConstantNegative(RHS.second))
597 // Otherwise they are equivalent according to this comparison.
604 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
605 const Type *Ty = SE.getEffectiveSCEVType(S->getType());
607 // Collect all the add operands in a loop, along with their associated loops.
608 // Iterate in reverse so that constants are emitted last, all else equal, and
609 // so that pointer operands are inserted first, which the code below relies on
610 // to form more involved GEPs.
611 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
612 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
613 E(S->op_begin()); I != E; ++I)
614 OpsAndLoops.push_back(std::make_pair(GetRelevantLoop(*I, *SE.LI, *SE.DT),
617 // Sort by loop. Use a stable sort so that constants follow non-constants and
618 // pointer operands precede non-pointer operands.
619 std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
621 // Emit instructions to add all the operands. Hoist as much as possible
622 // out of loops, and form meaningful getelementptrs where possible.
624 for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
625 I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
626 const Loop *CurLoop = I->first;
627 const SCEV *Op = I->second;
629 // This is the first operand. Just expand it.
632 } else if (const PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
633 // The running sum expression is a pointer. Try to form a getelementptr
634 // at this level with that as the base.
635 SmallVector<const SCEV *, 4> NewOps;
636 for (; I != E && I->first == CurLoop; ++I)
637 NewOps.push_back(I->second);
638 Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
639 } else if (const PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
640 // The running sum is an integer, and there's a pointer at this level.
641 // Try to form a getelementptr.
642 SmallVector<const SCEV *, 4> NewOps;
643 NewOps.push_back(SE.getUnknown(Sum));
644 for (++I; I != E && I->first == CurLoop; ++I)
645 NewOps.push_back(I->second);
646 Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
647 } else if (isNonConstantNegative(Op)) {
648 // Instead of doing a negate and add, just do a subtract.
649 Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
650 Sum = InsertNoopCastOfTo(Sum, Ty);
651 Sum = InsertBinop(Instruction::Sub, Sum, W);
655 Value *W = expandCodeFor(Op, Ty);
656 Sum = InsertNoopCastOfTo(Sum, Ty);
657 Sum = InsertBinop(Instruction::Add, Sum, W);
665 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
666 const Type *Ty = SE.getEffectiveSCEVType(S->getType());
667 int FirstOp = 0; // Set if we should emit a subtract.
668 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(0)))
669 if (SC->getValue()->isAllOnesValue())
672 int i = S->getNumOperands()-2;
673 Value *V = expandCodeFor(S->getOperand(i+1), Ty);
675 // Emit a bunch of multiply instructions
676 for (; i >= FirstOp; --i) {
677 Value *W = expandCodeFor(S->getOperand(i), Ty);
678 V = InsertBinop(Instruction::Mul, V, W);
681 // -1 * ... ---> 0 - ...
683 V = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), V);
687 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
688 const Type *Ty = SE.getEffectiveSCEVType(S->getType());
690 Value *LHS = expandCodeFor(S->getLHS(), Ty);
691 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
692 const APInt &RHS = SC->getValue()->getValue();
693 if (RHS.isPowerOf2())
694 return InsertBinop(Instruction::LShr, LHS,
695 ConstantInt::get(Ty, RHS.logBase2()));
698 Value *RHS = expandCodeFor(S->getRHS(), Ty);
699 return InsertBinop(Instruction::UDiv, LHS, RHS);
702 /// Move parts of Base into Rest to leave Base with the minimal
703 /// expression that provides a pointer operand suitable for a
705 static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
706 ScalarEvolution &SE) {
707 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
708 Base = A->getStart();
709 Rest = SE.getAddExpr(Rest,
710 SE.getAddRecExpr(SE.getIntegerSCEV(0, A->getType()),
711 A->getStepRecurrence(SE),
714 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
715 Base = A->getOperand(A->getNumOperands()-1);
716 SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
717 NewAddOps.back() = Rest;
718 Rest = SE.getAddExpr(NewAddOps);
719 ExposePointerBase(Base, Rest, SE);
723 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
724 /// the base addrec, which is the addrec without any non-loop-dominating
725 /// values, and return the PHI.
727 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
729 const Type *ExpandTy,
731 // Reuse a previously-inserted PHI, if present.
732 for (BasicBlock::iterator I = L->getHeader()->begin();
733 PHINode *PN = dyn_cast<PHINode>(I); ++I)
734 if (SE.isSCEVable(PN->getType()) &&
735 (SE.getEffectiveSCEVType(PN->getType()) ==
736 SE.getEffectiveSCEVType(Normalized->getType())) &&
737 SE.getSCEV(PN) == Normalized)
738 if (BasicBlock *LatchBlock = L->getLoopLatch()) {
740 cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
742 // Determine if this is a well-behaved chain of instructions leading
743 // back to the PHI. It probably will be, if we're scanning an inner
744 // loop already visited by LSR for example, but it wouldn't have
747 if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV)) {
751 // If any of the operands don't dominate the insert position, bail.
752 // Addrec operands are always loop-invariant, so this can only happen
753 // if there are instructions which haven't been hoisted.
754 for (User::op_iterator OI = IncV->op_begin()+1,
755 OE = IncV->op_end(); OI != OE; ++OI)
756 if (Instruction *OInst = dyn_cast<Instruction>(OI))
757 if (!SE.DT->dominates(OInst, IVIncInsertPos)) {
763 // Advance to the next instruction.
764 IncV = dyn_cast<Instruction>(IncV->getOperand(0));
767 if (IncV->mayHaveSideEffects()) {
771 } while (IncV != PN);
774 // Ok, the add recurrence looks usable.
775 // Remember this PHI, even in post-inc mode.
776 InsertedValues.insert(PN);
777 // Remember the increment.
778 IncV = cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
779 rememberInstruction(IncV);
780 if (L == IVIncInsertLoop)
782 if (SE.DT->dominates(IncV, IVIncInsertPos))
784 // Make sure the increment is where we want it. But don't move it
785 // down past a potential existing post-inc user.
786 IncV->moveBefore(IVIncInsertPos);
787 IVIncInsertPos = IncV;
788 IncV = cast<Instruction>(IncV->getOperand(0));
789 } while (IncV != PN);
794 // Save the original insertion point so we can restore it when we're done.
795 BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
796 BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
798 // Expand code for the start value.
799 Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
800 L->getHeader()->begin());
802 // Expand code for the step value. Insert instructions right before the
803 // terminator corresponding to the back-edge. Do this before creating the PHI
804 // so that PHI reuse code doesn't see an incomplete PHI. If the stride is
805 // negative, insert a sub instead of an add for the increment (unless it's a
806 // constant, because subtracts of constants are canonicalized to adds).
807 const SCEV *Step = Normalized->getStepRecurrence(SE);
808 bool isPointer = ExpandTy->isPointerTy();
809 bool isNegative = !isPointer && isNonConstantNegative(Step);
811 Step = SE.getNegativeSCEV(Step);
812 Value *StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
815 Builder.SetInsertPoint(L->getHeader(), L->getHeader()->begin());
816 PHINode *PN = Builder.CreatePHI(ExpandTy, "lsr.iv");
817 rememberInstruction(PN);
819 // Create the step instructions and populate the PHI.
820 BasicBlock *Header = L->getHeader();
821 for (pred_iterator HPI = pred_begin(Header), HPE = pred_end(Header);
823 BasicBlock *Pred = *HPI;
825 // Add a start value.
826 if (!L->contains(Pred)) {
827 PN->addIncoming(StartV, Pred);
831 // Create a step value and add it to the PHI. If IVIncInsertLoop is
832 // non-null and equal to the addrec's loop, insert the instructions
833 // at IVIncInsertPos.
834 Instruction *InsertPos = L == IVIncInsertLoop ?
835 IVIncInsertPos : Pred->getTerminator();
836 Builder.SetInsertPoint(InsertPos->getParent(), InsertPos);
838 // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
840 const PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
841 // If the step isn't constant, don't use an implicitly scaled GEP, because
842 // that would require a multiply inside the loop.
843 if (!isa<ConstantInt>(StepV))
844 GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
845 GEPPtrTy->getAddressSpace());
846 const SCEV *const StepArray[1] = { SE.getSCEV(StepV) };
847 IncV = expandAddToGEP(StepArray, StepArray+1, GEPPtrTy, IntTy, PN);
848 if (IncV->getType() != PN->getType()) {
849 IncV = Builder.CreateBitCast(IncV, PN->getType(), "tmp");
850 rememberInstruction(IncV);
854 Builder.CreateSub(PN, StepV, "lsr.iv.next") :
855 Builder.CreateAdd(PN, StepV, "lsr.iv.next");
856 rememberInstruction(IncV);
858 PN->addIncoming(IncV, Pred);
861 // Restore the original insert point.
863 restoreInsertPoint(SaveInsertBB, SaveInsertPt);
865 // Remember this PHI, even in post-inc mode.
866 InsertedValues.insert(PN);
871 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
872 const Type *STy = S->getType();
873 const Type *IntTy = SE.getEffectiveSCEVType(STy);
874 const Loop *L = S->getLoop();
876 // Determine a normalized form of this expression, which is the expression
877 // before any post-inc adjustment is made.
878 const SCEVAddRecExpr *Normalized = S;
879 if (L == PostIncLoop) {
880 const SCEV *Step = S->getStepRecurrence(SE);
881 Normalized = cast<SCEVAddRecExpr>(SE.getMinusSCEV(S, Step));
884 // Strip off any non-loop-dominating component from the addrec start.
885 const SCEV *Start = Normalized->getStart();
886 const SCEV *PostLoopOffset = 0;
887 if (!Start->properlyDominates(L->getHeader(), SE.DT)) {
888 PostLoopOffset = Start;
889 Start = SE.getIntegerSCEV(0, Normalized->getType());
891 cast<SCEVAddRecExpr>(SE.getAddRecExpr(Start,
892 Normalized->getStepRecurrence(SE),
893 Normalized->getLoop()));
896 // Strip off any non-loop-dominating component from the addrec step.
897 const SCEV *Step = Normalized->getStepRecurrence(SE);
898 const SCEV *PostLoopScale = 0;
899 if (!Step->hasComputableLoopEvolution(L) &&
900 !Step->dominates(L->getHeader(), SE.DT)) {
901 PostLoopScale = Step;
902 Step = SE.getIntegerSCEV(1, Normalized->getType());
904 cast<SCEVAddRecExpr>(SE.getAddRecExpr(Start, Step,
905 Normalized->getLoop()));
908 // Expand the core addrec. If we need post-loop scaling, force it to
909 // expand to an integer type to avoid the need for additional casting.
910 const Type *ExpandTy = PostLoopScale ? IntTy : STy;
911 PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy);
913 // Accommodate post-inc mode, if necessary.
915 if (L != PostIncLoop)
918 // In PostInc mode, use the post-incremented value.
919 BasicBlock *LatchBlock = L->getLoopLatch();
920 assert(LatchBlock && "PostInc mode requires a unique loop latch!");
921 Result = PN->getIncomingValueForBlock(LatchBlock);
924 // Re-apply any non-loop-dominating scale.
926 Result = InsertNoopCastOfTo(Result, IntTy);
927 Result = Builder.CreateMul(Result,
928 expandCodeFor(PostLoopScale, IntTy));
929 rememberInstruction(Result);
932 // Re-apply any non-loop-dominating offset.
933 if (PostLoopOffset) {
934 if (const PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
935 const SCEV *const OffsetArray[1] = { PostLoopOffset };
936 Result = expandAddToGEP(OffsetArray, OffsetArray+1, PTy, IntTy, Result);
938 Result = InsertNoopCastOfTo(Result, IntTy);
939 Result = Builder.CreateAdd(Result,
940 expandCodeFor(PostLoopOffset, IntTy));
941 rememberInstruction(Result);
948 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
949 if (!CanonicalMode) return expandAddRecExprLiterally(S);
951 const Type *Ty = SE.getEffectiveSCEVType(S->getType());
952 const Loop *L = S->getLoop();
954 // First check for an existing canonical IV in a suitable type.
955 PHINode *CanonicalIV = 0;
956 if (PHINode *PN = L->getCanonicalInductionVariable())
957 if (SE.isSCEVable(PN->getType()) &&
958 SE.getEffectiveSCEVType(PN->getType())->isIntegerTy() &&
959 SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
962 // Rewrite an AddRec in terms of the canonical induction variable, if
963 // its type is more narrow.
965 SE.getTypeSizeInBits(CanonicalIV->getType()) >
966 SE.getTypeSizeInBits(Ty)) {
967 const SmallVectorImpl<const SCEV *> &Ops = S->getOperands();
968 SmallVector<const SCEV *, 4> NewOps(Ops.size());
969 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
970 NewOps[i] = SE.getAnyExtendExpr(Ops[i], CanonicalIV->getType());
971 Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop()));
972 BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
973 BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
974 BasicBlock::iterator NewInsertPt =
975 llvm::next(BasicBlock::iterator(cast<Instruction>(V)));
976 while (isa<PHINode>(NewInsertPt)) ++NewInsertPt;
977 V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), 0,
979 restoreInsertPoint(SaveInsertBB, SaveInsertPt);
983 // {X,+,F} --> X + {0,+,F}
984 if (!S->getStart()->isZero()) {
985 const SmallVectorImpl<const SCEV *> &SOperands = S->getOperands();
986 SmallVector<const SCEV *, 4> NewOps(SOperands.begin(), SOperands.end());
987 NewOps[0] = SE.getIntegerSCEV(0, Ty);
988 const SCEV *Rest = SE.getAddRecExpr(NewOps, L);
990 // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
991 // comments on expandAddToGEP for details.
992 const SCEV *Base = S->getStart();
993 const SCEV *RestArray[1] = { Rest };
994 // Dig into the expression to find the pointer base for a GEP.
995 ExposePointerBase(Base, RestArray[0], SE);
996 // If we found a pointer, expand the AddRec with a GEP.
997 if (const PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
998 // Make sure the Base isn't something exotic, such as a multiplied
999 // or divided pointer value. In those cases, the result type isn't
1000 // actually a pointer type.
1001 if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
1002 Value *StartV = expand(Base);
1003 assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1004 return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
1008 // Just do a normal add. Pre-expand the operands to suppress folding.
1009 return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())),
1010 SE.getUnknown(expand(Rest))));
1013 // {0,+,1} --> Insert a canonical induction variable into the loop!
1014 if (S->isAffine() &&
1015 S->getOperand(1) == SE.getIntegerSCEV(1, Ty)) {
1016 // If there's a canonical IV, just use it.
1018 assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1019 "IVs with types different from the canonical IV should "
1020 "already have been handled!");
1024 // Create and insert the PHI node for the induction variable in the
1026 BasicBlock *Header = L->getHeader();
1027 PHINode *PN = PHINode::Create(Ty, "indvar", Header->begin());
1028 rememberInstruction(PN);
1030 Constant *One = ConstantInt::get(Ty, 1);
1031 for (pred_iterator HPI = pred_begin(Header), HPE = pred_end(Header);
1033 if (L->contains(*HPI)) {
1034 // Insert a unit add instruction right before the terminator
1035 // corresponding to the back-edge.
1036 Instruction *Add = BinaryOperator::CreateAdd(PN, One, "indvar.next",
1037 (*HPI)->getTerminator());
1038 rememberInstruction(Add);
1039 PN->addIncoming(Add, *HPI);
1041 PN->addIncoming(Constant::getNullValue(Ty), *HPI);
1045 // {0,+,F} --> {0,+,1} * F
1046 // Get the canonical induction variable I for this loop.
1047 Value *I = CanonicalIV ?
1049 getOrInsertCanonicalInductionVariable(L, Ty);
1051 // If this is a simple linear addrec, emit it now as a special case.
1052 if (S->isAffine()) // {0,+,F} --> i*F
1054 expand(SE.getTruncateOrNoop(
1055 SE.getMulExpr(SE.getUnknown(I),
1056 SE.getNoopOrAnyExtend(S->getOperand(1),
1060 // If this is a chain of recurrences, turn it into a closed form, using the
1061 // folders, then expandCodeFor the closed form. This allows the folders to
1062 // simplify the expression without having to build a bunch of special code
1063 // into this folder.
1064 const SCEV *IH = SE.getUnknown(I); // Get I as a "symbolic" SCEV.
1066 // Promote S up to the canonical IV type, if the cast is foldable.
1067 const SCEV *NewS = S;
1068 const SCEV *Ext = SE.getNoopOrAnyExtend(S, I->getType());
1069 if (isa<SCEVAddRecExpr>(Ext))
1072 const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1073 //cerr << "Evaluated: " << *this << "\n to: " << *V << "\n";
1075 // Truncate the result down to the original type, if needed.
1076 const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1080 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1081 const Type *Ty = SE.getEffectiveSCEVType(S->getType());
1082 Value *V = expandCodeFor(S->getOperand(),
1083 SE.getEffectiveSCEVType(S->getOperand()->getType()));
1084 Value *I = Builder.CreateTrunc(V, Ty, "tmp");
1085 rememberInstruction(I);
1089 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1090 const Type *Ty = SE.getEffectiveSCEVType(S->getType());
1091 Value *V = expandCodeFor(S->getOperand(),
1092 SE.getEffectiveSCEVType(S->getOperand()->getType()));
1093 Value *I = Builder.CreateZExt(V, Ty, "tmp");
1094 rememberInstruction(I);
1098 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1099 const Type *Ty = SE.getEffectiveSCEVType(S->getType());
1100 Value *V = expandCodeFor(S->getOperand(),
1101 SE.getEffectiveSCEVType(S->getOperand()->getType()));
1102 Value *I = Builder.CreateSExt(V, Ty, "tmp");
1103 rememberInstruction(I);
1107 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1108 Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1109 const Type *Ty = LHS->getType();
1110 for (int i = S->getNumOperands()-2; i >= 0; --i) {
1111 // In the case of mixed integer and pointer types, do the
1112 // rest of the comparisons as integer.
1113 if (S->getOperand(i)->getType() != Ty) {
1114 Ty = SE.getEffectiveSCEVType(Ty);
1115 LHS = InsertNoopCastOfTo(LHS, Ty);
1117 Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1118 Value *ICmp = Builder.CreateICmpSGT(LHS, RHS, "tmp");
1119 rememberInstruction(ICmp);
1120 Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1121 rememberInstruction(Sel);
1124 // In the case of mixed integer and pointer types, cast the
1125 // final result back to the pointer type.
1126 if (LHS->getType() != S->getType())
1127 LHS = InsertNoopCastOfTo(LHS, S->getType());
1131 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1132 Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1133 const Type *Ty = LHS->getType();
1134 for (int i = S->getNumOperands()-2; i >= 0; --i) {
1135 // In the case of mixed integer and pointer types, do the
1136 // rest of the comparisons as integer.
1137 if (S->getOperand(i)->getType() != Ty) {
1138 Ty = SE.getEffectiveSCEVType(Ty);
1139 LHS = InsertNoopCastOfTo(LHS, Ty);
1141 Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1142 Value *ICmp = Builder.CreateICmpUGT(LHS, RHS, "tmp");
1143 rememberInstruction(ICmp);
1144 Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1145 rememberInstruction(Sel);
1148 // In the case of mixed integer and pointer types, cast the
1149 // final result back to the pointer type.
1150 if (LHS->getType() != S->getType())
1151 LHS = InsertNoopCastOfTo(LHS, S->getType());
1155 Value *SCEVExpander::expandCodeFor(const SCEV *SH, const Type *Ty) {
1156 // Expand the code for this SCEV.
1157 Value *V = expand(SH);
1159 assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1160 "non-trivial casts should be done with the SCEVs directly!");
1161 V = InsertNoopCastOfTo(V, Ty);
1166 Value *SCEVExpander::expand(const SCEV *S) {
1167 // Compute an insertion point for this SCEV object. Hoist the instructions
1168 // as far out in the loop nest as possible.
1169 Instruction *InsertPt = Builder.GetInsertPoint();
1170 for (Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock()); ;
1171 L = L->getParentLoop())
1172 if (S->isLoopInvariant(L)) {
1174 if (BasicBlock *Preheader = L->getLoopPreheader())
1175 InsertPt = Preheader->getTerminator();
1177 // If the SCEV is computable at this level, insert it into the header
1178 // after the PHIs (and after any other instructions that we've inserted
1179 // there) so that it is guaranteed to dominate any user inside the loop.
1180 if (L && S->hasComputableLoopEvolution(L) && L != PostIncLoop)
1181 InsertPt = L->getHeader()->getFirstNonPHI();
1182 while (isInsertedInstruction(InsertPt))
1183 InsertPt = llvm::next(BasicBlock::iterator(InsertPt));
1187 // Check to see if we already expanded this here.
1188 std::map<std::pair<const SCEV *, Instruction *>,
1189 AssertingVH<Value> >::iterator I =
1190 InsertedExpressions.find(std::make_pair(S, InsertPt));
1191 if (I != InsertedExpressions.end())
1194 BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1195 BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1196 Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
1198 // Expand the expression into instructions.
1199 Value *V = visit(S);
1201 // Remember the expanded value for this SCEV at this location.
1203 InsertedExpressions[std::make_pair(S, InsertPt)] = V;
1205 restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1209 void SCEVExpander::rememberInstruction(Value *I) {
1211 InsertedValues.insert(I);
1213 // If we just claimed an existing instruction and that instruction had
1214 // been the insert point, adjust the insert point forward so that
1215 // subsequently inserted code will be dominated.
1216 if (Builder.GetInsertPoint() == I) {
1217 BasicBlock::iterator It = cast<Instruction>(I);
1218 do { ++It; } while (isInsertedInstruction(It));
1219 Builder.SetInsertPoint(Builder.GetInsertBlock(), It);
1223 void SCEVExpander::restoreInsertPoint(BasicBlock *BB, BasicBlock::iterator I) {
1224 // If we acquired more instructions since the old insert point was saved,
1225 // advance past them.
1226 while (isInsertedInstruction(I)) ++I;
1228 Builder.SetInsertPoint(BB, I);
1231 /// getOrInsertCanonicalInductionVariable - This method returns the
1232 /// canonical induction variable of the specified type for the specified
1233 /// loop (inserting one if there is none). A canonical induction variable
1234 /// starts at zero and steps by one on each iteration.
1236 SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
1238 assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
1239 const SCEV *H = SE.getAddRecExpr(SE.getIntegerSCEV(0, Ty),
1240 SE.getIntegerSCEV(1, Ty), L);
1241 BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1242 BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1243 Value *V = expandCodeFor(H, 0, L->getHeader()->begin());
1245 restoreInsertPoint(SaveInsertBB, SaveInsertPt);