1 //===-- llvmAsmParser.y - Parser for llvm assembly files --------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the bison parser for LLVM assembly languages files.
12 //===----------------------------------------------------------------------===//
15 #include "ParserInternals.h"
16 #include "llvm/CallingConv.h"
17 #include "llvm/InlineAsm.h"
18 #include "llvm/Instructions.h"
19 #include "llvm/Module.h"
20 #include "llvm/ValueSymbolTable.h"
21 #include "llvm/AutoUpgrade.h"
22 #include "llvm/Support/GetElementPtrTypeIterator.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/Streams.h"
33 // The following is a gross hack. In order to rid the libAsmParser library of
34 // exceptions, we have to have a way of getting the yyparse function to go into
35 // an error situation. So, whenever we want an error to occur, the GenerateError
36 // function (see bottom of file) sets TriggerError. Then, at the end of each
37 // production in the grammer we use CHECK_FOR_ERROR which will invoke YYERROR
38 // (a goto) to put YACC in error state. Furthermore, several calls to
39 // GenerateError are made from inside productions and they must simulate the
40 // previous exception behavior by exiting the production immediately. We have
41 // replaced these with the GEN_ERROR macro which calls GeneratError and then
42 // immediately invokes YYERROR. This would be so much cleaner if it was a
43 // recursive descent parser.
44 static bool TriggerError = false;
45 #define CHECK_FOR_ERROR { if (TriggerError) { TriggerError = false; YYABORT; } }
46 #define GEN_ERROR(msg) { GenerateError(msg); YYERROR; }
48 int yyerror(const char *ErrorMsg); // Forward declarations to prevent "implicit
49 int yylex(); // declaration" of xxx warnings.
53 static Module *ParserResult;
55 // DEBUG_UPREFS - Define this symbol if you want to enable debugging output
56 // relating to upreferences in the input stream.
58 //#define DEBUG_UPREFS 1
60 #define UR_OUT(X) cerr << X
65 #define YYERROR_VERBOSE 1
67 static GlobalVariable *CurGV;
70 // This contains info used when building the body of a function. It is
71 // destroyed when the function is completed.
73 typedef std::vector<Value *> ValueList; // Numbered defs
76 ResolveDefinitions(ValueList &LateResolvers, ValueList *FutureLateResolvers=0);
78 static struct PerModuleInfo {
79 Module *CurrentModule;
80 ValueList Values; // Module level numbered definitions
81 ValueList LateResolveValues;
82 std::vector<PATypeHolder> Types;
83 std::map<ValID, PATypeHolder> LateResolveTypes;
85 /// PlaceHolderInfo - When temporary placeholder objects are created, remember
86 /// how they were referenced and on which line of the input they came from so
87 /// that we can resolve them later and print error messages as appropriate.
88 std::map<Value*, std::pair<ValID, int> > PlaceHolderInfo;
90 // GlobalRefs - This maintains a mapping between <Type, ValID>'s and forward
91 // references to global values. Global values may be referenced before they
92 // are defined, and if so, the temporary object that they represent is held
93 // here. This is used for forward references of GlobalValues.
95 typedef std::map<std::pair<const PointerType *,
96 ValID>, GlobalValue*> GlobalRefsType;
97 GlobalRefsType GlobalRefs;
100 // If we could not resolve some functions at function compilation time
101 // (calls to functions before they are defined), resolve them now... Types
102 // are resolved when the constant pool has been completely parsed.
104 ResolveDefinitions(LateResolveValues);
108 // Check to make sure that all global value forward references have been
111 if (!GlobalRefs.empty()) {
112 std::string UndefinedReferences = "Unresolved global references exist:\n";
114 for (GlobalRefsType::iterator I = GlobalRefs.begin(), E =GlobalRefs.end();
116 UndefinedReferences += " " + I->first.first->getDescription() + " " +
117 I->first.second.getName() + "\n";
119 GenerateError(UndefinedReferences);
123 // Look for intrinsic functions and CallInst that need to be upgraded
124 for (Module::iterator FI = CurrentModule->begin(),
125 FE = CurrentModule->end(); FI != FE; )
126 UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
128 Values.clear(); // Clear out function local definitions
133 // GetForwardRefForGlobal - Check to see if there is a forward reference
134 // for this global. If so, remove it from the GlobalRefs map and return it.
135 // If not, just return null.
136 GlobalValue *GetForwardRefForGlobal(const PointerType *PTy, ValID ID) {
137 // Check to see if there is a forward reference to this global variable...
138 // if there is, eliminate it and patch the reference to use the new def'n.
139 GlobalRefsType::iterator I = GlobalRefs.find(std::make_pair(PTy, ID));
140 GlobalValue *Ret = 0;
141 if (I != GlobalRefs.end()) {
148 bool TypeIsUnresolved(PATypeHolder* PATy) {
149 // If it isn't abstract, its resolved
150 const Type* Ty = PATy->get();
151 if (!Ty->isAbstract())
153 // Traverse the type looking for abstract types. If it isn't abstract then
154 // we don't need to traverse that leg of the type.
155 std::vector<const Type*> WorkList, SeenList;
156 WorkList.push_back(Ty);
157 while (!WorkList.empty()) {
158 const Type* Ty = WorkList.back();
159 SeenList.push_back(Ty);
161 if (const OpaqueType* OpTy = dyn_cast<OpaqueType>(Ty)) {
162 // Check to see if this is an unresolved type
163 std::map<ValID, PATypeHolder>::iterator I = LateResolveTypes.begin();
164 std::map<ValID, PATypeHolder>::iterator E = LateResolveTypes.end();
165 for ( ; I != E; ++I) {
166 if (I->second.get() == OpTy)
169 } else if (const SequentialType* SeqTy = dyn_cast<SequentialType>(Ty)) {
170 const Type* TheTy = SeqTy->getElementType();
171 if (TheTy->isAbstract() && TheTy != Ty) {
172 std::vector<const Type*>::iterator I = SeenList.begin(),
178 WorkList.push_back(TheTy);
180 } else if (const StructType* StrTy = dyn_cast<StructType>(Ty)) {
181 for (unsigned i = 0; i < StrTy->getNumElements(); ++i) {
182 const Type* TheTy = StrTy->getElementType(i);
183 if (TheTy->isAbstract() && TheTy != Ty) {
184 std::vector<const Type*>::iterator I = SeenList.begin(),
190 WorkList.push_back(TheTy);
199 static struct PerFunctionInfo {
200 Function *CurrentFunction; // Pointer to current function being created
202 ValueList Values; // Keep track of #'d definitions
204 ValueList LateResolveValues;
205 bool isDeclare; // Is this function a forward declararation?
206 GlobalValue::LinkageTypes Linkage; // Linkage for forward declaration.
207 GlobalValue::VisibilityTypes Visibility;
209 /// BBForwardRefs - When we see forward references to basic blocks, keep
210 /// track of them here.
211 std::map<ValID, BasicBlock*> BBForwardRefs;
213 inline PerFunctionInfo() {
216 Linkage = GlobalValue::ExternalLinkage;
217 Visibility = GlobalValue::DefaultVisibility;
220 inline void FunctionStart(Function *M) {
225 void FunctionDone() {
226 // Any forward referenced blocks left?
227 if (!BBForwardRefs.empty()) {
228 GenerateError("Undefined reference to label " +
229 BBForwardRefs.begin()->second->getName());
233 // Resolve all forward references now.
234 ResolveDefinitions(LateResolveValues, &CurModule.LateResolveValues);
236 Values.clear(); // Clear out function local definitions
237 BBForwardRefs.clear();
240 Linkage = GlobalValue::ExternalLinkage;
241 Visibility = GlobalValue::DefaultVisibility;
243 } CurFun; // Info for the current function...
245 static bool inFunctionScope() { return CurFun.CurrentFunction != 0; }
248 //===----------------------------------------------------------------------===//
249 // Code to handle definitions of all the types
250 //===----------------------------------------------------------------------===//
252 /// InsertValue - Insert a value into the value table. If it is named, this
253 /// returns -1, otherwise it returns the slot number for the value.
254 static int InsertValue(Value *V, ValueList &ValueTab = CurFun.Values) {
255 // Things that have names or are void typed don't get slot numbers
256 if (V->hasName() || (V->getType() == Type::VoidTy))
259 // In the case of function values, we have to allow for the forward reference
260 // of basic blocks, which are included in the numbering. Consequently, we keep
261 // track of the next insertion location with NextValNum. When a BB gets
262 // inserted, it could change the size of the CurFun.Values vector.
263 if (&ValueTab == &CurFun.Values) {
264 if (ValueTab.size() <= CurFun.NextValNum)
265 ValueTab.resize(CurFun.NextValNum+1);
266 ValueTab[CurFun.NextValNum++] = V;
267 return CurFun.NextValNum-1;
269 // For all other lists, its okay to just tack it on the back of the vector.
270 ValueTab.push_back(V);
271 return ValueTab.size()-1;
274 static const Type *getTypeVal(const ValID &D, bool DoNotImprovise = false) {
276 case ValID::LocalID: // Is it a numbered definition?
277 // Module constants occupy the lowest numbered slots...
278 if (D.Num < CurModule.Types.size())
279 return CurModule.Types[D.Num];
281 case ValID::LocalName: // Is it a named definition?
282 if (const Type *N = CurModule.CurrentModule->getTypeByName(D.getName())) {
283 D.destroy(); // Free old strdup'd memory...
288 GenerateError("Internal parser error: Invalid symbol type reference");
292 // If we reached here, we referenced either a symbol that we don't know about
293 // or an id number that hasn't been read yet. We may be referencing something
294 // forward, so just create an entry to be resolved later and get to it...
296 if (DoNotImprovise) return 0; // Do we just want a null to be returned?
299 if (inFunctionScope()) {
300 if (D.Type == ValID::LocalName) {
301 GenerateError("Reference to an undefined type: '" + D.getName() + "'");
304 GenerateError("Reference to an undefined type: #" + utostr(D.Num));
309 std::map<ValID, PATypeHolder>::iterator I =CurModule.LateResolveTypes.find(D);
310 if (I != CurModule.LateResolveTypes.end())
313 Type *Typ = OpaqueType::get();
314 CurModule.LateResolveTypes.insert(std::make_pair(D, Typ));
318 // getExistingVal - Look up the value specified by the provided type and
319 // the provided ValID. If the value exists and has already been defined, return
320 // it. Otherwise return null.
322 static Value *getExistingVal(const Type *Ty, const ValID &D) {
323 if (isa<FunctionType>(Ty)) {
324 GenerateError("Functions are not values and "
325 "must be referenced as pointers");
330 case ValID::LocalID: { // Is it a numbered definition?
331 // Check that the number is within bounds.
332 if (D.Num >= CurFun.Values.size())
334 Value *Result = CurFun.Values[D.Num];
335 if (Ty != Result->getType()) {
336 GenerateError("Numbered value (%" + utostr(D.Num) + ") of type '" +
337 Result->getType()->getDescription() + "' does not match "
338 "expected type, '" + Ty->getDescription() + "'");
343 case ValID::GlobalID: { // Is it a numbered definition?
344 if (D.Num >= CurModule.Values.size())
346 Value *Result = CurModule.Values[D.Num];
347 if (Ty != Result->getType()) {
348 GenerateError("Numbered value (@" + utostr(D.Num) + ") of type '" +
349 Result->getType()->getDescription() + "' does not match "
350 "expected type, '" + Ty->getDescription() + "'");
356 case ValID::LocalName: { // Is it a named definition?
357 if (!inFunctionScope())
359 ValueSymbolTable &SymTab = CurFun.CurrentFunction->getValueSymbolTable();
360 Value *N = SymTab.lookup(D.getName());
363 if (N->getType() != Ty)
366 D.destroy(); // Free old strdup'd memory...
369 case ValID::GlobalName: { // Is it a named definition?
370 ValueSymbolTable &SymTab = CurModule.CurrentModule->getValueSymbolTable();
371 Value *N = SymTab.lookup(D.getName());
374 if (N->getType() != Ty)
377 D.destroy(); // Free old strdup'd memory...
381 // Check to make sure that "Ty" is an integral type, and that our
382 // value will fit into the specified type...
383 case ValID::ConstSIntVal: // Is it a constant pool reference??
384 if (!isa<IntegerType>(Ty) ||
385 !ConstantInt::isValueValidForType(Ty, D.ConstPool64)) {
386 GenerateError("Signed integral constant '" +
387 itostr(D.ConstPool64) + "' is invalid for type '" +
388 Ty->getDescription() + "'");
391 return ConstantInt::get(Ty, D.ConstPool64, true);
393 case ValID::ConstUIntVal: // Is it an unsigned const pool reference?
394 if (isa<IntegerType>(Ty) &&
395 ConstantInt::isValueValidForType(Ty, D.UConstPool64))
396 return ConstantInt::get(Ty, D.UConstPool64);
398 if (!isa<IntegerType>(Ty) ||
399 !ConstantInt::isValueValidForType(Ty, D.ConstPool64)) {
400 GenerateError("Integral constant '" + utostr(D.UConstPool64) +
401 "' is invalid or out of range for type '" +
402 Ty->getDescription() + "'");
405 // This is really a signed reference. Transmogrify.
406 return ConstantInt::get(Ty, D.ConstPool64, true);
408 case ValID::ConstAPInt: // Is it an unsigned const pool reference?
409 if (!isa<IntegerType>(Ty)) {
410 GenerateError("Integral constant '" + D.getName() +
411 "' is invalid or out of range for type '" +
412 Ty->getDescription() + "'");
417 APSInt Tmp = *D.ConstPoolInt;
418 Tmp.extOrTrunc(Ty->getPrimitiveSizeInBits());
419 return ConstantInt::get(Tmp);
422 case ValID::ConstFPVal: // Is it a floating point const pool reference?
423 if (!Ty->isFloatingPoint() ||
424 !ConstantFP::isValueValidForType(Ty, *D.ConstPoolFP)) {
425 GenerateError("FP constant invalid for type");
428 // Lexer has no type info, so builds all float and double FP constants
429 // as double. Fix this here. Long double does not need this.
430 if (&D.ConstPoolFP->getSemantics() == &APFloat::IEEEdouble &&
433 D.ConstPoolFP->convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
436 return ConstantFP::get(*D.ConstPoolFP);
438 case ValID::ConstNullVal: // Is it a null value?
439 if (!isa<PointerType>(Ty)) {
440 GenerateError("Cannot create a a non pointer null");
443 return ConstantPointerNull::get(cast<PointerType>(Ty));
445 case ValID::ConstUndefVal: // Is it an undef value?
446 return UndefValue::get(Ty);
448 case ValID::ConstZeroVal: // Is it a zero value?
449 return Constant::getNullValue(Ty);
451 case ValID::ConstantVal: // Fully resolved constant?
452 if (D.ConstantValue->getType() != Ty) {
453 GenerateError("Constant expression type different from required type");
456 return D.ConstantValue;
458 case ValID::InlineAsmVal: { // Inline asm expression
459 const PointerType *PTy = dyn_cast<PointerType>(Ty);
460 const FunctionType *FTy =
461 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
462 if (!FTy || !InlineAsm::Verify(FTy, D.IAD->Constraints)) {
463 GenerateError("Invalid type for asm constraint string");
466 InlineAsm *IA = InlineAsm::get(FTy, D.IAD->AsmString, D.IAD->Constraints,
467 D.IAD->HasSideEffects);
468 D.destroy(); // Free InlineAsmDescriptor.
472 assert(0 && "Unhandled case!");
476 assert(0 && "Unhandled case!");
480 // getVal - This function is identical to getExistingVal, except that if a
481 // value is not already defined, it "improvises" by creating a placeholder var
482 // that looks and acts just like the requested variable. When the value is
483 // defined later, all uses of the placeholder variable are replaced with the
486 static Value *getVal(const Type *Ty, const ValID &ID) {
487 if (Ty == Type::LabelTy) {
488 GenerateError("Cannot use a basic block here");
492 // See if the value has already been defined.
493 Value *V = getExistingVal(Ty, ID);
495 if (TriggerError) return 0;
497 if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty)) {
498 GenerateError("Invalid use of a non-first-class type");
502 // If we reached here, we referenced either a symbol that we don't know about
503 // or an id number that hasn't been read yet. We may be referencing something
504 // forward, so just create an entry to be resolved later and get to it...
507 case ValID::GlobalName:
508 case ValID::GlobalID: {
509 const PointerType *PTy = dyn_cast<PointerType>(Ty);
511 GenerateError("Invalid type for reference to global" );
514 const Type* ElTy = PTy->getElementType();
515 if (const FunctionType *FTy = dyn_cast<FunctionType>(ElTy))
516 V = Function::Create(FTy, GlobalValue::ExternalLinkage);
518 V = new GlobalVariable(ElTy, false, GlobalValue::ExternalLinkage, 0, "",
519 (Module*)0, false, PTy->getAddressSpace());
523 V = new Argument(Ty);
526 // Remember where this forward reference came from. FIXME, shouldn't we try
527 // to recycle these things??
528 CurModule.PlaceHolderInfo.insert(std::make_pair(V, std::make_pair(ID,
531 if (inFunctionScope())
532 InsertValue(V, CurFun.LateResolveValues);
534 InsertValue(V, CurModule.LateResolveValues);
538 /// defineBBVal - This is a definition of a new basic block with the specified
539 /// identifier which must be the same as CurFun.NextValNum, if its numeric.
540 static BasicBlock *defineBBVal(const ValID &ID) {
541 assert(inFunctionScope() && "Can't get basic block at global scope!");
545 // First, see if this was forward referenced
547 std::map<ValID, BasicBlock*>::iterator BBI = CurFun.BBForwardRefs.find(ID);
548 if (BBI != CurFun.BBForwardRefs.end()) {
550 // The forward declaration could have been inserted anywhere in the
551 // function: insert it into the correct place now.
552 CurFun.CurrentFunction->getBasicBlockList().remove(BB);
553 CurFun.CurrentFunction->getBasicBlockList().push_back(BB);
555 // We're about to erase the entry, save the key so we can clean it up.
556 ValID Tmp = BBI->first;
558 // Erase the forward ref from the map as its no longer "forward"
559 CurFun.BBForwardRefs.erase(ID);
561 // The key has been removed from the map but so we don't want to leave
562 // strdup'd memory around so destroy it too.
565 // If its a numbered definition, bump the number and set the BB value.
566 if (ID.Type == ValID::LocalID) {
567 assert(ID.Num == CurFun.NextValNum && "Invalid new block number");
571 // We haven't seen this BB before and its first mention is a definition.
572 // Just create it and return it.
573 std::string Name (ID.Type == ValID::LocalName ? ID.getName() : "");
574 BB = BasicBlock::Create(Name, CurFun.CurrentFunction);
575 if (ID.Type == ValID::LocalID) {
576 assert(ID.Num == CurFun.NextValNum && "Invalid new block number");
585 /// getBBVal - get an existing BB value or create a forward reference for it.
587 static BasicBlock *getBBVal(const ValID &ID) {
588 assert(inFunctionScope() && "Can't get basic block at global scope!");
592 std::map<ValID, BasicBlock*>::iterator BBI = CurFun.BBForwardRefs.find(ID);
593 if (BBI != CurFun.BBForwardRefs.end()) {
595 } if (ID.Type == ValID::LocalName) {
596 std::string Name = ID.getName();
597 Value *N = CurFun.CurrentFunction->getValueSymbolTable().lookup(Name);
599 if (N->getType()->getTypeID() == Type::LabelTyID)
600 BB = cast<BasicBlock>(N);
602 GenerateError("Reference to label '" + Name + "' is actually of type '"+
603 N->getType()->getDescription() + "'");
605 } else if (ID.Type == ValID::LocalID) {
606 if (ID.Num < CurFun.NextValNum && ID.Num < CurFun.Values.size()) {
607 if (CurFun.Values[ID.Num]->getType()->getTypeID() == Type::LabelTyID)
608 BB = cast<BasicBlock>(CurFun.Values[ID.Num]);
610 GenerateError("Reference to label '%" + utostr(ID.Num) +
611 "' is actually of type '"+
612 CurFun.Values[ID.Num]->getType()->getDescription() + "'");
615 GenerateError("Illegal label reference " + ID.getName());
619 // If its already been defined, return it now.
621 ID.destroy(); // Free strdup'd memory.
625 // Otherwise, this block has not been seen before, create it.
627 if (ID.Type == ValID::LocalName)
629 BB = BasicBlock::Create(Name, CurFun.CurrentFunction);
631 // Insert it in the forward refs map.
632 CurFun.BBForwardRefs[ID] = BB;
638 //===----------------------------------------------------------------------===//
639 // Code to handle forward references in instructions
640 //===----------------------------------------------------------------------===//
642 // This code handles the late binding needed with statements that reference
643 // values not defined yet... for example, a forward branch, or the PHI node for
646 // This keeps a table (CurFun.LateResolveValues) of all such forward references
647 // and back patchs after we are done.
650 // ResolveDefinitions - If we could not resolve some defs at parsing
651 // time (forward branches, phi functions for loops, etc...) resolve the
655 ResolveDefinitions(ValueList &LateResolvers, ValueList *FutureLateResolvers) {
656 // Loop over LateResolveDefs fixing up stuff that couldn't be resolved
657 while (!LateResolvers.empty()) {
658 Value *V = LateResolvers.back();
659 LateResolvers.pop_back();
661 std::map<Value*, std::pair<ValID, int> >::iterator PHI =
662 CurModule.PlaceHolderInfo.find(V);
663 assert(PHI != CurModule.PlaceHolderInfo.end() && "Placeholder error!");
665 ValID &DID = PHI->second.first;
667 Value *TheRealValue = getExistingVal(V->getType(), DID);
671 V->replaceAllUsesWith(TheRealValue);
673 CurModule.PlaceHolderInfo.erase(PHI);
674 } else if (FutureLateResolvers) {
675 // Functions have their unresolved items forwarded to the module late
677 InsertValue(V, *FutureLateResolvers);
679 if (DID.Type == ValID::LocalName || DID.Type == ValID::GlobalName) {
680 GenerateError("Reference to an invalid definition: '" +DID.getName()+
681 "' of type '" + V->getType()->getDescription() + "'",
685 GenerateError("Reference to an invalid definition: #" +
686 itostr(DID.Num) + " of type '" +
687 V->getType()->getDescription() + "'",
693 LateResolvers.clear();
696 // ResolveTypeTo - A brand new type was just declared. This means that (if
697 // name is not null) things referencing Name can be resolved. Otherwise, things
698 // refering to the number can be resolved. Do this now.
700 static void ResolveTypeTo(std::string *Name, const Type *ToTy) {
703 D = ValID::createLocalName(*Name);
705 D = ValID::createLocalID(CurModule.Types.size());
707 std::map<ValID, PATypeHolder>::iterator I =
708 CurModule.LateResolveTypes.find(D);
709 if (I != CurModule.LateResolveTypes.end()) {
710 ((DerivedType*)I->second.get())->refineAbstractTypeTo(ToTy);
711 CurModule.LateResolveTypes.erase(I);
716 // setValueName - Set the specified value to the name given. The name may be
717 // null potentially, in which case this is a noop. The string passed in is
718 // assumed to be a malloc'd string buffer, and is free'd by this function.
720 static void setValueName(Value *V, std::string *NameStr) {
721 if (!NameStr) return;
722 std::string Name(*NameStr); // Copy string
723 delete NameStr; // Free old string
725 if (V->getType() == Type::VoidTy) {
726 GenerateError("Can't assign name '" + Name+"' to value with void type");
730 assert(inFunctionScope() && "Must be in function scope!");
731 ValueSymbolTable &ST = CurFun.CurrentFunction->getValueSymbolTable();
732 if (ST.lookup(Name)) {
733 GenerateError("Redefinition of value '" + Name + "' of type '" +
734 V->getType()->getDescription() + "'");
742 /// ParseGlobalVariable - Handle parsing of a global. If Initializer is null,
743 /// this is a declaration, otherwise it is a definition.
744 static GlobalVariable *
745 ParseGlobalVariable(std::string *NameStr,
746 GlobalValue::LinkageTypes Linkage,
747 GlobalValue::VisibilityTypes Visibility,
748 bool isConstantGlobal, const Type *Ty,
749 Constant *Initializer, bool IsThreadLocal,
750 unsigned AddressSpace = 0) {
751 if (isa<FunctionType>(Ty)) {
752 GenerateError("Cannot declare global vars of function type");
755 if (Ty == Type::LabelTy) {
756 GenerateError("Cannot declare global vars of label type");
760 const PointerType *PTy = PointerType::get(Ty, AddressSpace);
764 Name = *NameStr; // Copy string
765 delete NameStr; // Free old string
768 // See if this global value was forward referenced. If so, recycle the
772 ID = ValID::createGlobalName(Name);
774 ID = ValID::createGlobalID(CurModule.Values.size());
777 if (GlobalValue *FWGV = CurModule.GetForwardRefForGlobal(PTy, ID)) {
778 // Move the global to the end of the list, from whereever it was
779 // previously inserted.
780 GlobalVariable *GV = cast<GlobalVariable>(FWGV);
781 CurModule.CurrentModule->getGlobalList().remove(GV);
782 CurModule.CurrentModule->getGlobalList().push_back(GV);
783 GV->setInitializer(Initializer);
784 GV->setLinkage(Linkage);
785 GV->setVisibility(Visibility);
786 GV->setConstant(isConstantGlobal);
787 GV->setThreadLocal(IsThreadLocal);
788 InsertValue(GV, CurModule.Values);
795 // If this global has a name
797 // if the global we're parsing has an initializer (is a definition) and
798 // has external linkage.
799 if (Initializer && Linkage != GlobalValue::InternalLinkage)
800 // If there is already a global with external linkage with this name
801 if (CurModule.CurrentModule->getGlobalVariable(Name, false)) {
802 // If we allow this GVar to get created, it will be renamed in the
803 // symbol table because it conflicts with an existing GVar. We can't
804 // allow redefinition of GVars whose linking indicates that their name
805 // must stay the same. Issue the error.
806 GenerateError("Redefinition of global variable named '" + Name +
807 "' of type '" + Ty->getDescription() + "'");
812 // Otherwise there is no existing GV to use, create one now.
814 new GlobalVariable(Ty, isConstantGlobal, Linkage, Initializer, Name,
815 CurModule.CurrentModule, IsThreadLocal, AddressSpace);
816 GV->setVisibility(Visibility);
817 InsertValue(GV, CurModule.Values);
821 // setTypeName - Set the specified type to the name given. The name may be
822 // null potentially, in which case this is a noop. The string passed in is
823 // assumed to be a malloc'd string buffer, and is freed by this function.
825 // This function returns true if the type has already been defined, but is
826 // allowed to be redefined in the specified context. If the name is a new name
827 // for the type plane, it is inserted and false is returned.
828 static bool setTypeName(const Type *T, std::string *NameStr) {
829 assert(!inFunctionScope() && "Can't give types function-local names!");
830 if (NameStr == 0) return false;
832 std::string Name(*NameStr); // Copy string
833 delete NameStr; // Free old string
835 // We don't allow assigning names to void type
836 if (T == Type::VoidTy) {
837 GenerateError("Can't assign name '" + Name + "' to the void type");
841 // Set the type name, checking for conflicts as we do so.
842 bool AlreadyExists = CurModule.CurrentModule->addTypeName(Name, T);
844 if (AlreadyExists) { // Inserting a name that is already defined???
845 const Type *Existing = CurModule.CurrentModule->getTypeByName(Name);
846 assert(Existing && "Conflict but no matching type?!");
848 // There is only one case where this is allowed: when we are refining an
849 // opaque type. In this case, Existing will be an opaque type.
850 if (const OpaqueType *OpTy = dyn_cast<OpaqueType>(Existing)) {
851 // We ARE replacing an opaque type!
852 const_cast<OpaqueType*>(OpTy)->refineAbstractTypeTo(T);
856 // Otherwise, this is an attempt to redefine a type. That's okay if
857 // the redefinition is identical to the original. This will be so if
858 // Existing and T point to the same Type object. In this one case we
859 // allow the equivalent redefinition.
860 if (Existing == T) return true; // Yes, it's equal.
862 // Any other kind of (non-equivalent) redefinition is an error.
863 GenerateError("Redefinition of type named '" + Name + "' of type '" +
864 T->getDescription() + "'");
870 //===----------------------------------------------------------------------===//
871 // Code for handling upreferences in type names...
874 // TypeContains - Returns true if Ty directly contains E in it.
876 static bool TypeContains(const Type *Ty, const Type *E) {
877 return std::find(Ty->subtype_begin(), Ty->subtype_end(),
878 E) != Ty->subtype_end();
883 // NestingLevel - The number of nesting levels that need to be popped before
884 // this type is resolved.
885 unsigned NestingLevel;
887 // LastContainedTy - This is the type at the current binding level for the
888 // type. Every time we reduce the nesting level, this gets updated.
889 const Type *LastContainedTy;
891 // UpRefTy - This is the actual opaque type that the upreference is
895 UpRefRecord(unsigned NL, OpaqueType *URTy)
896 : NestingLevel(NL), LastContainedTy(URTy), UpRefTy(URTy) {}
900 // UpRefs - A list of the outstanding upreferences that need to be resolved.
901 static std::vector<UpRefRecord> UpRefs;
903 /// HandleUpRefs - Every time we finish a new layer of types, this function is
904 /// called. It loops through the UpRefs vector, which is a list of the
905 /// currently active types. For each type, if the up reference is contained in
906 /// the newly completed type, we decrement the level count. When the level
907 /// count reaches zero, the upreferenced type is the type that is passed in:
908 /// thus we can complete the cycle.
910 static PATypeHolder HandleUpRefs(const Type *ty) {
911 // If Ty isn't abstract, or if there are no up-references in it, then there is
912 // nothing to resolve here.
913 if (!ty->isAbstract() || UpRefs.empty()) return ty;
916 UR_OUT("Type '" << Ty->getDescription() <<
917 "' newly formed. Resolving upreferences.\n" <<
918 UpRefs.size() << " upreferences active!\n");
920 // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
921 // to zero), we resolve them all together before we resolve them to Ty. At
922 // the end of the loop, if there is anything to resolve to Ty, it will be in
924 OpaqueType *TypeToResolve = 0;
926 for (unsigned i = 0; i != UpRefs.size(); ++i) {
927 UR_OUT(" UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
928 << UpRefs[i].second->getDescription() << ") = "
929 << (TypeContains(Ty, UpRefs[i].second) ? "true" : "false") << "\n");
930 if (TypeContains(Ty, UpRefs[i].LastContainedTy)) {
931 // Decrement level of upreference
932 unsigned Level = --UpRefs[i].NestingLevel;
933 UpRefs[i].LastContainedTy = Ty;
934 UR_OUT(" Uplevel Ref Level = " << Level << "\n");
935 if (Level == 0) { // Upreference should be resolved!
936 if (!TypeToResolve) {
937 TypeToResolve = UpRefs[i].UpRefTy;
939 UR_OUT(" * Resolving upreference for "
940 << UpRefs[i].second->getDescription() << "\n";
941 std::string OldName = UpRefs[i].UpRefTy->getDescription());
942 UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
943 UR_OUT(" * Type '" << OldName << "' refined upreference to: "
944 << (const void*)Ty << ", " << Ty->getDescription() << "\n");
946 UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list...
947 --i; // Do not skip the next element...
953 UR_OUT(" * Resolving upreference for "
954 << UpRefs[i].second->getDescription() << "\n";
955 std::string OldName = TypeToResolve->getDescription());
956 TypeToResolve->refineAbstractTypeTo(Ty);
962 //===----------------------------------------------------------------------===//
963 // RunVMAsmParser - Define an interface to this parser
964 //===----------------------------------------------------------------------===//
966 static Module* RunParser(Module * M);
968 Module *llvm::RunVMAsmParser(llvm::MemoryBuffer *MB) {
970 Module *M = RunParser(new Module(LLLgetFilename()));
978 llvm::Module *ModuleVal;
979 llvm::Function *FunctionVal;
980 llvm::BasicBlock *BasicBlockVal;
981 llvm::TerminatorInst *TermInstVal;
982 llvm::Instruction *InstVal;
983 llvm::Constant *ConstVal;
985 const llvm::Type *PrimType;
986 std::list<llvm::PATypeHolder> *TypeList;
987 llvm::PATypeHolder *TypeVal;
988 llvm::Value *ValueVal;
989 std::vector<llvm::Value*> *ValueList;
990 std::vector<unsigned> *ConstantList;
991 llvm::ArgListType *ArgList;
992 llvm::TypeWithAttrs TypeWithAttrs;
993 llvm::TypeWithAttrsList *TypeWithAttrsList;
994 llvm::ParamList *ParamList;
996 // Represent the RHS of PHI node
997 std::list<std::pair<llvm::Value*,
998 llvm::BasicBlock*> > *PHIList;
999 std::vector<std::pair<llvm::Constant*, llvm::BasicBlock*> > *JumpTable;
1000 std::vector<llvm::Constant*> *ConstVector;
1002 llvm::GlobalValue::LinkageTypes Linkage;
1003 llvm::GlobalValue::VisibilityTypes Visibility;
1004 llvm::Attributes Attributes;
1005 llvm::APInt *APIntVal;
1010 llvm::APFloat *FPVal;
1013 std::string *StrVal; // This memory must be deleted
1014 llvm::ValID ValIDVal;
1016 llvm::Instruction::BinaryOps BinaryOpVal;
1017 llvm::Instruction::TermOps TermOpVal;
1018 llvm::Instruction::MemoryOps MemOpVal;
1019 llvm::Instruction::CastOps CastOpVal;
1020 llvm::Instruction::OtherOps OtherOpVal;
1021 llvm::ICmpInst::Predicate IPredicate;
1022 llvm::FCmpInst::Predicate FPredicate;
1025 %type <ModuleVal> Module
1026 %type <FunctionVal> Function FunctionProto FunctionHeader BasicBlockList
1027 %type <BasicBlockVal> BasicBlock InstructionList
1028 %type <TermInstVal> BBTerminatorInst
1029 %type <InstVal> Inst InstVal MemoryInst
1030 %type <ConstVal> ConstVal ConstExpr AliaseeRef
1031 %type <ConstVector> ConstVector
1032 %type <ArgList> ArgList ArgListH
1033 %type <PHIList> PHIList
1034 %type <ParamList> ParamList // For call param lists & GEP indices
1035 %type <ValueList> IndexList // For GEP indices
1036 %type <ConstantList> ConstantIndexList // For insertvalue/extractvalue indices
1037 %type <TypeList> TypeListI
1038 %type <TypeWithAttrsList> ArgTypeList ArgTypeListI
1039 %type <TypeWithAttrs> ArgType
1040 %type <JumpTable> JumpTable
1041 %type <BoolVal> GlobalType // GLOBAL or CONSTANT?
1042 %type <BoolVal> ThreadLocal // 'thread_local' or not
1043 %type <BoolVal> OptVolatile // 'volatile' or not
1044 %type <BoolVal> OptTailCall // TAIL CALL or plain CALL.
1045 %type <BoolVal> OptSideEffect // 'sideeffect' or not.
1046 %type <Linkage> GVInternalLinkage GVExternalLinkage
1047 %type <Linkage> FunctionDefineLinkage FunctionDeclareLinkage
1048 %type <Linkage> AliasLinkage
1049 %type <Visibility> GVVisibilityStyle
1051 // ValueRef - Unresolved reference to a definition or BB
1052 %type <ValIDVal> ValueRef ConstValueRef SymbolicValueRef
1053 %type <ValueVal> ResolvedVal // <type> <valref> pair
1054 %type <ValueList> ReturnedVal
1055 // Tokens and types for handling constant integer values
1057 // ESINT64VAL - A negative number within long long range
1058 %token <SInt64Val> ESINT64VAL
1060 // EUINT64VAL - A positive number within uns. long long range
1061 %token <UInt64Val> EUINT64VAL
1063 // ESAPINTVAL - A negative number with arbitrary precision
1064 %token <APIntVal> ESAPINTVAL
1066 // EUAPINTVAL - A positive number with arbitrary precision
1067 %token <APIntVal> EUAPINTVAL
1069 %token <UIntVal> LOCALVAL_ID GLOBALVAL_ID // %123 @123
1070 %token <FPVal> FPVAL // Float or Double constant
1072 // Built in types...
1073 %type <TypeVal> Types ResultTypes
1074 %type <PrimType> IntType FPType PrimType // Classifications
1075 %token <PrimType> VOID INTTYPE
1076 %token <PrimType> FLOAT DOUBLE X86_FP80 FP128 PPC_FP128 LABEL
1080 %token<StrVal> LOCALVAR GLOBALVAR LABELSTR
1081 %token<StrVal> STRINGCONSTANT ATSTRINGCONSTANT PCTSTRINGCONSTANT
1082 %type <StrVal> LocalName OptLocalName OptLocalAssign
1083 %type <StrVal> GlobalName OptGlobalAssign GlobalAssign
1084 %type <StrVal> OptSection SectionString OptGC
1086 %type <UIntVal> OptAlign OptCAlign OptAddrSpace
1088 %token ZEROINITIALIZER TRUETOK FALSETOK BEGINTOK ENDTOK
1089 %token DECLARE DEFINE GLOBAL CONSTANT SECTION ALIAS VOLATILE THREAD_LOCAL
1090 %token TO DOTDOTDOT NULL_TOK UNDEF INTERNAL LINKONCE WEAK APPENDING
1091 %token DLLIMPORT DLLEXPORT EXTERN_WEAK COMMON
1092 %token OPAQUE EXTERNAL TARGET TRIPLE ALIGN ADDRSPACE
1093 %token DEPLIBS CALL TAIL ASM_TOK MODULE SIDEEFFECT
1094 %token CC_TOK CCC_TOK FASTCC_TOK COLDCC_TOK X86_STDCALLCC_TOK X86_FASTCALLCC_TOK
1096 %type <UIntVal> OptCallingConv LocalNumber
1097 %type <Attributes> OptAttributes Attribute
1098 %type <Attributes> OptFuncAttrs FuncAttr
1099 %type <Attributes> OptRetAttrs RetAttr
1101 // Basic Block Terminating Operators
1102 %token <TermOpVal> RET BR SWITCH INVOKE UNWIND UNREACHABLE
1105 %type <BinaryOpVal> ArithmeticOps LogicalOps // Binops Subcatagories
1106 %token <BinaryOpVal> ADD SUB MUL UDIV SDIV FDIV UREM SREM FREM AND OR XOR
1107 %token <BinaryOpVal> SHL LSHR ASHR
1109 %token <OtherOpVal> ICMP FCMP VICMP VFCMP
1110 %type <IPredicate> IPredicates
1111 %type <FPredicate> FPredicates
1112 %token EQ NE SLT SGT SLE SGE ULT UGT ULE UGE
1113 %token OEQ ONE OLT OGT OLE OGE ORD UNO UEQ UNE
1115 // Memory Instructions
1116 %token <MemOpVal> MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR
1119 %type <CastOpVal> CastOps
1120 %token <CastOpVal> TRUNC ZEXT SEXT FPTRUNC FPEXT BITCAST
1121 %token <CastOpVal> UITOFP SITOFP FPTOUI FPTOSI INTTOPTR PTRTOINT
1124 %token <OtherOpVal> PHI_TOK SELECT VAARG
1125 %token <OtherOpVal> EXTRACTELEMENT INSERTELEMENT SHUFFLEVECTOR
1126 %token <OtherOpVal> GETRESULT
1127 %token <OtherOpVal> EXTRACTVALUE INSERTVALUE
1129 // Function Attributes
1130 %token SIGNEXT ZEROEXT NORETURN INREG SRET NOUNWIND NOALIAS BYVAL NEST
1131 %token READNONE READONLY GC OPTSIZE NOINLINE ALWAYSINLINE
1133 // Visibility Styles
1134 %token DEFAULT HIDDEN PROTECTED
1140 // Operations that are notably excluded from this list include:
1141 // RET, BR, & SWITCH because they end basic blocks and are treated specially.
1143 ArithmeticOps: ADD | SUB | MUL | UDIV | SDIV | FDIV | UREM | SREM | FREM;
1144 LogicalOps : SHL | LSHR | ASHR | AND | OR | XOR;
1145 CastOps : TRUNC | ZEXT | SEXT | FPTRUNC | FPEXT | BITCAST |
1146 UITOFP | SITOFP | FPTOUI | FPTOSI | INTTOPTR | PTRTOINT;
1149 : EQ { $$ = ICmpInst::ICMP_EQ; } | NE { $$ = ICmpInst::ICMP_NE; }
1150 | SLT { $$ = ICmpInst::ICMP_SLT; } | SGT { $$ = ICmpInst::ICMP_SGT; }
1151 | SLE { $$ = ICmpInst::ICMP_SLE; } | SGE { $$ = ICmpInst::ICMP_SGE; }
1152 | ULT { $$ = ICmpInst::ICMP_ULT; } | UGT { $$ = ICmpInst::ICMP_UGT; }
1153 | ULE { $$ = ICmpInst::ICMP_ULE; } | UGE { $$ = ICmpInst::ICMP_UGE; }
1157 : OEQ { $$ = FCmpInst::FCMP_OEQ; } | ONE { $$ = FCmpInst::FCMP_ONE; }
1158 | OLT { $$ = FCmpInst::FCMP_OLT; } | OGT { $$ = FCmpInst::FCMP_OGT; }
1159 | OLE { $$ = FCmpInst::FCMP_OLE; } | OGE { $$ = FCmpInst::FCMP_OGE; }
1160 | ORD { $$ = FCmpInst::FCMP_ORD; } | UNO { $$ = FCmpInst::FCMP_UNO; }
1161 | UEQ { $$ = FCmpInst::FCMP_UEQ; } | UNE { $$ = FCmpInst::FCMP_UNE; }
1162 | ULT { $$ = FCmpInst::FCMP_ULT; } | UGT { $$ = FCmpInst::FCMP_UGT; }
1163 | ULE { $$ = FCmpInst::FCMP_ULE; } | UGE { $$ = FCmpInst::FCMP_UGE; }
1164 | TRUETOK { $$ = FCmpInst::FCMP_TRUE; }
1165 | FALSETOK { $$ = FCmpInst::FCMP_FALSE; }
1168 // These are some types that allow classification if we only want a particular
1169 // thing... for example, only a signed, unsigned, or integral type.
1171 FPType : FLOAT | DOUBLE | PPC_FP128 | FP128 | X86_FP80;
1173 LocalName : LOCALVAR | STRINGCONSTANT | PCTSTRINGCONSTANT ;
1174 OptLocalName : LocalName | /*empty*/ { $$ = 0; };
1176 OptAddrSpace : ADDRSPACE '(' EUINT64VAL ')' { $$=$3; }
1177 | /*empty*/ { $$=0; };
1179 /// OptLocalAssign - Value producing statements have an optional assignment
1181 OptLocalAssign : LocalName '=' {
1190 LocalNumber : LOCALVAL_ID '=' {
1196 GlobalName : GLOBALVAR | ATSTRINGCONSTANT ;
1198 OptGlobalAssign : GlobalAssign
1204 GlobalAssign : GlobalName '=' {
1210 : INTERNAL { $$ = GlobalValue::InternalLinkage; }
1211 | WEAK { $$ = GlobalValue::WeakLinkage; }
1212 | LINKONCE { $$ = GlobalValue::LinkOnceLinkage; }
1213 | APPENDING { $$ = GlobalValue::AppendingLinkage; }
1214 | DLLEXPORT { $$ = GlobalValue::DLLExportLinkage; }
1215 | COMMON { $$ = GlobalValue::CommonLinkage; }
1219 : DLLIMPORT { $$ = GlobalValue::DLLImportLinkage; }
1220 | EXTERN_WEAK { $$ = GlobalValue::ExternalWeakLinkage; }
1221 | EXTERNAL { $$ = GlobalValue::ExternalLinkage; }
1225 : /*empty*/ { $$ = GlobalValue::DefaultVisibility; }
1226 | DEFAULT { $$ = GlobalValue::DefaultVisibility; }
1227 | HIDDEN { $$ = GlobalValue::HiddenVisibility; }
1228 | PROTECTED { $$ = GlobalValue::ProtectedVisibility; }
1231 FunctionDeclareLinkage
1232 : /*empty*/ { $$ = GlobalValue::ExternalLinkage; }
1233 | DLLIMPORT { $$ = GlobalValue::DLLImportLinkage; }
1234 | EXTERN_WEAK { $$ = GlobalValue::ExternalWeakLinkage; }
1237 FunctionDefineLinkage
1238 : /*empty*/ { $$ = GlobalValue::ExternalLinkage; }
1239 | INTERNAL { $$ = GlobalValue::InternalLinkage; }
1240 | LINKONCE { $$ = GlobalValue::LinkOnceLinkage; }
1241 | WEAK { $$ = GlobalValue::WeakLinkage; }
1242 | DLLEXPORT { $$ = GlobalValue::DLLExportLinkage; }
1246 : /*empty*/ { $$ = GlobalValue::ExternalLinkage; }
1247 | WEAK { $$ = GlobalValue::WeakLinkage; }
1248 | INTERNAL { $$ = GlobalValue::InternalLinkage; }
1251 OptCallingConv : /*empty*/ { $$ = CallingConv::C; } |
1252 CCC_TOK { $$ = CallingConv::C; } |
1253 FASTCC_TOK { $$ = CallingConv::Fast; } |
1254 COLDCC_TOK { $$ = CallingConv::Cold; } |
1255 X86_STDCALLCC_TOK { $$ = CallingConv::X86_StdCall; } |
1256 X86_FASTCALLCC_TOK { $$ = CallingConv::X86_FastCall; } |
1258 if ((unsigned)$2 != $2)
1259 GEN_ERROR("Calling conv too large");
1264 Attribute : ZEROEXT { $$ = Attribute::ZExt; }
1265 | ZEXT { $$ = Attribute::ZExt; }
1266 | SIGNEXT { $$ = Attribute::SExt; }
1267 | SEXT { $$ = Attribute::SExt; }
1268 | INREG { $$ = Attribute::InReg; }
1269 | SRET { $$ = Attribute::StructRet; }
1270 | NOALIAS { $$ = Attribute::NoAlias; }
1271 | BYVAL { $$ = Attribute::ByVal; }
1272 | NEST { $$ = Attribute::Nest; }
1273 | ALIGN EUINT64VAL { $$ =
1274 Attribute::constructAlignmentFromInt($2); }
1277 OptAttributes : /* empty */ { $$ = Attribute::None; }
1278 | OptAttributes Attribute {
1283 RetAttr : INREG { $$ = Attribute::InReg; }
1284 | ZEROEXT { $$ = Attribute::ZExt; }
1285 | SIGNEXT { $$ = Attribute::SExt; }
1288 OptRetAttrs : /* empty */ { $$ = Attribute::None; }
1289 | OptRetAttrs RetAttr {
1295 FuncAttr : NORETURN { $$ = Attribute::NoReturn; }
1296 | NOUNWIND { $$ = Attribute::NoUnwind; }
1297 | INREG { $$ = Attribute::InReg; }
1298 | ZEROEXT { $$ = Attribute::ZExt; }
1299 | SIGNEXT { $$ = Attribute::SExt; }
1300 | READNONE { $$ = Attribute::ReadNone; }
1301 | READONLY { $$ = Attribute::ReadOnly; }
1302 | NOINLINE { $$ = Attribute::NoInline; }
1303 | ALWAYSINLINE { $$ = Attribute::AlwaysInline; }
1304 | OPTSIZE { $$ = Attribute::OptimizeForSize; }
1307 OptFuncAttrs : /* empty */ { $$ = Attribute::None; }
1308 | OptFuncAttrs FuncAttr {
1314 OptGC : /* empty */ { $$ = 0; }
1315 | GC STRINGCONSTANT {
1320 // OptAlign/OptCAlign - An optional alignment, and an optional alignment with
1321 // a comma before it.
1322 OptAlign : /*empty*/ { $$ = 0; } |
1325 if ($$ != 0 && !isPowerOf2_32($$))
1326 GEN_ERROR("Alignment must be a power of two");
1329 OptCAlign : /*empty*/ { $$ = 0; } |
1330 ',' ALIGN EUINT64VAL {
1332 if ($$ != 0 && !isPowerOf2_32($$))
1333 GEN_ERROR("Alignment must be a power of two");
1339 SectionString : SECTION STRINGCONSTANT {
1340 for (unsigned i = 0, e = $2->length(); i != e; ++i)
1341 if ((*$2)[i] == '"' || (*$2)[i] == '\\')
1342 GEN_ERROR("Invalid character in section name");
1347 OptSection : /*empty*/ { $$ = 0; } |
1348 SectionString { $$ = $1; };
1350 // GlobalVarAttributes - Used to pass the attributes string on a global. CurGV
1351 // is set to be the global we are processing.
1353 GlobalVarAttributes : /* empty */ {} |
1354 ',' GlobalVarAttribute GlobalVarAttributes {};
1355 GlobalVarAttribute : SectionString {
1356 CurGV->setSection(*$1);
1360 | ALIGN EUINT64VAL {
1361 if ($2 != 0 && !isPowerOf2_32($2))
1362 GEN_ERROR("Alignment must be a power of two");
1363 CurGV->setAlignment($2);
1367 //===----------------------------------------------------------------------===//
1368 // Types includes all predefined types... except void, because it can only be
1369 // used in specific contexts (function returning void for example).
1371 // Derived types are added later...
1373 PrimType : INTTYPE | FLOAT | DOUBLE | PPC_FP128 | FP128 | X86_FP80 | LABEL ;
1377 $$ = new PATypeHolder(OpaqueType::get());
1381 $$ = new PATypeHolder($1);
1384 | Types OptAddrSpace '*' { // Pointer type?
1385 if (*$1 == Type::LabelTy)
1386 GEN_ERROR("Cannot form a pointer to a basic block");
1387 $$ = new PATypeHolder(HandleUpRefs(PointerType::get(*$1, $2)));
1391 | SymbolicValueRef { // Named types are also simple types...
1392 const Type* tmp = getTypeVal($1);
1394 $$ = new PATypeHolder(tmp);
1396 | '\\' EUINT64VAL { // Type UpReference
1397 if ($2 > (uint64_t)~0U) GEN_ERROR("Value out of range");
1398 OpaqueType *OT = OpaqueType::get(); // Use temporary placeholder
1399 UpRefs.push_back(UpRefRecord((unsigned)$2, OT)); // Add to vector...
1400 $$ = new PATypeHolder(OT);
1401 UR_OUT("New Upreference!\n");
1404 | Types '(' ArgTypeListI ')' OptFuncAttrs {
1405 // Allow but ignore attributes on function types; this permits auto-upgrade.
1406 // FIXME: remove in LLVM 3.0.
1407 const Type *RetTy = *$1;
1408 if (!FunctionType::isValidReturnType(RetTy))
1409 GEN_ERROR("Invalid result type for LLVM function");
1411 std::vector<const Type*> Params;
1412 TypeWithAttrsList::iterator I = $3->begin(), E = $3->end();
1413 for (; I != E; ++I ) {
1414 const Type *Ty = I->Ty->get();
1415 Params.push_back(Ty);
1418 bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
1419 if (isVarArg) Params.pop_back();
1421 for (unsigned i = 0; i != Params.size(); ++i)
1422 if (!(Params[i]->isFirstClassType() || isa<OpaqueType>(Params[i])))
1423 GEN_ERROR("Function arguments must be value types!");
1427 FunctionType *FT = FunctionType::get(RetTy, Params, isVarArg);
1428 delete $1; // Delete the return type handle
1429 $$ = new PATypeHolder(HandleUpRefs(FT));
1431 // Delete the argument list
1432 for (I = $3->begin() ; I != E; ++I ) {
1439 | VOID '(' ArgTypeListI ')' OptFuncAttrs {
1440 // Allow but ignore attributes on function types; this permits auto-upgrade.
1441 // FIXME: remove in LLVM 3.0.
1442 std::vector<const Type*> Params;
1443 TypeWithAttrsList::iterator I = $3->begin(), E = $3->end();
1444 for ( ; I != E; ++I ) {
1445 const Type* Ty = I->Ty->get();
1446 Params.push_back(Ty);
1449 bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
1450 if (isVarArg) Params.pop_back();
1452 for (unsigned i = 0; i != Params.size(); ++i)
1453 if (!(Params[i]->isFirstClassType() || isa<OpaqueType>(Params[i])))
1454 GEN_ERROR("Function arguments must be value types!");
1458 FunctionType *FT = FunctionType::get($1, Params, isVarArg);
1459 $$ = new PATypeHolder(HandleUpRefs(FT));
1461 // Delete the argument list
1462 for (I = $3->begin() ; I != E; ++I ) {
1470 | '[' EUINT64VAL 'x' Types ']' { // Sized array type?
1471 $$ = new PATypeHolder(HandleUpRefs(ArrayType::get(*$4, $2)));
1475 | '<' EUINT64VAL 'x' Types '>' { // Vector type?
1476 const llvm::Type* ElemTy = $4->get();
1477 if ((unsigned)$2 != $2)
1478 GEN_ERROR("Unsigned result not equal to signed result");
1479 if (!ElemTy->isFloatingPoint() && !ElemTy->isInteger())
1480 GEN_ERROR("Element type of a VectorType must be primitive");
1481 $$ = new PATypeHolder(HandleUpRefs(VectorType::get(*$4, (unsigned)$2)));
1485 | '{' TypeListI '}' { // Structure type?
1486 std::vector<const Type*> Elements;
1487 for (std::list<llvm::PATypeHolder>::iterator I = $2->begin(),
1488 E = $2->end(); I != E; ++I)
1489 Elements.push_back(*I);
1491 $$ = new PATypeHolder(HandleUpRefs(StructType::get(Elements)));
1495 | '{' '}' { // Empty structure type?
1496 $$ = new PATypeHolder(StructType::get(std::vector<const Type*>()));
1499 | '<' '{' TypeListI '}' '>' {
1500 std::vector<const Type*> Elements;
1501 for (std::list<llvm::PATypeHolder>::iterator I = $3->begin(),
1502 E = $3->end(); I != E; ++I)
1503 Elements.push_back(*I);
1505 $$ = new PATypeHolder(HandleUpRefs(StructType::get(Elements, true)));
1509 | '<' '{' '}' '>' { // Empty structure type?
1510 $$ = new PATypeHolder(StructType::get(std::vector<const Type*>(), true));
1516 : Types OptAttributes {
1517 // Allow but ignore attributes on function types; this permits auto-upgrade.
1518 // FIXME: remove in LLVM 3.0.
1520 $$.Attrs = Attribute::None;
1526 if (!UpRefs.empty())
1527 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1528 if (!(*$1)->isFirstClassType() && !isa<StructType>($1->get()))
1529 GEN_ERROR("LLVM functions cannot return aggregate types");
1533 $$ = new PATypeHolder(Type::VoidTy);
1537 ArgTypeList : ArgType {
1538 $$ = new TypeWithAttrsList();
1542 | ArgTypeList ',' ArgType {
1543 ($$=$1)->push_back($3);
1550 | ArgTypeList ',' DOTDOTDOT {
1552 TypeWithAttrs TWA; TWA.Attrs = Attribute::None;
1553 TWA.Ty = new PATypeHolder(Type::VoidTy);
1558 $$ = new TypeWithAttrsList;
1559 TypeWithAttrs TWA; TWA.Attrs = Attribute::None;
1560 TWA.Ty = new PATypeHolder(Type::VoidTy);
1565 $$ = new TypeWithAttrsList();
1569 // TypeList - Used for struct declarations and as a basis for function type
1570 // declaration type lists
1573 $$ = new std::list<PATypeHolder>();
1578 | TypeListI ',' Types {
1579 ($$=$1)->push_back(*$3);
1584 // ConstVal - The various declarations that go into the constant pool. This
1585 // production is used ONLY to represent constants that show up AFTER a 'const',
1586 // 'constant' or 'global' token at global scope. Constants that can be inlined
1587 // into other expressions (such as integers and constexprs) are handled by the
1588 // ResolvedVal, ValueRef and ConstValueRef productions.
1590 ConstVal: Types '[' ConstVector ']' { // Nonempty unsized arr
1591 if (!UpRefs.empty())
1592 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1593 const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
1595 GEN_ERROR("Cannot make array constant with type: '" +
1596 (*$1)->getDescription() + "'");
1597 const Type *ETy = ATy->getElementType();
1598 uint64_t NumElements = ATy->getNumElements();
1600 // Verify that we have the correct size...
1601 if (NumElements != uint64_t(-1) && NumElements != $3->size())
1602 GEN_ERROR("Type mismatch: constant sized array initialized with " +
1603 utostr($3->size()) + " arguments, but has size of " +
1604 utostr(NumElements) + "");
1606 // Verify all elements are correct type!
1607 for (unsigned i = 0; i < $3->size(); i++) {
1608 if (ETy != (*$3)[i]->getType())
1609 GEN_ERROR("Element #" + utostr(i) + " is not of type '" +
1610 ETy->getDescription() +"' as required!\nIt is of type '"+
1611 (*$3)[i]->getType()->getDescription() + "'.");
1614 $$ = ConstantArray::get(ATy, *$3);
1615 delete $1; delete $3;
1619 if (!UpRefs.empty())
1620 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1621 const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
1623 GEN_ERROR("Cannot make array constant with type: '" +
1624 (*$1)->getDescription() + "'");
1626 uint64_t NumElements = ATy->getNumElements();
1627 if (NumElements != uint64_t(-1) && NumElements != 0)
1628 GEN_ERROR("Type mismatch: constant sized array initialized with 0"
1629 " arguments, but has size of " + utostr(NumElements) +"");
1630 $$ = ConstantArray::get(ATy, std::vector<Constant*>());
1634 | Types 'c' STRINGCONSTANT {
1635 if (!UpRefs.empty())
1636 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1637 const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
1639 GEN_ERROR("Cannot make array constant with type: '" +
1640 (*$1)->getDescription() + "'");
1642 uint64_t NumElements = ATy->getNumElements();
1643 const Type *ETy = ATy->getElementType();
1644 if (NumElements != uint64_t(-1) && NumElements != $3->length())
1645 GEN_ERROR("Can't build string constant of size " +
1646 utostr($3->length()) +
1647 " when array has size " + utostr(NumElements) + "");
1648 std::vector<Constant*> Vals;
1649 if (ETy == Type::Int8Ty) {
1650 for (uint64_t i = 0; i < $3->length(); ++i)
1651 Vals.push_back(ConstantInt::get(ETy, (*$3)[i]));
1654 GEN_ERROR("Cannot build string arrays of non byte sized elements");
1657 $$ = ConstantArray::get(ATy, Vals);
1661 | Types '<' ConstVector '>' { // Nonempty unsized arr
1662 if (!UpRefs.empty())
1663 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1664 const VectorType *PTy = dyn_cast<VectorType>($1->get());
1666 GEN_ERROR("Cannot make packed constant with type: '" +
1667 (*$1)->getDescription() + "'");
1668 const Type *ETy = PTy->getElementType();
1669 unsigned NumElements = PTy->getNumElements();
1671 // Verify that we have the correct size...
1672 if (NumElements != unsigned(-1) && NumElements != (unsigned)$3->size())
1673 GEN_ERROR("Type mismatch: constant sized packed initialized with " +
1674 utostr($3->size()) + " arguments, but has size of " +
1675 utostr(NumElements) + "");
1677 // Verify all elements are correct type!
1678 for (unsigned i = 0; i < $3->size(); i++) {
1679 if (ETy != (*$3)[i]->getType())
1680 GEN_ERROR("Element #" + utostr(i) + " is not of type '" +
1681 ETy->getDescription() +"' as required!\nIt is of type '"+
1682 (*$3)[i]->getType()->getDescription() + "'.");
1685 $$ = ConstantVector::get(PTy, *$3);
1686 delete $1; delete $3;
1689 | Types '{' ConstVector '}' {
1690 const StructType *STy = dyn_cast<StructType>($1->get());
1692 GEN_ERROR("Cannot make struct constant with type: '" +
1693 (*$1)->getDescription() + "'");
1695 if ($3->size() != STy->getNumContainedTypes())
1696 GEN_ERROR("Illegal number of initializers for structure type");
1698 // Check to ensure that constants are compatible with the type initializer!
1699 for (unsigned i = 0, e = $3->size(); i != e; ++i)
1700 if ((*$3)[i]->getType() != STy->getElementType(i))
1701 GEN_ERROR("Expected type '" +
1702 STy->getElementType(i)->getDescription() +
1703 "' for element #" + utostr(i) +
1704 " of structure initializer");
1706 // Check to ensure that Type is not packed
1707 if (STy->isPacked())
1708 GEN_ERROR("Unpacked Initializer to vector type '" +
1709 STy->getDescription() + "'");
1711 $$ = ConstantStruct::get(STy, *$3);
1712 delete $1; delete $3;
1716 if (!UpRefs.empty())
1717 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1718 const StructType *STy = dyn_cast<StructType>($1->get());
1720 GEN_ERROR("Cannot make struct constant with type: '" +
1721 (*$1)->getDescription() + "'");
1723 if (STy->getNumContainedTypes() != 0)
1724 GEN_ERROR("Illegal number of initializers for structure type");
1726 // Check to ensure that Type is not packed
1727 if (STy->isPacked())
1728 GEN_ERROR("Unpacked Initializer to vector type '" +
1729 STy->getDescription() + "'");
1731 $$ = ConstantStruct::get(STy, std::vector<Constant*>());
1735 | Types '<' '{' ConstVector '}' '>' {
1736 const StructType *STy = dyn_cast<StructType>($1->get());
1738 GEN_ERROR("Cannot make struct constant with type: '" +
1739 (*$1)->getDescription() + "'");
1741 if ($4->size() != STy->getNumContainedTypes())
1742 GEN_ERROR("Illegal number of initializers for structure type");
1744 // Check to ensure that constants are compatible with the type initializer!
1745 for (unsigned i = 0, e = $4->size(); i != e; ++i)
1746 if ((*$4)[i]->getType() != STy->getElementType(i))
1747 GEN_ERROR("Expected type '" +
1748 STy->getElementType(i)->getDescription() +
1749 "' for element #" + utostr(i) +
1750 " of structure initializer");
1752 // Check to ensure that Type is packed
1753 if (!STy->isPacked())
1754 GEN_ERROR("Vector initializer to non-vector type '" +
1755 STy->getDescription() + "'");
1757 $$ = ConstantStruct::get(STy, *$4);
1758 delete $1; delete $4;
1761 | Types '<' '{' '}' '>' {
1762 if (!UpRefs.empty())
1763 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1764 const StructType *STy = dyn_cast<StructType>($1->get());
1766 GEN_ERROR("Cannot make struct constant with type: '" +
1767 (*$1)->getDescription() + "'");
1769 if (STy->getNumContainedTypes() != 0)
1770 GEN_ERROR("Illegal number of initializers for structure type");
1772 // Check to ensure that Type is packed
1773 if (!STy->isPacked())
1774 GEN_ERROR("Vector initializer to non-vector type '" +
1775 STy->getDescription() + "'");
1777 $$ = ConstantStruct::get(STy, std::vector<Constant*>());
1782 if (!UpRefs.empty())
1783 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1784 const PointerType *PTy = dyn_cast<PointerType>($1->get());
1786 GEN_ERROR("Cannot make null pointer constant with type: '" +
1787 (*$1)->getDescription() + "'");
1789 $$ = ConstantPointerNull::get(PTy);
1794 if (!UpRefs.empty())
1795 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1796 $$ = UndefValue::get($1->get());
1800 | Types SymbolicValueRef {
1801 if (!UpRefs.empty())
1802 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1803 const PointerType *Ty = dyn_cast<PointerType>($1->get());
1805 GEN_ERROR("Global const reference must be a pointer type " + (*$1)->getDescription());
1807 // ConstExprs can exist in the body of a function, thus creating
1808 // GlobalValues whenever they refer to a variable. Because we are in
1809 // the context of a function, getExistingVal will search the functions
1810 // symbol table instead of the module symbol table for the global symbol,
1811 // which throws things all off. To get around this, we just tell
1812 // getExistingVal that we are at global scope here.
1814 Function *SavedCurFn = CurFun.CurrentFunction;
1815 CurFun.CurrentFunction = 0;
1817 Value *V = getExistingVal(Ty, $2);
1820 CurFun.CurrentFunction = SavedCurFn;
1822 // If this is an initializer for a constant pointer, which is referencing a
1823 // (currently) undefined variable, create a stub now that shall be replaced
1824 // in the future with the right type of variable.
1827 assert(isa<PointerType>(Ty) && "Globals may only be used as pointers!");
1828 const PointerType *PT = cast<PointerType>(Ty);
1830 // First check to see if the forward references value is already created!
1831 PerModuleInfo::GlobalRefsType::iterator I =
1832 CurModule.GlobalRefs.find(std::make_pair(PT, $2));
1834 if (I != CurModule.GlobalRefs.end()) {
1835 V = I->second; // Placeholder already exists, use it...
1839 if ($2.Type == ValID::GlobalName)
1840 Name = $2.getName();
1841 else if ($2.Type != ValID::GlobalID)
1842 GEN_ERROR("Invalid reference to global");
1844 // Create the forward referenced global.
1846 if (const FunctionType *FTy =
1847 dyn_cast<FunctionType>(PT->getElementType())) {
1848 GV = Function::Create(FTy, GlobalValue::ExternalWeakLinkage, Name,
1849 CurModule.CurrentModule);
1851 GV = new GlobalVariable(PT->getElementType(), false,
1852 GlobalValue::ExternalWeakLinkage, 0,
1853 Name, CurModule.CurrentModule);
1856 // Keep track of the fact that we have a forward ref to recycle it
1857 CurModule.GlobalRefs.insert(std::make_pair(std::make_pair(PT, $2), GV));
1862 $$ = cast<GlobalValue>(V);
1863 delete $1; // Free the type handle
1867 if (!UpRefs.empty())
1868 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1869 if ($1->get() != $2->getType())
1870 GEN_ERROR("Mismatched types for constant expression: " +
1871 (*$1)->getDescription() + " and " + $2->getType()->getDescription());
1876 | Types ZEROINITIALIZER {
1877 if (!UpRefs.empty())
1878 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1879 const Type *Ty = $1->get();
1880 if (isa<FunctionType>(Ty) || Ty == Type::LabelTy || isa<OpaqueType>(Ty))
1881 GEN_ERROR("Cannot create a null initialized value of this type");
1882 $$ = Constant::getNullValue(Ty);
1886 | IntType ESINT64VAL { // integral constants
1887 if (!ConstantInt::isValueValidForType($1, $2))
1888 GEN_ERROR("Constant value doesn't fit in type");
1889 $$ = ConstantInt::get($1, $2, true);
1892 | IntType ESAPINTVAL { // arbitrary precision integer constants
1893 uint32_t BitWidth = cast<IntegerType>($1)->getBitWidth();
1894 if ($2->getBitWidth() > BitWidth) {
1895 GEN_ERROR("Constant value does not fit in type");
1897 $2->sextOrTrunc(BitWidth);
1898 $$ = ConstantInt::get(*$2);
1902 | IntType EUINT64VAL { // integral constants
1903 if (!ConstantInt::isValueValidForType($1, $2))
1904 GEN_ERROR("Constant value doesn't fit in type");
1905 $$ = ConstantInt::get($1, $2, false);
1908 | IntType EUAPINTVAL { // arbitrary precision integer constants
1909 uint32_t BitWidth = cast<IntegerType>($1)->getBitWidth();
1910 if ($2->getBitWidth() > BitWidth) {
1911 GEN_ERROR("Constant value does not fit in type");
1913 $2->zextOrTrunc(BitWidth);
1914 $$ = ConstantInt::get(*$2);
1918 | INTTYPE TRUETOK { // Boolean constants
1919 if (cast<IntegerType>($1)->getBitWidth() != 1)
1920 GEN_ERROR("Constant true must have type i1");
1921 $$ = ConstantInt::getTrue();
1924 | INTTYPE FALSETOK { // Boolean constants
1925 if (cast<IntegerType>($1)->getBitWidth() != 1)
1926 GEN_ERROR("Constant false must have type i1");
1927 $$ = ConstantInt::getFalse();
1930 | FPType FPVAL { // Floating point constants
1931 if (!ConstantFP::isValueValidForType($1, *$2))
1932 GEN_ERROR("Floating point constant invalid for type");
1933 // Lexer has no type info, so builds all float and double FP constants
1934 // as double. Fix this here. Long double is done right.
1935 if (&$2->getSemantics()==&APFloat::IEEEdouble && $1==Type::FloatTy) {
1937 $2->convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
1940 $$ = ConstantFP::get(*$2);
1946 ConstExpr: CastOps '(' ConstVal TO Types ')' {
1947 if (!UpRefs.empty())
1948 GEN_ERROR("Invalid upreference in type: " + (*$5)->getDescription());
1950 const Type *DestTy = $5->get();
1951 if (!CastInst::castIsValid($1, $3, DestTy))
1952 GEN_ERROR("invalid cast opcode for cast from '" +
1953 Val->getType()->getDescription() + "' to '" +
1954 DestTy->getDescription() + "'");
1955 $$ = ConstantExpr::getCast($1, $3, DestTy);
1958 | GETELEMENTPTR '(' ConstVal IndexList ')' {
1959 if (!isa<PointerType>($3->getType()))
1960 GEN_ERROR("GetElementPtr requires a pointer operand");
1963 GetElementPtrInst::getIndexedType($3->getType(), $4->begin(), $4->end());
1965 GEN_ERROR("Index list invalid for constant getelementptr");
1967 SmallVector<Constant*, 8> IdxVec;
1968 for (unsigned i = 0, e = $4->size(); i != e; ++i)
1969 if (Constant *C = dyn_cast<Constant>((*$4)[i]))
1970 IdxVec.push_back(C);
1972 GEN_ERROR("Indices to constant getelementptr must be constants");
1976 $$ = ConstantExpr::getGetElementPtr($3, &IdxVec[0], IdxVec.size());
1979 | SELECT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
1980 if ($3->getType() != Type::Int1Ty)
1981 GEN_ERROR("Select condition must be of boolean type");
1982 if ($5->getType() != $7->getType())
1983 GEN_ERROR("Select operand types must match");
1984 $$ = ConstantExpr::getSelect($3, $5, $7);
1987 | ArithmeticOps '(' ConstVal ',' ConstVal ')' {
1988 if ($3->getType() != $5->getType())
1989 GEN_ERROR("Binary operator types must match");
1991 $$ = ConstantExpr::get($1, $3, $5);
1993 | LogicalOps '(' ConstVal ',' ConstVal ')' {
1994 if ($3->getType() != $5->getType())
1995 GEN_ERROR("Logical operator types must match");
1996 if (!$3->getType()->isInteger()) {
1997 if (!isa<VectorType>($3->getType()) ||
1998 !cast<VectorType>($3->getType())->getElementType()->isInteger())
1999 GEN_ERROR("Logical operator requires integral operands");
2001 $$ = ConstantExpr::get($1, $3, $5);
2004 | ICMP IPredicates '(' ConstVal ',' ConstVal ')' {
2005 if ($4->getType() != $6->getType())
2006 GEN_ERROR("icmp operand types must match");
2007 $$ = ConstantExpr::getICmp($2, $4, $6);
2009 | FCMP FPredicates '(' ConstVal ',' ConstVal ')' {
2010 if ($4->getType() != $6->getType())
2011 GEN_ERROR("fcmp operand types must match");
2012 $$ = ConstantExpr::getFCmp($2, $4, $6);
2014 | VICMP IPredicates '(' ConstVal ',' ConstVal ')' {
2015 if ($4->getType() != $6->getType())
2016 GEN_ERROR("vicmp operand types must match");
2017 $$ = ConstantExpr::getVICmp($2, $4, $6);
2019 | VFCMP FPredicates '(' ConstVal ',' ConstVal ')' {
2020 if ($4->getType() != $6->getType())
2021 GEN_ERROR("vfcmp operand types must match");
2022 $$ = ConstantExpr::getVFCmp($2, $4, $6);
2024 | EXTRACTELEMENT '(' ConstVal ',' ConstVal ')' {
2025 if (!ExtractElementInst::isValidOperands($3, $5))
2026 GEN_ERROR("Invalid extractelement operands");
2027 $$ = ConstantExpr::getExtractElement($3, $5);
2030 | INSERTELEMENT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
2031 if (!InsertElementInst::isValidOperands($3, $5, $7))
2032 GEN_ERROR("Invalid insertelement operands");
2033 $$ = ConstantExpr::getInsertElement($3, $5, $7);
2036 | SHUFFLEVECTOR '(' ConstVal ',' ConstVal ',' ConstVal ')' {
2037 if (!ShuffleVectorInst::isValidOperands($3, $5, $7))
2038 GEN_ERROR("Invalid shufflevector operands");
2039 $$ = ConstantExpr::getShuffleVector($3, $5, $7);
2042 | EXTRACTVALUE '(' ConstVal ConstantIndexList ')' {
2043 if (!isa<StructType>($3->getType()) && !isa<ArrayType>($3->getType()))
2044 GEN_ERROR("ExtractValue requires an aggregate operand");
2046 $$ = ConstantExpr::getExtractValue($3, &(*$4)[0], $4->size());
2050 | INSERTVALUE '(' ConstVal ',' ConstVal ConstantIndexList ')' {
2051 if (!isa<StructType>($3->getType()) && !isa<ArrayType>($3->getType()))
2052 GEN_ERROR("InsertValue requires an aggregate operand");
2054 $$ = ConstantExpr::getInsertValue($3, $5, &(*$6)[0], $6->size());
2060 // ConstVector - A list of comma separated constants.
2061 ConstVector : ConstVector ',' ConstVal {
2062 ($$ = $1)->push_back($3);
2066 $$ = new std::vector<Constant*>();
2072 // GlobalType - Match either GLOBAL or CONSTANT for global declarations...
2073 GlobalType : GLOBAL { $$ = false; } | CONSTANT { $$ = true; };
2076 ThreadLocal : THREAD_LOCAL { $$ = true; } | { $$ = false; };
2078 // AliaseeRef - Match either GlobalValue or bitcast to GlobalValue.
2079 AliaseeRef : ResultTypes SymbolicValueRef {
2080 const Type* VTy = $1->get();
2081 Value *V = getVal(VTy, $2);
2083 GlobalValue* Aliasee = dyn_cast<GlobalValue>(V);
2085 GEN_ERROR("Aliases can be created only to global values");
2091 | BITCAST '(' AliaseeRef TO Types ')' {
2093 const Type *DestTy = $5->get();
2094 if (!CastInst::castIsValid($1, $3, DestTy))
2095 GEN_ERROR("invalid cast opcode for cast from '" +
2096 Val->getType()->getDescription() + "' to '" +
2097 DestTy->getDescription() + "'");
2099 $$ = ConstantExpr::getCast($1, $3, DestTy);
2104 //===----------------------------------------------------------------------===//
2105 // Rules to match Modules
2106 //===----------------------------------------------------------------------===//
2108 // Module rule: Capture the result of parsing the whole file into a result
2113 $$ = ParserResult = CurModule.CurrentModule;
2114 CurModule.ModuleDone();
2118 $$ = ParserResult = CurModule.CurrentModule;
2119 CurModule.ModuleDone();
2126 | DefinitionList Definition
2130 : DEFINE { CurFun.isDeclare = false; } Function {
2131 CurFun.FunctionDone();
2134 | DECLARE { CurFun.isDeclare = true; } FunctionProto {
2137 | MODULE ASM_TOK AsmBlock {
2140 | OptLocalAssign TYPE Types {
2141 if (!UpRefs.empty())
2142 GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
2143 // Eagerly resolve types. This is not an optimization, this is a
2144 // requirement that is due to the fact that we could have this:
2146 // %list = type { %list * }
2147 // %list = type { %list * } ; repeated type decl
2149 // If types are not resolved eagerly, then the two types will not be
2150 // determined to be the same type!
2152 ResolveTypeTo($1, *$3);
2154 if (!setTypeName(*$3, $1) && !$1) {
2156 // If this is a named type that is not a redefinition, add it to the slot
2158 CurModule.Types.push_back(*$3);
2164 | OptLocalAssign TYPE VOID {
2165 ResolveTypeTo($1, $3);
2167 if (!setTypeName($3, $1) && !$1) {
2169 // If this is a named type that is not a redefinition, add it to the slot
2171 CurModule.Types.push_back($3);
2175 | OptGlobalAssign GVVisibilityStyle ThreadLocal GlobalType ConstVal
2177 /* "Externally Visible" Linkage */
2179 GEN_ERROR("Global value initializer is not a constant");
2180 CurGV = ParseGlobalVariable($1, GlobalValue::ExternalLinkage,
2181 $2, $4, $5->getType(), $5, $3, $6);
2183 } GlobalVarAttributes {
2186 | OptGlobalAssign GVInternalLinkage GVVisibilityStyle ThreadLocal GlobalType
2187 ConstVal OptAddrSpace {
2189 GEN_ERROR("Global value initializer is not a constant");
2190 CurGV = ParseGlobalVariable($1, $2, $3, $5, $6->getType(), $6, $4, $7);
2192 } GlobalVarAttributes {
2195 | OptGlobalAssign GVExternalLinkage GVVisibilityStyle ThreadLocal GlobalType
2196 Types OptAddrSpace {
2197 if (!UpRefs.empty())
2198 GEN_ERROR("Invalid upreference in type: " + (*$6)->getDescription());
2199 CurGV = ParseGlobalVariable($1, $2, $3, $5, *$6, 0, $4, $7);
2202 } GlobalVarAttributes {
2206 | OptGlobalAssign GVVisibilityStyle ALIAS AliasLinkage AliaseeRef {
2213 GEN_ERROR("Alias name cannot be empty");
2215 Constant* Aliasee = $5;
2217 GEN_ERROR(std::string("Invalid aliasee for alias: ") + Name);
2219 GlobalAlias* GA = new GlobalAlias(Aliasee->getType(), $4, Name, Aliasee,
2220 CurModule.CurrentModule);
2221 GA->setVisibility($2);
2222 InsertValue(GA, CurModule.Values);
2225 // If there was a forward reference of this alias, resolve it now.
2229 ID = ValID::createGlobalName(Name);
2231 ID = ValID::createGlobalID(CurModule.Values.size()-1);
2233 if (GlobalValue *FWGV =
2234 CurModule.GetForwardRefForGlobal(GA->getType(), ID)) {
2235 // Replace uses of the fwdref with the actual alias.
2236 FWGV->replaceAllUsesWith(GA);
2237 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(FWGV))
2238 GV->eraseFromParent();
2240 cast<Function>(FWGV)->eraseFromParent();
2246 | TARGET TargetDefinition {
2249 | DEPLIBS '=' LibrariesDefinition {
2255 AsmBlock : STRINGCONSTANT {
2256 const std::string &AsmSoFar = CurModule.CurrentModule->getModuleInlineAsm();
2257 if (AsmSoFar.empty())
2258 CurModule.CurrentModule->setModuleInlineAsm(*$1);
2260 CurModule.CurrentModule->setModuleInlineAsm(AsmSoFar+"\n"+*$1);
2265 TargetDefinition : TRIPLE '=' STRINGCONSTANT {
2266 CurModule.CurrentModule->setTargetTriple(*$3);
2269 | DATALAYOUT '=' STRINGCONSTANT {
2270 CurModule.CurrentModule->setDataLayout(*$3);
2274 LibrariesDefinition : '[' LibList ']';
2276 LibList : LibList ',' STRINGCONSTANT {
2277 CurModule.CurrentModule->addLibrary(*$3);
2282 CurModule.CurrentModule->addLibrary(*$1);
2286 | /* empty: end of list */ {
2291 //===----------------------------------------------------------------------===//
2292 // Rules to match Function Headers
2293 //===----------------------------------------------------------------------===//
2295 ArgListH : ArgListH ',' Types OptAttributes OptLocalName {
2296 if (!UpRefs.empty())
2297 GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
2298 if (!(*$3)->isFirstClassType())
2299 GEN_ERROR("Argument types must be first-class");
2300 ArgListEntry E; E.Attrs = $4; E.Ty = $3; E.Name = $5;
2305 | Types OptAttributes OptLocalName {
2306 if (!UpRefs.empty())
2307 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
2308 if (!(*$1)->isFirstClassType())
2309 GEN_ERROR("Argument types must be first-class");
2310 ArgListEntry E; E.Attrs = $2; E.Ty = $1; E.Name = $3;
2311 $$ = new ArgListType;
2316 ArgList : ArgListH {
2320 | ArgListH ',' DOTDOTDOT {
2322 struct ArgListEntry E;
2323 E.Ty = new PATypeHolder(Type::VoidTy);
2325 E.Attrs = Attribute::None;
2330 $$ = new ArgListType;
2331 struct ArgListEntry E;
2332 E.Ty = new PATypeHolder(Type::VoidTy);
2334 E.Attrs = Attribute::None;
2343 FunctionHeaderH : OptCallingConv OptRetAttrs ResultTypes GlobalName '(' ArgList ')'
2344 OptFuncAttrs OptSection OptAlign OptGC {
2345 std::string FunctionName(*$4);
2346 delete $4; // Free strdup'd memory!
2348 // Check the function result for abstractness if this is a define. We should
2349 // have no abstract types at this point
2350 if (!CurFun.isDeclare && CurModule.TypeIsUnresolved($3))
2351 GEN_ERROR("Reference to abstract result: "+ $3->get()->getDescription());
2353 if (!FunctionType::isValidReturnType(*$3))
2354 GEN_ERROR("Invalid result type for LLVM function");
2356 std::vector<const Type*> ParamTypeList;
2357 SmallVector<AttributeWithIndex, 8> Attrs;
2358 //FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2360 Attributes RetAttrs = $2;
2361 if ($8 != Attribute::None) {
2362 if ($8 & Attribute::ZExt) {
2363 RetAttrs = RetAttrs | Attribute::ZExt;
2364 $8 = $8 ^ Attribute::ZExt;
2366 if ($8 & Attribute::SExt) {
2367 RetAttrs = RetAttrs | Attribute::SExt;
2368 $8 = $8 ^ Attribute::SExt;
2370 if ($8 & Attribute::InReg) {
2371 RetAttrs = RetAttrs | Attribute::InReg;
2372 $8 = $8 ^ Attribute::InReg;
2375 if (RetAttrs != Attribute::None)
2376 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2377 if ($6) { // If there are arguments...
2379 for (ArgListType::iterator I = $6->begin(); I != $6->end(); ++I, ++index) {
2380 const Type* Ty = I->Ty->get();
2381 if (!CurFun.isDeclare && CurModule.TypeIsUnresolved(I->Ty))
2382 GEN_ERROR("Reference to abstract argument: " + Ty->getDescription());
2383 ParamTypeList.push_back(Ty);
2384 if (Ty != Type::VoidTy && I->Attrs != Attribute::None)
2385 Attrs.push_back(AttributeWithIndex::get(index, I->Attrs));
2388 if ($8 != Attribute::None)
2389 Attrs.push_back(AttributeWithIndex::get(~0, $8));
2391 bool isVarArg = ParamTypeList.size() && ParamTypeList.back() == Type::VoidTy;
2392 if (isVarArg) ParamTypeList.pop_back();
2396 PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2398 FunctionType *FT = FunctionType::get(*$3, ParamTypeList, isVarArg);
2399 const PointerType *PFT = PointerType::getUnqual(FT);
2403 if (!FunctionName.empty()) {
2404 ID = ValID::createGlobalName((char*)FunctionName.c_str());
2406 ID = ValID::createGlobalID(CurModule.Values.size());
2410 // See if this function was forward referenced. If so, recycle the object.
2411 if (GlobalValue *FWRef = CurModule.GetForwardRefForGlobal(PFT, ID)) {
2412 // Move the function to the end of the list, from whereever it was
2413 // previously inserted.
2414 Fn = cast<Function>(FWRef);
2415 assert(Fn->getAttributes().isEmpty() &&
2416 "Forward reference has parameter attributes!");
2417 CurModule.CurrentModule->getFunctionList().remove(Fn);
2418 CurModule.CurrentModule->getFunctionList().push_back(Fn);
2419 } else if (!FunctionName.empty() && // Merge with an earlier prototype?
2420 (Fn = CurModule.CurrentModule->getFunction(FunctionName))) {
2421 if (Fn->getFunctionType() != FT ) {
2422 // The existing function doesn't have the same type. This is an overload
2424 GEN_ERROR("Overload of function '" + FunctionName + "' not permitted.");
2425 } else if (Fn->getAttributes() != PAL) {
2426 // The existing function doesn't have the same parameter attributes.
2427 // This is an overload error.
2428 GEN_ERROR("Overload of function '" + FunctionName + "' not permitted.");
2429 } else if (!CurFun.isDeclare && !Fn->isDeclaration()) {
2430 // Neither the existing or the current function is a declaration and they
2431 // have the same name and same type. Clearly this is a redefinition.
2432 GEN_ERROR("Redefinition of function '" + FunctionName + "'");
2433 } else if (Fn->isDeclaration()) {
2434 // Make sure to strip off any argument names so we can't get conflicts.
2435 for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2439 } else { // Not already defined?
2440 Fn = Function::Create(FT, GlobalValue::ExternalWeakLinkage, FunctionName,
2441 CurModule.CurrentModule);
2442 InsertValue(Fn, CurModule.Values);
2446 CurFun.FunctionStart(Fn);
2448 if (CurFun.isDeclare) {
2449 // If we have declaration, always overwrite linkage. This will allow us to
2450 // correctly handle cases, when pointer to function is passed as argument to
2451 // another function.
2452 Fn->setLinkage(CurFun.Linkage);
2453 Fn->setVisibility(CurFun.Visibility);
2455 Fn->setCallingConv($1);
2456 Fn->setAttributes(PAL);
2457 Fn->setAlignment($10);
2459 Fn->setSection(*$9);
2463 Fn->setGC($11->c_str());
2467 // Add all of the arguments we parsed to the function...
2468 if ($6) { // Is null if empty...
2469 if (isVarArg) { // Nuke the last entry
2470 assert($6->back().Ty->get() == Type::VoidTy && $6->back().Name == 0 &&
2471 "Not a varargs marker!");
2472 delete $6->back().Ty;
2473 $6->pop_back(); // Delete the last entry
2475 Function::arg_iterator ArgIt = Fn->arg_begin();
2476 Function::arg_iterator ArgEnd = Fn->arg_end();
2478 for (ArgListType::iterator I = $6->begin();
2479 I != $6->end() && ArgIt != ArgEnd; ++I, ++ArgIt) {
2480 delete I->Ty; // Delete the typeholder...
2481 setValueName(ArgIt, I->Name); // Insert arg into symtab...
2487 delete $6; // We're now done with the argument list
2492 BEGIN : BEGINTOK | '{'; // Allow BEGIN or '{' to start a function
2494 FunctionHeader : FunctionDefineLinkage GVVisibilityStyle FunctionHeaderH BEGIN {
2495 $$ = CurFun.CurrentFunction;
2497 // Make sure that we keep track of the linkage type even if there was a
2498 // previous "declare".
2500 $$->setVisibility($2);
2503 END : ENDTOK | '}'; // Allow end of '}' to end a function
2505 Function : BasicBlockList END {
2510 FunctionProto : FunctionDeclareLinkage GVVisibilityStyle FunctionHeaderH {
2511 CurFun.CurrentFunction->setLinkage($1);
2512 CurFun.CurrentFunction->setVisibility($2);
2513 $$ = CurFun.CurrentFunction;
2514 CurFun.FunctionDone();
2518 //===----------------------------------------------------------------------===//
2519 // Rules to match Basic Blocks
2520 //===----------------------------------------------------------------------===//
2522 OptSideEffect : /* empty */ {
2531 ConstValueRef : ESINT64VAL { // A reference to a direct constant
2532 $$ = ValID::create($1);
2536 $$ = ValID::create($1);
2539 | ESAPINTVAL { // arbitrary precision integer constants
2540 $$ = ValID::create(*$1, true);
2544 | EUAPINTVAL { // arbitrary precision integer constants
2545 $$ = ValID::create(*$1, false);
2549 | FPVAL { // Perhaps it's an FP constant?
2550 $$ = ValID::create($1);
2554 $$ = ValID::create(ConstantInt::getTrue());
2558 $$ = ValID::create(ConstantInt::getFalse());
2562 $$ = ValID::createNull();
2566 $$ = ValID::createUndef();
2569 | ZEROINITIALIZER { // A vector zero constant.
2570 $$ = ValID::createZeroInit();
2573 | '<' ConstVector '>' { // Nonempty unsized packed vector
2574 const Type *ETy = (*$2)[0]->getType();
2575 unsigned NumElements = $2->size();
2577 if (!ETy->isInteger() && !ETy->isFloatingPoint())
2578 GEN_ERROR("Invalid vector element type: " + ETy->getDescription());
2580 VectorType* pt = VectorType::get(ETy, NumElements);
2581 PATypeHolder* PTy = new PATypeHolder(HandleUpRefs(pt));
2583 // Verify all elements are correct type!
2584 for (unsigned i = 0; i < $2->size(); i++) {
2585 if (ETy != (*$2)[i]->getType())
2586 GEN_ERROR("Element #" + utostr(i) + " is not of type '" +
2587 ETy->getDescription() +"' as required!\nIt is of type '" +
2588 (*$2)[i]->getType()->getDescription() + "'.");
2591 $$ = ValID::create(ConstantVector::get(pt, *$2));
2592 delete PTy; delete $2;
2595 | '[' ConstVector ']' { // Nonempty unsized arr
2596 const Type *ETy = (*$2)[0]->getType();
2597 uint64_t NumElements = $2->size();
2599 if (!ETy->isFirstClassType())
2600 GEN_ERROR("Invalid array element type: " + ETy->getDescription());
2602 ArrayType *ATy = ArrayType::get(ETy, NumElements);
2603 PATypeHolder* PTy = new PATypeHolder(HandleUpRefs(ATy));
2605 // Verify all elements are correct type!
2606 for (unsigned i = 0; i < $2->size(); i++) {
2607 if (ETy != (*$2)[i]->getType())
2608 GEN_ERROR("Element #" + utostr(i) + " is not of type '" +
2609 ETy->getDescription() +"' as required!\nIt is of type '"+
2610 (*$2)[i]->getType()->getDescription() + "'.");
2613 $$ = ValID::create(ConstantArray::get(ATy, *$2));
2614 delete PTy; delete $2;
2618 // Use undef instead of an array because it's inconvenient to determine
2619 // the element type at this point, there being no elements to examine.
2620 $$ = ValID::createUndef();
2623 | 'c' STRINGCONSTANT {
2624 uint64_t NumElements = $2->length();
2625 const Type *ETy = Type::Int8Ty;
2627 ArrayType *ATy = ArrayType::get(ETy, NumElements);
2629 std::vector<Constant*> Vals;
2630 for (unsigned i = 0; i < $2->length(); ++i)
2631 Vals.push_back(ConstantInt::get(ETy, (*$2)[i]));
2633 $$ = ValID::create(ConstantArray::get(ATy, Vals));
2636 | '{' ConstVector '}' {
2637 std::vector<const Type*> Elements($2->size());
2638 for (unsigned i = 0, e = $2->size(); i != e; ++i)
2639 Elements[i] = (*$2)[i]->getType();
2641 const StructType *STy = StructType::get(Elements);
2642 PATypeHolder* PTy = new PATypeHolder(HandleUpRefs(STy));
2644 $$ = ValID::create(ConstantStruct::get(STy, *$2));
2645 delete PTy; delete $2;
2649 const StructType *STy = StructType::get(std::vector<const Type*>());
2650 $$ = ValID::create(ConstantStruct::get(STy, std::vector<Constant*>()));
2653 | '<' '{' ConstVector '}' '>' {
2654 std::vector<const Type*> Elements($3->size());
2655 for (unsigned i = 0, e = $3->size(); i != e; ++i)
2656 Elements[i] = (*$3)[i]->getType();
2658 const StructType *STy = StructType::get(Elements, /*isPacked=*/true);
2659 PATypeHolder* PTy = new PATypeHolder(HandleUpRefs(STy));
2661 $$ = ValID::create(ConstantStruct::get(STy, *$3));
2662 delete PTy; delete $3;
2666 const StructType *STy = StructType::get(std::vector<const Type*>(),
2668 $$ = ValID::create(ConstantStruct::get(STy, std::vector<Constant*>()));
2672 $$ = ValID::create($1);
2675 | ASM_TOK OptSideEffect STRINGCONSTANT ',' STRINGCONSTANT {
2676 $$ = ValID::createInlineAsm(*$3, *$5, $2);
2682 // SymbolicValueRef - Reference to one of two ways of symbolically refering to
2685 SymbolicValueRef : LOCALVAL_ID { // Is it an integer reference...?
2686 $$ = ValID::createLocalID($1);
2690 $$ = ValID::createGlobalID($1);
2693 | LocalName { // Is it a named reference...?
2694 $$ = ValID::createLocalName(*$1);
2698 | GlobalName { // Is it a named reference...?
2699 $$ = ValID::createGlobalName(*$1);
2704 // ValueRef - A reference to a definition... either constant or symbolic
2705 ValueRef : SymbolicValueRef | ConstValueRef;
2708 // ResolvedVal - a <type> <value> pair. This is used only in cases where the
2709 // type immediately preceeds the value reference, and allows complex constant
2710 // pool references (for things like: 'ret [2 x int] [ int 12, int 42]')
2711 ResolvedVal : Types ValueRef {
2712 if (!UpRefs.empty())
2713 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
2714 $$ = getVal(*$1, $2);
2720 ReturnedVal : ResolvedVal {
2721 $$ = new std::vector<Value *>();
2725 | ReturnedVal ',' ResolvedVal {
2726 ($$=$1)->push_back($3);
2730 BasicBlockList : BasicBlockList BasicBlock {
2734 | FunctionHeader BasicBlock { // Do not allow functions with 0 basic blocks
2740 // Basic blocks are terminated by branching instructions:
2741 // br, br/cc, switch, ret
2743 BasicBlock : InstructionList OptLocalAssign BBTerminatorInst {
2744 setValueName($3, $2);
2747 $1->getInstList().push_back($3);
2752 BasicBlock : InstructionList LocalNumber BBTerminatorInst {
2754 int ValNum = InsertValue($3);
2755 if (ValNum != (int)$2)
2756 GEN_ERROR("Result value number %" + utostr($2) +
2757 " is incorrect, expected %" + utostr((unsigned)ValNum));
2759 $1->getInstList().push_back($3);
2765 InstructionList : InstructionList Inst {
2766 if (CastInst *CI1 = dyn_cast<CastInst>($2))
2767 if (CastInst *CI2 = dyn_cast<CastInst>(CI1->getOperand(0)))
2768 if (CI2->getParent() == 0)
2769 $1->getInstList().push_back(CI2);
2770 $1->getInstList().push_back($2);
2774 | /* empty */ { // Empty space between instruction lists
2775 $$ = defineBBVal(ValID::createLocalID(CurFun.NextValNum));
2778 | LABELSTR { // Labelled (named) basic block
2779 $$ = defineBBVal(ValID::createLocalName(*$1));
2786 RET ReturnedVal { // Return with a result...
2787 ValueList &VL = *$2;
2788 assert(!VL.empty() && "Invalid ret operands!");
2789 const Type *ReturnType = CurFun.CurrentFunction->getReturnType();
2790 if (VL.size() > 1 ||
2791 (isa<StructType>(ReturnType) &&
2792 (VL.empty() || VL[0]->getType() != ReturnType))) {
2793 Value *RV = UndefValue::get(ReturnType);
2794 for (unsigned i = 0, e = VL.size(); i != e; ++i) {
2795 Instruction *I = InsertValueInst::Create(RV, VL[i], i, "mrv");
2796 ($<BasicBlockVal>-1)->getInstList().push_back(I);
2799 $$ = ReturnInst::Create(RV);
2801 $$ = ReturnInst::Create(VL[0]);
2806 | RET VOID { // Return with no result...
2807 $$ = ReturnInst::Create();
2810 | BR LABEL ValueRef { // Unconditional Branch...
2811 BasicBlock* tmpBB = getBBVal($3);
2813 $$ = BranchInst::Create(tmpBB);
2814 } // Conditional Branch...
2815 | BR INTTYPE ValueRef ',' LABEL ValueRef ',' LABEL ValueRef {
2816 if (cast<IntegerType>($2)->getBitWidth() != 1)
2817 GEN_ERROR("Branch condition must have type i1");
2818 BasicBlock* tmpBBA = getBBVal($6);
2820 BasicBlock* tmpBBB = getBBVal($9);
2822 Value* tmpVal = getVal(Type::Int1Ty, $3);
2824 $$ = BranchInst::Create(tmpBBA, tmpBBB, tmpVal);
2826 | SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' {
2827 Value* tmpVal = getVal($2, $3);
2829 BasicBlock* tmpBB = getBBVal($6);
2831 SwitchInst *S = SwitchInst::Create(tmpVal, tmpBB, $8->size());
2834 std::vector<std::pair<Constant*,BasicBlock*> >::iterator I = $8->begin(),
2836 for (; I != E; ++I) {
2837 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->first))
2838 S->addCase(CI, I->second);
2840 GEN_ERROR("Switch case is constant, but not a simple integer");
2845 | SWITCH IntType ValueRef ',' LABEL ValueRef '[' ']' {
2846 Value* tmpVal = getVal($2, $3);
2848 BasicBlock* tmpBB = getBBVal($6);
2850 SwitchInst *S = SwitchInst::Create(tmpVal, tmpBB, 0);
2854 | INVOKE OptCallingConv OptRetAttrs ResultTypes ValueRef '(' ParamList ')'
2855 OptFuncAttrs TO LABEL ValueRef UNWIND LABEL ValueRef {
2857 // Handle the short syntax
2858 const PointerType *PFTy = 0;
2859 const FunctionType *Ty = 0;
2860 if (!(PFTy = dyn_cast<PointerType>($4->get())) ||
2861 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2862 // Pull out the types of all of the arguments...
2863 std::vector<const Type*> ParamTypes;
2864 ParamList::iterator I = $7->begin(), E = $7->end();
2865 for (; I != E; ++I) {
2866 const Type *Ty = I->Val->getType();
2867 if (Ty == Type::VoidTy)
2868 GEN_ERROR("Short call syntax cannot be used with varargs");
2869 ParamTypes.push_back(Ty);
2872 if (!FunctionType::isValidReturnType(*$4))
2873 GEN_ERROR("Invalid result type for LLVM function");
2875 Ty = FunctionType::get($4->get(), ParamTypes, false);
2876 PFTy = PointerType::getUnqual(Ty);
2881 Value *V = getVal(PFTy, $5); // Get the function we're calling...
2883 BasicBlock *Normal = getBBVal($12);
2885 BasicBlock *Except = getBBVal($15);
2888 SmallVector<AttributeWithIndex, 8> Attrs;
2889 //FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2891 Attributes RetAttrs = $3;
2892 if ($9 != Attribute::None) {
2893 if ($9 & Attribute::ZExt) {
2894 RetAttrs = RetAttrs | Attribute::ZExt;
2895 $9 = $9 ^ Attribute::ZExt;
2897 if ($9 & Attribute::SExt) {
2898 RetAttrs = RetAttrs | Attribute::SExt;
2899 $9 = $9 ^ Attribute::SExt;
2901 if ($9 & Attribute::InReg) {
2902 RetAttrs = RetAttrs | Attribute::InReg;
2903 $9 = $9 ^ Attribute::InReg;
2906 if (RetAttrs != Attribute::None)
2907 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2909 // Check the arguments
2911 if ($7->empty()) { // Has no arguments?
2912 // Make sure no arguments is a good thing!
2913 if (Ty->getNumParams() != 0)
2914 GEN_ERROR("No arguments passed to a function that "
2915 "expects arguments");
2916 } else { // Has arguments?
2917 // Loop through FunctionType's arguments and ensure they are specified
2919 FunctionType::param_iterator I = Ty->param_begin();
2920 FunctionType::param_iterator E = Ty->param_end();
2921 ParamList::iterator ArgI = $7->begin(), ArgE = $7->end();
2924 for (; ArgI != ArgE && I != E; ++ArgI, ++I, ++index) {
2925 if (ArgI->Val->getType() != *I)
2926 GEN_ERROR("Parameter " + ArgI->Val->getName()+ " is not of type '" +
2927 (*I)->getDescription() + "'");
2928 Args.push_back(ArgI->Val);
2929 if (ArgI->Attrs != Attribute::None)
2930 Attrs.push_back(AttributeWithIndex::get(index, ArgI->Attrs));
2933 if (Ty->isVarArg()) {
2935 for (; ArgI != ArgE; ++ArgI, ++index) {
2936 Args.push_back(ArgI->Val); // push the remaining varargs
2937 if (ArgI->Attrs != Attribute::None)
2938 Attrs.push_back(AttributeWithIndex::get(index, ArgI->Attrs));
2940 } else if (I != E || ArgI != ArgE)
2941 GEN_ERROR("Invalid number of parameters detected");
2943 if ($9 != Attribute::None)
2944 Attrs.push_back(AttributeWithIndex::get(~0, $9));
2947 PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2949 // Create the InvokeInst
2950 InvokeInst *II = InvokeInst::Create(V, Normal, Except,
2951 Args.begin(), Args.end());
2952 II->setCallingConv($2);
2953 II->setAttributes(PAL);
2959 $$ = new UnwindInst();
2963 $$ = new UnreachableInst();
2969 JumpTable : JumpTable IntType ConstValueRef ',' LABEL ValueRef {
2971 Constant *V = cast<Constant>(getExistingVal($2, $3));
2974 GEN_ERROR("May only switch on a constant pool value");
2976 BasicBlock* tmpBB = getBBVal($6);
2978 $$->push_back(std::make_pair(V, tmpBB));
2980 | IntType ConstValueRef ',' LABEL ValueRef {
2981 $$ = new std::vector<std::pair<Constant*, BasicBlock*> >();
2982 Constant *V = cast<Constant>(getExistingVal($1, $2));
2986 GEN_ERROR("May only switch on a constant pool value");
2988 BasicBlock* tmpBB = getBBVal($5);
2990 $$->push_back(std::make_pair(V, tmpBB));
2993 Inst : OptLocalAssign InstVal {
2994 // Is this definition named?? if so, assign the name...
2995 setValueName($2, $1);
3002 Inst : LocalNumber InstVal {
3004 int ValNum = InsertValue($2);
3006 if (ValNum != (int)$1)
3007 GEN_ERROR("Result value number %" + utostr($1) +
3008 " is incorrect, expected %" + utostr((unsigned)ValNum));
3015 PHIList : Types '[' ValueRef ',' ValueRef ']' { // Used for PHI nodes
3016 if (!UpRefs.empty())
3017 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
3018 $$ = new std::list<std::pair<Value*, BasicBlock*> >();
3019 Value* tmpVal = getVal(*$1, $3);
3021 BasicBlock* tmpBB = getBBVal($5);
3023 $$->push_back(std::make_pair(tmpVal, tmpBB));
3026 | PHIList ',' '[' ValueRef ',' ValueRef ']' {
3028 Value* tmpVal = getVal($1->front().first->getType(), $4);
3030 BasicBlock* tmpBB = getBBVal($6);
3032 $1->push_back(std::make_pair(tmpVal, tmpBB));
3036 ParamList : Types OptAttributes ValueRef OptAttributes {
3037 // FIXME: Remove trailing OptAttributes in LLVM 3.0, it was a mistake in 2.0
3038 if (!UpRefs.empty())
3039 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
3040 // Used for call and invoke instructions
3041 $$ = new ParamList();
3042 ParamListEntry E; E.Attrs = $2 | $4; E.Val = getVal($1->get(), $3);
3047 | LABEL OptAttributes ValueRef OptAttributes {
3048 // FIXME: Remove trailing OptAttributes in LLVM 3.0, it was a mistake in 2.0
3049 // Labels are only valid in ASMs
3050 $$ = new ParamList();
3051 ParamListEntry E; E.Attrs = $2 | $4; E.Val = getBBVal($3);
3055 | ParamList ',' Types OptAttributes ValueRef OptAttributes {
3056 // FIXME: Remove trailing OptAttributes in LLVM 3.0, it was a mistake in 2.0
3057 if (!UpRefs.empty())
3058 GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
3060 ParamListEntry E; E.Attrs = $4 | $6; E.Val = getVal($3->get(), $5);
3065 | ParamList ',' LABEL OptAttributes ValueRef OptAttributes {
3066 // FIXME: Remove trailing OptAttributes in LLVM 3.0, it was a mistake in 2.0
3068 ParamListEntry E; E.Attrs = $4 | $6; E.Val = getBBVal($5);
3072 | /*empty*/ { $$ = new ParamList(); };
3074 IndexList // Used for gep instructions and constant expressions
3075 : /*empty*/ { $$ = new std::vector<Value*>(); }
3076 | IndexList ',' ResolvedVal {
3083 ConstantIndexList // Used for insertvalue and extractvalue instructions
3085 $$ = new std::vector<unsigned>();
3086 if ((unsigned)$2 != $2)
3087 GEN_ERROR("Index " + utostr($2) + " is not valid for insertvalue or extractvalue.");
3090 | ConstantIndexList ',' EUINT64VAL {
3092 if ((unsigned)$3 != $3)
3093 GEN_ERROR("Index " + utostr($3) + " is not valid for insertvalue or extractvalue.");
3099 OptTailCall : TAIL CALL {
3108 InstVal : ArithmeticOps Types ValueRef ',' ValueRef {
3109 if (!UpRefs.empty())
3110 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
3111 if (!(*$2)->isInteger() && !(*$2)->isFloatingPoint() &&
3112 !isa<VectorType>((*$2).get()))
3114 "Arithmetic operator requires integer, FP, or packed operands");
3115 Value* val1 = getVal(*$2, $3);
3117 Value* val2 = getVal(*$2, $5);
3119 $$ = BinaryOperator::Create($1, val1, val2);
3121 GEN_ERROR("binary operator returned null");
3124 | LogicalOps Types ValueRef ',' ValueRef {
3125 if (!UpRefs.empty())
3126 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
3127 if (!(*$2)->isInteger()) {
3128 if (!isa<VectorType>($2->get()) ||
3129 !cast<VectorType>($2->get())->getElementType()->isInteger())
3130 GEN_ERROR("Logical operator requires integral operands");
3132 Value* tmpVal1 = getVal(*$2, $3);
3134 Value* tmpVal2 = getVal(*$2, $5);
3136 $$ = BinaryOperator::Create($1, tmpVal1, tmpVal2);
3138 GEN_ERROR("binary operator returned null");
3141 | ICMP IPredicates Types ValueRef ',' ValueRef {
3142 if (!UpRefs.empty())
3143 GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
3144 Value* tmpVal1 = getVal(*$3, $4);
3146 Value* tmpVal2 = getVal(*$3, $6);
3148 $$ = CmpInst::Create($1, $2, tmpVal1, tmpVal2);
3150 GEN_ERROR("icmp operator returned null");
3153 | FCMP FPredicates Types ValueRef ',' ValueRef {
3154 if (!UpRefs.empty())
3155 GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
3156 Value* tmpVal1 = getVal(*$3, $4);
3158 Value* tmpVal2 = getVal(*$3, $6);
3160 $$ = CmpInst::Create($1, $2, tmpVal1, tmpVal2);
3162 GEN_ERROR("fcmp operator returned null");
3165 | VICMP IPredicates Types ValueRef ',' ValueRef {
3166 if (!UpRefs.empty())
3167 GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
3168 if (!isa<VectorType>((*$3).get()))
3169 GEN_ERROR("Scalar types not supported by vicmp instruction");
3170 Value* tmpVal1 = getVal(*$3, $4);
3172 Value* tmpVal2 = getVal(*$3, $6);
3174 $$ = CmpInst::Create($1, $2, tmpVal1, tmpVal2);
3176 GEN_ERROR("vicmp operator returned null");
3179 | VFCMP FPredicates Types ValueRef ',' ValueRef {
3180 if (!UpRefs.empty())
3181 GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
3182 if (!isa<VectorType>((*$3).get()))
3183 GEN_ERROR("Scalar types not supported by vfcmp instruction");
3184 Value* tmpVal1 = getVal(*$3, $4);
3186 Value* tmpVal2 = getVal(*$3, $6);
3188 $$ = CmpInst::Create($1, $2, tmpVal1, tmpVal2);
3190 GEN_ERROR("vfcmp operator returned null");
3193 | CastOps ResolvedVal TO Types {
3194 if (!UpRefs.empty())
3195 GEN_ERROR("Invalid upreference in type: " + (*$4)->getDescription());
3197 const Type* DestTy = $4->get();
3198 if (!CastInst::castIsValid($1, Val, DestTy))
3199 GEN_ERROR("invalid cast opcode for cast from '" +
3200 Val->getType()->getDescription() + "' to '" +
3201 DestTy->getDescription() + "'");
3202 $$ = CastInst::Create($1, Val, DestTy);
3205 | SELECT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
3206 if (isa<VectorType>($2->getType())) {
3208 if (!isa<VectorType>($4->getType())
3209 || !isa<VectorType>($6->getType()) )
3210 GEN_ERROR("vector select value types must be vector types");
3211 const VectorType* cond_type = cast<VectorType>($2->getType());
3212 const VectorType* select_type = cast<VectorType>($4->getType());
3213 if (cond_type->getElementType() != Type::Int1Ty)
3214 GEN_ERROR("vector select condition element type must be boolean");
3215 if (cond_type->getNumElements() != select_type->getNumElements())
3216 GEN_ERROR("vector select number of elements must be the same");
3218 if ($2->getType() != Type::Int1Ty)
3219 GEN_ERROR("select condition must be boolean");
3221 if ($4->getType() != $6->getType())
3222 GEN_ERROR("select value types must match");
3223 $$ = SelectInst::Create($2, $4, $6);
3226 | VAARG ResolvedVal ',' Types {
3227 if (!UpRefs.empty())
3228 GEN_ERROR("Invalid upreference in type: " + (*$4)->getDescription());
3229 $$ = new VAArgInst($2, *$4);
3233 | EXTRACTELEMENT ResolvedVal ',' ResolvedVal {
3234 if (!ExtractElementInst::isValidOperands($2, $4))
3235 GEN_ERROR("Invalid extractelement operands");
3236 $$ = new ExtractElementInst($2, $4);
3239 | INSERTELEMENT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
3240 if (!InsertElementInst::isValidOperands($2, $4, $6))
3241 GEN_ERROR("Invalid insertelement operands");
3242 $$ = InsertElementInst::Create($2, $4, $6);
3245 | SHUFFLEVECTOR ResolvedVal ',' ResolvedVal ',' ResolvedVal {
3246 if (!ShuffleVectorInst::isValidOperands($2, $4, $6))
3247 GEN_ERROR("Invalid shufflevector operands");
3248 $$ = new ShuffleVectorInst($2, $4, $6);
3252 const Type *Ty = $2->front().first->getType();
3253 if (!Ty->isFirstClassType())
3254 GEN_ERROR("PHI node operands must be of first class type");
3255 $$ = PHINode::Create(Ty);
3256 ((PHINode*)$$)->reserveOperandSpace($2->size());
3257 while ($2->begin() != $2->end()) {
3258 if ($2->front().first->getType() != Ty)
3259 GEN_ERROR("All elements of a PHI node must be of the same type");
3260 cast<PHINode>($$)->addIncoming($2->front().first, $2->front().second);
3263 delete $2; // Free the list...
3266 | OptTailCall OptCallingConv OptRetAttrs ResultTypes ValueRef '(' ParamList ')'
3269 // Handle the short syntax
3270 const PointerType *PFTy = 0;
3271 const FunctionType *Ty = 0;
3272 if (!(PFTy = dyn_cast<PointerType>($4->get())) ||
3273 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3274 // Pull out the types of all of the arguments...
3275 std::vector<const Type*> ParamTypes;
3276 ParamList::iterator I = $7->begin(), E = $7->end();
3277 for (; I != E; ++I) {
3278 const Type *Ty = I->Val->getType();
3279 if (Ty == Type::VoidTy)
3280 GEN_ERROR("Short call syntax cannot be used with varargs");
3281 ParamTypes.push_back(Ty);
3284 if (!FunctionType::isValidReturnType(*$4))
3285 GEN_ERROR("Invalid result type for LLVM function");
3287 Ty = FunctionType::get($4->get(), ParamTypes, false);
3288 PFTy = PointerType::getUnqual(Ty);
3291 Value *V = getVal(PFTy, $5); // Get the function we're calling...
3294 // Check for call to invalid intrinsic to avoid crashing later.
3295 if (Function *theF = dyn_cast<Function>(V)) {
3296 if (theF->hasName() && (theF->getValueName()->getKeyLength() >= 5) &&
3297 (0 == strncmp(theF->getValueName()->getKeyData(), "llvm.", 5)) &&
3298 !theF->getIntrinsicID(true))
3299 GEN_ERROR("Call to invalid LLVM intrinsic function '" +
3300 theF->getName() + "'");
3303 // Set up the Attributes for the function
3304 SmallVector<AttributeWithIndex, 8> Attrs;
3305 //FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
3307 Attributes RetAttrs = $3;
3308 if ($9 != Attribute::None) {
3309 if ($9 & Attribute::ZExt) {
3310 RetAttrs = RetAttrs | Attribute::ZExt;
3311 $9 = $9 ^ Attribute::ZExt;
3313 if ($9 & Attribute::SExt) {
3314 RetAttrs = RetAttrs | Attribute::SExt;
3315 $9 = $9 ^ Attribute::SExt;
3317 if ($9 & Attribute::InReg) {
3318 RetAttrs = RetAttrs | Attribute::InReg;
3319 $9 = $9 ^ Attribute::InReg;
3322 if (RetAttrs != Attribute::None)
3323 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3325 // Check the arguments
3327 if ($7->empty()) { // Has no arguments?
3328 // Make sure no arguments is a good thing!
3329 if (Ty->getNumParams() != 0)
3330 GEN_ERROR("No arguments passed to a function that "
3331 "expects arguments");
3332 } else { // Has arguments?
3333 // Loop through FunctionType's arguments and ensure they are specified
3334 // correctly. Also, gather any parameter attributes.
3335 FunctionType::param_iterator I = Ty->param_begin();
3336 FunctionType::param_iterator E = Ty->param_end();
3337 ParamList::iterator ArgI = $7->begin(), ArgE = $7->end();
3340 for (; ArgI != ArgE && I != E; ++ArgI, ++I, ++index) {
3341 if (ArgI->Val->getType() != *I)
3342 GEN_ERROR("Parameter " + ArgI->Val->getName()+ " is not of type '" +
3343 (*I)->getDescription() + "'");
3344 Args.push_back(ArgI->Val);
3345 if (ArgI->Attrs != Attribute::None)
3346 Attrs.push_back(AttributeWithIndex::get(index, ArgI->Attrs));
3348 if (Ty->isVarArg()) {
3350 for (; ArgI != ArgE; ++ArgI, ++index) {
3351 Args.push_back(ArgI->Val); // push the remaining varargs
3352 if (ArgI->Attrs != Attribute::None)
3353 Attrs.push_back(AttributeWithIndex::get(index, ArgI->Attrs));
3355 } else if (I != E || ArgI != ArgE)
3356 GEN_ERROR("Invalid number of parameters detected");
3358 if ($9 != Attribute::None)
3359 Attrs.push_back(AttributeWithIndex::get(~0, $9));
3361 // Finish off the Attributes and check them
3364 PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3366 // Create the call node
3367 CallInst *CI = CallInst::Create(V, Args.begin(), Args.end());
3368 CI->setTailCall($1);
3369 CI->setCallingConv($2);
3370 CI->setAttributes(PAL);
3381 OptVolatile : VOLATILE {
3392 MemoryInst : MALLOC Types OptCAlign {
3393 if (!UpRefs.empty())
3394 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
3395 $$ = new MallocInst(*$2, 0, $3);
3399 | MALLOC Types ',' INTTYPE ValueRef OptCAlign {
3400 if (!UpRefs.empty())
3401 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
3402 if ($4 != Type::Int32Ty)
3403 GEN_ERROR("Malloc array size is not a 32-bit integer!");
3404 Value* tmpVal = getVal($4, $5);
3406 $$ = new MallocInst(*$2, tmpVal, $6);
3409 | ALLOCA Types OptCAlign {
3410 if (!UpRefs.empty())
3411 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
3412 $$ = new AllocaInst(*$2, 0, $3);
3416 | ALLOCA Types ',' INTTYPE ValueRef OptCAlign {
3417 if (!UpRefs.empty())
3418 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
3419 if ($4 != Type::Int32Ty)
3420 GEN_ERROR("Alloca array size is not a 32-bit integer!");
3421 Value* tmpVal = getVal($4, $5);
3423 $$ = new AllocaInst(*$2, tmpVal, $6);
3426 | FREE ResolvedVal {
3427 if (!isa<PointerType>($2->getType()))
3428 GEN_ERROR("Trying to free nonpointer type " +
3429 $2->getType()->getDescription() + "");
3430 $$ = new FreeInst($2);
3434 | OptVolatile LOAD Types ValueRef OptCAlign {
3435 if (!UpRefs.empty())
3436 GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
3437 if (!isa<PointerType>($3->get()))
3438 GEN_ERROR("Can't load from nonpointer type: " +
3439 (*$3)->getDescription());
3440 if (!cast<PointerType>($3->get())->getElementType()->isFirstClassType())
3441 GEN_ERROR("Can't load from pointer of non-first-class type: " +
3442 (*$3)->getDescription());
3443 Value* tmpVal = getVal(*$3, $4);
3445 $$ = new LoadInst(tmpVal, "", $1, $5);
3448 | OptVolatile STORE ResolvedVal ',' Types ValueRef OptCAlign {
3449 if (!UpRefs.empty())
3450 GEN_ERROR("Invalid upreference in type: " + (*$5)->getDescription());
3451 const PointerType *PT = dyn_cast<PointerType>($5->get());
3453 GEN_ERROR("Can't store to a nonpointer type: " +
3454 (*$5)->getDescription());
3455 const Type *ElTy = PT->getElementType();
3456 if (ElTy != $3->getType())
3457 GEN_ERROR("Can't store '" + $3->getType()->getDescription() +
3458 "' into space of type '" + ElTy->getDescription() + "'");
3460 Value* tmpVal = getVal(*$5, $6);
3462 $$ = new StoreInst($3, tmpVal, $1, $7);
3465 | GETRESULT Types ValueRef ',' EUINT64VAL {
3466 if (!UpRefs.empty())
3467 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
3468 if (!isa<StructType>($2->get()) && !isa<ArrayType>($2->get()))
3469 GEN_ERROR("getresult insn requires an aggregate operand");
3470 if (!ExtractValueInst::getIndexedType(*$2, $5))
3471 GEN_ERROR("Invalid getresult index for type '" +
3472 (*$2)->getDescription()+ "'");
3474 Value *tmpVal = getVal(*$2, $3);
3476 $$ = ExtractValueInst::Create(tmpVal, $5);
3479 | GETELEMENTPTR Types ValueRef IndexList {
3480 if (!UpRefs.empty())
3481 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
3482 if (!isa<PointerType>($2->get()))
3483 GEN_ERROR("getelementptr insn requires pointer operand");
3485 if (!GetElementPtrInst::getIndexedType(*$2, $4->begin(), $4->end()))
3486 GEN_ERROR("Invalid getelementptr indices for type '" +
3487 (*$2)->getDescription()+ "'");
3488 Value* tmpVal = getVal(*$2, $3);
3490 $$ = GetElementPtrInst::Create(tmpVal, $4->begin(), $4->end());
3494 | EXTRACTVALUE Types ValueRef ConstantIndexList {
3495 if (!UpRefs.empty())
3496 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
3497 if (!isa<StructType>($2->get()) && !isa<ArrayType>($2->get()))
3498 GEN_ERROR("extractvalue insn requires an aggregate operand");
3500 if (!ExtractValueInst::getIndexedType(*$2, $4->begin(), $4->end()))
3501 GEN_ERROR("Invalid extractvalue indices for type '" +
3502 (*$2)->getDescription()+ "'");
3503 Value* tmpVal = getVal(*$2, $3);
3505 $$ = ExtractValueInst::Create(tmpVal, $4->begin(), $4->end());
3509 | INSERTVALUE Types ValueRef ',' Types ValueRef ConstantIndexList {
3510 if (!UpRefs.empty())
3511 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
3512 if (!isa<StructType>($2->get()) && !isa<ArrayType>($2->get()))
3513 GEN_ERROR("extractvalue insn requires an aggregate operand");
3515 if (ExtractValueInst::getIndexedType(*$2, $7->begin(), $7->end()) != $5->get())
3516 GEN_ERROR("Invalid insertvalue indices for type '" +
3517 (*$2)->getDescription()+ "'");
3518 Value* aggVal = getVal(*$2, $3);
3519 Value* tmpVal = getVal(*$5, $6);
3521 $$ = InsertValueInst::Create(aggVal, tmpVal, $7->begin(), $7->end());
3530 // common code from the two 'RunVMAsmParser' functions
3531 static Module* RunParser(Module * M) {
3532 CurModule.CurrentModule = M;
3533 // Check to make sure the parser succeeded
3536 delete ParserResult;
3540 // Emit an error if there are any unresolved types left.
3541 if (!CurModule.LateResolveTypes.empty()) {
3542 const ValID &DID = CurModule.LateResolveTypes.begin()->first;
3543 if (DID.Type == ValID::LocalName) {
3544 GenerateError("Undefined type remains at eof: '"+DID.getName() + "'");
3546 GenerateError("Undefined type remains at eof: #" + itostr(DID.Num));
3549 delete ParserResult;
3553 // Emit an error if there are any unresolved values left.
3554 if (!CurModule.LateResolveValues.empty()) {
3555 Value *V = CurModule.LateResolveValues.back();
3556 std::map<Value*, std::pair<ValID, int> >::iterator I =
3557 CurModule.PlaceHolderInfo.find(V);
3559 if (I != CurModule.PlaceHolderInfo.end()) {
3560 ValID &DID = I->second.first;
3561 if (DID.Type == ValID::LocalName) {
3562 GenerateError("Undefined value remains at eof: "+DID.getName() + "'");
3564 GenerateError("Undefined value remains at eof: #" + itostr(DID.Num));
3567 delete ParserResult;
3572 // Check to make sure that parsing produced a result
3576 // Reset ParserResult variable while saving its value for the result.
3577 Module *Result = ParserResult;
3583 void llvm::GenerateError(const std::string &message, int LineNo) {
3584 if (LineNo == -1) LineNo = LLLgetLineNo();
3585 // TODO: column number in exception
3587 TheParseError->setError(LLLgetFilename(), message, LineNo);
3591 int yyerror(const char *ErrorMsg) {
3592 std::string where = LLLgetFilename() + ":" + utostr(LLLgetLineNo()) + ": ";
3593 std::string errMsg = where + "error: " + std::string(ErrorMsg);
3594 if (yychar != YYEMPTY && yychar != 0) {
3595 errMsg += " while reading token: '";
3596 errMsg += std::string(LLLgetTokenStart(),
3597 LLLgetTokenStart()+LLLgetTokenLength()) + "'";
3599 GenerateError(errMsg);