3e4c8232a64f5bae02875884ac90a56e413c0e41
[oota-llvm.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Metadata.h"
23 #include "llvm/Module.h"
24 #include "llvm/Operator.h"
25 #include "llvm/TypeSymbolTable.h"
26 #include "llvm/ValueSymbolTable.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/MathExtras.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/System/Program.h"
31 using namespace llvm;
32
33 /// These are manifest constants used by the bitcode writer. They do not need to
34 /// be kept in sync with the reader, but need to be consistent within this file.
35 enum {
36   CurVersion = 0,
37
38   // VALUE_SYMTAB_BLOCK abbrev id's.
39   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
40   VST_ENTRY_7_ABBREV,
41   VST_ENTRY_6_ABBREV,
42   VST_BBENTRY_6_ABBREV,
43
44   // CONSTANTS_BLOCK abbrev id's.
45   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
46   CONSTANTS_INTEGER_ABBREV,
47   CONSTANTS_CE_CAST_Abbrev,
48   CONSTANTS_NULL_Abbrev,
49
50   // FUNCTION_BLOCK abbrev id's.
51   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
52   FUNCTION_INST_BINOP_ABBREV,
53   FUNCTION_INST_BINOP_FLAGS_ABBREV,
54   FUNCTION_INST_CAST_ABBREV,
55   FUNCTION_INST_RET_VOID_ABBREV,
56   FUNCTION_INST_RET_VAL_ABBREV,
57   FUNCTION_INST_UNREACHABLE_ABBREV
58 };
59
60
61 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
62   switch (Opcode) {
63   default: llvm_unreachable("Unknown cast instruction!");
64   case Instruction::Trunc   : return bitc::CAST_TRUNC;
65   case Instruction::ZExt    : return bitc::CAST_ZEXT;
66   case Instruction::SExt    : return bitc::CAST_SEXT;
67   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
68   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
69   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
70   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
71   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
72   case Instruction::FPExt   : return bitc::CAST_FPEXT;
73   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
74   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
75   case Instruction::BitCast : return bitc::CAST_BITCAST;
76   }
77 }
78
79 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
80   switch (Opcode) {
81   default: llvm_unreachable("Unknown binary instruction!");
82   case Instruction::Add:
83   case Instruction::FAdd: return bitc::BINOP_ADD;
84   case Instruction::Sub:
85   case Instruction::FSub: return bitc::BINOP_SUB;
86   case Instruction::Mul:
87   case Instruction::FMul: return bitc::BINOP_MUL;
88   case Instruction::UDiv: return bitc::BINOP_UDIV;
89   case Instruction::FDiv:
90   case Instruction::SDiv: return bitc::BINOP_SDIV;
91   case Instruction::URem: return bitc::BINOP_UREM;
92   case Instruction::FRem:
93   case Instruction::SRem: return bitc::BINOP_SREM;
94   case Instruction::Shl:  return bitc::BINOP_SHL;
95   case Instruction::LShr: return bitc::BINOP_LSHR;
96   case Instruction::AShr: return bitc::BINOP_ASHR;
97   case Instruction::And:  return bitc::BINOP_AND;
98   case Instruction::Or:   return bitc::BINOP_OR;
99   case Instruction::Xor:  return bitc::BINOP_XOR;
100   }
101 }
102
103
104
105 static void WriteStringRecord(unsigned Code, const std::string &Str,
106                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
107   SmallVector<unsigned, 64> Vals;
108
109   // Code: [strchar x N]
110   for (unsigned i = 0, e = Str.size(); i != e; ++i)
111     Vals.push_back(Str[i]);
112
113   // Emit the finished record.
114   Stream.EmitRecord(Code, Vals, AbbrevToUse);
115 }
116
117 // Emit information about parameter attributes.
118 static void WriteAttributeTable(const ValueEnumerator &VE,
119                                 BitstreamWriter &Stream) {
120   const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
121   if (Attrs.empty()) return;
122
123   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
124
125   SmallVector<uint64_t, 64> Record;
126   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
127     const AttrListPtr &A = Attrs[i];
128     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
129       const AttributeWithIndex &PAWI = A.getSlot(i);
130       Record.push_back(PAWI.Index);
131
132       // FIXME: remove in LLVM 3.0
133       // Store the alignment in the bitcode as a 16-bit raw value instead of a
134       // 5-bit log2 encoded value. Shift the bits above the alignment up by
135       // 11 bits.
136       uint64_t FauxAttr = PAWI.Attrs & 0xffff;
137       if (PAWI.Attrs & Attribute::Alignment)
138         FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
139       FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
140
141       Record.push_back(FauxAttr);
142     }
143
144     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
145     Record.clear();
146   }
147
148   Stream.ExitBlock();
149 }
150
151 /// WriteTypeTable - Write out the type table for a module.
152 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
153   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
154
155   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
156   SmallVector<uint64_t, 64> TypeVals;
157
158   // Abbrev for TYPE_CODE_POINTER.
159   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
160   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
161   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
162                             Log2_32_Ceil(VE.getTypes().size()+1)));
163   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
164   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
165
166   // Abbrev for TYPE_CODE_FUNCTION.
167   Abbv = new BitCodeAbbrev();
168   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
169   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
170   Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
171   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
172   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
173                             Log2_32_Ceil(VE.getTypes().size()+1)));
174   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
175
176   // Abbrev for TYPE_CODE_STRUCT.
177   Abbv = new BitCodeAbbrev();
178   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
179   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
180   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
181   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
182                             Log2_32_Ceil(VE.getTypes().size()+1)));
183   unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
184
185   // Abbrev for TYPE_CODE_ARRAY.
186   Abbv = new BitCodeAbbrev();
187   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
188   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
189   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
190                             Log2_32_Ceil(VE.getTypes().size()+1)));
191   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
192
193   // Emit an entry count so the reader can reserve space.
194   TypeVals.push_back(TypeList.size());
195   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
196   TypeVals.clear();
197
198   // Loop over all of the types, emitting each in turn.
199   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
200     const Type *T = TypeList[i].first;
201     int AbbrevToUse = 0;
202     unsigned Code = 0;
203
204     switch (T->getTypeID()) {
205     default: llvm_unreachable("Unknown type!");
206     case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
207     case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
208     case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
209     case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
210     case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
211     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
212     case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
213     case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
214     case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
215     case Type::IntegerTyID:
216       // INTEGER: [width]
217       Code = bitc::TYPE_CODE_INTEGER;
218       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
219       break;
220     case Type::PointerTyID: {
221       const PointerType *PTy = cast<PointerType>(T);
222       // POINTER: [pointee type, address space]
223       Code = bitc::TYPE_CODE_POINTER;
224       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
225       unsigned AddressSpace = PTy->getAddressSpace();
226       TypeVals.push_back(AddressSpace);
227       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
228       break;
229     }
230     case Type::FunctionTyID: {
231       const FunctionType *FT = cast<FunctionType>(T);
232       // FUNCTION: [isvararg, attrid, retty, paramty x N]
233       Code = bitc::TYPE_CODE_FUNCTION;
234       TypeVals.push_back(FT->isVarArg());
235       TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
236       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
237       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
238         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
239       AbbrevToUse = FunctionAbbrev;
240       break;
241     }
242     case Type::StructTyID: {
243       const StructType *ST = cast<StructType>(T);
244       // STRUCT: [ispacked, eltty x N]
245       Code = bitc::TYPE_CODE_STRUCT;
246       TypeVals.push_back(ST->isPacked());
247       // Output all of the element types.
248       for (StructType::element_iterator I = ST->element_begin(),
249            E = ST->element_end(); I != E; ++I)
250         TypeVals.push_back(VE.getTypeID(*I));
251       AbbrevToUse = StructAbbrev;
252       break;
253     }
254     case Type::ArrayTyID: {
255       const ArrayType *AT = cast<ArrayType>(T);
256       // ARRAY: [numelts, eltty]
257       Code = bitc::TYPE_CODE_ARRAY;
258       TypeVals.push_back(AT->getNumElements());
259       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
260       AbbrevToUse = ArrayAbbrev;
261       break;
262     }
263     case Type::VectorTyID: {
264       const VectorType *VT = cast<VectorType>(T);
265       // VECTOR [numelts, eltty]
266       Code = bitc::TYPE_CODE_VECTOR;
267       TypeVals.push_back(VT->getNumElements());
268       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
269       break;
270     }
271     }
272
273     // Emit the finished record.
274     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
275     TypeVals.clear();
276   }
277
278   Stream.ExitBlock();
279 }
280
281 static unsigned getEncodedLinkage(const GlobalValue *GV) {
282   switch (GV->getLinkage()) {
283   default: llvm_unreachable("Invalid linkage!");
284   case GlobalValue::GhostLinkage:  // Map ghost linkage onto external.
285   case GlobalValue::ExternalLinkage:            return 0;
286   case GlobalValue::WeakAnyLinkage:             return 1;
287   case GlobalValue::AppendingLinkage:           return 2;
288   case GlobalValue::InternalLinkage:            return 3;
289   case GlobalValue::LinkOnceAnyLinkage:         return 4;
290   case GlobalValue::DLLImportLinkage:           return 5;
291   case GlobalValue::DLLExportLinkage:           return 6;
292   case GlobalValue::ExternalWeakLinkage:        return 7;
293   case GlobalValue::CommonLinkage:              return 8;
294   case GlobalValue::PrivateLinkage:             return 9;
295   case GlobalValue::WeakODRLinkage:             return 10;
296   case GlobalValue::LinkOnceODRLinkage:         return 11;
297   case GlobalValue::AvailableExternallyLinkage: return 12;
298   case GlobalValue::LinkerPrivateLinkage:       return 13;
299   }
300 }
301
302 static unsigned getEncodedVisibility(const GlobalValue *GV) {
303   switch (GV->getVisibility()) {
304   default: llvm_unreachable("Invalid visibility!");
305   case GlobalValue::DefaultVisibility:   return 0;
306   case GlobalValue::HiddenVisibility:    return 1;
307   case GlobalValue::ProtectedVisibility: return 2;
308   }
309 }
310
311 // Emit top-level description of module, including target triple, inline asm,
312 // descriptors for global variables, and function prototype info.
313 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
314                             BitstreamWriter &Stream) {
315   // Emit the list of dependent libraries for the Module.
316   for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
317     WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
318
319   // Emit various pieces of data attached to a module.
320   if (!M->getTargetTriple().empty())
321     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
322                       0/*TODO*/, Stream);
323   if (!M->getDataLayout().empty())
324     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
325                       0/*TODO*/, Stream);
326   if (!M->getModuleInlineAsm().empty())
327     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
328                       0/*TODO*/, Stream);
329
330   // Emit information about sections and GC, computing how many there are. Also
331   // compute the maximum alignment value.
332   std::map<std::string, unsigned> SectionMap;
333   std::map<std::string, unsigned> GCMap;
334   unsigned MaxAlignment = 0;
335   unsigned MaxGlobalType = 0;
336   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
337        GV != E; ++GV) {
338     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
339     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
340
341     if (!GV->hasSection()) continue;
342     // Give section names unique ID's.
343     unsigned &Entry = SectionMap[GV->getSection()];
344     if (Entry != 0) continue;
345     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
346                       0/*TODO*/, Stream);
347     Entry = SectionMap.size();
348   }
349   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
350     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
351     if (F->hasSection()) {
352       // Give section names unique ID's.
353       unsigned &Entry = SectionMap[F->getSection()];
354       if (!Entry) {
355         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
356                           0/*TODO*/, Stream);
357         Entry = SectionMap.size();
358       }
359     }
360     if (F->hasGC()) {
361       // Same for GC names.
362       unsigned &Entry = GCMap[F->getGC()];
363       if (!Entry) {
364         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
365                           0/*TODO*/, Stream);
366         Entry = GCMap.size();
367       }
368     }
369   }
370
371   // Emit abbrev for globals, now that we know # sections and max alignment.
372   unsigned SimpleGVarAbbrev = 0;
373   if (!M->global_empty()) {
374     // Add an abbrev for common globals with no visibility or thread localness.
375     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
376     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
377     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
378                               Log2_32_Ceil(MaxGlobalType+1)));
379     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
380     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
381     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
382     if (MaxAlignment == 0)                                      // Alignment.
383       Abbv->Add(BitCodeAbbrevOp(0));
384     else {
385       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
386       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
387                                Log2_32_Ceil(MaxEncAlignment+1)));
388     }
389     if (SectionMap.empty())                                    // Section.
390       Abbv->Add(BitCodeAbbrevOp(0));
391     else
392       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
393                                Log2_32_Ceil(SectionMap.size()+1)));
394     // Don't bother emitting vis + thread local.
395     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
396   }
397
398   // Emit the global variable information.
399   SmallVector<unsigned, 64> Vals;
400   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
401        GV != E; ++GV) {
402     unsigned AbbrevToUse = 0;
403
404     // GLOBALVAR: [type, isconst, initid,
405     //             linkage, alignment, section, visibility, threadlocal]
406     Vals.push_back(VE.getTypeID(GV->getType()));
407     Vals.push_back(GV->isConstant());
408     Vals.push_back(GV->isDeclaration() ? 0 :
409                    (VE.getValueID(GV->getInitializer()) + 1));
410     Vals.push_back(getEncodedLinkage(GV));
411     Vals.push_back(Log2_32(GV->getAlignment())+1);
412     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
413     if (GV->isThreadLocal() ||
414         GV->getVisibility() != GlobalValue::DefaultVisibility) {
415       Vals.push_back(getEncodedVisibility(GV));
416       Vals.push_back(GV->isThreadLocal());
417     } else {
418       AbbrevToUse = SimpleGVarAbbrev;
419     }
420
421     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
422     Vals.clear();
423   }
424
425   // Emit the function proto information.
426   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
427     // FUNCTION:  [type, callingconv, isproto, paramattr,
428     //             linkage, alignment, section, visibility, gc]
429     Vals.push_back(VE.getTypeID(F->getType()));
430     Vals.push_back(F->getCallingConv());
431     Vals.push_back(F->isDeclaration());
432     Vals.push_back(getEncodedLinkage(F));
433     Vals.push_back(VE.getAttributeID(F->getAttributes()));
434     Vals.push_back(Log2_32(F->getAlignment())+1);
435     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
436     Vals.push_back(getEncodedVisibility(F));
437     Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
438
439     unsigned AbbrevToUse = 0;
440     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
441     Vals.clear();
442   }
443
444
445   // Emit the alias information.
446   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
447        AI != E; ++AI) {
448     Vals.push_back(VE.getTypeID(AI->getType()));
449     Vals.push_back(VE.getValueID(AI->getAliasee()));
450     Vals.push_back(getEncodedLinkage(AI));
451     Vals.push_back(getEncodedVisibility(AI));
452     unsigned AbbrevToUse = 0;
453     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
454     Vals.clear();
455   }
456 }
457
458 static uint64_t GetOptimizationFlags(const Value *V) {
459   uint64_t Flags = 0;
460
461   if (const OverflowingBinaryOperator *OBO =
462         dyn_cast<OverflowingBinaryOperator>(V)) {
463     if (OBO->hasNoSignedWrap())
464       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
465     if (OBO->hasNoUnsignedWrap())
466       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
467   } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) {
468     if (Div->isExact())
469       Flags |= 1 << bitc::SDIV_EXACT;
470   }
471
472   return Flags;
473 }
474
475 static void WriteMDNode(const MDNode *N,
476                         const ValueEnumerator &VE,
477                         BitstreamWriter &Stream,
478                         SmallVector<uint64_t, 64> &Record) {
479   for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) {
480     if (N->getElement(i)) {
481       Record.push_back(VE.getTypeID(N->getElement(i)->getType()));
482       Record.push_back(VE.getValueID(N->getElement(i)));
483     } else {
484       Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
485       Record.push_back(0);
486     }
487   }
488   Stream.EmitRecord(bitc::METADATA_NODE, Record, 0);
489   Record.clear();
490 }
491
492 static void WriteModuleMetadata(const ValueEnumerator &VE,
493                                 BitstreamWriter &Stream) {
494   const ValueEnumerator::ValueList &Vals = VE.getMDValues();
495   bool StartedMetadataBlock = false;
496   unsigned MDSAbbrev = 0;
497   SmallVector<uint64_t, 64> Record;
498   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
499
500     if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
501       if (!StartedMetadataBlock) {
502         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
503         StartedMetadataBlock = true;
504       }
505       WriteMDNode(N, VE, Stream, Record);
506     } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
507       if (!StartedMetadataBlock)  {
508         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
509
510         // Abbrev for METADATA_STRING.
511         BitCodeAbbrev *Abbv = new BitCodeAbbrev();
512         Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
513         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
514         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
515         MDSAbbrev = Stream.EmitAbbrev(Abbv);
516         StartedMetadataBlock = true;
517       }
518
519       // Code: [strchar x N]
520       Record.append(MDS->begin(), MDS->end());
521
522       // Emit the finished record.
523       Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
524       Record.clear();
525     } else if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(Vals[i].first)) {
526       if (!StartedMetadataBlock)  {
527         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
528         StartedMetadataBlock = true;
529       }
530
531       // Write name.
532       std::string Str = NMD->getNameStr();
533       const char *StrBegin = Str.c_str();
534       for (unsigned i = 0, e = Str.length(); i != e; ++i)
535         Record.push_back(StrBegin[i]);
536       Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
537       Record.clear();
538
539       // Write named metadata elements.
540       for (unsigned i = 0, e = NMD->getNumElements(); i != e; ++i) {
541         if (NMD->getElement(i))
542           Record.push_back(VE.getValueID(NMD->getElement(i)));
543         else
544           Record.push_back(0);
545       }
546       Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
547       Record.clear();
548     }
549   }
550
551   if (StartedMetadataBlock)
552     Stream.ExitBlock();
553 }
554
555 static void WriteMetadataAttachment(const Function &F,
556                                     const ValueEnumerator &VE,
557                                     BitstreamWriter &Stream) {
558   bool StartedMetadataBlock = false;
559   SmallVector<uint64_t, 64> Record;
560
561   // Write metadata attachments
562   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
563   MetadataContext &TheMetadata = F.getContext().getMetadata();
564   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
565     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
566          I != E; ++I) {
567       const MetadataContext::MDMapTy *P = TheMetadata.getMDs(I);
568       if (!P) continue;
569       bool RecordedInstruction = false;
570       for (MetadataContext::MDMapTy::const_iterator PI = P->begin(), 
571              PE = P->end(); PI != PE; ++PI) {
572         if (MDNode *ND = dyn_cast_or_null<MDNode>(PI->second)) {
573           if (RecordedInstruction == false) {
574             Record.push_back(VE.getInstructionID(I));
575             RecordedInstruction = true;
576           }
577           Record.push_back(PI->first);
578           Record.push_back(VE.getValueID(ND));
579         }
580       }
581       if (!Record.empty()) {
582         if (!StartedMetadataBlock)  {
583           Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
584           StartedMetadataBlock = true;
585         }
586         Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
587         Record.clear();
588       }
589     }
590
591   if (StartedMetadataBlock)
592     Stream.ExitBlock();
593 }
594
595 static void WriteModuleMetadataStore(const Module *M,
596                                      const ValueEnumerator &VE,
597                                      BitstreamWriter &Stream) {
598
599   bool StartedMetadataBlock = false;
600   SmallVector<uint64_t, 64> Record;
601
602   // Write metadata kinds
603   // METADATA_KIND - [n x [id, name]]
604   MetadataContext &TheMetadata = M->getContext().getMetadata();
605   const StringMap<unsigned> *Kinds = TheMetadata.getHandlerNames();
606   for (StringMap<unsigned>::const_iterator
607          I = Kinds->begin(), E = Kinds->end(); I != E; ++I) {
608     Record.push_back(I->second);
609     StringRef KName = I->first();
610     for (unsigned i = 0, e = KName.size(); i != e; ++i)
611       Record.push_back(KName[i]);
612     if (!StartedMetadataBlock)  {
613       Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
614       StartedMetadataBlock = true;
615     }
616     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
617     Record.clear();
618   }
619
620   if (StartedMetadataBlock)
621     Stream.ExitBlock();
622 }
623
624 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
625                            const ValueEnumerator &VE,
626                            BitstreamWriter &Stream, bool isGlobal) {
627   if (FirstVal == LastVal) return;
628
629   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
630
631   unsigned AggregateAbbrev = 0;
632   unsigned String8Abbrev = 0;
633   unsigned CString7Abbrev = 0;
634   unsigned CString6Abbrev = 0;
635   // If this is a constant pool for the module, emit module-specific abbrevs.
636   if (isGlobal) {
637     // Abbrev for CST_CODE_AGGREGATE.
638     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
639     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
640     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
641     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
642     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
643
644     // Abbrev for CST_CODE_STRING.
645     Abbv = new BitCodeAbbrev();
646     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
647     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
648     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
649     String8Abbrev = Stream.EmitAbbrev(Abbv);
650     // Abbrev for CST_CODE_CSTRING.
651     Abbv = new BitCodeAbbrev();
652     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
653     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
654     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
655     CString7Abbrev = Stream.EmitAbbrev(Abbv);
656     // Abbrev for CST_CODE_CSTRING.
657     Abbv = new BitCodeAbbrev();
658     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
659     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
660     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
661     CString6Abbrev = Stream.EmitAbbrev(Abbv);
662   }
663
664   SmallVector<uint64_t, 64> Record;
665
666   const ValueEnumerator::ValueList &Vals = VE.getValues();
667   const Type *LastTy = 0;
668   for (unsigned i = FirstVal; i != LastVal; ++i) {
669     const Value *V = Vals[i].first;
670     // If we need to switch types, do so now.
671     if (V->getType() != LastTy) {
672       LastTy = V->getType();
673       Record.push_back(VE.getTypeID(LastTy));
674       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
675                         CONSTANTS_SETTYPE_ABBREV);
676       Record.clear();
677     }
678
679     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
680       Record.push_back(unsigned(IA->hasSideEffects()) |
681                        unsigned(IA->isMsAsm()) << 1);
682
683       // Add the asm string.
684       const std::string &AsmStr = IA->getAsmString();
685       Record.push_back(AsmStr.size());
686       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
687         Record.push_back(AsmStr[i]);
688
689       // Add the constraint string.
690       const std::string &ConstraintStr = IA->getConstraintString();
691       Record.push_back(ConstraintStr.size());
692       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
693         Record.push_back(ConstraintStr[i]);
694       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
695       Record.clear();
696       continue;
697     }
698     const Constant *C = cast<Constant>(V);
699     unsigned Code = -1U;
700     unsigned AbbrevToUse = 0;
701     if (C->isNullValue()) {
702       Code = bitc::CST_CODE_NULL;
703     } else if (isa<UndefValue>(C)) {
704       Code = bitc::CST_CODE_UNDEF;
705     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
706       if (IV->getBitWidth() <= 64) {
707         int64_t V = IV->getSExtValue();
708         if (V >= 0)
709           Record.push_back(V << 1);
710         else
711           Record.push_back((-V << 1) | 1);
712         Code = bitc::CST_CODE_INTEGER;
713         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
714       } else {                             // Wide integers, > 64 bits in size.
715         // We have an arbitrary precision integer value to write whose
716         // bit width is > 64. However, in canonical unsigned integer
717         // format it is likely that the high bits are going to be zero.
718         // So, we only write the number of active words.
719         unsigned NWords = IV->getValue().getActiveWords();
720         const uint64_t *RawWords = IV->getValue().getRawData();
721         for (unsigned i = 0; i != NWords; ++i) {
722           int64_t V = RawWords[i];
723           if (V >= 0)
724             Record.push_back(V << 1);
725           else
726             Record.push_back((-V << 1) | 1);
727         }
728         Code = bitc::CST_CODE_WIDE_INTEGER;
729       }
730     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
731       Code = bitc::CST_CODE_FLOAT;
732       const Type *Ty = CFP->getType();
733       if (Ty->isFloatTy() || Ty->isDoubleTy()) {
734         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
735       } else if (Ty->isX86_FP80Ty()) {
736         // api needed to prevent premature destruction
737         // bits are not in the same order as a normal i80 APInt, compensate.
738         APInt api = CFP->getValueAPF().bitcastToAPInt();
739         const uint64_t *p = api.getRawData();
740         Record.push_back((p[1] << 48) | (p[0] >> 16));
741         Record.push_back(p[0] & 0xffffLL);
742       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
743         APInt api = CFP->getValueAPF().bitcastToAPInt();
744         const uint64_t *p = api.getRawData();
745         Record.push_back(p[0]);
746         Record.push_back(p[1]);
747       } else {
748         assert (0 && "Unknown FP type!");
749       }
750     } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
751       // Emit constant strings specially.
752       unsigned NumOps = C->getNumOperands();
753       // If this is a null-terminated string, use the denser CSTRING encoding.
754       if (C->getOperand(NumOps-1)->isNullValue()) {
755         Code = bitc::CST_CODE_CSTRING;
756         --NumOps;  // Don't encode the null, which isn't allowed by char6.
757       } else {
758         Code = bitc::CST_CODE_STRING;
759         AbbrevToUse = String8Abbrev;
760       }
761       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
762       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
763       for (unsigned i = 0; i != NumOps; ++i) {
764         unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
765         Record.push_back(V);
766         isCStr7 &= (V & 128) == 0;
767         if (isCStrChar6)
768           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
769       }
770
771       if (isCStrChar6)
772         AbbrevToUse = CString6Abbrev;
773       else if (isCStr7)
774         AbbrevToUse = CString7Abbrev;
775     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
776                isa<ConstantVector>(V)) {
777       Code = bitc::CST_CODE_AGGREGATE;
778       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
779         Record.push_back(VE.getValueID(C->getOperand(i)));
780       AbbrevToUse = AggregateAbbrev;
781     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
782       switch (CE->getOpcode()) {
783       default:
784         if (Instruction::isCast(CE->getOpcode())) {
785           Code = bitc::CST_CODE_CE_CAST;
786           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
787           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
788           Record.push_back(VE.getValueID(C->getOperand(0)));
789           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
790         } else {
791           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
792           Code = bitc::CST_CODE_CE_BINOP;
793           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
794           Record.push_back(VE.getValueID(C->getOperand(0)));
795           Record.push_back(VE.getValueID(C->getOperand(1)));
796           uint64_t Flags = GetOptimizationFlags(CE);
797           if (Flags != 0)
798             Record.push_back(Flags);
799         }
800         break;
801       case Instruction::GetElementPtr:
802         Code = bitc::CST_CODE_CE_GEP;
803         if (cast<GEPOperator>(C)->isInBounds())
804           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
805         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
806           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
807           Record.push_back(VE.getValueID(C->getOperand(i)));
808         }
809         break;
810       case Instruction::Select:
811         Code = bitc::CST_CODE_CE_SELECT;
812         Record.push_back(VE.getValueID(C->getOperand(0)));
813         Record.push_back(VE.getValueID(C->getOperand(1)));
814         Record.push_back(VE.getValueID(C->getOperand(2)));
815         break;
816       case Instruction::ExtractElement:
817         Code = bitc::CST_CODE_CE_EXTRACTELT;
818         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
819         Record.push_back(VE.getValueID(C->getOperand(0)));
820         Record.push_back(VE.getValueID(C->getOperand(1)));
821         break;
822       case Instruction::InsertElement:
823         Code = bitc::CST_CODE_CE_INSERTELT;
824         Record.push_back(VE.getValueID(C->getOperand(0)));
825         Record.push_back(VE.getValueID(C->getOperand(1)));
826         Record.push_back(VE.getValueID(C->getOperand(2)));
827         break;
828       case Instruction::ShuffleVector:
829         // If the return type and argument types are the same, this is a
830         // standard shufflevector instruction.  If the types are different,
831         // then the shuffle is widening or truncating the input vectors, and
832         // the argument type must also be encoded.
833         if (C->getType() == C->getOperand(0)->getType()) {
834           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
835         } else {
836           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
837           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
838         }
839         Record.push_back(VE.getValueID(C->getOperand(0)));
840         Record.push_back(VE.getValueID(C->getOperand(1)));
841         Record.push_back(VE.getValueID(C->getOperand(2)));
842         break;
843       case Instruction::ICmp:
844       case Instruction::FCmp:
845         Code = bitc::CST_CODE_CE_CMP;
846         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
847         Record.push_back(VE.getValueID(C->getOperand(0)));
848         Record.push_back(VE.getValueID(C->getOperand(1)));
849         Record.push_back(CE->getPredicate());
850         break;
851       }
852     } else {
853       llvm_unreachable("Unknown constant!");
854     }
855     Stream.EmitRecord(Code, Record, AbbrevToUse);
856     Record.clear();
857   }
858
859   Stream.ExitBlock();
860 }
861
862 static void WriteModuleConstants(const ValueEnumerator &VE,
863                                  BitstreamWriter &Stream) {
864   const ValueEnumerator::ValueList &Vals = VE.getValues();
865
866   // Find the first constant to emit, which is the first non-globalvalue value.
867   // We know globalvalues have been emitted by WriteModuleInfo.
868   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
869     if (!isa<GlobalValue>(Vals[i].first)) {
870       WriteConstants(i, Vals.size(), VE, Stream, true);
871       return;
872     }
873   }
874 }
875
876 /// PushValueAndType - The file has to encode both the value and type id for
877 /// many values, because we need to know what type to create for forward
878 /// references.  However, most operands are not forward references, so this type
879 /// field is not needed.
880 ///
881 /// This function adds V's value ID to Vals.  If the value ID is higher than the
882 /// instruction ID, then it is a forward reference, and it also includes the
883 /// type ID.
884 static bool PushValueAndType(const Value *V, unsigned InstID,
885                              SmallVector<unsigned, 64> &Vals,
886                              ValueEnumerator &VE) {
887   unsigned ValID = VE.getValueID(V);
888   Vals.push_back(ValID);
889   if (ValID >= InstID) {
890     Vals.push_back(VE.getTypeID(V->getType()));
891     return true;
892   }
893   return false;
894 }
895
896 /// WriteInstruction - Emit an instruction to the specified stream.
897 static void WriteInstruction(const Instruction &I, unsigned InstID,
898                              ValueEnumerator &VE, BitstreamWriter &Stream,
899                              SmallVector<unsigned, 64> &Vals) {
900   unsigned Code = 0;
901   unsigned AbbrevToUse = 0;
902   VE.setInstructionID(&I);
903   switch (I.getOpcode()) {
904   default:
905     if (Instruction::isCast(I.getOpcode())) {
906       Code = bitc::FUNC_CODE_INST_CAST;
907       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
908         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
909       Vals.push_back(VE.getTypeID(I.getType()));
910       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
911     } else {
912       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
913       Code = bitc::FUNC_CODE_INST_BINOP;
914       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
915         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
916       Vals.push_back(VE.getValueID(I.getOperand(1)));
917       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
918       uint64_t Flags = GetOptimizationFlags(&I);
919       if (Flags != 0) {
920         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
921           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
922         Vals.push_back(Flags);
923       }
924     }
925     break;
926
927   case Instruction::GetElementPtr:
928     Code = bitc::FUNC_CODE_INST_GEP;
929     if (cast<GEPOperator>(&I)->isInBounds())
930       Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
931     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
932       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
933     break;
934   case Instruction::ExtractValue: {
935     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
936     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
937     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
938     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
939       Vals.push_back(*i);
940     break;
941   }
942   case Instruction::InsertValue: {
943     Code = bitc::FUNC_CODE_INST_INSERTVAL;
944     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
945     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
946     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
947     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
948       Vals.push_back(*i);
949     break;
950   }
951   case Instruction::Select:
952     Code = bitc::FUNC_CODE_INST_VSELECT;
953     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
954     Vals.push_back(VE.getValueID(I.getOperand(2)));
955     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
956     break;
957   case Instruction::ExtractElement:
958     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
959     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
960     Vals.push_back(VE.getValueID(I.getOperand(1)));
961     break;
962   case Instruction::InsertElement:
963     Code = bitc::FUNC_CODE_INST_INSERTELT;
964     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
965     Vals.push_back(VE.getValueID(I.getOperand(1)));
966     Vals.push_back(VE.getValueID(I.getOperand(2)));
967     break;
968   case Instruction::ShuffleVector:
969     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
970     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
971     Vals.push_back(VE.getValueID(I.getOperand(1)));
972     Vals.push_back(VE.getValueID(I.getOperand(2)));
973     break;
974   case Instruction::ICmp:
975   case Instruction::FCmp:
976     // compare returning Int1Ty or vector of Int1Ty
977     Code = bitc::FUNC_CODE_INST_CMP2;
978     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
979     Vals.push_back(VE.getValueID(I.getOperand(1)));
980     Vals.push_back(cast<CmpInst>(I).getPredicate());
981     break;
982
983   case Instruction::Ret:
984     {
985       Code = bitc::FUNC_CODE_INST_RET;
986       unsigned NumOperands = I.getNumOperands();
987       if (NumOperands == 0)
988         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
989       else if (NumOperands == 1) {
990         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
991           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
992       } else {
993         for (unsigned i = 0, e = NumOperands; i != e; ++i)
994           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
995       }
996     }
997     break;
998   case Instruction::Br:
999     {
1000       Code = bitc::FUNC_CODE_INST_BR;
1001       BranchInst &II(cast<BranchInst>(I));
1002       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1003       if (II.isConditional()) {
1004         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1005         Vals.push_back(VE.getValueID(II.getCondition()));
1006       }
1007     }
1008     break;
1009   case Instruction::Switch:
1010     Code = bitc::FUNC_CODE_INST_SWITCH;
1011     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1012     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1013       Vals.push_back(VE.getValueID(I.getOperand(i)));
1014     break;
1015   case Instruction::Invoke: {
1016     const InvokeInst *II = cast<InvokeInst>(&I);
1017     const Value *Callee(II->getCalledValue());
1018     const PointerType *PTy = cast<PointerType>(Callee->getType());
1019     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1020     Code = bitc::FUNC_CODE_INST_INVOKE;
1021
1022     Vals.push_back(VE.getAttributeID(II->getAttributes()));
1023     Vals.push_back(II->getCallingConv());
1024     Vals.push_back(VE.getValueID(II->getNormalDest()));
1025     Vals.push_back(VE.getValueID(II->getUnwindDest()));
1026     PushValueAndType(Callee, InstID, Vals, VE);
1027
1028     // Emit value #'s for the fixed parameters.
1029     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1030       Vals.push_back(VE.getValueID(I.getOperand(i+3)));  // fixed param.
1031
1032     // Emit type/value pairs for varargs params.
1033     if (FTy->isVarArg()) {
1034       for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
1035            i != e; ++i)
1036         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1037     }
1038     break;
1039   }
1040   case Instruction::Unwind:
1041     Code = bitc::FUNC_CODE_INST_UNWIND;
1042     break;
1043   case Instruction::Unreachable:
1044     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1045     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1046     break;
1047
1048   case Instruction::PHI:
1049     Code = bitc::FUNC_CODE_INST_PHI;
1050     Vals.push_back(VE.getTypeID(I.getType()));
1051     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1052       Vals.push_back(VE.getValueID(I.getOperand(i)));
1053     break;
1054
1055   case Instruction::Free:
1056     Code = bitc::FUNC_CODE_INST_FREE;
1057     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1058     break;
1059
1060   case Instruction::Alloca:
1061     Code = bitc::FUNC_CODE_INST_ALLOCA;
1062     Vals.push_back(VE.getTypeID(I.getType()));
1063     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1064     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1065     break;
1066
1067   case Instruction::Load:
1068     Code = bitc::FUNC_CODE_INST_LOAD;
1069     if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1070       AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1071
1072     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1073     Vals.push_back(cast<LoadInst>(I).isVolatile());
1074     break;
1075   case Instruction::Store:
1076     Code = bitc::FUNC_CODE_INST_STORE2;
1077     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1078     Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
1079     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1080     Vals.push_back(cast<StoreInst>(I).isVolatile());
1081     break;
1082   case Instruction::Call: {
1083     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
1084     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1085
1086     Code = bitc::FUNC_CODE_INST_CALL;
1087
1088     const CallInst *CI = cast<CallInst>(&I);
1089     Vals.push_back(VE.getAttributeID(CI->getAttributes()));
1090     Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
1091     PushValueAndType(CI->getOperand(0), InstID, Vals, VE);  // Callee
1092
1093     // Emit value #'s for the fixed parameters.
1094     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1095       Vals.push_back(VE.getValueID(I.getOperand(i+1)));  // fixed param.
1096
1097     // Emit type/value pairs for varargs params.
1098     if (FTy->isVarArg()) {
1099       unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
1100       for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
1101            i != e; ++i)
1102         PushValueAndType(I.getOperand(i), InstID, Vals, VE);  // varargs
1103     }
1104     break;
1105   }
1106   case Instruction::VAArg:
1107     Code = bitc::FUNC_CODE_INST_VAARG;
1108     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1109     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1110     Vals.push_back(VE.getTypeID(I.getType())); // restype.
1111     break;
1112   }
1113
1114   Stream.EmitRecord(Code, Vals, AbbrevToUse);
1115   Vals.clear();
1116 }
1117
1118 // Emit names for globals/functions etc.
1119 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1120                                   const ValueEnumerator &VE,
1121                                   BitstreamWriter &Stream) {
1122   if (VST.empty()) return;
1123   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1124
1125   // FIXME: Set up the abbrev, we know how many values there are!
1126   // FIXME: We know if the type names can use 7-bit ascii.
1127   SmallVector<unsigned, 64> NameVals;
1128
1129   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1130        SI != SE; ++SI) {
1131
1132     const ValueName &Name = *SI;
1133
1134     // Figure out the encoding to use for the name.
1135     bool is7Bit = true;
1136     bool isChar6 = true;
1137     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1138          C != E; ++C) {
1139       if (isChar6)
1140         isChar6 = BitCodeAbbrevOp::isChar6(*C);
1141       if ((unsigned char)*C & 128) {
1142         is7Bit = false;
1143         break;  // don't bother scanning the rest.
1144       }
1145     }
1146
1147     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1148
1149     // VST_ENTRY:   [valueid, namechar x N]
1150     // VST_BBENTRY: [bbid, namechar x N]
1151     unsigned Code;
1152     if (isa<BasicBlock>(SI->getValue())) {
1153       Code = bitc::VST_CODE_BBENTRY;
1154       if (isChar6)
1155         AbbrevToUse = VST_BBENTRY_6_ABBREV;
1156     } else {
1157       Code = bitc::VST_CODE_ENTRY;
1158       if (isChar6)
1159         AbbrevToUse = VST_ENTRY_6_ABBREV;
1160       else if (is7Bit)
1161         AbbrevToUse = VST_ENTRY_7_ABBREV;
1162     }
1163
1164     NameVals.push_back(VE.getValueID(SI->getValue()));
1165     for (const char *P = Name.getKeyData(),
1166          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1167       NameVals.push_back((unsigned char)*P);
1168
1169     // Emit the finished record.
1170     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1171     NameVals.clear();
1172   }
1173   Stream.ExitBlock();
1174 }
1175
1176 /// WriteFunction - Emit a function body to the module stream.
1177 static void WriteFunction(const Function &F, ValueEnumerator &VE,
1178                           BitstreamWriter &Stream) {
1179   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1180   VE.incorporateFunction(F);
1181
1182   SmallVector<unsigned, 64> Vals;
1183
1184   // Emit the number of basic blocks, so the reader can create them ahead of
1185   // time.
1186   Vals.push_back(VE.getBasicBlocks().size());
1187   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1188   Vals.clear();
1189
1190   // If there are function-local constants, emit them now.
1191   unsigned CstStart, CstEnd;
1192   VE.getFunctionConstantRange(CstStart, CstEnd);
1193   WriteConstants(CstStart, CstEnd, VE, Stream, false);
1194
1195   // Keep a running idea of what the instruction ID is.
1196   unsigned InstID = CstEnd;
1197
1198   // Finally, emit all the instructions, in order.
1199   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1200     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1201          I != E; ++I) {
1202       WriteInstruction(*I, InstID, VE, Stream, Vals);
1203       if (I->getType() != Type::getVoidTy(F.getContext()))
1204         ++InstID;
1205     }
1206
1207   // Emit names for all the instructions etc.
1208   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1209
1210   WriteMetadataAttachment(F, VE, Stream);
1211   VE.purgeFunction();
1212   Stream.ExitBlock();
1213 }
1214
1215 /// WriteTypeSymbolTable - Emit a block for the specified type symtab.
1216 static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
1217                                  const ValueEnumerator &VE,
1218                                  BitstreamWriter &Stream) {
1219   if (TST.empty()) return;
1220
1221   Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
1222
1223   // 7-bit fixed width VST_CODE_ENTRY strings.
1224   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1225   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1226   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1227                             Log2_32_Ceil(VE.getTypes().size()+1)));
1228   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1229   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1230   unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
1231
1232   SmallVector<unsigned, 64> NameVals;
1233
1234   for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
1235        TI != TE; ++TI) {
1236     // TST_ENTRY: [typeid, namechar x N]
1237     NameVals.push_back(VE.getTypeID(TI->second));
1238
1239     const std::string &Str = TI->first;
1240     bool is7Bit = true;
1241     for (unsigned i = 0, e = Str.size(); i != e; ++i) {
1242       NameVals.push_back((unsigned char)Str[i]);
1243       if (Str[i] & 128)
1244         is7Bit = false;
1245     }
1246
1247     // Emit the finished record.
1248     Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
1249     NameVals.clear();
1250   }
1251
1252   Stream.ExitBlock();
1253 }
1254
1255 // Emit blockinfo, which defines the standard abbreviations etc.
1256 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1257   // We only want to emit block info records for blocks that have multiple
1258   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1259   // blocks can defined their abbrevs inline.
1260   Stream.EnterBlockInfoBlock(2);
1261
1262   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1263     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1264     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1265     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1266     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1267     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1268     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1269                                    Abbv) != VST_ENTRY_8_ABBREV)
1270       llvm_unreachable("Unexpected abbrev ordering!");
1271   }
1272
1273   { // 7-bit fixed width VST_ENTRY strings.
1274     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1275     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1276     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1277     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1278     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1279     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1280                                    Abbv) != VST_ENTRY_7_ABBREV)
1281       llvm_unreachable("Unexpected abbrev ordering!");
1282   }
1283   { // 6-bit char6 VST_ENTRY strings.
1284     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1285     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1286     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1287     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1288     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1289     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1290                                    Abbv) != VST_ENTRY_6_ABBREV)
1291       llvm_unreachable("Unexpected abbrev ordering!");
1292   }
1293   { // 6-bit char6 VST_BBENTRY strings.
1294     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1295     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1296     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1297     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1298     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1299     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1300                                    Abbv) != VST_BBENTRY_6_ABBREV)
1301       llvm_unreachable("Unexpected abbrev ordering!");
1302   }
1303
1304
1305
1306   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1307     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1308     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1309     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1310                               Log2_32_Ceil(VE.getTypes().size()+1)));
1311     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1312                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1313       llvm_unreachable("Unexpected abbrev ordering!");
1314   }
1315
1316   { // INTEGER abbrev for CONSTANTS_BLOCK.
1317     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1318     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1319     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1320     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1321                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1322       llvm_unreachable("Unexpected abbrev ordering!");
1323   }
1324
1325   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1326     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1327     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1328     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1329     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1330                               Log2_32_Ceil(VE.getTypes().size()+1)));
1331     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1332
1333     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1334                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1335       llvm_unreachable("Unexpected abbrev ordering!");
1336   }
1337   { // NULL abbrev for CONSTANTS_BLOCK.
1338     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1339     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1340     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1341                                    Abbv) != CONSTANTS_NULL_Abbrev)
1342       llvm_unreachable("Unexpected abbrev ordering!");
1343   }
1344
1345   // FIXME: This should only use space for first class types!
1346
1347   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1348     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1349     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1350     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1351     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1352     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1353     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1354                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1355       llvm_unreachable("Unexpected abbrev ordering!");
1356   }
1357   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1358     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1359     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1360     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1361     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1362     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1363     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1364                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1365       llvm_unreachable("Unexpected abbrev ordering!");
1366   }
1367   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1368     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1369     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1370     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1371     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1372     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1373     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1374     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1375                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1376       llvm_unreachable("Unexpected abbrev ordering!");
1377   }
1378   { // INST_CAST abbrev for FUNCTION_BLOCK.
1379     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1380     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1381     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1382     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1383                               Log2_32_Ceil(VE.getTypes().size()+1)));
1384     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1385     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1386                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1387       llvm_unreachable("Unexpected abbrev ordering!");
1388   }
1389
1390   { // INST_RET abbrev for FUNCTION_BLOCK.
1391     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1392     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1393     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1394                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1395       llvm_unreachable("Unexpected abbrev ordering!");
1396   }
1397   { // INST_RET abbrev for FUNCTION_BLOCK.
1398     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1399     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1400     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1401     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1402                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1403       llvm_unreachable("Unexpected abbrev ordering!");
1404   }
1405   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1406     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1407     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1408     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1409                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1410       llvm_unreachable("Unexpected abbrev ordering!");
1411   }
1412
1413   Stream.ExitBlock();
1414 }
1415
1416
1417 /// WriteModule - Emit the specified module to the bitstream.
1418 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1419   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1420
1421   // Emit the version number if it is non-zero.
1422   if (CurVersion) {
1423     SmallVector<unsigned, 1> Vals;
1424     Vals.push_back(CurVersion);
1425     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1426   }
1427
1428   // Analyze the module, enumerating globals, functions, etc.
1429   ValueEnumerator VE(M);
1430
1431   // Emit blockinfo, which defines the standard abbreviations etc.
1432   WriteBlockInfo(VE, Stream);
1433
1434   // Emit information about parameter attributes.
1435   WriteAttributeTable(VE, Stream);
1436
1437   // Emit information describing all of the types in the module.
1438   WriteTypeTable(VE, Stream);
1439
1440   // Emit top-level description of module, including target triple, inline asm,
1441   // descriptors for global variables, and function prototype info.
1442   WriteModuleInfo(M, VE, Stream);
1443
1444   // Emit constants.
1445   WriteModuleConstants(VE, Stream);
1446
1447   // Emit metadata.
1448   WriteModuleMetadata(VE, Stream);
1449
1450   // Emit function bodies.
1451   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1452     if (!I->isDeclaration())
1453       WriteFunction(*I, VE, Stream);
1454
1455   // Emit metadata.
1456   WriteModuleMetadataStore(M, VE, Stream);
1457
1458   // Emit the type symbol table information.
1459   WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1460
1461   // Emit names for globals/functions etc.
1462   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1463
1464   Stream.ExitBlock();
1465 }
1466
1467 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1468 /// header and trailer to make it compatible with the system archiver.  To do
1469 /// this we emit the following header, and then emit a trailer that pads the
1470 /// file out to be a multiple of 16 bytes.
1471 ///
1472 /// struct bc_header {
1473 ///   uint32_t Magic;         // 0x0B17C0DE
1474 ///   uint32_t Version;       // Version, currently always 0.
1475 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1476 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1477 ///   uint32_t CPUType;       // CPU specifier.
1478 ///   ... potentially more later ...
1479 /// };
1480 enum {
1481   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1482   DarwinBCHeaderSize = 5*4
1483 };
1484
1485 static void EmitDarwinBCHeader(BitstreamWriter &Stream,
1486                                const std::string &TT) {
1487   unsigned CPUType = ~0U;
1488
1489   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*.  The CPUType is a
1490   // magic number from /usr/include/mach/machine.h.  It is ok to reproduce the
1491   // specific constants here because they are implicitly part of the Darwin ABI.
1492   enum {
1493     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1494     DARWIN_CPU_TYPE_X86        = 7,
1495     DARWIN_CPU_TYPE_POWERPC    = 18
1496   };
1497
1498   if (TT.find("x86_64-") == 0)
1499     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1500   else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
1501            TT[4] == '-' && TT[1] - '3' < 6)
1502     CPUType = DARWIN_CPU_TYPE_X86;
1503   else if (TT.find("powerpc-") == 0)
1504     CPUType = DARWIN_CPU_TYPE_POWERPC;
1505   else if (TT.find("powerpc64-") == 0)
1506     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1507
1508   // Traditional Bitcode starts after header.
1509   unsigned BCOffset = DarwinBCHeaderSize;
1510
1511   Stream.Emit(0x0B17C0DE, 32);
1512   Stream.Emit(0         , 32);  // Version.
1513   Stream.Emit(BCOffset  , 32);
1514   Stream.Emit(0         , 32);  // Filled in later.
1515   Stream.Emit(CPUType   , 32);
1516 }
1517
1518 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
1519 /// finalize the header.
1520 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
1521   // Update the size field in the header.
1522   Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
1523
1524   // If the file is not a multiple of 16 bytes, insert dummy padding.
1525   while (BufferSize & 15) {
1526     Stream.Emit(0, 8);
1527     ++BufferSize;
1528   }
1529 }
1530
1531
1532 /// WriteBitcodeToFile - Write the specified module to the specified output
1533 /// stream.
1534 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1535   std::vector<unsigned char> Buffer;
1536   BitstreamWriter Stream(Buffer);
1537
1538   Buffer.reserve(256*1024);
1539
1540   WriteBitcodeToStream( M, Stream );
1541
1542   // If writing to stdout, set binary mode.
1543   if (&llvm::outs() == &Out)
1544     sys::Program::ChangeStdoutToBinary();
1545
1546   // Write the generated bitstream to "Out".
1547   Out.write((char*)&Buffer.front(), Buffer.size());
1548
1549   // Make sure it hits disk now.
1550   Out.flush();
1551 }
1552
1553 /// WriteBitcodeToStream - Write the specified module to the specified output
1554 /// stream.
1555 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
1556   // If this is darwin, emit a file header and trailer if needed.
1557   bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos;
1558   if (isDarwin)
1559     EmitDarwinBCHeader(Stream, M->getTargetTriple());
1560
1561   // Emit the file header.
1562   Stream.Emit((unsigned)'B', 8);
1563   Stream.Emit((unsigned)'C', 8);
1564   Stream.Emit(0x0, 4);
1565   Stream.Emit(0xC, 4);
1566   Stream.Emit(0xE, 4);
1567   Stream.Emit(0xD, 4);
1568
1569   // Emit the module.
1570   WriteModule(M, Stream);
1571
1572   if (isDarwin)
1573     EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());
1574 }