3d89f3d0f00c5a14a62edb7d41d19f9f251fff5d
[oota-llvm.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Metadata.h"
23 #include "llvm/Module.h"
24 #include "llvm/Operator.h"
25 #include "llvm/TypeSymbolTable.h"
26 #include "llvm/ValueSymbolTable.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/MathExtras.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/System/Program.h"
31 using namespace llvm;
32
33 /// These are manifest constants used by the bitcode writer. They do not need to
34 /// be kept in sync with the reader, but need to be consistent within this file.
35 enum {
36   CurVersion = 0,
37   
38   // VALUE_SYMTAB_BLOCK abbrev id's.
39   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
40   VST_ENTRY_7_ABBREV,
41   VST_ENTRY_6_ABBREV,
42   VST_BBENTRY_6_ABBREV,
43   
44   // CONSTANTS_BLOCK abbrev id's.
45   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
46   CONSTANTS_INTEGER_ABBREV,
47   CONSTANTS_CE_CAST_Abbrev,
48   CONSTANTS_NULL_Abbrev,
49   
50   // FUNCTION_BLOCK abbrev id's.
51   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
52   FUNCTION_INST_BINOP_ABBREV,
53   FUNCTION_INST_BINOP_FLAGS_ABBREV,
54   FUNCTION_INST_CAST_ABBREV,
55   FUNCTION_INST_RET_VOID_ABBREV,
56   FUNCTION_INST_RET_VAL_ABBREV,
57   FUNCTION_INST_UNREACHABLE_ABBREV
58 };
59
60
61 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
62   switch (Opcode) {
63   default: llvm_unreachable("Unknown cast instruction!");
64   case Instruction::Trunc   : return bitc::CAST_TRUNC;
65   case Instruction::ZExt    : return bitc::CAST_ZEXT;
66   case Instruction::SExt    : return bitc::CAST_SEXT;
67   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
68   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
69   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
70   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
71   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
72   case Instruction::FPExt   : return bitc::CAST_FPEXT;
73   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
74   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
75   case Instruction::BitCast : return bitc::CAST_BITCAST;
76   }
77 }
78
79 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
80   switch (Opcode) {
81   default: llvm_unreachable("Unknown binary instruction!");
82   case Instruction::Add:
83   case Instruction::FAdd: return bitc::BINOP_ADD;
84   case Instruction::Sub:
85   case Instruction::FSub: return bitc::BINOP_SUB;
86   case Instruction::Mul:
87   case Instruction::FMul: return bitc::BINOP_MUL;
88   case Instruction::UDiv: return bitc::BINOP_UDIV;
89   case Instruction::FDiv:
90   case Instruction::SDiv: return bitc::BINOP_SDIV;
91   case Instruction::URem: return bitc::BINOP_UREM;
92   case Instruction::FRem:
93   case Instruction::SRem: return bitc::BINOP_SREM;
94   case Instruction::Shl:  return bitc::BINOP_SHL;
95   case Instruction::LShr: return bitc::BINOP_LSHR;
96   case Instruction::AShr: return bitc::BINOP_ASHR;
97   case Instruction::And:  return bitc::BINOP_AND;
98   case Instruction::Or:   return bitc::BINOP_OR;
99   case Instruction::Xor:  return bitc::BINOP_XOR;
100   }
101 }
102
103
104
105 static void WriteStringRecord(unsigned Code, const std::string &Str, 
106                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
107   SmallVector<unsigned, 64> Vals;
108   
109   // Code: [strchar x N]
110   for (unsigned i = 0, e = Str.size(); i != e; ++i)
111     Vals.push_back(Str[i]);
112     
113   // Emit the finished record.
114   Stream.EmitRecord(Code, Vals, AbbrevToUse);
115 }
116
117 // Emit information about parameter attributes.
118 static void WriteAttributeTable(const ValueEnumerator &VE, 
119                                 BitstreamWriter &Stream) {
120   const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
121   if (Attrs.empty()) return;
122   
123   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
124
125   SmallVector<uint64_t, 64> Record;
126   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
127     const AttrListPtr &A = Attrs[i];
128     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
129       const AttributeWithIndex &PAWI = A.getSlot(i);
130       Record.push_back(PAWI.Index);
131
132       // FIXME: remove in LLVM 3.0
133       // Store the alignment in the bitcode as a 16-bit raw value instead of a
134       // 5-bit log2 encoded value. Shift the bits above the alignment up by
135       // 11 bits.
136       uint64_t FauxAttr = PAWI.Attrs & 0xffff;
137       if (PAWI.Attrs & Attribute::Alignment)
138         FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
139       FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
140
141       Record.push_back(FauxAttr);
142     }
143     
144     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
145     Record.clear();
146   }
147   
148   Stream.ExitBlock();
149 }
150
151 /// WriteTypeTable - Write out the type table for a module.
152 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
153   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
154   
155   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
156   SmallVector<uint64_t, 64> TypeVals;
157   
158   // Abbrev for TYPE_CODE_POINTER.
159   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
160   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
161   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
162                             Log2_32_Ceil(VE.getTypes().size()+1)));
163   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
164   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
165   
166   // Abbrev for TYPE_CODE_FUNCTION.
167   Abbv = new BitCodeAbbrev();
168   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
169   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
170   Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
171   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
172   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
173                             Log2_32_Ceil(VE.getTypes().size()+1)));
174   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
175   
176   // Abbrev for TYPE_CODE_STRUCT.
177   Abbv = new BitCodeAbbrev();
178   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
179   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
180   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
181   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
182                             Log2_32_Ceil(VE.getTypes().size()+1)));
183   unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
184  
185   // Abbrev for TYPE_CODE_ARRAY.
186   Abbv = new BitCodeAbbrev();
187   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
188   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
189   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
190                             Log2_32_Ceil(VE.getTypes().size()+1)));
191   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
192   
193   // Emit an entry count so the reader can reserve space.
194   TypeVals.push_back(TypeList.size());
195   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
196   TypeVals.clear();
197   
198   // Loop over all of the types, emitting each in turn.
199   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
200     const Type *T = TypeList[i].first;
201     int AbbrevToUse = 0;
202     unsigned Code = 0;
203     
204     switch (T->getTypeID()) {
205     default: llvm_unreachable("Unknown type!");
206     case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
207     case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
208     case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
209     case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
210     case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
211     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
212     case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
213     case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
214     case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
215     case Type::IntegerTyID:
216       // INTEGER: [width]
217       Code = bitc::TYPE_CODE_INTEGER;
218       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
219       break;
220     case Type::PointerTyID: {
221       const PointerType *PTy = cast<PointerType>(T);
222       // POINTER: [pointee type, address space]
223       Code = bitc::TYPE_CODE_POINTER;
224       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
225       unsigned AddressSpace = PTy->getAddressSpace();
226       TypeVals.push_back(AddressSpace);
227       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
228       break;
229     }
230     case Type::FunctionTyID: {
231       const FunctionType *FT = cast<FunctionType>(T);
232       // FUNCTION: [isvararg, attrid, retty, paramty x N]
233       Code = bitc::TYPE_CODE_FUNCTION;
234       TypeVals.push_back(FT->isVarArg());
235       TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
236       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
237       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
238         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
239       AbbrevToUse = FunctionAbbrev;
240       break;
241     }
242     case Type::StructTyID: {
243       const StructType *ST = cast<StructType>(T);
244       // STRUCT: [ispacked, eltty x N]
245       Code = bitc::TYPE_CODE_STRUCT;
246       TypeVals.push_back(ST->isPacked());
247       // Output all of the element types.
248       for (StructType::element_iterator I = ST->element_begin(),
249            E = ST->element_end(); I != E; ++I)
250         TypeVals.push_back(VE.getTypeID(*I));
251       AbbrevToUse = StructAbbrev;
252       break;
253     }
254     case Type::ArrayTyID: {
255       const ArrayType *AT = cast<ArrayType>(T);
256       // ARRAY: [numelts, eltty]
257       Code = bitc::TYPE_CODE_ARRAY;
258       TypeVals.push_back(AT->getNumElements());
259       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
260       AbbrevToUse = ArrayAbbrev;
261       break;
262     }
263     case Type::VectorTyID: {
264       const VectorType *VT = cast<VectorType>(T);
265       // VECTOR [numelts, eltty]
266       Code = bitc::TYPE_CODE_VECTOR;
267       TypeVals.push_back(VT->getNumElements());
268       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
269       break;
270     }
271     }
272
273     // Emit the finished record.
274     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
275     TypeVals.clear();
276   }
277   
278   Stream.ExitBlock();
279 }
280
281 static unsigned getEncodedLinkage(const GlobalValue *GV) {
282   switch (GV->getLinkage()) {
283   default: llvm_unreachable("Invalid linkage!");
284   case GlobalValue::GhostLinkage:  // Map ghost linkage onto external.
285   case GlobalValue::ExternalLinkage:            return 0;
286   case GlobalValue::WeakAnyLinkage:             return 1;
287   case GlobalValue::AppendingLinkage:           return 2;
288   case GlobalValue::InternalLinkage:            return 3;
289   case GlobalValue::LinkOnceAnyLinkage:         return 4;
290   case GlobalValue::DLLImportLinkage:           return 5;
291   case GlobalValue::DLLExportLinkage:           return 6;
292   case GlobalValue::ExternalWeakLinkage:        return 7;
293   case GlobalValue::CommonLinkage:              return 8;
294   case GlobalValue::PrivateLinkage:             return 9;
295   case GlobalValue::WeakODRLinkage:             return 10;
296   case GlobalValue::LinkOnceODRLinkage:         return 11;
297   case GlobalValue::AvailableExternallyLinkage: return 12;
298   case GlobalValue::LinkerPrivateLinkage:       return 13;
299   }
300 }
301
302 static unsigned getEncodedVisibility(const GlobalValue *GV) {
303   switch (GV->getVisibility()) {
304   default: llvm_unreachable("Invalid visibility!");
305   case GlobalValue::DefaultVisibility:   return 0;
306   case GlobalValue::HiddenVisibility:    return 1;
307   case GlobalValue::ProtectedVisibility: return 2;
308   }
309 }
310
311 // Emit top-level description of module, including target triple, inline asm,
312 // descriptors for global variables, and function prototype info.
313 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
314                             BitstreamWriter &Stream) {
315   // Emit the list of dependent libraries for the Module.
316   for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
317     WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
318
319   // Emit various pieces of data attached to a module.
320   if (!M->getTargetTriple().empty())
321     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
322                       0/*TODO*/, Stream);
323   if (!M->getDataLayout().empty())
324     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
325                       0/*TODO*/, Stream);
326   if (!M->getModuleInlineAsm().empty())
327     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
328                       0/*TODO*/, Stream);
329
330   // Emit information about sections and GC, computing how many there are. Also
331   // compute the maximum alignment value.
332   std::map<std::string, unsigned> SectionMap;
333   std::map<std::string, unsigned> GCMap;
334   unsigned MaxAlignment = 0;
335   unsigned MaxGlobalType = 0;
336   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
337        GV != E; ++GV) {
338     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
339     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
340     
341     if (!GV->hasSection()) continue;
342     // Give section names unique ID's.
343     unsigned &Entry = SectionMap[GV->getSection()];
344     if (Entry != 0) continue;
345     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
346                       0/*TODO*/, Stream);
347     Entry = SectionMap.size();
348   }
349   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
350     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
351     if (F->hasSection()) {
352       // Give section names unique ID's.
353       unsigned &Entry = SectionMap[F->getSection()];
354       if (!Entry) {
355         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
356                           0/*TODO*/, Stream);
357         Entry = SectionMap.size();
358       }
359     }
360     if (F->hasGC()) {
361       // Same for GC names.
362       unsigned &Entry = GCMap[F->getGC()];
363       if (!Entry) {
364         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
365                           0/*TODO*/, Stream);
366         Entry = GCMap.size();
367       }
368     }
369   }
370   
371   // Emit abbrev for globals, now that we know # sections and max alignment.
372   unsigned SimpleGVarAbbrev = 0;
373   if (!M->global_empty()) { 
374     // Add an abbrev for common globals with no visibility or thread localness.
375     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
376     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
377     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
378                               Log2_32_Ceil(MaxGlobalType+1)));
379     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
380     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
381     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
382     if (MaxAlignment == 0)                                      // Alignment.
383       Abbv->Add(BitCodeAbbrevOp(0));
384     else {
385       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
386       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
387                                Log2_32_Ceil(MaxEncAlignment+1)));
388     }
389     if (SectionMap.empty())                                    // Section.
390       Abbv->Add(BitCodeAbbrevOp(0));
391     else
392       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
393                                Log2_32_Ceil(SectionMap.size()+1)));
394     // Don't bother emitting vis + thread local.
395     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
396   }
397   
398   // Emit the global variable information.
399   SmallVector<unsigned, 64> Vals;
400   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
401        GV != E; ++GV) {
402     unsigned AbbrevToUse = 0;
403
404     // GLOBALVAR: [type, isconst, initid, 
405     //             linkage, alignment, section, visibility, threadlocal]
406     Vals.push_back(VE.getTypeID(GV->getType()));
407     Vals.push_back(GV->isConstant());
408     Vals.push_back(GV->isDeclaration() ? 0 :
409                    (VE.getValueID(GV->getInitializer()) + 1));
410     Vals.push_back(getEncodedLinkage(GV));
411     Vals.push_back(Log2_32(GV->getAlignment())+1);
412     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
413     if (GV->isThreadLocal() || 
414         GV->getVisibility() != GlobalValue::DefaultVisibility) {
415       Vals.push_back(getEncodedVisibility(GV));
416       Vals.push_back(GV->isThreadLocal());
417     } else {
418       AbbrevToUse = SimpleGVarAbbrev;
419     }
420     
421     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
422     Vals.clear();
423   }
424
425   // Emit the function proto information.
426   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
427     // FUNCTION:  [type, callingconv, isproto, paramattr,
428     //             linkage, alignment, section, visibility, gc]
429     Vals.push_back(VE.getTypeID(F->getType()));
430     Vals.push_back(F->getCallingConv());
431     Vals.push_back(F->isDeclaration());
432     Vals.push_back(getEncodedLinkage(F));
433     Vals.push_back(VE.getAttributeID(F->getAttributes()));
434     Vals.push_back(Log2_32(F->getAlignment())+1);
435     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
436     Vals.push_back(getEncodedVisibility(F));
437     Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
438     
439     unsigned AbbrevToUse = 0;
440     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
441     Vals.clear();
442   }
443   
444   
445   // Emit the alias information.
446   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
447        AI != E; ++AI) {
448     Vals.push_back(VE.getTypeID(AI->getType()));
449     Vals.push_back(VE.getValueID(AI->getAliasee()));
450     Vals.push_back(getEncodedLinkage(AI));
451     Vals.push_back(getEncodedVisibility(AI));
452     unsigned AbbrevToUse = 0;
453     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
454     Vals.clear();
455   }
456 }
457
458 static uint64_t GetOptimizationFlags(const Value *V) {
459   uint64_t Flags = 0;
460
461   if (const OverflowingBinaryOperator *OBO =
462         dyn_cast<OverflowingBinaryOperator>(V)) {
463     if (OBO->hasNoSignedWrap())
464       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
465     if (OBO->hasNoUnsignedWrap())
466       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
467   } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) {
468     if (Div->isExact())
469       Flags |= 1 << bitc::SDIV_EXACT;
470   }
471
472   return Flags;
473 }
474
475 static void WriteMDNode(const MDNode *N,
476                         const ValueEnumerator &VE,
477                         BitstreamWriter &Stream,
478                         SmallVector<uint64_t, 64> &Record) {
479   for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) {
480     if (N->getElement(i)) {
481       Record.push_back(VE.getTypeID(N->getElement(i)->getType()));
482       Record.push_back(VE.getValueID(N->getElement(i)));
483     } else {
484       Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
485       Record.push_back(0);
486     }
487   }
488   Stream.EmitRecord(bitc::METADATA_NODE, Record, 0);
489   Record.clear();
490 }
491
492 static void WriteModuleMetadata(const ValueEnumerator &VE,
493                                 BitstreamWriter &Stream) {
494   const ValueEnumerator::ValueList &Vals = VE.getMDValues();
495   bool StartedMetadataBlock = false;
496   unsigned MDSAbbrev = 0;
497   SmallVector<uint64_t, 64> Record;
498   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
499     
500     if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
501       if (!StartedMetadataBlock) {
502         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
503         StartedMetadataBlock = true;
504       }
505       WriteMDNode(N, VE, Stream, Record);
506     } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
507       if (!StartedMetadataBlock)  {
508         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
509         
510         // Abbrev for METADATA_STRING.
511         BitCodeAbbrev *Abbv = new BitCodeAbbrev();
512         Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
513         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
514         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
515         MDSAbbrev = Stream.EmitAbbrev(Abbv);
516         StartedMetadataBlock = true;
517       }
518       
519       // Code: [strchar x N]
520       const char *StrBegin = MDS->begin();
521       for (unsigned i = 0, e = MDS->length(); i != e; ++i)
522         Record.push_back(StrBegin[i]);
523       
524       // Emit the finished record.
525       Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
526       Record.clear();
527     } else if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(Vals[i].first)) {
528       if (!StartedMetadataBlock)  {
529         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
530         StartedMetadataBlock = true;
531       }
532
533       // Write name.
534       std::string Str = NMD->getNameStr();
535       const char *StrBegin = Str.c_str();
536       for (unsigned i = 0, e = Str.length(); i != e; ++i)
537         Record.push_back(StrBegin[i]);
538       Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
539       Record.clear();
540
541       // Write named metadata elements.
542       for (unsigned i = 0, e = NMD->getNumElements(); i != e; ++i) {
543         if (NMD->getElement(i)) 
544           Record.push_back(VE.getValueID(NMD->getElement(i)));
545         else 
546           Record.push_back(0);
547       }
548       Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
549       Record.clear();
550     }
551   }
552   
553   if (StartedMetadataBlock)
554     Stream.ExitBlock();
555 }
556
557 static void WriteMetadataAttachment(const Function &F,
558                                     const ValueEnumerator &VE,
559                                     BitstreamWriter &Stream) {
560   bool StartedMetadataBlock = false;
561   SmallVector<uint64_t, 64> Record;
562   
563   // Write metadata attachments
564   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
565   Metadata &TheMetadata = F.getContext().getMetadata();
566   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
567     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
568          I != E; ++I) {
569       const Metadata::MDMapTy *P = TheMetadata.getMDs(I);
570       if (!P) continue;
571       bool RecordedInstruction = false;
572       for (Metadata::MDMapTy::const_iterator PI = P->begin(), PE = P->end();
573            PI != PE; ++PI) {
574         if (MDNode *ND = dyn_cast_or_null<MDNode>(PI->second)) {
575           if (RecordedInstruction == false) {
576             Record.push_back(VE.getInstructionID(I));
577             RecordedInstruction = true;
578           }
579           Record.push_back(PI->first);
580           Record.push_back(VE.getValueID(ND));
581         }
582       }
583       if (!StartedMetadataBlock)  {
584         Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
585         StartedMetadataBlock = true;
586       }
587       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
588       Record.clear();
589     }
590
591   if (StartedMetadataBlock) 
592     Stream.ExitBlock();
593 }
594
595 static void WriteModuleMetadataStore(const Module *M,
596                                      const ValueEnumerator &VE,
597                                      BitstreamWriter &Stream) {
598   
599   bool StartedMetadataBlock = false;
600   SmallVector<uint64_t, 64> Record;
601   
602   // Write metadata kinds
603   // METADATA_KIND - [n x [id, name]]
604   Metadata &TheMetadata = M->getContext().getMetadata();
605   const StringMap<unsigned> *Kinds = TheMetadata.getHandlerNames();
606   for (StringMap<unsigned>::const_iterator 
607          I = Kinds->begin(), E = Kinds->end(); I != E; ++I) {
608     Record.push_back(I->second);
609     StringRef KName = I->first();
610     for (unsigned i = 0, e = KName.size(); i != e; ++i)
611       Record.push_back(KName[i]);
612     if (!StartedMetadataBlock)  {
613       Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
614       StartedMetadataBlock = true;
615     }
616     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
617     Record.clear();
618   }
619
620   if (StartedMetadataBlock) 
621     Stream.ExitBlock();
622 }
623
624 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
625                            const ValueEnumerator &VE,
626                            BitstreamWriter &Stream, bool isGlobal) {
627   if (FirstVal == LastVal) return;
628   
629   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
630
631   unsigned AggregateAbbrev = 0;
632   unsigned String8Abbrev = 0;
633   unsigned CString7Abbrev = 0;
634   unsigned CString6Abbrev = 0;
635   // If this is a constant pool for the module, emit module-specific abbrevs.
636   if (isGlobal) {
637     // Abbrev for CST_CODE_AGGREGATE.
638     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
639     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
640     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
641     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
642     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
643
644     // Abbrev for CST_CODE_STRING.
645     Abbv = new BitCodeAbbrev();
646     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
647     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
648     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
649     String8Abbrev = Stream.EmitAbbrev(Abbv);
650     // Abbrev for CST_CODE_CSTRING.
651     Abbv = new BitCodeAbbrev();
652     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
653     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
654     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
655     CString7Abbrev = Stream.EmitAbbrev(Abbv);
656     // Abbrev for CST_CODE_CSTRING.
657     Abbv = new BitCodeAbbrev();
658     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
659     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
660     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
661     CString6Abbrev = Stream.EmitAbbrev(Abbv);
662   }  
663   
664   SmallVector<uint64_t, 64> Record;
665
666   const ValueEnumerator::ValueList &Vals = VE.getValues();
667   const Type *LastTy = 0;
668   for (unsigned i = FirstVal; i != LastVal; ++i) {
669     const Value *V = Vals[i].first;
670     // If we need to switch types, do so now.
671     if (V->getType() != LastTy) {
672       LastTy = V->getType();
673       Record.push_back(VE.getTypeID(LastTy));
674       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
675                         CONSTANTS_SETTYPE_ABBREV);
676       Record.clear();
677     }
678     
679     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
680       Record.push_back(unsigned(IA->hasSideEffects()));
681       
682       // Add the asm string.
683       const std::string &AsmStr = IA->getAsmString();
684       Record.push_back(AsmStr.size());
685       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
686         Record.push_back(AsmStr[i]);
687       
688       // Add the constraint string.
689       const std::string &ConstraintStr = IA->getConstraintString();
690       Record.push_back(ConstraintStr.size());
691       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
692         Record.push_back(ConstraintStr[i]);
693       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
694       Record.clear();
695       continue;
696     }
697     const Constant *C = cast<Constant>(V);
698     unsigned Code = -1U;
699     unsigned AbbrevToUse = 0;
700     if (C->isNullValue()) {
701       Code = bitc::CST_CODE_NULL;
702     } else if (isa<UndefValue>(C)) {
703       Code = bitc::CST_CODE_UNDEF;
704     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
705       if (IV->getBitWidth() <= 64) {
706         int64_t V = IV->getSExtValue();
707         if (V >= 0)
708           Record.push_back(V << 1);
709         else
710           Record.push_back((-V << 1) | 1);
711         Code = bitc::CST_CODE_INTEGER;
712         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
713       } else {                             // Wide integers, > 64 bits in size.
714         // We have an arbitrary precision integer value to write whose 
715         // bit width is > 64. However, in canonical unsigned integer 
716         // format it is likely that the high bits are going to be zero.
717         // So, we only write the number of active words.
718         unsigned NWords = IV->getValue().getActiveWords(); 
719         const uint64_t *RawWords = IV->getValue().getRawData();
720         for (unsigned i = 0; i != NWords; ++i) {
721           int64_t V = RawWords[i];
722           if (V >= 0)
723             Record.push_back(V << 1);
724           else
725             Record.push_back((-V << 1) | 1);
726         }
727         Code = bitc::CST_CODE_WIDE_INTEGER;
728       }
729     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
730       Code = bitc::CST_CODE_FLOAT;
731       const Type *Ty = CFP->getType();
732       if (Ty == Type::getFloatTy(Ty->getContext()) ||
733           Ty == Type::getDoubleTy(Ty->getContext())) {
734         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
735       } else if (Ty == Type::getX86_FP80Ty(Ty->getContext())) {
736         // api needed to prevent premature destruction
737         // bits are not in the same order as a normal i80 APInt, compensate.
738         APInt api = CFP->getValueAPF().bitcastToAPInt();
739         const uint64_t *p = api.getRawData();
740         Record.push_back((p[1] << 48) | (p[0] >> 16));
741         Record.push_back(p[0] & 0xffffLL);
742       } else if (Ty == Type::getFP128Ty(Ty->getContext()) ||
743                  Ty == Type::getPPC_FP128Ty(Ty->getContext())) {
744         APInt api = CFP->getValueAPF().bitcastToAPInt();
745         const uint64_t *p = api.getRawData();
746         Record.push_back(p[0]);
747         Record.push_back(p[1]);
748       } else {
749         assert (0 && "Unknown FP type!");
750       }
751     } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
752       // Emit constant strings specially.
753       unsigned NumOps = C->getNumOperands();
754       // If this is a null-terminated string, use the denser CSTRING encoding.
755       if (C->getOperand(NumOps-1)->isNullValue()) {
756         Code = bitc::CST_CODE_CSTRING;
757         --NumOps;  // Don't encode the null, which isn't allowed by char6.
758       } else {
759         Code = bitc::CST_CODE_STRING;
760         AbbrevToUse = String8Abbrev;
761       }
762       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
763       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
764       for (unsigned i = 0; i != NumOps; ++i) {
765         unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
766         Record.push_back(V);
767         isCStr7 &= (V & 128) == 0;
768         if (isCStrChar6) 
769           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
770       }
771       
772       if (isCStrChar6)
773         AbbrevToUse = CString6Abbrev;
774       else if (isCStr7)
775         AbbrevToUse = CString7Abbrev;
776     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
777                isa<ConstantVector>(V)) {
778       Code = bitc::CST_CODE_AGGREGATE;
779       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
780         Record.push_back(VE.getValueID(C->getOperand(i)));
781       AbbrevToUse = AggregateAbbrev;
782     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
783       switch (CE->getOpcode()) {
784       default:
785         if (Instruction::isCast(CE->getOpcode())) {
786           Code = bitc::CST_CODE_CE_CAST;
787           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
788           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
789           Record.push_back(VE.getValueID(C->getOperand(0)));
790           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
791         } else {
792           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
793           Code = bitc::CST_CODE_CE_BINOP;
794           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
795           Record.push_back(VE.getValueID(C->getOperand(0)));
796           Record.push_back(VE.getValueID(C->getOperand(1)));
797           uint64_t Flags = GetOptimizationFlags(CE);
798           if (Flags != 0)
799             Record.push_back(Flags);
800         }
801         break;
802       case Instruction::GetElementPtr:
803         Code = bitc::CST_CODE_CE_GEP;
804         if (cast<GEPOperator>(C)->isInBounds())
805           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
806         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
807           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
808           Record.push_back(VE.getValueID(C->getOperand(i)));
809         }
810         break;
811       case Instruction::Select:
812         Code = bitc::CST_CODE_CE_SELECT;
813         Record.push_back(VE.getValueID(C->getOperand(0)));
814         Record.push_back(VE.getValueID(C->getOperand(1)));
815         Record.push_back(VE.getValueID(C->getOperand(2)));
816         break;
817       case Instruction::ExtractElement:
818         Code = bitc::CST_CODE_CE_EXTRACTELT;
819         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
820         Record.push_back(VE.getValueID(C->getOperand(0)));
821         Record.push_back(VE.getValueID(C->getOperand(1)));
822         break;
823       case Instruction::InsertElement:
824         Code = bitc::CST_CODE_CE_INSERTELT;
825         Record.push_back(VE.getValueID(C->getOperand(0)));
826         Record.push_back(VE.getValueID(C->getOperand(1)));
827         Record.push_back(VE.getValueID(C->getOperand(2)));
828         break;
829       case Instruction::ShuffleVector:
830         // If the return type and argument types are the same, this is a
831         // standard shufflevector instruction.  If the types are different,
832         // then the shuffle is widening or truncating the input vectors, and
833         // the argument type must also be encoded.
834         if (C->getType() == C->getOperand(0)->getType()) {
835           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
836         } else {
837           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
838           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
839         }
840         Record.push_back(VE.getValueID(C->getOperand(0)));
841         Record.push_back(VE.getValueID(C->getOperand(1)));
842         Record.push_back(VE.getValueID(C->getOperand(2)));
843         break;
844       case Instruction::ICmp:
845       case Instruction::FCmp:
846         Code = bitc::CST_CODE_CE_CMP;
847         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
848         Record.push_back(VE.getValueID(C->getOperand(0)));
849         Record.push_back(VE.getValueID(C->getOperand(1)));
850         Record.push_back(CE->getPredicate());
851         break;
852       }
853     } else {
854       llvm_unreachable("Unknown constant!");
855     }
856     Stream.EmitRecord(Code, Record, AbbrevToUse);
857     Record.clear();
858   }
859
860   Stream.ExitBlock();
861 }
862
863 static void WriteModuleConstants(const ValueEnumerator &VE,
864                                  BitstreamWriter &Stream) {
865   const ValueEnumerator::ValueList &Vals = VE.getValues();
866   
867   // Find the first constant to emit, which is the first non-globalvalue value.
868   // We know globalvalues have been emitted by WriteModuleInfo.
869   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
870     if (!isa<GlobalValue>(Vals[i].first)) {
871       WriteConstants(i, Vals.size(), VE, Stream, true);
872       return;
873     }
874   }
875 }
876
877 /// PushValueAndType - The file has to encode both the value and type id for
878 /// many values, because we need to know what type to create for forward
879 /// references.  However, most operands are not forward references, so this type
880 /// field is not needed.
881 ///
882 /// This function adds V's value ID to Vals.  If the value ID is higher than the
883 /// instruction ID, then it is a forward reference, and it also includes the
884 /// type ID.
885 static bool PushValueAndType(const Value *V, unsigned InstID,
886                              SmallVector<unsigned, 64> &Vals, 
887                              ValueEnumerator &VE) {
888   unsigned ValID = VE.getValueID(V);
889   Vals.push_back(ValID);
890   if (ValID >= InstID) {
891     Vals.push_back(VE.getTypeID(V->getType()));
892     return true;
893   }
894   return false;
895 }
896
897 /// WriteInstruction - Emit an instruction to the specified stream.
898 static void WriteInstruction(const Instruction &I, unsigned InstID,
899                              ValueEnumerator &VE, BitstreamWriter &Stream,
900                              SmallVector<unsigned, 64> &Vals) {
901   unsigned Code = 0;
902   unsigned AbbrevToUse = 0;
903   VE.setInstructionID(&I);
904   switch (I.getOpcode()) {
905   default:
906     if (Instruction::isCast(I.getOpcode())) {
907       Code = bitc::FUNC_CODE_INST_CAST;
908       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
909         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
910       Vals.push_back(VE.getTypeID(I.getType()));
911       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
912     } else {
913       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
914       Code = bitc::FUNC_CODE_INST_BINOP;
915       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
916         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
917       Vals.push_back(VE.getValueID(I.getOperand(1)));
918       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
919       uint64_t Flags = GetOptimizationFlags(&I);
920       if (Flags != 0) {
921         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
922           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
923         Vals.push_back(Flags);
924       }
925     }
926     break;
927
928   case Instruction::GetElementPtr:
929     Code = bitc::FUNC_CODE_INST_GEP;
930     if (cast<GEPOperator>(&I)->isInBounds())
931       Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
932     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
933       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
934     break;
935   case Instruction::ExtractValue: {
936     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
937     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
938     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
939     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
940       Vals.push_back(*i);
941     break;
942   }
943   case Instruction::InsertValue: {
944     Code = bitc::FUNC_CODE_INST_INSERTVAL;
945     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
946     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
947     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
948     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
949       Vals.push_back(*i);
950     break;
951   }
952   case Instruction::Select:
953     Code = bitc::FUNC_CODE_INST_VSELECT;
954     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
955     Vals.push_back(VE.getValueID(I.getOperand(2)));
956     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
957     break;
958   case Instruction::ExtractElement:
959     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
960     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
961     Vals.push_back(VE.getValueID(I.getOperand(1)));
962     break;
963   case Instruction::InsertElement:
964     Code = bitc::FUNC_CODE_INST_INSERTELT;
965     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
966     Vals.push_back(VE.getValueID(I.getOperand(1)));
967     Vals.push_back(VE.getValueID(I.getOperand(2)));
968     break;
969   case Instruction::ShuffleVector:
970     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
971     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
972     Vals.push_back(VE.getValueID(I.getOperand(1)));
973     Vals.push_back(VE.getValueID(I.getOperand(2)));
974     break;
975   case Instruction::ICmp:
976   case Instruction::FCmp:
977     // compare returning Int1Ty or vector of Int1Ty
978     Code = bitc::FUNC_CODE_INST_CMP2;
979     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
980     Vals.push_back(VE.getValueID(I.getOperand(1)));
981     Vals.push_back(cast<CmpInst>(I).getPredicate());
982     break;
983
984   case Instruction::Ret: 
985     {
986       Code = bitc::FUNC_CODE_INST_RET;
987       unsigned NumOperands = I.getNumOperands();
988       if (NumOperands == 0)
989         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
990       else if (NumOperands == 1) {
991         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
992           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
993       } else {
994         for (unsigned i = 0, e = NumOperands; i != e; ++i)
995           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
996       }
997     }
998     break;
999   case Instruction::Br:
1000     {
1001       Code = bitc::FUNC_CODE_INST_BR;
1002       BranchInst &II(cast<BranchInst>(I));
1003       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1004       if (II.isConditional()) {
1005         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1006         Vals.push_back(VE.getValueID(II.getCondition()));
1007       }
1008     }
1009     break;
1010   case Instruction::Switch:
1011     Code = bitc::FUNC_CODE_INST_SWITCH;
1012     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1013     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1014       Vals.push_back(VE.getValueID(I.getOperand(i)));
1015     break;
1016   case Instruction::Invoke: {
1017     const InvokeInst *II = cast<InvokeInst>(&I);
1018     const Value *Callee(II->getCalledValue());
1019     const PointerType *PTy = cast<PointerType>(Callee->getType());
1020     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1021     Code = bitc::FUNC_CODE_INST_INVOKE;
1022     
1023     Vals.push_back(VE.getAttributeID(II->getAttributes()));
1024     Vals.push_back(II->getCallingConv());
1025     Vals.push_back(VE.getValueID(II->getNormalDest()));
1026     Vals.push_back(VE.getValueID(II->getUnwindDest()));
1027     PushValueAndType(Callee, InstID, Vals, VE);
1028     
1029     // Emit value #'s for the fixed parameters.
1030     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1031       Vals.push_back(VE.getValueID(I.getOperand(i+3)));  // fixed param.
1032
1033     // Emit type/value pairs for varargs params.
1034     if (FTy->isVarArg()) {
1035       for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
1036            i != e; ++i)
1037         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1038     }
1039     break;
1040   }
1041   case Instruction::Unwind:
1042     Code = bitc::FUNC_CODE_INST_UNWIND;
1043     break;
1044   case Instruction::Unreachable:
1045     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1046     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1047     break;
1048   
1049   case Instruction::PHI:
1050     Code = bitc::FUNC_CODE_INST_PHI;
1051     Vals.push_back(VE.getTypeID(I.getType()));
1052     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1053       Vals.push_back(VE.getValueID(I.getOperand(i)));
1054     break;
1055     
1056   case Instruction::Malloc:
1057     Code = bitc::FUNC_CODE_INST_MALLOC;
1058     Vals.push_back(VE.getTypeID(I.getType()));
1059     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1060     Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
1061     break;
1062     
1063   case Instruction::Free:
1064     Code = bitc::FUNC_CODE_INST_FREE;
1065     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1066     break;
1067     
1068   case Instruction::Alloca:
1069     Code = bitc::FUNC_CODE_INST_ALLOCA;
1070     Vals.push_back(VE.getTypeID(I.getType()));
1071     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1072     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1073     break;
1074     
1075   case Instruction::Load:
1076     Code = bitc::FUNC_CODE_INST_LOAD;
1077     if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1078       AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1079       
1080     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1081     Vals.push_back(cast<LoadInst>(I).isVolatile());
1082     break;
1083   case Instruction::Store:
1084     Code = bitc::FUNC_CODE_INST_STORE2;
1085     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1086     Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
1087     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1088     Vals.push_back(cast<StoreInst>(I).isVolatile());
1089     break;
1090   case Instruction::Call: {
1091     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
1092     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1093
1094     Code = bitc::FUNC_CODE_INST_CALL;
1095     
1096     const CallInst *CI = cast<CallInst>(&I);
1097     Vals.push_back(VE.getAttributeID(CI->getAttributes()));
1098     Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
1099     PushValueAndType(CI->getOperand(0), InstID, Vals, VE);  // Callee
1100     
1101     // Emit value #'s for the fixed parameters.
1102     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1103       Vals.push_back(VE.getValueID(I.getOperand(i+1)));  // fixed param.
1104       
1105     // Emit type/value pairs for varargs params.
1106     if (FTy->isVarArg()) {
1107       unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
1108       for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
1109            i != e; ++i)
1110         PushValueAndType(I.getOperand(i), InstID, Vals, VE);  // varargs
1111     }
1112     break;
1113   }
1114   case Instruction::VAArg:
1115     Code = bitc::FUNC_CODE_INST_VAARG;
1116     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1117     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1118     Vals.push_back(VE.getTypeID(I.getType())); // restype.
1119     break;
1120   }
1121   
1122   Stream.EmitRecord(Code, Vals, AbbrevToUse);
1123   Vals.clear();
1124 }
1125
1126 // Emit names for globals/functions etc.
1127 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1128                                   const ValueEnumerator &VE,
1129                                   BitstreamWriter &Stream) {
1130   if (VST.empty()) return;
1131   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1132
1133   // FIXME: Set up the abbrev, we know how many values there are!
1134   // FIXME: We know if the type names can use 7-bit ascii.
1135   SmallVector<unsigned, 64> NameVals;
1136   
1137   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1138        SI != SE; ++SI) {
1139     
1140     const ValueName &Name = *SI;
1141     
1142     // Figure out the encoding to use for the name.
1143     bool is7Bit = true;
1144     bool isChar6 = true;
1145     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1146          C != E; ++C) {
1147       if (isChar6) 
1148         isChar6 = BitCodeAbbrevOp::isChar6(*C);
1149       if ((unsigned char)*C & 128) {
1150         is7Bit = false;
1151         break;  // don't bother scanning the rest.
1152       }
1153     }
1154     
1155     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1156     
1157     // VST_ENTRY:   [valueid, namechar x N]
1158     // VST_BBENTRY: [bbid, namechar x N]
1159     unsigned Code;
1160     if (isa<BasicBlock>(SI->getValue())) {
1161       Code = bitc::VST_CODE_BBENTRY;
1162       if (isChar6)
1163         AbbrevToUse = VST_BBENTRY_6_ABBREV;
1164     } else {
1165       Code = bitc::VST_CODE_ENTRY;
1166       if (isChar6)
1167         AbbrevToUse = VST_ENTRY_6_ABBREV;
1168       else if (is7Bit)
1169         AbbrevToUse = VST_ENTRY_7_ABBREV;
1170     }
1171     
1172     NameVals.push_back(VE.getValueID(SI->getValue()));
1173     for (const char *P = Name.getKeyData(),
1174          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1175       NameVals.push_back((unsigned char)*P);
1176     
1177     // Emit the finished record.
1178     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1179     NameVals.clear();
1180   }
1181   Stream.ExitBlock();
1182 }
1183
1184 /// WriteFunction - Emit a function body to the module stream.
1185 static void WriteFunction(const Function &F, ValueEnumerator &VE, 
1186                           BitstreamWriter &Stream) {
1187   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1188   VE.incorporateFunction(F);
1189
1190   SmallVector<unsigned, 64> Vals;
1191   
1192   // Emit the number of basic blocks, so the reader can create them ahead of
1193   // time.
1194   Vals.push_back(VE.getBasicBlocks().size());
1195   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1196   Vals.clear();
1197   
1198   // If there are function-local constants, emit them now.
1199   unsigned CstStart, CstEnd;
1200   VE.getFunctionConstantRange(CstStart, CstEnd);
1201   WriteConstants(CstStart, CstEnd, VE, Stream, false);
1202   
1203   // Keep a running idea of what the instruction ID is. 
1204   unsigned InstID = CstEnd;
1205   
1206   // Finally, emit all the instructions, in order.
1207   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1208     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1209          I != E; ++I) {
1210       WriteInstruction(*I, InstID, VE, Stream, Vals);
1211       if (I->getType() != Type::getVoidTy(F.getContext()))
1212         ++InstID;
1213     }
1214   
1215   // Emit names for all the instructions etc.
1216   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1217
1218   WriteMetadataAttachment(F, VE, Stream);
1219   VE.purgeFunction();
1220   Stream.ExitBlock();
1221 }
1222
1223 /// WriteTypeSymbolTable - Emit a block for the specified type symtab.
1224 static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
1225                                  const ValueEnumerator &VE,
1226                                  BitstreamWriter &Stream) {
1227   if (TST.empty()) return;
1228   
1229   Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
1230   
1231   // 7-bit fixed width VST_CODE_ENTRY strings.
1232   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1233   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1234   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1235                             Log2_32_Ceil(VE.getTypes().size()+1)));
1236   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1237   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1238   unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
1239   
1240   SmallVector<unsigned, 64> NameVals;
1241   
1242   for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 
1243        TI != TE; ++TI) {
1244     // TST_ENTRY: [typeid, namechar x N]
1245     NameVals.push_back(VE.getTypeID(TI->second));
1246     
1247     const std::string &Str = TI->first;
1248     bool is7Bit = true;
1249     for (unsigned i = 0, e = Str.size(); i != e; ++i) {
1250       NameVals.push_back((unsigned char)Str[i]);
1251       if (Str[i] & 128)
1252         is7Bit = false;
1253     }
1254     
1255     // Emit the finished record.
1256     Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
1257     NameVals.clear();
1258   }
1259   
1260   Stream.ExitBlock();
1261 }
1262
1263 // Emit blockinfo, which defines the standard abbreviations etc.
1264 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1265   // We only want to emit block info records for blocks that have multiple
1266   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1267   // blocks can defined their abbrevs inline.
1268   Stream.EnterBlockInfoBlock(2);
1269   
1270   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1271     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1272     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1273     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1274     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1275     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1276     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 
1277                                    Abbv) != VST_ENTRY_8_ABBREV)
1278       llvm_unreachable("Unexpected abbrev ordering!");
1279   }
1280   
1281   { // 7-bit fixed width VST_ENTRY strings.
1282     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1283     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1284     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1285     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1286     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1287     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1288                                    Abbv) != VST_ENTRY_7_ABBREV)
1289       llvm_unreachable("Unexpected abbrev ordering!");
1290   }
1291   { // 6-bit char6 VST_ENTRY strings.
1292     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1293     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1294     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1295     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1296     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1297     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1298                                    Abbv) != VST_ENTRY_6_ABBREV)
1299       llvm_unreachable("Unexpected abbrev ordering!");
1300   }
1301   { // 6-bit char6 VST_BBENTRY strings.
1302     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1303     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1304     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1305     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1306     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1307     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1308                                    Abbv) != VST_BBENTRY_6_ABBREV)
1309       llvm_unreachable("Unexpected abbrev ordering!");
1310   }
1311   
1312   
1313   
1314   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1315     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1316     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1317     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1318                               Log2_32_Ceil(VE.getTypes().size()+1)));
1319     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1320                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1321       llvm_unreachable("Unexpected abbrev ordering!");
1322   }
1323   
1324   { // INTEGER abbrev for CONSTANTS_BLOCK.
1325     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1326     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1327     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1328     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1329                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1330       llvm_unreachable("Unexpected abbrev ordering!");
1331   }
1332   
1333   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1334     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1335     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1336     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1337     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1338                               Log2_32_Ceil(VE.getTypes().size()+1)));
1339     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1340
1341     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1342                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1343       llvm_unreachable("Unexpected abbrev ordering!");
1344   }
1345   { // NULL abbrev for CONSTANTS_BLOCK.
1346     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1347     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1348     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1349                                    Abbv) != CONSTANTS_NULL_Abbrev)
1350       llvm_unreachable("Unexpected abbrev ordering!");
1351   }
1352   
1353   // FIXME: This should only use space for first class types!
1354  
1355   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1356     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1357     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1358     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1359     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1360     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1361     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1362                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1363       llvm_unreachable("Unexpected abbrev ordering!");
1364   }
1365   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1366     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1367     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1368     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1369     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1370     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1371     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1372                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1373       llvm_unreachable("Unexpected abbrev ordering!");
1374   }
1375   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1376     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1377     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1378     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1379     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1380     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1381     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1382     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1383                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1384       llvm_unreachable("Unexpected abbrev ordering!");
1385   }
1386   { // INST_CAST abbrev for FUNCTION_BLOCK.
1387     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1388     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1389     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1390     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1391                               Log2_32_Ceil(VE.getTypes().size()+1)));
1392     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1393     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1394                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1395       llvm_unreachable("Unexpected abbrev ordering!");
1396   }
1397   
1398   { // INST_RET abbrev for FUNCTION_BLOCK.
1399     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1400     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1401     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1402                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1403       llvm_unreachable("Unexpected abbrev ordering!");
1404   }
1405   { // INST_RET abbrev for FUNCTION_BLOCK.
1406     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1407     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1408     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1409     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1410                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1411       llvm_unreachable("Unexpected abbrev ordering!");
1412   }
1413   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1414     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1415     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1416     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1417                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1418       llvm_unreachable("Unexpected abbrev ordering!");
1419   }
1420   
1421   Stream.ExitBlock();
1422 }
1423
1424
1425 /// WriteModule - Emit the specified module to the bitstream.
1426 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1427   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1428   
1429   // Emit the version number if it is non-zero.
1430   if (CurVersion) {
1431     SmallVector<unsigned, 1> Vals;
1432     Vals.push_back(CurVersion);
1433     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1434   }
1435   
1436   // Analyze the module, enumerating globals, functions, etc.
1437   ValueEnumerator VE(M);
1438
1439   // Emit blockinfo, which defines the standard abbreviations etc.
1440   WriteBlockInfo(VE, Stream);
1441   
1442   // Emit information about parameter attributes.
1443   WriteAttributeTable(VE, Stream);
1444   
1445   // Emit information describing all of the types in the module.
1446   WriteTypeTable(VE, Stream);
1447   
1448   // Emit top-level description of module, including target triple, inline asm,
1449   // descriptors for global variables, and function prototype info.
1450   WriteModuleInfo(M, VE, Stream);
1451
1452   // Emit constants.
1453   WriteModuleConstants(VE, Stream);
1454
1455   // Emit metadata.
1456   WriteModuleMetadata(VE, Stream);
1457
1458   // Emit function bodies.
1459   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1460     if (!I->isDeclaration())
1461       WriteFunction(*I, VE, Stream);
1462
1463   // Emit metadata.
1464   WriteModuleMetadataStore(M, VE, Stream);
1465   
1466   // Emit the type symbol table information.
1467   WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1468   
1469   // Emit names for globals/functions etc.
1470   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1471   
1472   Stream.ExitBlock();
1473 }
1474
1475 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1476 /// header and trailer to make it compatible with the system archiver.  To do
1477 /// this we emit the following header, and then emit a trailer that pads the
1478 /// file out to be a multiple of 16 bytes.
1479 /// 
1480 /// struct bc_header {
1481 ///   uint32_t Magic;         // 0x0B17C0DE
1482 ///   uint32_t Version;       // Version, currently always 0.
1483 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1484 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1485 ///   uint32_t CPUType;       // CPU specifier.
1486 ///   ... potentially more later ...
1487 /// };
1488 enum {
1489   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1490   DarwinBCHeaderSize = 5*4
1491 };
1492
1493 static void EmitDarwinBCHeader(BitstreamWriter &Stream,
1494                                const std::string &TT) {
1495   unsigned CPUType = ~0U;
1496   
1497   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*.  The CPUType is a
1498   // magic number from /usr/include/mach/machine.h.  It is ok to reproduce the
1499   // specific constants here because they are implicitly part of the Darwin ABI.
1500   enum {
1501     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1502     DARWIN_CPU_TYPE_X86        = 7,
1503     DARWIN_CPU_TYPE_POWERPC    = 18
1504   };
1505   
1506   if (TT.find("x86_64-") == 0)
1507     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1508   else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
1509            TT[4] == '-' && TT[1] - '3' < 6)
1510     CPUType = DARWIN_CPU_TYPE_X86;
1511   else if (TT.find("powerpc-") == 0)
1512     CPUType = DARWIN_CPU_TYPE_POWERPC;
1513   else if (TT.find("powerpc64-") == 0)
1514     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1515   
1516   // Traditional Bitcode starts after header.
1517   unsigned BCOffset = DarwinBCHeaderSize;
1518   
1519   Stream.Emit(0x0B17C0DE, 32);
1520   Stream.Emit(0         , 32);  // Version.
1521   Stream.Emit(BCOffset  , 32);
1522   Stream.Emit(0         , 32);  // Filled in later.
1523   Stream.Emit(CPUType   , 32);
1524 }
1525
1526 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
1527 /// finalize the header.
1528 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
1529   // Update the size field in the header.
1530   Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
1531   
1532   // If the file is not a multiple of 16 bytes, insert dummy padding.
1533   while (BufferSize & 15) {
1534     Stream.Emit(0, 8);
1535     ++BufferSize;
1536   }
1537 }
1538
1539
1540 /// WriteBitcodeToFile - Write the specified module to the specified output
1541 /// stream.
1542 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1543   std::vector<unsigned char> Buffer;
1544   BitstreamWriter Stream(Buffer);
1545   
1546   Buffer.reserve(256*1024);
1547
1548   WriteBitcodeToStream( M, Stream );
1549   
1550   // If writing to stdout, set binary mode.
1551   if (&llvm::outs() == &Out)
1552     sys::Program::ChangeStdoutToBinary();
1553
1554   // Write the generated bitstream to "Out".
1555   Out.write((char*)&Buffer.front(), Buffer.size());
1556   
1557   // Make sure it hits disk now.
1558   Out.flush();
1559 }
1560
1561 /// WriteBitcodeToStream - Write the specified module to the specified output
1562 /// stream.
1563 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
1564   // If this is darwin, emit a file header and trailer if needed.
1565   bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos;
1566   if (isDarwin)
1567     EmitDarwinBCHeader(Stream, M->getTargetTriple());
1568   
1569   // Emit the file header.
1570   Stream.Emit((unsigned)'B', 8);
1571   Stream.Emit((unsigned)'C', 8);
1572   Stream.Emit(0x0, 4);
1573   Stream.Emit(0xC, 4);
1574   Stream.Emit(0xE, 4);
1575   Stream.Emit(0xD, 4);
1576
1577   // Emit the module.
1578   WriteModule(M, Stream);
1579
1580   if (isDarwin)
1581     EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());
1582 }