724e1aeb15c96cb5d6b369cf315fcb27fc70a0d4
[oota-llvm.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Metadata.h"
23 #include "llvm/Module.h"
24 #include "llvm/Operator.h"
25 #include "llvm/TypeSymbolTable.h"
26 #include "llvm/ValueSymbolTable.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/MathExtras.h"
29 #include "llvm/Support/Streams.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/System/Program.h"
32 using namespace llvm;
33
34 /// These are manifest constants used by the bitcode writer. They do not need to
35 /// be kept in sync with the reader, but need to be consistent within this file.
36 enum {
37   CurVersion = 0,
38   
39   // VALUE_SYMTAB_BLOCK abbrev id's.
40   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
41   VST_ENTRY_7_ABBREV,
42   VST_ENTRY_6_ABBREV,
43   VST_BBENTRY_6_ABBREV,
44   
45   // CONSTANTS_BLOCK abbrev id's.
46   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
47   CONSTANTS_INTEGER_ABBREV,
48   CONSTANTS_CE_CAST_Abbrev,
49   CONSTANTS_NULL_Abbrev,
50   
51   // FUNCTION_BLOCK abbrev id's.
52   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
53   FUNCTION_INST_BINOP_ABBREV,
54   FUNCTION_INST_BINOP_FLAGS_ABBREV,
55   FUNCTION_INST_CAST_ABBREV,
56   FUNCTION_INST_RET_VOID_ABBREV,
57   FUNCTION_INST_RET_VAL_ABBREV,
58   FUNCTION_INST_UNREACHABLE_ABBREV
59 };
60
61
62 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
63   switch (Opcode) {
64   default: llvm_unreachable("Unknown cast instruction!");
65   case Instruction::Trunc   : return bitc::CAST_TRUNC;
66   case Instruction::ZExt    : return bitc::CAST_ZEXT;
67   case Instruction::SExt    : return bitc::CAST_SEXT;
68   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
69   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
70   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
71   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
72   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
73   case Instruction::FPExt   : return bitc::CAST_FPEXT;
74   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
75   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
76   case Instruction::BitCast : return bitc::CAST_BITCAST;
77   }
78 }
79
80 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
81   switch (Opcode) {
82   default: llvm_unreachable("Unknown binary instruction!");
83   case Instruction::Add:
84   case Instruction::FAdd: return bitc::BINOP_ADD;
85   case Instruction::Sub:
86   case Instruction::FSub: return bitc::BINOP_SUB;
87   case Instruction::Mul:
88   case Instruction::FMul: return bitc::BINOP_MUL;
89   case Instruction::UDiv: return bitc::BINOP_UDIV;
90   case Instruction::FDiv:
91   case Instruction::SDiv: return bitc::BINOP_SDIV;
92   case Instruction::URem: return bitc::BINOP_UREM;
93   case Instruction::FRem:
94   case Instruction::SRem: return bitc::BINOP_SREM;
95   case Instruction::Shl:  return bitc::BINOP_SHL;
96   case Instruction::LShr: return bitc::BINOP_LSHR;
97   case Instruction::AShr: return bitc::BINOP_ASHR;
98   case Instruction::And:  return bitc::BINOP_AND;
99   case Instruction::Or:   return bitc::BINOP_OR;
100   case Instruction::Xor:  return bitc::BINOP_XOR;
101   }
102 }
103
104
105
106 static void WriteStringRecord(unsigned Code, const std::string &Str, 
107                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
108   SmallVector<unsigned, 64> Vals;
109   
110   // Code: [strchar x N]
111   for (unsigned i = 0, e = Str.size(); i != e; ++i)
112     Vals.push_back(Str[i]);
113     
114   // Emit the finished record.
115   Stream.EmitRecord(Code, Vals, AbbrevToUse);
116 }
117
118 // Emit information about parameter attributes.
119 static void WriteAttributeTable(const ValueEnumerator &VE, 
120                                 BitstreamWriter &Stream) {
121   const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
122   if (Attrs.empty()) return;
123   
124   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
125
126   SmallVector<uint64_t, 64> Record;
127   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
128     const AttrListPtr &A = Attrs[i];
129     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
130       const AttributeWithIndex &PAWI = A.getSlot(i);
131       Record.push_back(PAWI.Index);
132
133       // FIXME: remove in LLVM 3.0
134       // Store the alignment in the bitcode as a 16-bit raw value instead of a
135       // 5-bit log2 encoded value. Shift the bits above the alignment up by
136       // 11 bits.
137       uint64_t FauxAttr = PAWI.Attrs & 0xffff;
138       if (PAWI.Attrs & Attribute::Alignment)
139         FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
140       FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
141
142       Record.push_back(FauxAttr);
143     }
144     
145     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
146     Record.clear();
147   }
148   
149   Stream.ExitBlock();
150 }
151
152 /// WriteTypeTable - Write out the type table for a module.
153 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
154   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
155   
156   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
157   SmallVector<uint64_t, 64> TypeVals;
158   
159   // Abbrev for TYPE_CODE_POINTER.
160   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
161   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
162   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
163                             Log2_32_Ceil(VE.getTypes().size()+1)));
164   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
165   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
166   
167   // Abbrev for TYPE_CODE_FUNCTION.
168   Abbv = new BitCodeAbbrev();
169   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
170   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
171   Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
172   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
173   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
174                             Log2_32_Ceil(VE.getTypes().size()+1)));
175   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
176   
177   // Abbrev for TYPE_CODE_STRUCT.
178   Abbv = new BitCodeAbbrev();
179   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
180   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
181   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
182   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
183                             Log2_32_Ceil(VE.getTypes().size()+1)));
184   unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
185  
186   // Abbrev for TYPE_CODE_ARRAY.
187   Abbv = new BitCodeAbbrev();
188   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
189   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
190   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
191                             Log2_32_Ceil(VE.getTypes().size()+1)));
192   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
193   
194   // Emit an entry count so the reader can reserve space.
195   TypeVals.push_back(TypeList.size());
196   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
197   TypeVals.clear();
198   
199   // Loop over all of the types, emitting each in turn.
200   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
201     const Type *T = TypeList[i].first;
202     int AbbrevToUse = 0;
203     unsigned Code = 0;
204     
205     switch (T->getTypeID()) {
206     default: llvm_unreachable("Unknown type!");
207     case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
208     case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
209     case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
210     case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
211     case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
212     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
213     case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
214     case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
215     case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
216     case Type::IntegerTyID:
217       // INTEGER: [width]
218       Code = bitc::TYPE_CODE_INTEGER;
219       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
220       break;
221     case Type::PointerTyID: {
222       const PointerType *PTy = cast<PointerType>(T);
223       // POINTER: [pointee type, address space]
224       Code = bitc::TYPE_CODE_POINTER;
225       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
226       unsigned AddressSpace = PTy->getAddressSpace();
227       TypeVals.push_back(AddressSpace);
228       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
229       break;
230     }
231     case Type::FunctionTyID: {
232       const FunctionType *FT = cast<FunctionType>(T);
233       // FUNCTION: [isvararg, attrid, retty, paramty x N]
234       Code = bitc::TYPE_CODE_FUNCTION;
235       TypeVals.push_back(FT->isVarArg());
236       TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
237       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
238       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
239         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
240       AbbrevToUse = FunctionAbbrev;
241       break;
242     }
243     case Type::StructTyID: {
244       const StructType *ST = cast<StructType>(T);
245       // STRUCT: [ispacked, eltty x N]
246       Code = bitc::TYPE_CODE_STRUCT;
247       TypeVals.push_back(ST->isPacked());
248       // Output all of the element types.
249       for (StructType::element_iterator I = ST->element_begin(),
250            E = ST->element_end(); I != E; ++I)
251         TypeVals.push_back(VE.getTypeID(*I));
252       AbbrevToUse = StructAbbrev;
253       break;
254     }
255     case Type::ArrayTyID: {
256       const ArrayType *AT = cast<ArrayType>(T);
257       // ARRAY: [numelts, eltty]
258       Code = bitc::TYPE_CODE_ARRAY;
259       TypeVals.push_back(AT->getNumElements());
260       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
261       AbbrevToUse = ArrayAbbrev;
262       break;
263     }
264     case Type::VectorTyID: {
265       const VectorType *VT = cast<VectorType>(T);
266       // VECTOR [numelts, eltty]
267       Code = bitc::TYPE_CODE_VECTOR;
268       TypeVals.push_back(VT->getNumElements());
269       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
270       break;
271     }
272     }
273
274     // Emit the finished record.
275     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
276     TypeVals.clear();
277   }
278   
279   Stream.ExitBlock();
280 }
281
282 static unsigned getEncodedLinkage(const GlobalValue *GV) {
283   switch (GV->getLinkage()) {
284   default: llvm_unreachable("Invalid linkage!");
285   case GlobalValue::GhostLinkage:  // Map ghost linkage onto external.
286   case GlobalValue::ExternalLinkage:            return 0;
287   case GlobalValue::WeakAnyLinkage:             return 1;
288   case GlobalValue::AppendingLinkage:           return 2;
289   case GlobalValue::InternalLinkage:            return 3;
290   case GlobalValue::LinkOnceAnyLinkage:         return 4;
291   case GlobalValue::DLLImportLinkage:           return 5;
292   case GlobalValue::DLLExportLinkage:           return 6;
293   case GlobalValue::ExternalWeakLinkage:        return 7;
294   case GlobalValue::CommonLinkage:              return 8;
295   case GlobalValue::PrivateLinkage:             return 9;
296   case GlobalValue::WeakODRLinkage:             return 10;
297   case GlobalValue::LinkOnceODRLinkage:         return 11;
298   case GlobalValue::AvailableExternallyLinkage: return 12;
299   case GlobalValue::LinkerPrivateLinkage:       return 13;
300   }
301 }
302
303 static unsigned getEncodedVisibility(const GlobalValue *GV) {
304   switch (GV->getVisibility()) {
305   default: llvm_unreachable("Invalid visibility!");
306   case GlobalValue::DefaultVisibility:   return 0;
307   case GlobalValue::HiddenVisibility:    return 1;
308   case GlobalValue::ProtectedVisibility: return 2;
309   }
310 }
311
312 // Emit top-level description of module, including target triple, inline asm,
313 // descriptors for global variables, and function prototype info.
314 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
315                             BitstreamWriter &Stream) {
316   // Emit the list of dependent libraries for the Module.
317   for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
318     WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
319
320   // Emit various pieces of data attached to a module.
321   if (!M->getTargetTriple().empty())
322     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
323                       0/*TODO*/, Stream);
324   if (!M->getDataLayout().empty())
325     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
326                       0/*TODO*/, Stream);
327   if (!M->getModuleInlineAsm().empty())
328     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
329                       0/*TODO*/, Stream);
330
331   // Emit information about sections and GC, computing how many there are. Also
332   // compute the maximum alignment value.
333   std::map<std::string, unsigned> SectionMap;
334   std::map<std::string, unsigned> GCMap;
335   unsigned MaxAlignment = 0;
336   unsigned MaxGlobalType = 0;
337   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
338        GV != E; ++GV) {
339     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
340     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
341     
342     if (!GV->hasSection()) continue;
343     // Give section names unique ID's.
344     unsigned &Entry = SectionMap[GV->getSection()];
345     if (Entry != 0) continue;
346     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
347                       0/*TODO*/, Stream);
348     Entry = SectionMap.size();
349   }
350   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
351     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
352     if (F->hasSection()) {
353       // Give section names unique ID's.
354       unsigned &Entry = SectionMap[F->getSection()];
355       if (!Entry) {
356         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
357                           0/*TODO*/, Stream);
358         Entry = SectionMap.size();
359       }
360     }
361     if (F->hasGC()) {
362       // Same for GC names.
363       unsigned &Entry = GCMap[F->getGC()];
364       if (!Entry) {
365         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
366                           0/*TODO*/, Stream);
367         Entry = GCMap.size();
368       }
369     }
370   }
371   
372   // Emit abbrev for globals, now that we know # sections and max alignment.
373   unsigned SimpleGVarAbbrev = 0;
374   if (!M->global_empty()) { 
375     // Add an abbrev for common globals with no visibility or thread localness.
376     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
377     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
378     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
379                               Log2_32_Ceil(MaxGlobalType+1)));
380     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
381     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
382     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
383     if (MaxAlignment == 0)                                      // Alignment.
384       Abbv->Add(BitCodeAbbrevOp(0));
385     else {
386       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
387       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
388                                Log2_32_Ceil(MaxEncAlignment+1)));
389     }
390     if (SectionMap.empty())                                    // Section.
391       Abbv->Add(BitCodeAbbrevOp(0));
392     else
393       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
394                                Log2_32_Ceil(SectionMap.size()+1)));
395     // Don't bother emitting vis + thread local.
396     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
397   }
398   
399   // Emit the global variable information.
400   SmallVector<unsigned, 64> Vals;
401   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
402        GV != E; ++GV) {
403     unsigned AbbrevToUse = 0;
404
405     // GLOBALVAR: [type, isconst, initid, 
406     //             linkage, alignment, section, visibility, threadlocal]
407     Vals.push_back(VE.getTypeID(GV->getType()));
408     Vals.push_back(GV->isConstant());
409     Vals.push_back(GV->isDeclaration() ? 0 :
410                    (VE.getValueID(GV->getInitializer()) + 1));
411     Vals.push_back(getEncodedLinkage(GV));
412     Vals.push_back(Log2_32(GV->getAlignment())+1);
413     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
414     if (GV->isThreadLocal() || 
415         GV->getVisibility() != GlobalValue::DefaultVisibility) {
416       Vals.push_back(getEncodedVisibility(GV));
417       Vals.push_back(GV->isThreadLocal());
418     } else {
419       AbbrevToUse = SimpleGVarAbbrev;
420     }
421     
422     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
423     Vals.clear();
424   }
425
426   // Emit the function proto information.
427   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
428     // FUNCTION:  [type, callingconv, isproto, paramattr,
429     //             linkage, alignment, section, visibility, gc]
430     Vals.push_back(VE.getTypeID(F->getType()));
431     Vals.push_back(F->getCallingConv());
432     Vals.push_back(F->isDeclaration());
433     Vals.push_back(getEncodedLinkage(F));
434     Vals.push_back(VE.getAttributeID(F->getAttributes()));
435     Vals.push_back(Log2_32(F->getAlignment())+1);
436     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
437     Vals.push_back(getEncodedVisibility(F));
438     Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
439     
440     unsigned AbbrevToUse = 0;
441     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
442     Vals.clear();
443   }
444   
445   
446   // Emit the alias information.
447   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
448        AI != E; ++AI) {
449     Vals.push_back(VE.getTypeID(AI->getType()));
450     Vals.push_back(VE.getValueID(AI->getAliasee()));
451     Vals.push_back(getEncodedLinkage(AI));
452     Vals.push_back(getEncodedVisibility(AI));
453     unsigned AbbrevToUse = 0;
454     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
455     Vals.clear();
456   }
457 }
458
459 static uint64_t GetOptimizationFlags(const Value *V) {
460   uint64_t Flags = 0;
461
462   if (const OverflowingBinaryOperator *OBO =
463         dyn_cast<OverflowingBinaryOperator>(V)) {
464     if (OBO->hasNoSignedOverflow())
465       Flags |= 1 << bitc::OBO_NO_SIGNED_OVERFLOW;
466     if (OBO->hasNoUnsignedOverflow())
467       Flags |= 1 << bitc::OBO_NO_UNSIGNED_OVERFLOW;
468   } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) {
469     if (Div->isExact())
470       Flags |= 1 << bitc::SDIV_EXACT;
471   }
472
473   return Flags;
474 }
475
476 /// WriteValues - Write Constants and Metadata.
477 /// This function could use some refactoring help.
478 static void WriteValues(unsigned FirstVal, unsigned LastVal,
479                         const ValueEnumerator &VE,
480                         BitstreamWriter &Stream, bool isGlobal) {
481   if (FirstVal == LastVal) return;
482
483   // MODULE_BLOCK_ID is 0, which is not handled here. So it is OK to use
484   // 0 as the initializer to indicate that block is not set.
485   enum bitc::BlockIDs LastBlockID = bitc::MODULE_BLOCK_ID;
486
487   unsigned AggregateAbbrev = 0;
488   unsigned String8Abbrev = 0;
489   unsigned CString7Abbrev = 0;
490   unsigned CString6Abbrev = 0;
491   unsigned MDSAbbrev = 0;
492
493   SmallVector<uint64_t, 64> Record;
494
495   const ValueEnumerator::ValueList &Vals = VE.getValues();
496   const Type *LastTy = 0;
497   for (unsigned i = FirstVal; i != LastVal; ++i) {
498     const Value *V = Vals[i].first;
499     if (isa<MetadataBase>(V)) {
500       if (LastBlockID != bitc::METADATA_BLOCK_ID) {
501         // Exit privious block.
502         if (LastBlockID != bitc::MODULE_BLOCK_ID)
503           Stream.ExitBlock();
504         
505         LastBlockID = bitc::METADATA_BLOCK_ID;
506         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
507         // Abbrev for METADATA_STRING.
508         BitCodeAbbrev *Abbv = new BitCodeAbbrev();
509         Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
510         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
511         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
512         MDSAbbrev = Stream.EmitAbbrev(Abbv);
513       }
514     }
515     if (const MDString *MDS = dyn_cast<MDString>(V)) {
516       // Code: [strchar x N]
517       const char *StrBegin = MDS->begin();
518       for (unsigned i = 0, e = MDS->length(); i != e; ++i)
519         Record.push_back(StrBegin[i]);
520       
521       // Emit the finished record.
522       Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
523       Record.clear();
524       continue;
525     } else if (const MDNode *N = dyn_cast<MDNode>(V)) {
526       for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) {
527         if (N->getElement(i)) {
528           Record.push_back(VE.getTypeID(N->getElement(i)->getType()));
529           Record.push_back(VE.getValueID(N->getElement(i)));
530         } else {
531           Record.push_back(VE.getTypeID(Type::VoidTy));
532           Record.push_back(0);
533         }
534       }
535       Stream.EmitRecord(bitc::METADATA_NODE, Record, 0);
536       Record.clear();
537       continue;
538     } else if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(V)) {
539       // Write name.
540       std::string Str = NMD->getNameStr();
541       const char *StrBegin = Str.c_str();
542       for (unsigned i = 0, e = Str.length(); i != e; ++i)
543         Record.push_back(StrBegin[i]);
544       Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
545       Record.clear();
546       
547       // Write named metadata elements.
548       for (unsigned i = 0, e = NMD->getNumElements(); i != e; ++i) {
549         if (NMD->getElement(i)) 
550           Record.push_back(VE.getValueID(NMD->getElement(i)));
551         else 
552           Record.push_back(0);
553       }
554       Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
555       Record.clear();
556       continue;
557     }
558
559     // If we need to switch block, do so now.
560     if (LastBlockID != bitc::CONSTANTS_BLOCK_ID) {
561       // Exit privious block.
562       if (LastBlockID != bitc::MODULE_BLOCK_ID)
563         Stream.ExitBlock();        
564
565       LastBlockID = bitc::CONSTANTS_BLOCK_ID;
566       Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
567       // If this is a constant pool for the module, emit module-specific abbrevs.
568       if (isGlobal) {
569         // Abbrev for CST_CODE_AGGREGATE.
570         BitCodeAbbrev *Abbv = new BitCodeAbbrev();
571         Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
572         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
573         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
574         AggregateAbbrev = Stream.EmitAbbrev(Abbv);
575         
576         // Abbrev for CST_CODE_STRING.
577         Abbv = new BitCodeAbbrev();
578         Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
579         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
580         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
581         String8Abbrev = Stream.EmitAbbrev(Abbv);
582
583         // Abbrev for CST_CODE_CSTRING.
584         Abbv = new BitCodeAbbrev();
585         Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
586         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
587         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
588         CString7Abbrev = Stream.EmitAbbrev(Abbv);
589
590         // Abbrev for CST_CODE_CSTRING.
591         Abbv = new BitCodeAbbrev();
592         Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
593         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
594         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
595         CString6Abbrev = Stream.EmitAbbrev(Abbv);
596       }  
597
598     }
599     // If we need to switch types, do so now.
600     if (V->getType() != LastTy) {
601       LastTy = V->getType();
602       Record.push_back(VE.getTypeID(LastTy));
603       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
604                         CONSTANTS_SETTYPE_ABBREV);
605       Record.clear();
606     }
607     
608     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
609       Record.push_back(unsigned(IA->hasSideEffects()));
610       
611       // Add the asm string.
612       const std::string &AsmStr = IA->getAsmString();
613       Record.push_back(AsmStr.size());
614       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
615         Record.push_back(AsmStr[i]);
616       
617       // Add the constraint string.
618       const std::string &ConstraintStr = IA->getConstraintString();
619       Record.push_back(ConstraintStr.size());
620       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
621         Record.push_back(ConstraintStr[i]);
622       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
623       Record.clear();
624       continue;
625     }
626     const Constant *C = cast<Constant>(V);
627     unsigned Code = -1U;
628     unsigned AbbrevToUse = 0;
629     if (C->isNullValue()) {
630       Code = bitc::CST_CODE_NULL;
631     } else if (isa<UndefValue>(C)) {
632       Code = bitc::CST_CODE_UNDEF;
633     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
634       if (IV->getBitWidth() <= 64) {
635         int64_t V = IV->getSExtValue();
636         if (V >= 0)
637           Record.push_back(V << 1);
638         else
639           Record.push_back((-V << 1) | 1);
640         Code = bitc::CST_CODE_INTEGER;
641         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
642       } else {                             // Wide integers, > 64 bits in size.
643         // We have an arbitrary precision integer value to write whose 
644         // bit width is > 64. However, in canonical unsigned integer 
645         // format it is likely that the high bits are going to be zero.
646         // So, we only write the number of active words.
647         unsigned NWords = IV->getValue().getActiveWords(); 
648         const uint64_t *RawWords = IV->getValue().getRawData();
649         for (unsigned i = 0; i != NWords; ++i) {
650           int64_t V = RawWords[i];
651           if (V >= 0)
652             Record.push_back(V << 1);
653           else
654             Record.push_back((-V << 1) | 1);
655         }
656         Code = bitc::CST_CODE_WIDE_INTEGER;
657       }
658     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
659       Code = bitc::CST_CODE_FLOAT;
660       const Type *Ty = CFP->getType();
661       if (Ty == Type::FloatTy || Ty == Type::DoubleTy) {
662         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
663       } else if (Ty == Type::X86_FP80Ty) {
664         // api needed to prevent premature destruction
665         // bits are not in the same order as a normal i80 APInt, compensate.
666         APInt api = CFP->getValueAPF().bitcastToAPInt();
667         const uint64_t *p = api.getRawData();
668         Record.push_back((p[1] << 48) | (p[0] >> 16));
669         Record.push_back(p[0] & 0xffffLL);
670       } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) {
671         APInt api = CFP->getValueAPF().bitcastToAPInt();
672         const uint64_t *p = api.getRawData();
673         Record.push_back(p[0]);
674         Record.push_back(p[1]);
675       } else {
676         assert (0 && "Unknown FP type!");
677       }
678     } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
679       // Emit constant strings specially.
680       unsigned NumOps = C->getNumOperands();
681       // If this is a null-terminated string, use the denser CSTRING encoding.
682       if (C->getOperand(NumOps-1)->isNullValue()) {
683         Code = bitc::CST_CODE_CSTRING;
684         --NumOps;  // Don't encode the null, which isn't allowed by char6.
685       } else {
686         Code = bitc::CST_CODE_STRING;
687         AbbrevToUse = String8Abbrev;
688       }
689       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
690       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
691       for (unsigned i = 0; i != NumOps; ++i) {
692         unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
693         Record.push_back(V);
694         isCStr7 &= (V & 128) == 0;
695         if (isCStrChar6) 
696           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
697       }
698       
699       if (isCStrChar6)
700         AbbrevToUse = CString6Abbrev;
701       else if (isCStr7)
702         AbbrevToUse = CString7Abbrev;
703     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
704                isa<ConstantVector>(V)) {
705       Code = bitc::CST_CODE_AGGREGATE;
706       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
707         Record.push_back(VE.getValueID(C->getOperand(i)));
708       AbbrevToUse = AggregateAbbrev;
709     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
710       switch (CE->getOpcode()) {
711       default:
712         if (Instruction::isCast(CE->getOpcode())) {
713           Code = bitc::CST_CODE_CE_CAST;
714           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
715           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
716           Record.push_back(VE.getValueID(C->getOperand(0)));
717           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
718         } else {
719           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
720           Code = bitc::CST_CODE_CE_BINOP;
721           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
722           Record.push_back(VE.getValueID(C->getOperand(0)));
723           Record.push_back(VE.getValueID(C->getOperand(1)));
724           uint64_t Flags = GetOptimizationFlags(CE);
725           if (Flags != 0)
726             Record.push_back(Flags);
727         }
728         break;
729       case Instruction::GetElementPtr:
730         Code = bitc::CST_CODE_CE_GEP;
731         if (cast<GEPOperator>(C)->isInBounds())
732           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
733         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
734           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
735           Record.push_back(VE.getValueID(C->getOperand(i)));
736         }
737         break;
738       case Instruction::Select:
739         Code = bitc::CST_CODE_CE_SELECT;
740         Record.push_back(VE.getValueID(C->getOperand(0)));
741         Record.push_back(VE.getValueID(C->getOperand(1)));
742         Record.push_back(VE.getValueID(C->getOperand(2)));
743         break;
744       case Instruction::ExtractElement:
745         Code = bitc::CST_CODE_CE_EXTRACTELT;
746         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
747         Record.push_back(VE.getValueID(C->getOperand(0)));
748         Record.push_back(VE.getValueID(C->getOperand(1)));
749         break;
750       case Instruction::InsertElement:
751         Code = bitc::CST_CODE_CE_INSERTELT;
752         Record.push_back(VE.getValueID(C->getOperand(0)));
753         Record.push_back(VE.getValueID(C->getOperand(1)));
754         Record.push_back(VE.getValueID(C->getOperand(2)));
755         break;
756       case Instruction::ShuffleVector:
757         // If the return type and argument types are the same, this is a
758         // standard shufflevector instruction.  If the types are different,
759         // then the shuffle is widening or truncating the input vectors, and
760         // the argument type must also be encoded.
761         if (C->getType() == C->getOperand(0)->getType()) {
762           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
763         } else {
764           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
765           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
766         }
767         Record.push_back(VE.getValueID(C->getOperand(0)));
768         Record.push_back(VE.getValueID(C->getOperand(1)));
769         Record.push_back(VE.getValueID(C->getOperand(2)));
770         break;
771       case Instruction::ICmp:
772       case Instruction::FCmp:
773         Code = bitc::CST_CODE_CE_CMP;
774         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
775         Record.push_back(VE.getValueID(C->getOperand(0)));
776         Record.push_back(VE.getValueID(C->getOperand(1)));
777         Record.push_back(CE->getPredicate());
778         break;
779       }
780     } else {
781       llvm_unreachable("Unknown constant!");
782     }
783     Stream.EmitRecord(Code, Record, AbbrevToUse);
784     Record.clear();
785   }
786
787   Stream.ExitBlock();
788 }
789
790 static void WriteModuleConstants(const ValueEnumerator &VE,
791                                  BitstreamWriter &Stream) {
792   const ValueEnumerator::ValueList &Vals = VE.getValues();
793   
794   // Find the first constant to emit, which is the first non-globalvalue value.
795   // We know globalvalues have been emitted by WriteModuleInfo.
796   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
797     if (!isa<GlobalValue>(Vals[i].first)) {
798       WriteValues(i, Vals.size(), VE, Stream, true);
799       return;
800     }
801   }
802 }
803
804 /// PushValueAndType - The file has to encode both the value and type id for
805 /// many values, because we need to know what type to create for forward
806 /// references.  However, most operands are not forward references, so this type
807 /// field is not needed.
808 ///
809 /// This function adds V's value ID to Vals.  If the value ID is higher than the
810 /// instruction ID, then it is a forward reference, and it also includes the
811 /// type ID.
812 static bool PushValueAndType(const Value *V, unsigned InstID,
813                              SmallVector<unsigned, 64> &Vals, 
814                              ValueEnumerator &VE) {
815   unsigned ValID = VE.getValueID(V);
816   Vals.push_back(ValID);
817   if (ValID >= InstID) {
818     Vals.push_back(VE.getTypeID(V->getType()));
819     return true;
820   }
821   return false;
822 }
823
824 /// WriteInstruction - Emit an instruction to the specified stream.
825 static void WriteInstruction(const Instruction &I, unsigned InstID,
826                              ValueEnumerator &VE, BitstreamWriter &Stream,
827                              SmallVector<unsigned, 64> &Vals) {
828   unsigned Code = 0;
829   unsigned AbbrevToUse = 0;
830   switch (I.getOpcode()) {
831   default:
832     if (Instruction::isCast(I.getOpcode())) {
833       Code = bitc::FUNC_CODE_INST_CAST;
834       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
835         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
836       Vals.push_back(VE.getTypeID(I.getType()));
837       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
838     } else {
839       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
840       Code = bitc::FUNC_CODE_INST_BINOP;
841       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
842         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
843       Vals.push_back(VE.getValueID(I.getOperand(1)));
844       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
845       uint64_t Flags = GetOptimizationFlags(&I);
846       if (Flags != 0) {
847         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
848           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
849         Vals.push_back(Flags);
850       }
851     }
852     break;
853
854   case Instruction::GetElementPtr:
855     Code = bitc::FUNC_CODE_INST_GEP;
856     if (cast<GEPOperator>(&I)->isInBounds())
857       Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
858     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
859       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
860     break;
861   case Instruction::ExtractValue: {
862     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
863     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
864     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
865     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
866       Vals.push_back(*i);
867     break;
868   }
869   case Instruction::InsertValue: {
870     Code = bitc::FUNC_CODE_INST_INSERTVAL;
871     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
872     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
873     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
874     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
875       Vals.push_back(*i);
876     break;
877   }
878   case Instruction::Select:
879     Code = bitc::FUNC_CODE_INST_VSELECT;
880     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
881     Vals.push_back(VE.getValueID(I.getOperand(2)));
882     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
883     break;
884   case Instruction::ExtractElement:
885     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
886     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
887     Vals.push_back(VE.getValueID(I.getOperand(1)));
888     break;
889   case Instruction::InsertElement:
890     Code = bitc::FUNC_CODE_INST_INSERTELT;
891     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
892     Vals.push_back(VE.getValueID(I.getOperand(1)));
893     Vals.push_back(VE.getValueID(I.getOperand(2)));
894     break;
895   case Instruction::ShuffleVector:
896     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
897     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
898     Vals.push_back(VE.getValueID(I.getOperand(1)));
899     Vals.push_back(VE.getValueID(I.getOperand(2)));
900     break;
901   case Instruction::ICmp:
902   case Instruction::FCmp:
903     // compare returning Int1Ty or vector of Int1Ty
904     Code = bitc::FUNC_CODE_INST_CMP2;
905     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
906     Vals.push_back(VE.getValueID(I.getOperand(1)));
907     Vals.push_back(cast<CmpInst>(I).getPredicate());
908     break;
909
910   case Instruction::Ret: 
911     {
912       Code = bitc::FUNC_CODE_INST_RET;
913       unsigned NumOperands = I.getNumOperands();
914       if (NumOperands == 0)
915         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
916       else if (NumOperands == 1) {
917         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
918           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
919       } else {
920         for (unsigned i = 0, e = NumOperands; i != e; ++i)
921           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
922       }
923     }
924     break;
925   case Instruction::Br:
926     {
927       Code = bitc::FUNC_CODE_INST_BR;
928       BranchInst &II(cast<BranchInst>(I));
929       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
930       if (II.isConditional()) {
931         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
932         Vals.push_back(VE.getValueID(II.getCondition()));
933       }
934     }
935     break;
936   case Instruction::Switch:
937     Code = bitc::FUNC_CODE_INST_SWITCH;
938     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
939     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
940       Vals.push_back(VE.getValueID(I.getOperand(i)));
941     break;
942   case Instruction::Invoke: {
943     const InvokeInst *II = cast<InvokeInst>(&I);
944     const Value *Callee(II->getCalledValue());
945     const PointerType *PTy = cast<PointerType>(Callee->getType());
946     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
947     Code = bitc::FUNC_CODE_INST_INVOKE;
948     
949     Vals.push_back(VE.getAttributeID(II->getAttributes()));
950     Vals.push_back(II->getCallingConv());
951     Vals.push_back(VE.getValueID(II->getNormalDest()));
952     Vals.push_back(VE.getValueID(II->getUnwindDest()));
953     PushValueAndType(Callee, InstID, Vals, VE);
954     
955     // Emit value #'s for the fixed parameters.
956     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
957       Vals.push_back(VE.getValueID(I.getOperand(i+3)));  // fixed param.
958
959     // Emit type/value pairs for varargs params.
960     if (FTy->isVarArg()) {
961       for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
962            i != e; ++i)
963         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
964     }
965     break;
966   }
967   case Instruction::Unwind:
968     Code = bitc::FUNC_CODE_INST_UNWIND;
969     break;
970   case Instruction::Unreachable:
971     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
972     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
973     break;
974   
975   case Instruction::PHI:
976     Code = bitc::FUNC_CODE_INST_PHI;
977     Vals.push_back(VE.getTypeID(I.getType()));
978     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
979       Vals.push_back(VE.getValueID(I.getOperand(i)));
980     break;
981     
982   case Instruction::Malloc:
983     Code = bitc::FUNC_CODE_INST_MALLOC;
984     Vals.push_back(VE.getTypeID(I.getType()));
985     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
986     Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
987     break;
988     
989   case Instruction::Free:
990     Code = bitc::FUNC_CODE_INST_FREE;
991     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
992     break;
993     
994   case Instruction::Alloca:
995     Code = bitc::FUNC_CODE_INST_ALLOCA;
996     Vals.push_back(VE.getTypeID(I.getType()));
997     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
998     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
999     break;
1000     
1001   case Instruction::Load:
1002     Code = bitc::FUNC_CODE_INST_LOAD;
1003     if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1004       AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1005       
1006     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1007     Vals.push_back(cast<LoadInst>(I).isVolatile());
1008     break;
1009   case Instruction::Store:
1010     Code = bitc::FUNC_CODE_INST_STORE2;
1011     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1012     Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
1013     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1014     Vals.push_back(cast<StoreInst>(I).isVolatile());
1015     break;
1016   case Instruction::Call: {
1017     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
1018     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1019
1020     Code = bitc::FUNC_CODE_INST_CALL;
1021     
1022     const CallInst *CI = cast<CallInst>(&I);
1023     Vals.push_back(VE.getAttributeID(CI->getAttributes()));
1024     Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
1025     PushValueAndType(CI->getOperand(0), InstID, Vals, VE);  // Callee
1026     
1027     // Emit value #'s for the fixed parameters.
1028     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1029       Vals.push_back(VE.getValueID(I.getOperand(i+1)));  // fixed param.
1030       
1031     // Emit type/value pairs for varargs params.
1032     if (FTy->isVarArg()) {
1033       unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
1034       for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
1035            i != e; ++i)
1036         PushValueAndType(I.getOperand(i), InstID, Vals, VE);  // varargs
1037     }
1038     break;
1039   }
1040   case Instruction::VAArg:
1041     Code = bitc::FUNC_CODE_INST_VAARG;
1042     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1043     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1044     Vals.push_back(VE.getTypeID(I.getType())); // restype.
1045     break;
1046   }
1047   
1048   Stream.EmitRecord(Code, Vals, AbbrevToUse);
1049   Vals.clear();
1050 }
1051
1052 // Emit names for globals/functions etc.
1053 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1054                                   const ValueEnumerator &VE,
1055                                   BitstreamWriter &Stream) {
1056   if (VST.empty()) return;
1057   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1058
1059   // FIXME: Set up the abbrev, we know how many values there are!
1060   // FIXME: We know if the type names can use 7-bit ascii.
1061   SmallVector<unsigned, 64> NameVals;
1062   
1063   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1064        SI != SE; ++SI) {
1065     
1066     const ValueName &Name = *SI;
1067     
1068     // Figure out the encoding to use for the name.
1069     bool is7Bit = true;
1070     bool isChar6 = true;
1071     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1072          C != E; ++C) {
1073       if (isChar6) 
1074         isChar6 = BitCodeAbbrevOp::isChar6(*C);
1075       if ((unsigned char)*C & 128) {
1076         is7Bit = false;
1077         break;  // don't bother scanning the rest.
1078       }
1079     }
1080     
1081     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1082     
1083     // VST_ENTRY:   [valueid, namechar x N]
1084     // VST_BBENTRY: [bbid, namechar x N]
1085     unsigned Code;
1086     if (isa<BasicBlock>(*SI->getValue())) {
1087       Code = bitc::VST_CODE_BBENTRY;
1088       if (isChar6)
1089         AbbrevToUse = VST_BBENTRY_6_ABBREV;
1090     } else {
1091       Code = bitc::VST_CODE_ENTRY;
1092       if (isChar6)
1093         AbbrevToUse = VST_ENTRY_6_ABBREV;
1094       else if (is7Bit)
1095         AbbrevToUse = VST_ENTRY_7_ABBREV;
1096     }
1097     
1098     NameVals.push_back(VE.getValueID(SI->getValue()));
1099     for (const char *P = Name.getKeyData(),
1100          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1101       NameVals.push_back((unsigned char)*P);
1102     
1103     // Emit the finished record.
1104     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1105     NameVals.clear();
1106   }
1107   Stream.ExitBlock();
1108 }
1109
1110 /// WriteFunction - Emit a function body to the module stream.
1111 static void WriteFunction(const Function &F, ValueEnumerator &VE, 
1112                           BitstreamWriter &Stream) {
1113   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1114   VE.incorporateFunction(F);
1115
1116   SmallVector<unsigned, 64> Vals;
1117   
1118   // Emit the number of basic blocks, so the reader can create them ahead of
1119   // time.
1120   Vals.push_back(VE.getBasicBlocks().size());
1121   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1122   Vals.clear();
1123   
1124   // If there are function-local constants, emit them now.
1125   unsigned CstStart, CstEnd;
1126   VE.getFunctionConstantRange(CstStart, CstEnd);
1127   WriteValues(CstStart, CstEnd, VE, Stream, false);
1128   
1129   // Keep a running idea of what the instruction ID is. 
1130   unsigned InstID = CstEnd;
1131   
1132   // Finally, emit all the instructions, in order.
1133   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1134     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1135          I != E; ++I) {
1136       WriteInstruction(*I, InstID, VE, Stream, Vals);
1137       if (I->getType() != Type::VoidTy)
1138         ++InstID;
1139     }
1140   
1141   // Emit names for all the instructions etc.
1142   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1143     
1144   VE.purgeFunction();
1145   Stream.ExitBlock();
1146 }
1147
1148 /// WriteTypeSymbolTable - Emit a block for the specified type symtab.
1149 static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
1150                                  const ValueEnumerator &VE,
1151                                  BitstreamWriter &Stream) {
1152   if (TST.empty()) return;
1153   
1154   Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
1155   
1156   // 7-bit fixed width VST_CODE_ENTRY strings.
1157   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1158   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1159   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1160                             Log2_32_Ceil(VE.getTypes().size()+1)));
1161   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1162   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1163   unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
1164   
1165   SmallVector<unsigned, 64> NameVals;
1166   
1167   for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 
1168        TI != TE; ++TI) {
1169     // TST_ENTRY: [typeid, namechar x N]
1170     NameVals.push_back(VE.getTypeID(TI->second));
1171     
1172     const std::string &Str = TI->first;
1173     bool is7Bit = true;
1174     for (unsigned i = 0, e = Str.size(); i != e; ++i) {
1175       NameVals.push_back((unsigned char)Str[i]);
1176       if (Str[i] & 128)
1177         is7Bit = false;
1178     }
1179     
1180     // Emit the finished record.
1181     Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
1182     NameVals.clear();
1183   }
1184   
1185   Stream.ExitBlock();
1186 }
1187
1188 // Emit blockinfo, which defines the standard abbreviations etc.
1189 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1190   // We only want to emit block info records for blocks that have multiple
1191   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1192   // blocks can defined their abbrevs inline.
1193   Stream.EnterBlockInfoBlock(2);
1194   
1195   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1196     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1197     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1198     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1199     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1200     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1201     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 
1202                                    Abbv) != VST_ENTRY_8_ABBREV)
1203       llvm_unreachable("Unexpected abbrev ordering!");
1204   }
1205   
1206   { // 7-bit fixed width VST_ENTRY strings.
1207     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1208     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1209     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1210     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1211     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1212     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1213                                    Abbv) != VST_ENTRY_7_ABBREV)
1214       llvm_unreachable("Unexpected abbrev ordering!");
1215   }
1216   { // 6-bit char6 VST_ENTRY strings.
1217     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1218     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1219     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1220     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1221     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1222     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1223                                    Abbv) != VST_ENTRY_6_ABBREV)
1224       llvm_unreachable("Unexpected abbrev ordering!");
1225   }
1226   { // 6-bit char6 VST_BBENTRY strings.
1227     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1228     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1229     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1230     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1231     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1232     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1233                                    Abbv) != VST_BBENTRY_6_ABBREV)
1234       llvm_unreachable("Unexpected abbrev ordering!");
1235   }
1236   
1237   
1238   
1239   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1240     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1241     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1242     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1243                               Log2_32_Ceil(VE.getTypes().size()+1)));
1244     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1245                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1246       llvm_unreachable("Unexpected abbrev ordering!");
1247   }
1248   
1249   { // INTEGER abbrev for CONSTANTS_BLOCK.
1250     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1251     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1252     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1253     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1254                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1255       llvm_unreachable("Unexpected abbrev ordering!");
1256   }
1257   
1258   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1259     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1260     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1261     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1262     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1263                               Log2_32_Ceil(VE.getTypes().size()+1)));
1264     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1265
1266     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1267                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1268       llvm_unreachable("Unexpected abbrev ordering!");
1269   }
1270   { // NULL abbrev for CONSTANTS_BLOCK.
1271     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1272     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1273     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1274                                    Abbv) != CONSTANTS_NULL_Abbrev)
1275       llvm_unreachable("Unexpected abbrev ordering!");
1276   }
1277   
1278   // FIXME: This should only use space for first class types!
1279  
1280   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1281     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1282     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1283     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1284     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1285     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1286     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1287                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1288       llvm_unreachable("Unexpected abbrev ordering!");
1289   }
1290   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1291     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1292     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1293     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1294     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1295     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1296     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1297                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1298       llvm_unreachable("Unexpected abbrev ordering!");
1299   }
1300   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1301     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1302     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1303     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1304     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1305     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1306     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1307     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1308                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1309       llvm_unreachable("Unexpected abbrev ordering!");
1310   }
1311   { // INST_CAST abbrev for FUNCTION_BLOCK.
1312     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1313     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1314     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1315     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1316                               Log2_32_Ceil(VE.getTypes().size()+1)));
1317     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1318     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1319                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1320       llvm_unreachable("Unexpected abbrev ordering!");
1321   }
1322   
1323   { // INST_RET abbrev for FUNCTION_BLOCK.
1324     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1325     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1326     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1327                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1328       llvm_unreachable("Unexpected abbrev ordering!");
1329   }
1330   { // INST_RET abbrev for FUNCTION_BLOCK.
1331     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1332     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1333     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1334     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1335                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1336       llvm_unreachable("Unexpected abbrev ordering!");
1337   }
1338   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1339     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1340     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1341     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1342                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1343       llvm_unreachable("Unexpected abbrev ordering!");
1344   }
1345   
1346   Stream.ExitBlock();
1347 }
1348
1349
1350 /// WriteModule - Emit the specified module to the bitstream.
1351 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1352   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1353   
1354   // Emit the version number if it is non-zero.
1355   if (CurVersion) {
1356     SmallVector<unsigned, 1> Vals;
1357     Vals.push_back(CurVersion);
1358     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1359   }
1360   
1361   // Analyze the module, enumerating globals, functions, etc.
1362   ValueEnumerator VE(M);
1363
1364   // Emit blockinfo, which defines the standard abbreviations etc.
1365   WriteBlockInfo(VE, Stream);
1366   
1367   // Emit information about parameter attributes.
1368   WriteAttributeTable(VE, Stream);
1369   
1370   // Emit information describing all of the types in the module.
1371   WriteTypeTable(VE, Stream);
1372   
1373   // Emit top-level description of module, including target triple, inline asm,
1374   // descriptors for global variables, and function prototype info.
1375   WriteModuleInfo(M, VE, Stream);
1376
1377   // Emit constants.
1378   WriteModuleConstants(VE, Stream);
1379
1380   // Emit function bodies.
1381   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1382     if (!I->isDeclaration())
1383       WriteFunction(*I, VE, Stream);
1384   
1385   // Emit the type symbol table information.
1386   WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1387   
1388   // Emit names for globals/functions etc.
1389   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1390
1391   Stream.ExitBlock();
1392 }
1393
1394 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1395 /// header and trailer to make it compatible with the system archiver.  To do
1396 /// this we emit the following header, and then emit a trailer that pads the
1397 /// file out to be a multiple of 16 bytes.
1398 /// 
1399 /// struct bc_header {
1400 ///   uint32_t Magic;         // 0x0B17C0DE
1401 ///   uint32_t Version;       // Version, currently always 0.
1402 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1403 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1404 ///   uint32_t CPUType;       // CPU specifier.
1405 ///   ... potentially more later ...
1406 /// };
1407 enum {
1408   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1409   DarwinBCHeaderSize = 5*4
1410 };
1411
1412 static void EmitDarwinBCHeader(BitstreamWriter &Stream,
1413                                const std::string &TT) {
1414   unsigned CPUType = ~0U;
1415   
1416   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*.  The CPUType is a
1417   // magic number from /usr/include/mach/machine.h.  It is ok to reproduce the
1418   // specific constants here because they are implicitly part of the Darwin ABI.
1419   enum {
1420     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1421     DARWIN_CPU_TYPE_X86        = 7,
1422     DARWIN_CPU_TYPE_POWERPC    = 18
1423   };
1424   
1425   if (TT.find("x86_64-") == 0)
1426     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1427   else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
1428            TT[4] == '-' && TT[1] - '3' < 6)
1429     CPUType = DARWIN_CPU_TYPE_X86;
1430   else if (TT.find("powerpc-") == 0)
1431     CPUType = DARWIN_CPU_TYPE_POWERPC;
1432   else if (TT.find("powerpc64-") == 0)
1433     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1434   
1435   // Traditional Bitcode starts after header.
1436   unsigned BCOffset = DarwinBCHeaderSize;
1437   
1438   Stream.Emit(0x0B17C0DE, 32);
1439   Stream.Emit(0         , 32);  // Version.
1440   Stream.Emit(BCOffset  , 32);
1441   Stream.Emit(0         , 32);  // Filled in later.
1442   Stream.Emit(CPUType   , 32);
1443 }
1444
1445 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
1446 /// finalize the header.
1447 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
1448   // Update the size field in the header.
1449   Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
1450   
1451   // If the file is not a multiple of 16 bytes, insert dummy padding.
1452   while (BufferSize & 15) {
1453     Stream.Emit(0, 8);
1454     ++BufferSize;
1455   }
1456 }
1457
1458
1459 /// WriteBitcodeToFile - Write the specified module to the specified output
1460 /// stream.
1461 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
1462   raw_os_ostream RawOut(Out);
1463   // If writing to stdout, set binary mode.
1464   if (llvm::cout == Out)
1465     sys::Program::ChangeStdoutToBinary();
1466   WriteBitcodeToFile(M, RawOut);
1467 }
1468
1469 /// WriteBitcodeToFile - Write the specified module to the specified output
1470 /// stream.
1471 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1472   std::vector<unsigned char> Buffer;
1473   BitstreamWriter Stream(Buffer);
1474   
1475   Buffer.reserve(256*1024);
1476
1477   WriteBitcodeToStream( M, Stream );
1478   
1479   // If writing to stdout, set binary mode.
1480   if (&llvm::outs() == &Out)
1481     sys::Program::ChangeStdoutToBinary();
1482
1483   // Write the generated bitstream to "Out".
1484   Out.write((char*)&Buffer.front(), Buffer.size());
1485   
1486   // Make sure it hits disk now.
1487   Out.flush();
1488 }
1489
1490 /// WriteBitcodeToStream - Write the specified module to the specified output
1491 /// stream.
1492 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
1493   // If this is darwin, emit a file header and trailer if needed.
1494   bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos;
1495   if (isDarwin)
1496     EmitDarwinBCHeader(Stream, M->getTargetTriple());
1497   
1498   // Emit the file header.
1499   Stream.Emit((unsigned)'B', 8);
1500   Stream.Emit((unsigned)'C', 8);
1501   Stream.Emit(0x0, 4);
1502   Stream.Emit(0xC, 4);
1503   Stream.Emit(0xE, 4);
1504   Stream.Emit(0xD, 4);
1505
1506   // Emit the module.
1507   WriteModule(M, Stream);
1508
1509   if (isDarwin)
1510     EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());
1511 }