6f8c26069a67b1c2a6c215733b5231d571f2ecf0
[oota-llvm.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "ValueEnumerator.h"
16 #include "llvm/ADT/Triple.h"
17 #include "llvm/Bitcode/BitstreamWriter.h"
18 #include "llvm/Bitcode/LLVMBitCodes.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/InlineAsm.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/UseListOrder.h"
27 #include "llvm/IR/ValueSymbolTable.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Support/Program.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <cctype>
34 #include <map>
35 using namespace llvm;
36
37 /// These are manifest constants used by the bitcode writer. They do not need to
38 /// be kept in sync with the reader, but need to be consistent within this file.
39 enum {
40   // VALUE_SYMTAB_BLOCK abbrev id's.
41   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
42   VST_ENTRY_7_ABBREV,
43   VST_ENTRY_6_ABBREV,
44   VST_BBENTRY_6_ABBREV,
45
46   // CONSTANTS_BLOCK abbrev id's.
47   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
48   CONSTANTS_INTEGER_ABBREV,
49   CONSTANTS_CE_CAST_Abbrev,
50   CONSTANTS_NULL_Abbrev,
51
52   // FUNCTION_BLOCK abbrev id's.
53   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
54   FUNCTION_INST_BINOP_ABBREV,
55   FUNCTION_INST_BINOP_FLAGS_ABBREV,
56   FUNCTION_INST_CAST_ABBREV,
57   FUNCTION_INST_RET_VOID_ABBREV,
58   FUNCTION_INST_RET_VAL_ABBREV,
59   FUNCTION_INST_UNREACHABLE_ABBREV
60 };
61
62 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
63   switch (Opcode) {
64   default: llvm_unreachable("Unknown cast instruction!");
65   case Instruction::Trunc   : return bitc::CAST_TRUNC;
66   case Instruction::ZExt    : return bitc::CAST_ZEXT;
67   case Instruction::SExt    : return bitc::CAST_SEXT;
68   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
69   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
70   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
71   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
72   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
73   case Instruction::FPExt   : return bitc::CAST_FPEXT;
74   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
75   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
76   case Instruction::BitCast : return bitc::CAST_BITCAST;
77   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
78   }
79 }
80
81 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
82   switch (Opcode) {
83   default: llvm_unreachable("Unknown binary instruction!");
84   case Instruction::Add:
85   case Instruction::FAdd: return bitc::BINOP_ADD;
86   case Instruction::Sub:
87   case Instruction::FSub: return bitc::BINOP_SUB;
88   case Instruction::Mul:
89   case Instruction::FMul: return bitc::BINOP_MUL;
90   case Instruction::UDiv: return bitc::BINOP_UDIV;
91   case Instruction::FDiv:
92   case Instruction::SDiv: return bitc::BINOP_SDIV;
93   case Instruction::URem: return bitc::BINOP_UREM;
94   case Instruction::FRem:
95   case Instruction::SRem: return bitc::BINOP_SREM;
96   case Instruction::Shl:  return bitc::BINOP_SHL;
97   case Instruction::LShr: return bitc::BINOP_LSHR;
98   case Instruction::AShr: return bitc::BINOP_ASHR;
99   case Instruction::And:  return bitc::BINOP_AND;
100   case Instruction::Or:   return bitc::BINOP_OR;
101   case Instruction::Xor:  return bitc::BINOP_XOR;
102   }
103 }
104
105 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
106   switch (Op) {
107   default: llvm_unreachable("Unknown RMW operation!");
108   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
109   case AtomicRMWInst::Add: return bitc::RMW_ADD;
110   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
111   case AtomicRMWInst::And: return bitc::RMW_AND;
112   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
113   case AtomicRMWInst::Or: return bitc::RMW_OR;
114   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
115   case AtomicRMWInst::Max: return bitc::RMW_MAX;
116   case AtomicRMWInst::Min: return bitc::RMW_MIN;
117   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
118   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
119   }
120 }
121
122 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
123   switch (Ordering) {
124   case NotAtomic: return bitc::ORDERING_NOTATOMIC;
125   case Unordered: return bitc::ORDERING_UNORDERED;
126   case Monotonic: return bitc::ORDERING_MONOTONIC;
127   case Acquire: return bitc::ORDERING_ACQUIRE;
128   case Release: return bitc::ORDERING_RELEASE;
129   case AcquireRelease: return bitc::ORDERING_ACQREL;
130   case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
131   }
132   llvm_unreachable("Invalid ordering");
133 }
134
135 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
136   switch (SynchScope) {
137   case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
138   case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
139   }
140   llvm_unreachable("Invalid synch scope");
141 }
142
143 static void WriteStringRecord(unsigned Code, StringRef Str,
144                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
145   SmallVector<unsigned, 64> Vals;
146
147   // Code: [strchar x N]
148   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
149     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
150       AbbrevToUse = 0;
151     Vals.push_back(Str[i]);
152   }
153
154   // Emit the finished record.
155   Stream.EmitRecord(Code, Vals, AbbrevToUse);
156 }
157
158 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
159   switch (Kind) {
160   case Attribute::Alignment:
161     return bitc::ATTR_KIND_ALIGNMENT;
162   case Attribute::AlwaysInline:
163     return bitc::ATTR_KIND_ALWAYS_INLINE;
164   case Attribute::Builtin:
165     return bitc::ATTR_KIND_BUILTIN;
166   case Attribute::ByVal:
167     return bitc::ATTR_KIND_BY_VAL;
168   case Attribute::InAlloca:
169     return bitc::ATTR_KIND_IN_ALLOCA;
170   case Attribute::Cold:
171     return bitc::ATTR_KIND_COLD;
172   case Attribute::InlineHint:
173     return bitc::ATTR_KIND_INLINE_HINT;
174   case Attribute::InReg:
175     return bitc::ATTR_KIND_IN_REG;
176   case Attribute::JumpTable:
177     return bitc::ATTR_KIND_JUMP_TABLE;
178   case Attribute::MinSize:
179     return bitc::ATTR_KIND_MIN_SIZE;
180   case Attribute::Naked:
181     return bitc::ATTR_KIND_NAKED;
182   case Attribute::Nest:
183     return bitc::ATTR_KIND_NEST;
184   case Attribute::NoAlias:
185     return bitc::ATTR_KIND_NO_ALIAS;
186   case Attribute::NoBuiltin:
187     return bitc::ATTR_KIND_NO_BUILTIN;
188   case Attribute::NoCapture:
189     return bitc::ATTR_KIND_NO_CAPTURE;
190   case Attribute::NoDuplicate:
191     return bitc::ATTR_KIND_NO_DUPLICATE;
192   case Attribute::NoImplicitFloat:
193     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
194   case Attribute::NoInline:
195     return bitc::ATTR_KIND_NO_INLINE;
196   case Attribute::NonLazyBind:
197     return bitc::ATTR_KIND_NON_LAZY_BIND;
198   case Attribute::NonNull:
199     return bitc::ATTR_KIND_NON_NULL;
200   case Attribute::Dereferenceable:
201     return bitc::ATTR_KIND_DEREFERENCEABLE;
202   case Attribute::NoRedZone:
203     return bitc::ATTR_KIND_NO_RED_ZONE;
204   case Attribute::NoReturn:
205     return bitc::ATTR_KIND_NO_RETURN;
206   case Attribute::NoUnwind:
207     return bitc::ATTR_KIND_NO_UNWIND;
208   case Attribute::OptimizeForSize:
209     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
210   case Attribute::OptimizeNone:
211     return bitc::ATTR_KIND_OPTIMIZE_NONE;
212   case Attribute::ReadNone:
213     return bitc::ATTR_KIND_READ_NONE;
214   case Attribute::ReadOnly:
215     return bitc::ATTR_KIND_READ_ONLY;
216   case Attribute::Returned:
217     return bitc::ATTR_KIND_RETURNED;
218   case Attribute::ReturnsTwice:
219     return bitc::ATTR_KIND_RETURNS_TWICE;
220   case Attribute::SExt:
221     return bitc::ATTR_KIND_S_EXT;
222   case Attribute::StackAlignment:
223     return bitc::ATTR_KIND_STACK_ALIGNMENT;
224   case Attribute::StackProtect:
225     return bitc::ATTR_KIND_STACK_PROTECT;
226   case Attribute::StackProtectReq:
227     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
228   case Attribute::StackProtectStrong:
229     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
230   case Attribute::StructRet:
231     return bitc::ATTR_KIND_STRUCT_RET;
232   case Attribute::SanitizeAddress:
233     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
234   case Attribute::SanitizeThread:
235     return bitc::ATTR_KIND_SANITIZE_THREAD;
236   case Attribute::SanitizeMemory:
237     return bitc::ATTR_KIND_SANITIZE_MEMORY;
238   case Attribute::UWTable:
239     return bitc::ATTR_KIND_UW_TABLE;
240   case Attribute::ZExt:
241     return bitc::ATTR_KIND_Z_EXT;
242   case Attribute::EndAttrKinds:
243     llvm_unreachable("Can not encode end-attribute kinds marker.");
244   case Attribute::None:
245     llvm_unreachable("Can not encode none-attribute.");
246   }
247
248   llvm_unreachable("Trying to encode unknown attribute");
249 }
250
251 static void WriteAttributeGroupTable(const ValueEnumerator &VE,
252                                      BitstreamWriter &Stream) {
253   const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
254   if (AttrGrps.empty()) return;
255
256   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
257
258   SmallVector<uint64_t, 64> Record;
259   for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
260     AttributeSet AS = AttrGrps[i];
261     for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
262       AttributeSet A = AS.getSlotAttributes(i);
263
264       Record.push_back(VE.getAttributeGroupID(A));
265       Record.push_back(AS.getSlotIndex(i));
266
267       for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
268            I != E; ++I) {
269         Attribute Attr = *I;
270         if (Attr.isEnumAttribute()) {
271           Record.push_back(0);
272           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
273         } else if (Attr.isIntAttribute()) {
274           Record.push_back(1);
275           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
276           Record.push_back(Attr.getValueAsInt());
277         } else {
278           StringRef Kind = Attr.getKindAsString();
279           StringRef Val = Attr.getValueAsString();
280
281           Record.push_back(Val.empty() ? 3 : 4);
282           Record.append(Kind.begin(), Kind.end());
283           Record.push_back(0);
284           if (!Val.empty()) {
285             Record.append(Val.begin(), Val.end());
286             Record.push_back(0);
287           }
288         }
289       }
290
291       Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
292       Record.clear();
293     }
294   }
295
296   Stream.ExitBlock();
297 }
298
299 static void WriteAttributeTable(const ValueEnumerator &VE,
300                                 BitstreamWriter &Stream) {
301   const std::vector<AttributeSet> &Attrs = VE.getAttributes();
302   if (Attrs.empty()) return;
303
304   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
305
306   SmallVector<uint64_t, 64> Record;
307   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
308     const AttributeSet &A = Attrs[i];
309     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
310       Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
311
312     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
313     Record.clear();
314   }
315
316   Stream.ExitBlock();
317 }
318
319 /// WriteTypeTable - Write out the type table for a module.
320 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
321   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
322
323   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
324   SmallVector<uint64_t, 64> TypeVals;
325
326   uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1);
327
328   // Abbrev for TYPE_CODE_POINTER.
329   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
330   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
331   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
332   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
333   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
334
335   // Abbrev for TYPE_CODE_FUNCTION.
336   Abbv = new BitCodeAbbrev();
337   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
338   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
339   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
340   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
341
342   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
343
344   // Abbrev for TYPE_CODE_STRUCT_ANON.
345   Abbv = new BitCodeAbbrev();
346   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
347   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
348   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
349   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
350
351   unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
352
353   // Abbrev for TYPE_CODE_STRUCT_NAME.
354   Abbv = new BitCodeAbbrev();
355   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
356   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
357   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
358   unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
359
360   // Abbrev for TYPE_CODE_STRUCT_NAMED.
361   Abbv = new BitCodeAbbrev();
362   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
363   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
364   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
365   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
366
367   unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
368
369   // Abbrev for TYPE_CODE_ARRAY.
370   Abbv = new BitCodeAbbrev();
371   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
372   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
373   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
374
375   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
376
377   // Emit an entry count so the reader can reserve space.
378   TypeVals.push_back(TypeList.size());
379   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
380   TypeVals.clear();
381
382   // Loop over all of the types, emitting each in turn.
383   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
384     Type *T = TypeList[i];
385     int AbbrevToUse = 0;
386     unsigned Code = 0;
387
388     switch (T->getTypeID()) {
389     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
390     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
391     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
392     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
393     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
394     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
395     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
396     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
397     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
398     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
399     case Type::IntegerTyID:
400       // INTEGER: [width]
401       Code = bitc::TYPE_CODE_INTEGER;
402       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
403       break;
404     case Type::PointerTyID: {
405       PointerType *PTy = cast<PointerType>(T);
406       // POINTER: [pointee type, address space]
407       Code = bitc::TYPE_CODE_POINTER;
408       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
409       unsigned AddressSpace = PTy->getAddressSpace();
410       TypeVals.push_back(AddressSpace);
411       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
412       break;
413     }
414     case Type::FunctionTyID: {
415       FunctionType *FT = cast<FunctionType>(T);
416       // FUNCTION: [isvararg, retty, paramty x N]
417       Code = bitc::TYPE_CODE_FUNCTION;
418       TypeVals.push_back(FT->isVarArg());
419       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
420       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
421         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
422       AbbrevToUse = FunctionAbbrev;
423       break;
424     }
425     case Type::StructTyID: {
426       StructType *ST = cast<StructType>(T);
427       // STRUCT: [ispacked, eltty x N]
428       TypeVals.push_back(ST->isPacked());
429       // Output all of the element types.
430       for (StructType::element_iterator I = ST->element_begin(),
431            E = ST->element_end(); I != E; ++I)
432         TypeVals.push_back(VE.getTypeID(*I));
433
434       if (ST->isLiteral()) {
435         Code = bitc::TYPE_CODE_STRUCT_ANON;
436         AbbrevToUse = StructAnonAbbrev;
437       } else {
438         if (ST->isOpaque()) {
439           Code = bitc::TYPE_CODE_OPAQUE;
440         } else {
441           Code = bitc::TYPE_CODE_STRUCT_NAMED;
442           AbbrevToUse = StructNamedAbbrev;
443         }
444
445         // Emit the name if it is present.
446         if (!ST->getName().empty())
447           WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
448                             StructNameAbbrev, Stream);
449       }
450       break;
451     }
452     case Type::ArrayTyID: {
453       ArrayType *AT = cast<ArrayType>(T);
454       // ARRAY: [numelts, eltty]
455       Code = bitc::TYPE_CODE_ARRAY;
456       TypeVals.push_back(AT->getNumElements());
457       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
458       AbbrevToUse = ArrayAbbrev;
459       break;
460     }
461     case Type::VectorTyID: {
462       VectorType *VT = cast<VectorType>(T);
463       // VECTOR [numelts, eltty]
464       Code = bitc::TYPE_CODE_VECTOR;
465       TypeVals.push_back(VT->getNumElements());
466       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
467       break;
468     }
469     }
470
471     // Emit the finished record.
472     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
473     TypeVals.clear();
474   }
475
476   Stream.ExitBlock();
477 }
478
479 static unsigned getEncodedLinkage(const GlobalValue &GV) {
480   switch (GV.getLinkage()) {
481   case GlobalValue::ExternalLinkage:
482     return 0;
483   case GlobalValue::WeakAnyLinkage:
484     return 16;
485   case GlobalValue::AppendingLinkage:
486     return 2;
487   case GlobalValue::InternalLinkage:
488     return 3;
489   case GlobalValue::LinkOnceAnyLinkage:
490     return 18;
491   case GlobalValue::ExternalWeakLinkage:
492     return 7;
493   case GlobalValue::CommonLinkage:
494     return 8;
495   case GlobalValue::PrivateLinkage:
496     return 9;
497   case GlobalValue::WeakODRLinkage:
498     return 17;
499   case GlobalValue::LinkOnceODRLinkage:
500     return 19;
501   case GlobalValue::AvailableExternallyLinkage:
502     return 12;
503   }
504   llvm_unreachable("Invalid linkage");
505 }
506
507 static unsigned getEncodedVisibility(const GlobalValue &GV) {
508   switch (GV.getVisibility()) {
509   case GlobalValue::DefaultVisibility:   return 0;
510   case GlobalValue::HiddenVisibility:    return 1;
511   case GlobalValue::ProtectedVisibility: return 2;
512   }
513   llvm_unreachable("Invalid visibility");
514 }
515
516 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
517   switch (GV.getDLLStorageClass()) {
518   case GlobalValue::DefaultStorageClass:   return 0;
519   case GlobalValue::DLLImportStorageClass: return 1;
520   case GlobalValue::DLLExportStorageClass: return 2;
521   }
522   llvm_unreachable("Invalid DLL storage class");
523 }
524
525 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
526   switch (GV.getThreadLocalMode()) {
527     case GlobalVariable::NotThreadLocal:         return 0;
528     case GlobalVariable::GeneralDynamicTLSModel: return 1;
529     case GlobalVariable::LocalDynamicTLSModel:   return 2;
530     case GlobalVariable::InitialExecTLSModel:    return 3;
531     case GlobalVariable::LocalExecTLSModel:      return 4;
532   }
533   llvm_unreachable("Invalid TLS model");
534 }
535
536 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
537   switch (C.getSelectionKind()) {
538   case Comdat::Any:
539     return bitc::COMDAT_SELECTION_KIND_ANY;
540   case Comdat::ExactMatch:
541     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
542   case Comdat::Largest:
543     return bitc::COMDAT_SELECTION_KIND_LARGEST;
544   case Comdat::NoDuplicates:
545     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
546   case Comdat::SameSize:
547     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
548   }
549   llvm_unreachable("Invalid selection kind");
550 }
551
552 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) {
553   SmallVector<uint16_t, 64> Vals;
554   for (const Comdat *C : VE.getComdats()) {
555     // COMDAT: [selection_kind, name]
556     Vals.push_back(getEncodedComdatSelectionKind(*C));
557     size_t Size = C->getName().size();
558     assert(isUInt<16>(Size));
559     Vals.push_back(Size);
560     for (char Chr : C->getName())
561       Vals.push_back((unsigned char)Chr);
562     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
563     Vals.clear();
564   }
565 }
566
567 // Emit top-level description of module, including target triple, inline asm,
568 // descriptors for global variables, and function prototype info.
569 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
570                             BitstreamWriter &Stream) {
571   // Emit various pieces of data attached to a module.
572   if (!M->getTargetTriple().empty())
573     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
574                       0/*TODO*/, Stream);
575   const std::string &DL = M->getDataLayoutStr();
576   if (!DL.empty())
577     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream);
578   if (!M->getModuleInlineAsm().empty())
579     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
580                       0/*TODO*/, Stream);
581
582   // Emit information about sections and GC, computing how many there are. Also
583   // compute the maximum alignment value.
584   std::map<std::string, unsigned> SectionMap;
585   std::map<std::string, unsigned> GCMap;
586   unsigned MaxAlignment = 0;
587   unsigned MaxGlobalType = 0;
588   for (const GlobalValue &GV : M->globals()) {
589     MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
590     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType()));
591     if (GV.hasSection()) {
592       // Give section names unique ID's.
593       unsigned &Entry = SectionMap[GV.getSection()];
594       if (!Entry) {
595         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
596                           0/*TODO*/, Stream);
597         Entry = SectionMap.size();
598       }
599     }
600   }
601   for (const Function &F : *M) {
602     MaxAlignment = std::max(MaxAlignment, F.getAlignment());
603     if (F.hasSection()) {
604       // Give section names unique ID's.
605       unsigned &Entry = SectionMap[F.getSection()];
606       if (!Entry) {
607         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
608                           0/*TODO*/, Stream);
609         Entry = SectionMap.size();
610       }
611     }
612     if (F.hasGC()) {
613       // Same for GC names.
614       unsigned &Entry = GCMap[F.getGC()];
615       if (!Entry) {
616         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(),
617                           0/*TODO*/, Stream);
618         Entry = GCMap.size();
619       }
620     }
621   }
622
623   // Emit abbrev for globals, now that we know # sections and max alignment.
624   unsigned SimpleGVarAbbrev = 0;
625   if (!M->global_empty()) {
626     // Add an abbrev for common globals with no visibility or thread localness.
627     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
628     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
629     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
630                               Log2_32_Ceil(MaxGlobalType+1)));
631     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
632     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
633     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5));      // Linkage.
634     if (MaxAlignment == 0)                                      // Alignment.
635       Abbv->Add(BitCodeAbbrevOp(0));
636     else {
637       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
638       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
639                                Log2_32_Ceil(MaxEncAlignment+1)));
640     }
641     if (SectionMap.empty())                                    // Section.
642       Abbv->Add(BitCodeAbbrevOp(0));
643     else
644       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
645                                Log2_32_Ceil(SectionMap.size()+1)));
646     // Don't bother emitting vis + thread local.
647     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
648   }
649
650   // Emit the global variable information.
651   SmallVector<unsigned, 64> Vals;
652   for (const GlobalVariable &GV : M->globals()) {
653     unsigned AbbrevToUse = 0;
654
655     // GLOBALVAR: [type, isconst, initid,
656     //             linkage, alignment, section, visibility, threadlocal,
657     //             unnamed_addr, externally_initialized, dllstorageclass,
658     //             comdat]
659     Vals.push_back(VE.getTypeID(GV.getType()));
660     Vals.push_back(GV.isConstant());
661     Vals.push_back(GV.isDeclaration() ? 0 :
662                    (VE.getValueID(GV.getInitializer()) + 1));
663     Vals.push_back(getEncodedLinkage(GV));
664     Vals.push_back(Log2_32(GV.getAlignment())+1);
665     Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
666     if (GV.isThreadLocal() ||
667         GV.getVisibility() != GlobalValue::DefaultVisibility ||
668         GV.hasUnnamedAddr() || GV.isExternallyInitialized() ||
669         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
670         GV.hasComdat()) {
671       Vals.push_back(getEncodedVisibility(GV));
672       Vals.push_back(getEncodedThreadLocalMode(GV));
673       Vals.push_back(GV.hasUnnamedAddr());
674       Vals.push_back(GV.isExternallyInitialized());
675       Vals.push_back(getEncodedDLLStorageClass(GV));
676       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
677     } else {
678       AbbrevToUse = SimpleGVarAbbrev;
679     }
680
681     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
682     Vals.clear();
683   }
684
685   // Emit the function proto information.
686   for (const Function &F : *M) {
687     // FUNCTION:  [type, callingconv, isproto, linkage, paramattrs, alignment,
688     //             section, visibility, gc, unnamed_addr, prologuedata,
689     //             dllstorageclass, comdat, prefixdata]
690     Vals.push_back(VE.getTypeID(F.getType()));
691     Vals.push_back(F.getCallingConv());
692     Vals.push_back(F.isDeclaration());
693     Vals.push_back(getEncodedLinkage(F));
694     Vals.push_back(VE.getAttributeID(F.getAttributes()));
695     Vals.push_back(Log2_32(F.getAlignment())+1);
696     Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
697     Vals.push_back(getEncodedVisibility(F));
698     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
699     Vals.push_back(F.hasUnnamedAddr());
700     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
701                                        : 0);
702     Vals.push_back(getEncodedDLLStorageClass(F));
703     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
704     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
705                                      : 0);
706
707     unsigned AbbrevToUse = 0;
708     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
709     Vals.clear();
710   }
711
712   // Emit the alias information.
713   for (const GlobalAlias &A : M->aliases()) {
714     // ALIAS: [alias type, aliasee val#, linkage, visibility]
715     Vals.push_back(VE.getTypeID(A.getType()));
716     Vals.push_back(VE.getValueID(A.getAliasee()));
717     Vals.push_back(getEncodedLinkage(A));
718     Vals.push_back(getEncodedVisibility(A));
719     Vals.push_back(getEncodedDLLStorageClass(A));
720     Vals.push_back(getEncodedThreadLocalMode(A));
721     Vals.push_back(A.hasUnnamedAddr());
722     unsigned AbbrevToUse = 0;
723     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
724     Vals.clear();
725   }
726 }
727
728 static uint64_t GetOptimizationFlags(const Value *V) {
729   uint64_t Flags = 0;
730
731   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
732     if (OBO->hasNoSignedWrap())
733       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
734     if (OBO->hasNoUnsignedWrap())
735       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
736   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
737     if (PEO->isExact())
738       Flags |= 1 << bitc::PEO_EXACT;
739   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
740     if (FPMO->hasUnsafeAlgebra())
741       Flags |= FastMathFlags::UnsafeAlgebra;
742     if (FPMO->hasNoNaNs())
743       Flags |= FastMathFlags::NoNaNs;
744     if (FPMO->hasNoInfs())
745       Flags |= FastMathFlags::NoInfs;
746     if (FPMO->hasNoSignedZeros())
747       Flags |= FastMathFlags::NoSignedZeros;
748     if (FPMO->hasAllowReciprocal())
749       Flags |= FastMathFlags::AllowReciprocal;
750   }
751
752   return Flags;
753 }
754
755 static void WriteValueAsMetadata(const ValueAsMetadata *MD,
756                                  const ValueEnumerator &VE,
757                                  BitstreamWriter &Stream,
758                                  SmallVectorImpl<uint64_t> &Record) {
759   // Mimic an MDNode with a value as one operand.
760   Value *V = MD->getValue();
761   Record.push_back(VE.getTypeID(V->getType()));
762   Record.push_back(VE.getValueID(V));
763   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
764   Record.clear();
765 }
766
767 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE,
768                          BitstreamWriter &Stream,
769                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
770   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
771     Metadata *MD = N->getOperand(i);
772     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
773            "Unexpected function-local metadata");
774     Record.push_back(VE.getMetadataOrNullID(MD));
775   }
776   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
777                                     : bitc::METADATA_NODE,
778                     Record, Abbrev);
779   Record.clear();
780 }
781
782 static void WriteMDLocation(const MDLocation *N, const ValueEnumerator &VE,
783                             BitstreamWriter &Stream,
784                             SmallVectorImpl<uint64_t> &Record,
785                             unsigned Abbrev) {
786   Record.push_back(N->isDistinct());
787   Record.push_back(N->getLine());
788   Record.push_back(N->getColumn());
789   Record.push_back(VE.getMetadataID(N->getScope()));
790   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
791
792   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
793   Record.clear();
794 }
795
796 static void WriteGenericDebugNode(const GenericDebugNode *N,
797                                   const ValueEnumerator &VE,
798                                   BitstreamWriter &Stream,
799                                   SmallVectorImpl<uint64_t> &Record,
800                                   unsigned Abbrev) {
801   Record.push_back(N->isDistinct());
802   Record.push_back(N->getTag());
803   Record.push_back(0); // Per-tag version field; unused for now.
804
805   for (auto &I : N->operands())
806     Record.push_back(VE.getMetadataOrNullID(I));
807
808   Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
809   Record.clear();
810 }
811
812 static void WriteModuleMetadata(const Module *M,
813                                 const ValueEnumerator &VE,
814                                 BitstreamWriter &Stream) {
815   const auto &MDs = VE.getMDs();
816   if (MDs.empty() && M->named_metadata_empty())
817     return;
818
819   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
820
821   unsigned MDSAbbrev = 0;
822   if (VE.hasMDString()) {
823     // Abbrev for METADATA_STRING.
824     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
825     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
826     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
827     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
828     MDSAbbrev = Stream.EmitAbbrev(Abbv);
829   }
830
831   // Initialize MDNode abbreviations.
832 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
833 #include "llvm/IR/Metadata.def"
834
835   if (VE.hasMDLocation()) {
836     // Abbrev for METADATA_LOCATION.
837     //
838     // Assume the column is usually under 128, and always output the inlined-at
839     // location (it's never more expensive than building an array size 1).
840     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
841     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
842     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
843     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
844     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
845     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
846     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
847     MDLocationAbbrev = Stream.EmitAbbrev(Abbv);
848   }
849
850   if (VE.hasGenericDebugNode()) {
851     // Abbrev for METADATA_GENERIC_DEBUG.
852     //
853     // Assume the column is usually under 128, and always output the inlined-at
854     // location (it's never more expensive than building an array size 1).
855     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
856     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
857     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
858     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
859     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
860     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
861     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
862     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
863     GenericDebugNodeAbbrev = Stream.EmitAbbrev(Abbv);
864   }
865
866   unsigned NameAbbrev = 0;
867   if (!M->named_metadata_empty()) {
868     // Abbrev for METADATA_NAME.
869     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
870     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
871     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
872     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
873     NameAbbrev = Stream.EmitAbbrev(Abbv);
874   }
875
876   SmallVector<uint64_t, 64> Record;
877   for (const Metadata *MD : MDs) {
878     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
879       switch (N->getMetadataID()) {
880       default:
881         llvm_unreachable("Invalid MDNode subclass");
882 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
883   case Metadata::CLASS##Kind:                                                  \
884     Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev);           \
885     continue;
886 #include "llvm/IR/Metadata.def"
887       }
888     }
889     if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) {
890       WriteValueAsMetadata(MDC, VE, Stream, Record);
891       continue;
892     }
893     const MDString *MDS = cast<MDString>(MD);
894     // Code: [strchar x N]
895     Record.append(MDS->bytes_begin(), MDS->bytes_end());
896
897     // Emit the finished record.
898     Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
899     Record.clear();
900   }
901
902   // Write named metadata.
903   for (const NamedMDNode &NMD : M->named_metadata()) {
904     // Write name.
905     StringRef Str = NMD.getName();
906     Record.append(Str.bytes_begin(), Str.bytes_end());
907     Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev);
908     Record.clear();
909
910     // Write named metadata operands.
911     for (const MDNode *N : NMD.operands())
912       Record.push_back(VE.getMetadataID(N));
913     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
914     Record.clear();
915   }
916
917   Stream.ExitBlock();
918 }
919
920 static void WriteFunctionLocalMetadata(const Function &F,
921                                        const ValueEnumerator &VE,
922                                        BitstreamWriter &Stream) {
923   bool StartedMetadataBlock = false;
924   SmallVector<uint64_t, 64> Record;
925   const SmallVectorImpl<const LocalAsMetadata *> &MDs =
926       VE.getFunctionLocalMDs();
927   for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
928     assert(MDs[i] && "Expected valid function-local metadata");
929     if (!StartedMetadataBlock) {
930       Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
931       StartedMetadataBlock = true;
932     }
933     WriteValueAsMetadata(MDs[i], VE, Stream, Record);
934   }
935
936   if (StartedMetadataBlock)
937     Stream.ExitBlock();
938 }
939
940 static void WriteMetadataAttachment(const Function &F,
941                                     const ValueEnumerator &VE,
942                                     BitstreamWriter &Stream) {
943   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
944
945   SmallVector<uint64_t, 64> Record;
946
947   // Write metadata attachments
948   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
949   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
950
951   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
952     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
953          I != E; ++I) {
954       MDs.clear();
955       I->getAllMetadataOtherThanDebugLoc(MDs);
956
957       // If no metadata, ignore instruction.
958       if (MDs.empty()) continue;
959
960       Record.push_back(VE.getInstructionID(I));
961
962       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
963         Record.push_back(MDs[i].first);
964         Record.push_back(VE.getMetadataID(MDs[i].second));
965       }
966       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
967       Record.clear();
968     }
969
970   Stream.ExitBlock();
971 }
972
973 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
974   SmallVector<uint64_t, 64> Record;
975
976   // Write metadata kinds
977   // METADATA_KIND - [n x [id, name]]
978   SmallVector<StringRef, 8> Names;
979   M->getMDKindNames(Names);
980
981   if (Names.empty()) return;
982
983   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
984
985   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
986     Record.push_back(MDKindID);
987     StringRef KName = Names[MDKindID];
988     Record.append(KName.begin(), KName.end());
989
990     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
991     Record.clear();
992   }
993
994   Stream.ExitBlock();
995 }
996
997 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
998   if ((int64_t)V >= 0)
999     Vals.push_back(V << 1);
1000   else
1001     Vals.push_back((-V << 1) | 1);
1002 }
1003
1004 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
1005                            const ValueEnumerator &VE,
1006                            BitstreamWriter &Stream, bool isGlobal) {
1007   if (FirstVal == LastVal) return;
1008
1009   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
1010
1011   unsigned AggregateAbbrev = 0;
1012   unsigned String8Abbrev = 0;
1013   unsigned CString7Abbrev = 0;
1014   unsigned CString6Abbrev = 0;
1015   // If this is a constant pool for the module, emit module-specific abbrevs.
1016   if (isGlobal) {
1017     // Abbrev for CST_CODE_AGGREGATE.
1018     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1019     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
1020     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1021     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
1022     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
1023
1024     // Abbrev for CST_CODE_STRING.
1025     Abbv = new BitCodeAbbrev();
1026     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
1027     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1028     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1029     String8Abbrev = Stream.EmitAbbrev(Abbv);
1030     // Abbrev for CST_CODE_CSTRING.
1031     Abbv = new BitCodeAbbrev();
1032     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1033     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1034     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1035     CString7Abbrev = Stream.EmitAbbrev(Abbv);
1036     // Abbrev for CST_CODE_CSTRING.
1037     Abbv = new BitCodeAbbrev();
1038     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1039     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1040     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1041     CString6Abbrev = Stream.EmitAbbrev(Abbv);
1042   }
1043
1044   SmallVector<uint64_t, 64> Record;
1045
1046   const ValueEnumerator::ValueList &Vals = VE.getValues();
1047   Type *LastTy = nullptr;
1048   for (unsigned i = FirstVal; i != LastVal; ++i) {
1049     const Value *V = Vals[i].first;
1050     // If we need to switch types, do so now.
1051     if (V->getType() != LastTy) {
1052       LastTy = V->getType();
1053       Record.push_back(VE.getTypeID(LastTy));
1054       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
1055                         CONSTANTS_SETTYPE_ABBREV);
1056       Record.clear();
1057     }
1058
1059     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1060       Record.push_back(unsigned(IA->hasSideEffects()) |
1061                        unsigned(IA->isAlignStack()) << 1 |
1062                        unsigned(IA->getDialect()&1) << 2);
1063
1064       // Add the asm string.
1065       const std::string &AsmStr = IA->getAsmString();
1066       Record.push_back(AsmStr.size());
1067       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
1068         Record.push_back(AsmStr[i]);
1069
1070       // Add the constraint string.
1071       const std::string &ConstraintStr = IA->getConstraintString();
1072       Record.push_back(ConstraintStr.size());
1073       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
1074         Record.push_back(ConstraintStr[i]);
1075       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
1076       Record.clear();
1077       continue;
1078     }
1079     const Constant *C = cast<Constant>(V);
1080     unsigned Code = -1U;
1081     unsigned AbbrevToUse = 0;
1082     if (C->isNullValue()) {
1083       Code = bitc::CST_CODE_NULL;
1084     } else if (isa<UndefValue>(C)) {
1085       Code = bitc::CST_CODE_UNDEF;
1086     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
1087       if (IV->getBitWidth() <= 64) {
1088         uint64_t V = IV->getSExtValue();
1089         emitSignedInt64(Record, V);
1090         Code = bitc::CST_CODE_INTEGER;
1091         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
1092       } else {                             // Wide integers, > 64 bits in size.
1093         // We have an arbitrary precision integer value to write whose
1094         // bit width is > 64. However, in canonical unsigned integer
1095         // format it is likely that the high bits are going to be zero.
1096         // So, we only write the number of active words.
1097         unsigned NWords = IV->getValue().getActiveWords();
1098         const uint64_t *RawWords = IV->getValue().getRawData();
1099         for (unsigned i = 0; i != NWords; ++i) {
1100           emitSignedInt64(Record, RawWords[i]);
1101         }
1102         Code = bitc::CST_CODE_WIDE_INTEGER;
1103       }
1104     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1105       Code = bitc::CST_CODE_FLOAT;
1106       Type *Ty = CFP->getType();
1107       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
1108         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
1109       } else if (Ty->isX86_FP80Ty()) {
1110         // api needed to prevent premature destruction
1111         // bits are not in the same order as a normal i80 APInt, compensate.
1112         APInt api = CFP->getValueAPF().bitcastToAPInt();
1113         const uint64_t *p = api.getRawData();
1114         Record.push_back((p[1] << 48) | (p[0] >> 16));
1115         Record.push_back(p[0] & 0xffffLL);
1116       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
1117         APInt api = CFP->getValueAPF().bitcastToAPInt();
1118         const uint64_t *p = api.getRawData();
1119         Record.push_back(p[0]);
1120         Record.push_back(p[1]);
1121       } else {
1122         assert (0 && "Unknown FP type!");
1123       }
1124     } else if (isa<ConstantDataSequential>(C) &&
1125                cast<ConstantDataSequential>(C)->isString()) {
1126       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
1127       // Emit constant strings specially.
1128       unsigned NumElts = Str->getNumElements();
1129       // If this is a null-terminated string, use the denser CSTRING encoding.
1130       if (Str->isCString()) {
1131         Code = bitc::CST_CODE_CSTRING;
1132         --NumElts;  // Don't encode the null, which isn't allowed by char6.
1133       } else {
1134         Code = bitc::CST_CODE_STRING;
1135         AbbrevToUse = String8Abbrev;
1136       }
1137       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
1138       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
1139       for (unsigned i = 0; i != NumElts; ++i) {
1140         unsigned char V = Str->getElementAsInteger(i);
1141         Record.push_back(V);
1142         isCStr7 &= (V & 128) == 0;
1143         if (isCStrChar6)
1144           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
1145       }
1146
1147       if (isCStrChar6)
1148         AbbrevToUse = CString6Abbrev;
1149       else if (isCStr7)
1150         AbbrevToUse = CString7Abbrev;
1151     } else if (const ConstantDataSequential *CDS =
1152                   dyn_cast<ConstantDataSequential>(C)) {
1153       Code = bitc::CST_CODE_DATA;
1154       Type *EltTy = CDS->getType()->getElementType();
1155       if (isa<IntegerType>(EltTy)) {
1156         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
1157           Record.push_back(CDS->getElementAsInteger(i));
1158       } else if (EltTy->isFloatTy()) {
1159         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1160           union { float F; uint32_t I; };
1161           F = CDS->getElementAsFloat(i);
1162           Record.push_back(I);
1163         }
1164       } else {
1165         assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
1166         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1167           union { double F; uint64_t I; };
1168           F = CDS->getElementAsDouble(i);
1169           Record.push_back(I);
1170         }
1171       }
1172     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
1173                isa<ConstantVector>(C)) {
1174       Code = bitc::CST_CODE_AGGREGATE;
1175       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
1176         Record.push_back(VE.getValueID(C->getOperand(i)));
1177       AbbrevToUse = AggregateAbbrev;
1178     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1179       switch (CE->getOpcode()) {
1180       default:
1181         if (Instruction::isCast(CE->getOpcode())) {
1182           Code = bitc::CST_CODE_CE_CAST;
1183           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
1184           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1185           Record.push_back(VE.getValueID(C->getOperand(0)));
1186           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
1187         } else {
1188           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
1189           Code = bitc::CST_CODE_CE_BINOP;
1190           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
1191           Record.push_back(VE.getValueID(C->getOperand(0)));
1192           Record.push_back(VE.getValueID(C->getOperand(1)));
1193           uint64_t Flags = GetOptimizationFlags(CE);
1194           if (Flags != 0)
1195             Record.push_back(Flags);
1196         }
1197         break;
1198       case Instruction::GetElementPtr:
1199         Code = bitc::CST_CODE_CE_GEP;
1200         if (cast<GEPOperator>(C)->isInBounds())
1201           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
1202         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
1203           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
1204           Record.push_back(VE.getValueID(C->getOperand(i)));
1205         }
1206         break;
1207       case Instruction::Select:
1208         Code = bitc::CST_CODE_CE_SELECT;
1209         Record.push_back(VE.getValueID(C->getOperand(0)));
1210         Record.push_back(VE.getValueID(C->getOperand(1)));
1211         Record.push_back(VE.getValueID(C->getOperand(2)));
1212         break;
1213       case Instruction::ExtractElement:
1214         Code = bitc::CST_CODE_CE_EXTRACTELT;
1215         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1216         Record.push_back(VE.getValueID(C->getOperand(0)));
1217         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
1218         Record.push_back(VE.getValueID(C->getOperand(1)));
1219         break;
1220       case Instruction::InsertElement:
1221         Code = bitc::CST_CODE_CE_INSERTELT;
1222         Record.push_back(VE.getValueID(C->getOperand(0)));
1223         Record.push_back(VE.getValueID(C->getOperand(1)));
1224         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
1225         Record.push_back(VE.getValueID(C->getOperand(2)));
1226         break;
1227       case Instruction::ShuffleVector:
1228         // If the return type and argument types are the same, this is a
1229         // standard shufflevector instruction.  If the types are different,
1230         // then the shuffle is widening or truncating the input vectors, and
1231         // the argument type must also be encoded.
1232         if (C->getType() == C->getOperand(0)->getType()) {
1233           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
1234         } else {
1235           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
1236           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1237         }
1238         Record.push_back(VE.getValueID(C->getOperand(0)));
1239         Record.push_back(VE.getValueID(C->getOperand(1)));
1240         Record.push_back(VE.getValueID(C->getOperand(2)));
1241         break;
1242       case Instruction::ICmp:
1243       case Instruction::FCmp:
1244         Code = bitc::CST_CODE_CE_CMP;
1245         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1246         Record.push_back(VE.getValueID(C->getOperand(0)));
1247         Record.push_back(VE.getValueID(C->getOperand(1)));
1248         Record.push_back(CE->getPredicate());
1249         break;
1250       }
1251     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
1252       Code = bitc::CST_CODE_BLOCKADDRESS;
1253       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
1254       Record.push_back(VE.getValueID(BA->getFunction()));
1255       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
1256     } else {
1257 #ifndef NDEBUG
1258       C->dump();
1259 #endif
1260       llvm_unreachable("Unknown constant!");
1261     }
1262     Stream.EmitRecord(Code, Record, AbbrevToUse);
1263     Record.clear();
1264   }
1265
1266   Stream.ExitBlock();
1267 }
1268
1269 static void WriteModuleConstants(const ValueEnumerator &VE,
1270                                  BitstreamWriter &Stream) {
1271   const ValueEnumerator::ValueList &Vals = VE.getValues();
1272
1273   // Find the first constant to emit, which is the first non-globalvalue value.
1274   // We know globalvalues have been emitted by WriteModuleInfo.
1275   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1276     if (!isa<GlobalValue>(Vals[i].first)) {
1277       WriteConstants(i, Vals.size(), VE, Stream, true);
1278       return;
1279     }
1280   }
1281 }
1282
1283 /// PushValueAndType - The file has to encode both the value and type id for
1284 /// many values, because we need to know what type to create for forward
1285 /// references.  However, most operands are not forward references, so this type
1286 /// field is not needed.
1287 ///
1288 /// This function adds V's value ID to Vals.  If the value ID is higher than the
1289 /// instruction ID, then it is a forward reference, and it also includes the
1290 /// type ID.  The value ID that is written is encoded relative to the InstID.
1291 static bool PushValueAndType(const Value *V, unsigned InstID,
1292                              SmallVectorImpl<unsigned> &Vals,
1293                              ValueEnumerator &VE) {
1294   unsigned ValID = VE.getValueID(V);
1295   // Make encoding relative to the InstID.
1296   Vals.push_back(InstID - ValID);
1297   if (ValID >= InstID) {
1298     Vals.push_back(VE.getTypeID(V->getType()));
1299     return true;
1300   }
1301   return false;
1302 }
1303
1304 /// pushValue - Like PushValueAndType, but where the type of the value is
1305 /// omitted (perhaps it was already encoded in an earlier operand).
1306 static void pushValue(const Value *V, unsigned InstID,
1307                       SmallVectorImpl<unsigned> &Vals,
1308                       ValueEnumerator &VE) {
1309   unsigned ValID = VE.getValueID(V);
1310   Vals.push_back(InstID - ValID);
1311 }
1312
1313 static void pushValueSigned(const Value *V, unsigned InstID,
1314                             SmallVectorImpl<uint64_t> &Vals,
1315                             ValueEnumerator &VE) {
1316   unsigned ValID = VE.getValueID(V);
1317   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
1318   emitSignedInt64(Vals, diff);
1319 }
1320
1321 /// WriteInstruction - Emit an instruction to the specified stream.
1322 static void WriteInstruction(const Instruction &I, unsigned InstID,
1323                              ValueEnumerator &VE, BitstreamWriter &Stream,
1324                              SmallVectorImpl<unsigned> &Vals) {
1325   unsigned Code = 0;
1326   unsigned AbbrevToUse = 0;
1327   VE.setInstructionID(&I);
1328   switch (I.getOpcode()) {
1329   default:
1330     if (Instruction::isCast(I.getOpcode())) {
1331       Code = bitc::FUNC_CODE_INST_CAST;
1332       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1333         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
1334       Vals.push_back(VE.getTypeID(I.getType()));
1335       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
1336     } else {
1337       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
1338       Code = bitc::FUNC_CODE_INST_BINOP;
1339       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1340         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
1341       pushValue(I.getOperand(1), InstID, Vals, VE);
1342       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
1343       uint64_t Flags = GetOptimizationFlags(&I);
1344       if (Flags != 0) {
1345         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
1346           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
1347         Vals.push_back(Flags);
1348       }
1349     }
1350     break;
1351
1352   case Instruction::GetElementPtr:
1353     Code = bitc::FUNC_CODE_INST_GEP;
1354     if (cast<GEPOperator>(&I)->isInBounds())
1355       Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
1356     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1357       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1358     break;
1359   case Instruction::ExtractValue: {
1360     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
1361     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1362     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
1363     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1364       Vals.push_back(*i);
1365     break;
1366   }
1367   case Instruction::InsertValue: {
1368     Code = bitc::FUNC_CODE_INST_INSERTVAL;
1369     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1370     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1371     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1372     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1373       Vals.push_back(*i);
1374     break;
1375   }
1376   case Instruction::Select:
1377     Code = bitc::FUNC_CODE_INST_VSELECT;
1378     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1379     pushValue(I.getOperand(2), InstID, Vals, VE);
1380     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1381     break;
1382   case Instruction::ExtractElement:
1383     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1384     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1385     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1386     break;
1387   case Instruction::InsertElement:
1388     Code = bitc::FUNC_CODE_INST_INSERTELT;
1389     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1390     pushValue(I.getOperand(1), InstID, Vals, VE);
1391     PushValueAndType(I.getOperand(2), InstID, Vals, VE);
1392     break;
1393   case Instruction::ShuffleVector:
1394     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1395     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1396     pushValue(I.getOperand(1), InstID, Vals, VE);
1397     pushValue(I.getOperand(2), InstID, Vals, VE);
1398     break;
1399   case Instruction::ICmp:
1400   case Instruction::FCmp:
1401     // compare returning Int1Ty or vector of Int1Ty
1402     Code = bitc::FUNC_CODE_INST_CMP2;
1403     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1404     pushValue(I.getOperand(1), InstID, Vals, VE);
1405     Vals.push_back(cast<CmpInst>(I).getPredicate());
1406     break;
1407
1408   case Instruction::Ret:
1409     {
1410       Code = bitc::FUNC_CODE_INST_RET;
1411       unsigned NumOperands = I.getNumOperands();
1412       if (NumOperands == 0)
1413         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1414       else if (NumOperands == 1) {
1415         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1416           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1417       } else {
1418         for (unsigned i = 0, e = NumOperands; i != e; ++i)
1419           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1420       }
1421     }
1422     break;
1423   case Instruction::Br:
1424     {
1425       Code = bitc::FUNC_CODE_INST_BR;
1426       const BranchInst &II = cast<BranchInst>(I);
1427       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1428       if (II.isConditional()) {
1429         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1430         pushValue(II.getCondition(), InstID, Vals, VE);
1431       }
1432     }
1433     break;
1434   case Instruction::Switch:
1435     {
1436       Code = bitc::FUNC_CODE_INST_SWITCH;
1437       const SwitchInst &SI = cast<SwitchInst>(I);
1438       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
1439       pushValue(SI.getCondition(), InstID, Vals, VE);
1440       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
1441       for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
1442            i != e; ++i) {
1443         Vals.push_back(VE.getValueID(i.getCaseValue()));
1444         Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
1445       }
1446     }
1447     break;
1448   case Instruction::IndirectBr:
1449     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1450     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1451     // Encode the address operand as relative, but not the basic blocks.
1452     pushValue(I.getOperand(0), InstID, Vals, VE);
1453     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
1454       Vals.push_back(VE.getValueID(I.getOperand(i)));
1455     break;
1456
1457   case Instruction::Invoke: {
1458     const InvokeInst *II = cast<InvokeInst>(&I);
1459     const Value *Callee(II->getCalledValue());
1460     PointerType *PTy = cast<PointerType>(Callee->getType());
1461     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1462     Code = bitc::FUNC_CODE_INST_INVOKE;
1463
1464     Vals.push_back(VE.getAttributeID(II->getAttributes()));
1465     Vals.push_back(II->getCallingConv());
1466     Vals.push_back(VE.getValueID(II->getNormalDest()));
1467     Vals.push_back(VE.getValueID(II->getUnwindDest()));
1468     PushValueAndType(Callee, InstID, Vals, VE);
1469
1470     // Emit value #'s for the fixed parameters.
1471     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1472       pushValue(I.getOperand(i), InstID, Vals, VE);  // fixed param.
1473
1474     // Emit type/value pairs for varargs params.
1475     if (FTy->isVarArg()) {
1476       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1477            i != e; ++i)
1478         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1479     }
1480     break;
1481   }
1482   case Instruction::Resume:
1483     Code = bitc::FUNC_CODE_INST_RESUME;
1484     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1485     break;
1486   case Instruction::Unreachable:
1487     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1488     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1489     break;
1490
1491   case Instruction::PHI: {
1492     const PHINode &PN = cast<PHINode>(I);
1493     Code = bitc::FUNC_CODE_INST_PHI;
1494     // With the newer instruction encoding, forward references could give
1495     // negative valued IDs.  This is most common for PHIs, so we use
1496     // signed VBRs.
1497     SmallVector<uint64_t, 128> Vals64;
1498     Vals64.push_back(VE.getTypeID(PN.getType()));
1499     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1500       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE);
1501       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
1502     }
1503     // Emit a Vals64 vector and exit.
1504     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
1505     Vals64.clear();
1506     return;
1507   }
1508
1509   case Instruction::LandingPad: {
1510     const LandingPadInst &LP = cast<LandingPadInst>(I);
1511     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
1512     Vals.push_back(VE.getTypeID(LP.getType()));
1513     PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
1514     Vals.push_back(LP.isCleanup());
1515     Vals.push_back(LP.getNumClauses());
1516     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
1517       if (LP.isCatch(I))
1518         Vals.push_back(LandingPadInst::Catch);
1519       else
1520         Vals.push_back(LandingPadInst::Filter);
1521       PushValueAndType(LP.getClause(I), InstID, Vals, VE);
1522     }
1523     break;
1524   }
1525
1526   case Instruction::Alloca: {
1527     Code = bitc::FUNC_CODE_INST_ALLOCA;
1528     Vals.push_back(VE.getTypeID(I.getType()));
1529     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1530     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1531     const AllocaInst &AI = cast<AllocaInst>(I);
1532     unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
1533     assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
1534            "not enough bits for maximum alignment");
1535     assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
1536     AlignRecord |= AI.isUsedWithInAlloca() << 5;
1537     Vals.push_back(AlignRecord);
1538     break;
1539   }
1540
1541   case Instruction::Load:
1542     if (cast<LoadInst>(I).isAtomic()) {
1543       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
1544       PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1545     } else {
1546       Code = bitc::FUNC_CODE_INST_LOAD;
1547       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1548         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1549     }
1550     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1551     Vals.push_back(cast<LoadInst>(I).isVolatile());
1552     if (cast<LoadInst>(I).isAtomic()) {
1553       Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
1554       Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
1555     }
1556     break;
1557   case Instruction::Store:
1558     if (cast<StoreInst>(I).isAtomic())
1559       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
1560     else
1561       Code = bitc::FUNC_CODE_INST_STORE;
1562     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1563     pushValue(I.getOperand(0), InstID, Vals, VE);         // val.
1564     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1565     Vals.push_back(cast<StoreInst>(I).isVolatile());
1566     if (cast<StoreInst>(I).isAtomic()) {
1567       Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
1568       Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
1569     }
1570     break;
1571   case Instruction::AtomicCmpXchg:
1572     Code = bitc::FUNC_CODE_INST_CMPXCHG;
1573     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1574     pushValue(I.getOperand(1), InstID, Vals, VE);         // cmp.
1575     pushValue(I.getOperand(2), InstID, Vals, VE);         // newval.
1576     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
1577     Vals.push_back(GetEncodedOrdering(
1578                      cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
1579     Vals.push_back(GetEncodedSynchScope(
1580                      cast<AtomicCmpXchgInst>(I).getSynchScope()));
1581     Vals.push_back(GetEncodedOrdering(
1582                      cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
1583     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
1584     break;
1585   case Instruction::AtomicRMW:
1586     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
1587     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1588     pushValue(I.getOperand(1), InstID, Vals, VE);         // val.
1589     Vals.push_back(GetEncodedRMWOperation(
1590                      cast<AtomicRMWInst>(I).getOperation()));
1591     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
1592     Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
1593     Vals.push_back(GetEncodedSynchScope(
1594                      cast<AtomicRMWInst>(I).getSynchScope()));
1595     break;
1596   case Instruction::Fence:
1597     Code = bitc::FUNC_CODE_INST_FENCE;
1598     Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
1599     Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
1600     break;
1601   case Instruction::Call: {
1602     const CallInst &CI = cast<CallInst>(I);
1603     PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
1604     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1605
1606     Code = bitc::FUNC_CODE_INST_CALL;
1607
1608     Vals.push_back(VE.getAttributeID(CI.getAttributes()));
1609     Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) |
1610                    unsigned(CI.isMustTailCall()) << 14);
1611     PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
1612
1613     // Emit value #'s for the fixed parameters.
1614     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
1615       // Check for labels (can happen with asm labels).
1616       if (FTy->getParamType(i)->isLabelTy())
1617         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
1618       else
1619         pushValue(CI.getArgOperand(i), InstID, Vals, VE);  // fixed param.
1620     }
1621
1622     // Emit type/value pairs for varargs params.
1623     if (FTy->isVarArg()) {
1624       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
1625            i != e; ++i)
1626         PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
1627     }
1628     break;
1629   }
1630   case Instruction::VAArg:
1631     Code = bitc::FUNC_CODE_INST_VAARG;
1632     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1633     pushValue(I.getOperand(0), InstID, Vals, VE); // valist.
1634     Vals.push_back(VE.getTypeID(I.getType())); // restype.
1635     break;
1636   }
1637
1638   Stream.EmitRecord(Code, Vals, AbbrevToUse);
1639   Vals.clear();
1640 }
1641
1642 // Emit names for globals/functions etc.
1643 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1644                                   const ValueEnumerator &VE,
1645                                   BitstreamWriter &Stream) {
1646   if (VST.empty()) return;
1647   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1648
1649   // FIXME: Set up the abbrev, we know how many values there are!
1650   // FIXME: We know if the type names can use 7-bit ascii.
1651   SmallVector<unsigned, 64> NameVals;
1652
1653   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1654        SI != SE; ++SI) {
1655
1656     const ValueName &Name = *SI;
1657
1658     // Figure out the encoding to use for the name.
1659     bool is7Bit = true;
1660     bool isChar6 = true;
1661     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1662          C != E; ++C) {
1663       if (isChar6)
1664         isChar6 = BitCodeAbbrevOp::isChar6(*C);
1665       if ((unsigned char)*C & 128) {
1666         is7Bit = false;
1667         break;  // don't bother scanning the rest.
1668       }
1669     }
1670
1671     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1672
1673     // VST_ENTRY:   [valueid, namechar x N]
1674     // VST_BBENTRY: [bbid, namechar x N]
1675     unsigned Code;
1676     if (isa<BasicBlock>(SI->getValue())) {
1677       Code = bitc::VST_CODE_BBENTRY;
1678       if (isChar6)
1679         AbbrevToUse = VST_BBENTRY_6_ABBREV;
1680     } else {
1681       Code = bitc::VST_CODE_ENTRY;
1682       if (isChar6)
1683         AbbrevToUse = VST_ENTRY_6_ABBREV;
1684       else if (is7Bit)
1685         AbbrevToUse = VST_ENTRY_7_ABBREV;
1686     }
1687
1688     NameVals.push_back(VE.getValueID(SI->getValue()));
1689     for (const char *P = Name.getKeyData(),
1690          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1691       NameVals.push_back((unsigned char)*P);
1692
1693     // Emit the finished record.
1694     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1695     NameVals.clear();
1696   }
1697   Stream.ExitBlock();
1698 }
1699
1700 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order,
1701                          BitstreamWriter &Stream) {
1702   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
1703   unsigned Code;
1704   if (isa<BasicBlock>(Order.V))
1705     Code = bitc::USELIST_CODE_BB;
1706   else
1707     Code = bitc::USELIST_CODE_DEFAULT;
1708
1709   SmallVector<uint64_t, 64> Record;
1710   for (unsigned I : Order.Shuffle)
1711     Record.push_back(I);
1712   Record.push_back(VE.getValueID(Order.V));
1713   Stream.EmitRecord(Code, Record);
1714 }
1715
1716 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE,
1717                               BitstreamWriter &Stream) {
1718   auto hasMore = [&]() {
1719     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
1720   };
1721   if (!hasMore())
1722     // Nothing to do.
1723     return;
1724
1725   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
1726   while (hasMore()) {
1727     WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream);
1728     VE.UseListOrders.pop_back();
1729   }
1730   Stream.ExitBlock();
1731 }
1732
1733 /// WriteFunction - Emit a function body to the module stream.
1734 static void WriteFunction(const Function &F, ValueEnumerator &VE,
1735                           BitstreamWriter &Stream) {
1736   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1737   VE.incorporateFunction(F);
1738
1739   SmallVector<unsigned, 64> Vals;
1740
1741   // Emit the number of basic blocks, so the reader can create them ahead of
1742   // time.
1743   Vals.push_back(VE.getBasicBlocks().size());
1744   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1745   Vals.clear();
1746
1747   // If there are function-local constants, emit them now.
1748   unsigned CstStart, CstEnd;
1749   VE.getFunctionConstantRange(CstStart, CstEnd);
1750   WriteConstants(CstStart, CstEnd, VE, Stream, false);
1751
1752   // If there is function-local metadata, emit it now.
1753   WriteFunctionLocalMetadata(F, VE, Stream);
1754
1755   // Keep a running idea of what the instruction ID is.
1756   unsigned InstID = CstEnd;
1757
1758   bool NeedsMetadataAttachment = false;
1759
1760   DebugLoc LastDL;
1761
1762   // Finally, emit all the instructions, in order.
1763   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1764     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1765          I != E; ++I) {
1766       WriteInstruction(*I, InstID, VE, Stream, Vals);
1767
1768       if (!I->getType()->isVoidTy())
1769         ++InstID;
1770
1771       // If the instruction has metadata, write a metadata attachment later.
1772       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
1773
1774       // If the instruction has a debug location, emit it.
1775       DebugLoc DL = I->getDebugLoc();
1776       if (DL.isUnknown()) {
1777         // nothing todo.
1778       } else if (DL == LastDL) {
1779         // Just repeat the same debug loc as last time.
1780         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
1781       } else {
1782         MDNode *Scope, *IA;
1783         DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
1784         assert(Scope && "Expected valid scope");
1785
1786         Vals.push_back(DL.getLine());
1787         Vals.push_back(DL.getCol());
1788         Vals.push_back(VE.getMetadataOrNullID(Scope));
1789         Vals.push_back(VE.getMetadataOrNullID(IA));
1790         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
1791         Vals.clear();
1792
1793         LastDL = DL;
1794       }
1795     }
1796
1797   // Emit names for all the instructions etc.
1798   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1799
1800   if (NeedsMetadataAttachment)
1801     WriteMetadataAttachment(F, VE, Stream);
1802   if (shouldPreserveBitcodeUseListOrder())
1803     WriteUseListBlock(&F, VE, Stream);
1804   VE.purgeFunction();
1805   Stream.ExitBlock();
1806 }
1807
1808 // Emit blockinfo, which defines the standard abbreviations etc.
1809 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1810   // We only want to emit block info records for blocks that have multiple
1811   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
1812   // Other blocks can define their abbrevs inline.
1813   Stream.EnterBlockInfoBlock(2);
1814
1815   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1816     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1817     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1818     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1819     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1820     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1821     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1822                                    Abbv) != VST_ENTRY_8_ABBREV)
1823       llvm_unreachable("Unexpected abbrev ordering!");
1824   }
1825
1826   { // 7-bit fixed width VST_ENTRY strings.
1827     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1828     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1829     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1830     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1831     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1832     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1833                                    Abbv) != VST_ENTRY_7_ABBREV)
1834       llvm_unreachable("Unexpected abbrev ordering!");
1835   }
1836   { // 6-bit char6 VST_ENTRY strings.
1837     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1838     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1839     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1840     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1841     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1842     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1843                                    Abbv) != VST_ENTRY_6_ABBREV)
1844       llvm_unreachable("Unexpected abbrev ordering!");
1845   }
1846   { // 6-bit char6 VST_BBENTRY strings.
1847     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1848     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1849     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1850     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1851     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1852     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1853                                    Abbv) != VST_BBENTRY_6_ABBREV)
1854       llvm_unreachable("Unexpected abbrev ordering!");
1855   }
1856
1857
1858
1859   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1860     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1861     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1862     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1863                               Log2_32_Ceil(VE.getTypes().size()+1)));
1864     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1865                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1866       llvm_unreachable("Unexpected abbrev ordering!");
1867   }
1868
1869   { // INTEGER abbrev for CONSTANTS_BLOCK.
1870     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1871     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1872     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1873     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1874                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1875       llvm_unreachable("Unexpected abbrev ordering!");
1876   }
1877
1878   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1879     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1880     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1881     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1882     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1883                               Log2_32_Ceil(VE.getTypes().size()+1)));
1884     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1885
1886     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1887                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1888       llvm_unreachable("Unexpected abbrev ordering!");
1889   }
1890   { // NULL abbrev for CONSTANTS_BLOCK.
1891     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1892     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1893     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1894                                    Abbv) != CONSTANTS_NULL_Abbrev)
1895       llvm_unreachable("Unexpected abbrev ordering!");
1896   }
1897
1898   // FIXME: This should only use space for first class types!
1899
1900   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1901     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1902     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1903     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1904     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1905     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1906     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1907                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1908       llvm_unreachable("Unexpected abbrev ordering!");
1909   }
1910   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1911     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1912     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1913     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1914     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1915     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1916     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1917                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1918       llvm_unreachable("Unexpected abbrev ordering!");
1919   }
1920   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1921     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1922     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1923     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1924     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1925     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1926     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1927     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1928                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1929       llvm_unreachable("Unexpected abbrev ordering!");
1930   }
1931   { // INST_CAST abbrev for FUNCTION_BLOCK.
1932     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1933     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1934     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1935     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1936                               Log2_32_Ceil(VE.getTypes().size()+1)));
1937     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1938     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1939                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1940       llvm_unreachable("Unexpected abbrev ordering!");
1941   }
1942
1943   { // INST_RET abbrev for FUNCTION_BLOCK.
1944     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1945     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1946     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1947                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1948       llvm_unreachable("Unexpected abbrev ordering!");
1949   }
1950   { // INST_RET abbrev for FUNCTION_BLOCK.
1951     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1952     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1953     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1954     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1955                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1956       llvm_unreachable("Unexpected abbrev ordering!");
1957   }
1958   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1959     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1960     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1961     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1962                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1963       llvm_unreachable("Unexpected abbrev ordering!");
1964   }
1965
1966   Stream.ExitBlock();
1967 }
1968
1969 /// WriteModule - Emit the specified module to the bitstream.
1970 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1971   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1972
1973   SmallVector<unsigned, 1> Vals;
1974   unsigned CurVersion = 1;
1975   Vals.push_back(CurVersion);
1976   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1977
1978   // Analyze the module, enumerating globals, functions, etc.
1979   ValueEnumerator VE(*M);
1980
1981   // Emit blockinfo, which defines the standard abbreviations etc.
1982   WriteBlockInfo(VE, Stream);
1983
1984   // Emit information about attribute groups.
1985   WriteAttributeGroupTable(VE, Stream);
1986
1987   // Emit information about parameter attributes.
1988   WriteAttributeTable(VE, Stream);
1989
1990   // Emit information describing all of the types in the module.
1991   WriteTypeTable(VE, Stream);
1992
1993   writeComdats(VE, Stream);
1994
1995   // Emit top-level description of module, including target triple, inline asm,
1996   // descriptors for global variables, and function prototype info.
1997   WriteModuleInfo(M, VE, Stream);
1998
1999   // Emit constants.
2000   WriteModuleConstants(VE, Stream);
2001
2002   // Emit metadata.
2003   WriteModuleMetadata(M, VE, Stream);
2004
2005   // Emit metadata.
2006   WriteModuleMetadataStore(M, Stream);
2007
2008   // Emit names for globals/functions etc.
2009   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
2010
2011   // Emit module-level use-lists.
2012   if (shouldPreserveBitcodeUseListOrder())
2013     WriteUseListBlock(nullptr, VE, Stream);
2014
2015   // Emit function bodies.
2016   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
2017     if (!F->isDeclaration())
2018       WriteFunction(*F, VE, Stream);
2019
2020   Stream.ExitBlock();
2021 }
2022
2023 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
2024 /// header and trailer to make it compatible with the system archiver.  To do
2025 /// this we emit the following header, and then emit a trailer that pads the
2026 /// file out to be a multiple of 16 bytes.
2027 ///
2028 /// struct bc_header {
2029 ///   uint32_t Magic;         // 0x0B17C0DE
2030 ///   uint32_t Version;       // Version, currently always 0.
2031 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
2032 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
2033 ///   uint32_t CPUType;       // CPU specifier.
2034 ///   ... potentially more later ...
2035 /// };
2036 enum {
2037   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
2038   DarwinBCHeaderSize = 5*4
2039 };
2040
2041 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
2042                                uint32_t &Position) {
2043   Buffer[Position + 0] = (unsigned char) (Value >>  0);
2044   Buffer[Position + 1] = (unsigned char) (Value >>  8);
2045   Buffer[Position + 2] = (unsigned char) (Value >> 16);
2046   Buffer[Position + 3] = (unsigned char) (Value >> 24);
2047   Position += 4;
2048 }
2049
2050 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
2051                                          const Triple &TT) {
2052   unsigned CPUType = ~0U;
2053
2054   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
2055   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
2056   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
2057   // specific constants here because they are implicitly part of the Darwin ABI.
2058   enum {
2059     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
2060     DARWIN_CPU_TYPE_X86        = 7,
2061     DARWIN_CPU_TYPE_ARM        = 12,
2062     DARWIN_CPU_TYPE_POWERPC    = 18
2063   };
2064
2065   Triple::ArchType Arch = TT.getArch();
2066   if (Arch == Triple::x86_64)
2067     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
2068   else if (Arch == Triple::x86)
2069     CPUType = DARWIN_CPU_TYPE_X86;
2070   else if (Arch == Triple::ppc)
2071     CPUType = DARWIN_CPU_TYPE_POWERPC;
2072   else if (Arch == Triple::ppc64)
2073     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
2074   else if (Arch == Triple::arm || Arch == Triple::thumb)
2075     CPUType = DARWIN_CPU_TYPE_ARM;
2076
2077   // Traditional Bitcode starts after header.
2078   assert(Buffer.size() >= DarwinBCHeaderSize &&
2079          "Expected header size to be reserved");
2080   unsigned BCOffset = DarwinBCHeaderSize;
2081   unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
2082
2083   // Write the magic and version.
2084   unsigned Position = 0;
2085   WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
2086   WriteInt32ToBuffer(0          , Buffer, Position); // Version.
2087   WriteInt32ToBuffer(BCOffset   , Buffer, Position);
2088   WriteInt32ToBuffer(BCSize     , Buffer, Position);
2089   WriteInt32ToBuffer(CPUType    , Buffer, Position);
2090
2091   // If the file is not a multiple of 16 bytes, insert dummy padding.
2092   while (Buffer.size() & 15)
2093     Buffer.push_back(0);
2094 }
2095
2096 /// WriteBitcodeToFile - Write the specified module to the specified output
2097 /// stream.
2098 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
2099   SmallVector<char, 0> Buffer;
2100   Buffer.reserve(256*1024);
2101
2102   // If this is darwin or another generic macho target, reserve space for the
2103   // header.
2104   Triple TT(M->getTargetTriple());
2105   if (TT.isOSDarwin())
2106     Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
2107
2108   // Emit the module into the buffer.
2109   {
2110     BitstreamWriter Stream(Buffer);
2111
2112     // Emit the file header.
2113     Stream.Emit((unsigned)'B', 8);
2114     Stream.Emit((unsigned)'C', 8);
2115     Stream.Emit(0x0, 4);
2116     Stream.Emit(0xC, 4);
2117     Stream.Emit(0xE, 4);
2118     Stream.Emit(0xD, 4);
2119
2120     // Emit the module.
2121     WriteModule(M, Stream);
2122   }
2123
2124   if (TT.isOSDarwin())
2125     EmitDarwinBCHeaderAndTrailer(Buffer, TT);
2126
2127   // Write the generated bitstream to "Out".
2128   Out.write((char*)&Buffer.front(), Buffer.size());
2129 }