1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // Bitcode writer implementation.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "ValueEnumerator.h"
16 #include "llvm/ADT/Triple.h"
17 #include "llvm/Bitcode/BitstreamWriter.h"
18 #include "llvm/Bitcode/LLVMBitCodes.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/InlineAsm.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/UseListOrder.h"
27 #include "llvm/IR/ValueSymbolTable.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Support/Program.h"
32 #include "llvm/Support/raw_ostream.h"
37 /// These are manifest constants used by the bitcode writer. They do not need to
38 /// be kept in sync with the reader, but need to be consistent within this file.
40 // VALUE_SYMTAB_BLOCK abbrev id's.
41 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
46 // CONSTANTS_BLOCK abbrev id's.
47 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
48 CONSTANTS_INTEGER_ABBREV,
49 CONSTANTS_CE_CAST_Abbrev,
50 CONSTANTS_NULL_Abbrev,
52 // FUNCTION_BLOCK abbrev id's.
53 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
54 FUNCTION_INST_BINOP_ABBREV,
55 FUNCTION_INST_BINOP_FLAGS_ABBREV,
56 FUNCTION_INST_CAST_ABBREV,
57 FUNCTION_INST_RET_VOID_ABBREV,
58 FUNCTION_INST_RET_VAL_ABBREV,
59 FUNCTION_INST_UNREACHABLE_ABBREV,
60 FUNCTION_INST_GEP_ABBREV,
63 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
65 default: llvm_unreachable("Unknown cast instruction!");
66 case Instruction::Trunc : return bitc::CAST_TRUNC;
67 case Instruction::ZExt : return bitc::CAST_ZEXT;
68 case Instruction::SExt : return bitc::CAST_SEXT;
69 case Instruction::FPToUI : return bitc::CAST_FPTOUI;
70 case Instruction::FPToSI : return bitc::CAST_FPTOSI;
71 case Instruction::UIToFP : return bitc::CAST_UITOFP;
72 case Instruction::SIToFP : return bitc::CAST_SITOFP;
73 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
74 case Instruction::FPExt : return bitc::CAST_FPEXT;
75 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
76 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
77 case Instruction::BitCast : return bitc::CAST_BITCAST;
78 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
82 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
84 default: llvm_unreachable("Unknown binary instruction!");
85 case Instruction::Add:
86 case Instruction::FAdd: return bitc::BINOP_ADD;
87 case Instruction::Sub:
88 case Instruction::FSub: return bitc::BINOP_SUB;
89 case Instruction::Mul:
90 case Instruction::FMul: return bitc::BINOP_MUL;
91 case Instruction::UDiv: return bitc::BINOP_UDIV;
92 case Instruction::FDiv:
93 case Instruction::SDiv: return bitc::BINOP_SDIV;
94 case Instruction::URem: return bitc::BINOP_UREM;
95 case Instruction::FRem:
96 case Instruction::SRem: return bitc::BINOP_SREM;
97 case Instruction::Shl: return bitc::BINOP_SHL;
98 case Instruction::LShr: return bitc::BINOP_LSHR;
99 case Instruction::AShr: return bitc::BINOP_ASHR;
100 case Instruction::And: return bitc::BINOP_AND;
101 case Instruction::Or: return bitc::BINOP_OR;
102 case Instruction::Xor: return bitc::BINOP_XOR;
106 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
108 default: llvm_unreachable("Unknown RMW operation!");
109 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
110 case AtomicRMWInst::Add: return bitc::RMW_ADD;
111 case AtomicRMWInst::Sub: return bitc::RMW_SUB;
112 case AtomicRMWInst::And: return bitc::RMW_AND;
113 case AtomicRMWInst::Nand: return bitc::RMW_NAND;
114 case AtomicRMWInst::Or: return bitc::RMW_OR;
115 case AtomicRMWInst::Xor: return bitc::RMW_XOR;
116 case AtomicRMWInst::Max: return bitc::RMW_MAX;
117 case AtomicRMWInst::Min: return bitc::RMW_MIN;
118 case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
119 case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
123 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
125 case NotAtomic: return bitc::ORDERING_NOTATOMIC;
126 case Unordered: return bitc::ORDERING_UNORDERED;
127 case Monotonic: return bitc::ORDERING_MONOTONIC;
128 case Acquire: return bitc::ORDERING_ACQUIRE;
129 case Release: return bitc::ORDERING_RELEASE;
130 case AcquireRelease: return bitc::ORDERING_ACQREL;
131 case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
133 llvm_unreachable("Invalid ordering");
136 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
137 switch (SynchScope) {
138 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
139 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
141 llvm_unreachable("Invalid synch scope");
144 static void WriteStringRecord(unsigned Code, StringRef Str,
145 unsigned AbbrevToUse, BitstreamWriter &Stream) {
146 SmallVector<unsigned, 64> Vals;
148 // Code: [strchar x N]
149 for (unsigned i = 0, e = Str.size(); i != e; ++i) {
150 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
152 Vals.push_back(Str[i]);
155 // Emit the finished record.
156 Stream.EmitRecord(Code, Vals, AbbrevToUse);
159 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
161 case Attribute::Alignment:
162 return bitc::ATTR_KIND_ALIGNMENT;
163 case Attribute::AlwaysInline:
164 return bitc::ATTR_KIND_ALWAYS_INLINE;
165 case Attribute::ArgMemOnly:
166 return bitc::ATTR_KIND_ARGMEMONLY;
167 case Attribute::Builtin:
168 return bitc::ATTR_KIND_BUILTIN;
169 case Attribute::ByVal:
170 return bitc::ATTR_KIND_BY_VAL;
171 case Attribute::Convergent:
172 return bitc::ATTR_KIND_CONVERGENT;
173 case Attribute::InAlloca:
174 return bitc::ATTR_KIND_IN_ALLOCA;
175 case Attribute::Cold:
176 return bitc::ATTR_KIND_COLD;
177 case Attribute::InlineHint:
178 return bitc::ATTR_KIND_INLINE_HINT;
179 case Attribute::InReg:
180 return bitc::ATTR_KIND_IN_REG;
181 case Attribute::JumpTable:
182 return bitc::ATTR_KIND_JUMP_TABLE;
183 case Attribute::MinSize:
184 return bitc::ATTR_KIND_MIN_SIZE;
185 case Attribute::Naked:
186 return bitc::ATTR_KIND_NAKED;
187 case Attribute::Nest:
188 return bitc::ATTR_KIND_NEST;
189 case Attribute::NoAlias:
190 return bitc::ATTR_KIND_NO_ALIAS;
191 case Attribute::NoBuiltin:
192 return bitc::ATTR_KIND_NO_BUILTIN;
193 case Attribute::NoCapture:
194 return bitc::ATTR_KIND_NO_CAPTURE;
195 case Attribute::NoDuplicate:
196 return bitc::ATTR_KIND_NO_DUPLICATE;
197 case Attribute::NoImplicitFloat:
198 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
199 case Attribute::NoInline:
200 return bitc::ATTR_KIND_NO_INLINE;
201 case Attribute::NonLazyBind:
202 return bitc::ATTR_KIND_NON_LAZY_BIND;
203 case Attribute::NonNull:
204 return bitc::ATTR_KIND_NON_NULL;
205 case Attribute::Dereferenceable:
206 return bitc::ATTR_KIND_DEREFERENCEABLE;
207 case Attribute::DereferenceableOrNull:
208 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
209 case Attribute::NoRedZone:
210 return bitc::ATTR_KIND_NO_RED_ZONE;
211 case Attribute::NoReturn:
212 return bitc::ATTR_KIND_NO_RETURN;
213 case Attribute::NoUnwind:
214 return bitc::ATTR_KIND_NO_UNWIND;
215 case Attribute::OptimizeForSize:
216 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
217 case Attribute::OptimizeNone:
218 return bitc::ATTR_KIND_OPTIMIZE_NONE;
219 case Attribute::ReadNone:
220 return bitc::ATTR_KIND_READ_NONE;
221 case Attribute::ReadOnly:
222 return bitc::ATTR_KIND_READ_ONLY;
223 case Attribute::Returned:
224 return bitc::ATTR_KIND_RETURNED;
225 case Attribute::ReturnsTwice:
226 return bitc::ATTR_KIND_RETURNS_TWICE;
227 case Attribute::SExt:
228 return bitc::ATTR_KIND_S_EXT;
229 case Attribute::StackAlignment:
230 return bitc::ATTR_KIND_STACK_ALIGNMENT;
231 case Attribute::StackProtect:
232 return bitc::ATTR_KIND_STACK_PROTECT;
233 case Attribute::StackProtectReq:
234 return bitc::ATTR_KIND_STACK_PROTECT_REQ;
235 case Attribute::StackProtectStrong:
236 return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
237 case Attribute::SafeStack:
238 return bitc::ATTR_KIND_SAFESTACK;
239 case Attribute::StructRet:
240 return bitc::ATTR_KIND_STRUCT_RET;
241 case Attribute::SanitizeAddress:
242 return bitc::ATTR_KIND_SANITIZE_ADDRESS;
243 case Attribute::SanitizeThread:
244 return bitc::ATTR_KIND_SANITIZE_THREAD;
245 case Attribute::SanitizeMemory:
246 return bitc::ATTR_KIND_SANITIZE_MEMORY;
247 case Attribute::UWTable:
248 return bitc::ATTR_KIND_UW_TABLE;
249 case Attribute::ZExt:
250 return bitc::ATTR_KIND_Z_EXT;
251 case Attribute::EndAttrKinds:
252 llvm_unreachable("Can not encode end-attribute kinds marker.");
253 case Attribute::None:
254 llvm_unreachable("Can not encode none-attribute.");
257 llvm_unreachable("Trying to encode unknown attribute");
260 static void WriteAttributeGroupTable(const ValueEnumerator &VE,
261 BitstreamWriter &Stream) {
262 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
263 if (AttrGrps.empty()) return;
265 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
267 SmallVector<uint64_t, 64> Record;
268 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
269 AttributeSet AS = AttrGrps[i];
270 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
271 AttributeSet A = AS.getSlotAttributes(i);
273 Record.push_back(VE.getAttributeGroupID(A));
274 Record.push_back(AS.getSlotIndex(i));
276 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
279 if (Attr.isEnumAttribute()) {
281 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
282 } else if (Attr.isIntAttribute()) {
284 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
285 Record.push_back(Attr.getValueAsInt());
287 StringRef Kind = Attr.getKindAsString();
288 StringRef Val = Attr.getValueAsString();
290 Record.push_back(Val.empty() ? 3 : 4);
291 Record.append(Kind.begin(), Kind.end());
294 Record.append(Val.begin(), Val.end());
300 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
308 static void WriteAttributeTable(const ValueEnumerator &VE,
309 BitstreamWriter &Stream) {
310 const std::vector<AttributeSet> &Attrs = VE.getAttributes();
311 if (Attrs.empty()) return;
313 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
315 SmallVector<uint64_t, 64> Record;
316 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
317 const AttributeSet &A = Attrs[i];
318 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
319 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
321 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
328 /// WriteTypeTable - Write out the type table for a module.
329 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
330 const ValueEnumerator::TypeList &TypeList = VE.getTypes();
332 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
333 SmallVector<uint64_t, 64> TypeVals;
335 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
337 // Abbrev for TYPE_CODE_POINTER.
338 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
339 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
341 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
342 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
344 // Abbrev for TYPE_CODE_FUNCTION.
345 Abbv = new BitCodeAbbrev();
346 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
351 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
353 // Abbrev for TYPE_CODE_STRUCT_ANON.
354 Abbv = new BitCodeAbbrev();
355 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
360 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
362 // Abbrev for TYPE_CODE_STRUCT_NAME.
363 Abbv = new BitCodeAbbrev();
364 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
367 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
369 // Abbrev for TYPE_CODE_STRUCT_NAMED.
370 Abbv = new BitCodeAbbrev();
371 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
376 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
378 // Abbrev for TYPE_CODE_ARRAY.
379 Abbv = new BitCodeAbbrev();
380 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
384 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
386 // Emit an entry count so the reader can reserve space.
387 TypeVals.push_back(TypeList.size());
388 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
391 // Loop over all of the types, emitting each in turn.
392 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
393 Type *T = TypeList[i];
397 switch (T->getTypeID()) {
398 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
399 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break;
400 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
401 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
402 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
403 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
404 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
405 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
406 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
407 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break;
408 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break;
409 case Type::IntegerTyID:
411 Code = bitc::TYPE_CODE_INTEGER;
412 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
414 case Type::PointerTyID: {
415 PointerType *PTy = cast<PointerType>(T);
416 // POINTER: [pointee type, address space]
417 Code = bitc::TYPE_CODE_POINTER;
418 TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
419 unsigned AddressSpace = PTy->getAddressSpace();
420 TypeVals.push_back(AddressSpace);
421 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
424 case Type::FunctionTyID: {
425 FunctionType *FT = cast<FunctionType>(T);
426 // FUNCTION: [isvararg, retty, paramty x N]
427 Code = bitc::TYPE_CODE_FUNCTION;
428 TypeVals.push_back(FT->isVarArg());
429 TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
430 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
431 TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
432 AbbrevToUse = FunctionAbbrev;
435 case Type::StructTyID: {
436 StructType *ST = cast<StructType>(T);
437 // STRUCT: [ispacked, eltty x N]
438 TypeVals.push_back(ST->isPacked());
439 // Output all of the element types.
440 for (StructType::element_iterator I = ST->element_begin(),
441 E = ST->element_end(); I != E; ++I)
442 TypeVals.push_back(VE.getTypeID(*I));
444 if (ST->isLiteral()) {
445 Code = bitc::TYPE_CODE_STRUCT_ANON;
446 AbbrevToUse = StructAnonAbbrev;
448 if (ST->isOpaque()) {
449 Code = bitc::TYPE_CODE_OPAQUE;
451 Code = bitc::TYPE_CODE_STRUCT_NAMED;
452 AbbrevToUse = StructNamedAbbrev;
455 // Emit the name if it is present.
456 if (!ST->getName().empty())
457 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
458 StructNameAbbrev, Stream);
462 case Type::ArrayTyID: {
463 ArrayType *AT = cast<ArrayType>(T);
464 // ARRAY: [numelts, eltty]
465 Code = bitc::TYPE_CODE_ARRAY;
466 TypeVals.push_back(AT->getNumElements());
467 TypeVals.push_back(VE.getTypeID(AT->getElementType()));
468 AbbrevToUse = ArrayAbbrev;
471 case Type::VectorTyID: {
472 VectorType *VT = cast<VectorType>(T);
473 // VECTOR [numelts, eltty]
474 Code = bitc::TYPE_CODE_VECTOR;
475 TypeVals.push_back(VT->getNumElements());
476 TypeVals.push_back(VE.getTypeID(VT->getElementType()));
481 // Emit the finished record.
482 Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
489 static unsigned getEncodedLinkage(const GlobalValue &GV) {
490 switch (GV.getLinkage()) {
491 case GlobalValue::ExternalLinkage:
493 case GlobalValue::WeakAnyLinkage:
495 case GlobalValue::AppendingLinkage:
497 case GlobalValue::InternalLinkage:
499 case GlobalValue::LinkOnceAnyLinkage:
501 case GlobalValue::ExternalWeakLinkage:
503 case GlobalValue::CommonLinkage:
505 case GlobalValue::PrivateLinkage:
507 case GlobalValue::WeakODRLinkage:
509 case GlobalValue::LinkOnceODRLinkage:
511 case GlobalValue::AvailableExternallyLinkage:
514 llvm_unreachable("Invalid linkage");
517 static unsigned getEncodedVisibility(const GlobalValue &GV) {
518 switch (GV.getVisibility()) {
519 case GlobalValue::DefaultVisibility: return 0;
520 case GlobalValue::HiddenVisibility: return 1;
521 case GlobalValue::ProtectedVisibility: return 2;
523 llvm_unreachable("Invalid visibility");
526 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
527 switch (GV.getDLLStorageClass()) {
528 case GlobalValue::DefaultStorageClass: return 0;
529 case GlobalValue::DLLImportStorageClass: return 1;
530 case GlobalValue::DLLExportStorageClass: return 2;
532 llvm_unreachable("Invalid DLL storage class");
535 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
536 switch (GV.getThreadLocalMode()) {
537 case GlobalVariable::NotThreadLocal: return 0;
538 case GlobalVariable::GeneralDynamicTLSModel: return 1;
539 case GlobalVariable::LocalDynamicTLSModel: return 2;
540 case GlobalVariable::InitialExecTLSModel: return 3;
541 case GlobalVariable::LocalExecTLSModel: return 4;
543 llvm_unreachable("Invalid TLS model");
546 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
547 switch (C.getSelectionKind()) {
549 return bitc::COMDAT_SELECTION_KIND_ANY;
550 case Comdat::ExactMatch:
551 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
552 case Comdat::Largest:
553 return bitc::COMDAT_SELECTION_KIND_LARGEST;
554 case Comdat::NoDuplicates:
555 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
556 case Comdat::SameSize:
557 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
559 llvm_unreachable("Invalid selection kind");
562 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) {
563 SmallVector<uint16_t, 64> Vals;
564 for (const Comdat *C : VE.getComdats()) {
565 // COMDAT: [selection_kind, name]
566 Vals.push_back(getEncodedComdatSelectionKind(*C));
567 size_t Size = C->getName().size();
568 assert(isUInt<16>(Size));
569 Vals.push_back(Size);
570 for (char Chr : C->getName())
571 Vals.push_back((unsigned char)Chr);
572 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
577 // Emit top-level description of module, including target triple, inline asm,
578 // descriptors for global variables, and function prototype info.
579 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
580 BitstreamWriter &Stream) {
581 // Emit various pieces of data attached to a module.
582 if (!M->getTargetTriple().empty())
583 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
585 const std::string &DL = M->getDataLayoutStr();
587 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream);
588 if (!M->getModuleInlineAsm().empty())
589 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
592 // Emit information about sections and GC, computing how many there are. Also
593 // compute the maximum alignment value.
594 std::map<std::string, unsigned> SectionMap;
595 std::map<std::string, unsigned> GCMap;
596 unsigned MaxAlignment = 0;
597 unsigned MaxGlobalType = 0;
598 for (const GlobalValue &GV : M->globals()) {
599 MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
600 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
601 if (GV.hasSection()) {
602 // Give section names unique ID's.
603 unsigned &Entry = SectionMap[GV.getSection()];
605 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
607 Entry = SectionMap.size();
611 for (const Function &F : *M) {
612 MaxAlignment = std::max(MaxAlignment, F.getAlignment());
613 if (F.hasSection()) {
614 // Give section names unique ID's.
615 unsigned &Entry = SectionMap[F.getSection()];
617 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
619 Entry = SectionMap.size();
623 // Same for GC names.
624 unsigned &Entry = GCMap[F.getGC()];
626 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(),
628 Entry = GCMap.size();
633 // Emit abbrev for globals, now that we know # sections and max alignment.
634 unsigned SimpleGVarAbbrev = 0;
635 if (!M->global_empty()) {
636 // Add an abbrev for common globals with no visibility or thread localness.
637 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
638 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
639 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
640 Log2_32_Ceil(MaxGlobalType+1)));
641 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2
642 //| explicitType << 1
644 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
645 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
646 if (MaxAlignment == 0) // Alignment.
647 Abbv->Add(BitCodeAbbrevOp(0));
649 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
650 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
651 Log2_32_Ceil(MaxEncAlignment+1)));
653 if (SectionMap.empty()) // Section.
654 Abbv->Add(BitCodeAbbrevOp(0));
656 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
657 Log2_32_Ceil(SectionMap.size()+1)));
658 // Don't bother emitting vis + thread local.
659 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
662 // Emit the global variable information.
663 SmallVector<unsigned, 64> Vals;
664 for (const GlobalVariable &GV : M->globals()) {
665 unsigned AbbrevToUse = 0;
667 // GLOBALVAR: [type, isconst, initid,
668 // linkage, alignment, section, visibility, threadlocal,
669 // unnamed_addr, externally_initialized, dllstorageclass,
671 Vals.push_back(VE.getTypeID(GV.getValueType()));
672 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
673 Vals.push_back(GV.isDeclaration() ? 0 :
674 (VE.getValueID(GV.getInitializer()) + 1));
675 Vals.push_back(getEncodedLinkage(GV));
676 Vals.push_back(Log2_32(GV.getAlignment())+1);
677 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
678 if (GV.isThreadLocal() ||
679 GV.getVisibility() != GlobalValue::DefaultVisibility ||
680 GV.hasUnnamedAddr() || GV.isExternallyInitialized() ||
681 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
683 Vals.push_back(getEncodedVisibility(GV));
684 Vals.push_back(getEncodedThreadLocalMode(GV));
685 Vals.push_back(GV.hasUnnamedAddr());
686 Vals.push_back(GV.isExternallyInitialized());
687 Vals.push_back(getEncodedDLLStorageClass(GV));
688 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
690 AbbrevToUse = SimpleGVarAbbrev;
693 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
697 // Emit the function proto information.
698 for (const Function &F : *M) {
699 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment,
700 // section, visibility, gc, unnamed_addr, prologuedata,
701 // dllstorageclass, comdat, prefixdata, personalityfn]
702 Vals.push_back(VE.getTypeID(F.getFunctionType()));
703 Vals.push_back(F.getCallingConv());
704 Vals.push_back(F.isDeclaration());
705 Vals.push_back(getEncodedLinkage(F));
706 Vals.push_back(VE.getAttributeID(F.getAttributes()));
707 Vals.push_back(Log2_32(F.getAlignment())+1);
708 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
709 Vals.push_back(getEncodedVisibility(F));
710 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
711 Vals.push_back(F.hasUnnamedAddr());
712 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
714 Vals.push_back(getEncodedDLLStorageClass(F));
715 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
716 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
719 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
721 unsigned AbbrevToUse = 0;
722 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
726 // Emit the alias information.
727 for (const GlobalAlias &A : M->aliases()) {
728 // ALIAS: [alias type, aliasee val#, linkage, visibility]
729 Vals.push_back(VE.getTypeID(A.getType()));
730 Vals.push_back(VE.getValueID(A.getAliasee()));
731 Vals.push_back(getEncodedLinkage(A));
732 Vals.push_back(getEncodedVisibility(A));
733 Vals.push_back(getEncodedDLLStorageClass(A));
734 Vals.push_back(getEncodedThreadLocalMode(A));
735 Vals.push_back(A.hasUnnamedAddr());
736 unsigned AbbrevToUse = 0;
737 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
742 static uint64_t GetOptimizationFlags(const Value *V) {
745 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
746 if (OBO->hasNoSignedWrap())
747 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
748 if (OBO->hasNoUnsignedWrap())
749 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
750 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
752 Flags |= 1 << bitc::PEO_EXACT;
753 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
754 if (FPMO->hasUnsafeAlgebra())
755 Flags |= FastMathFlags::UnsafeAlgebra;
756 if (FPMO->hasNoNaNs())
757 Flags |= FastMathFlags::NoNaNs;
758 if (FPMO->hasNoInfs())
759 Flags |= FastMathFlags::NoInfs;
760 if (FPMO->hasNoSignedZeros())
761 Flags |= FastMathFlags::NoSignedZeros;
762 if (FPMO->hasAllowReciprocal())
763 Flags |= FastMathFlags::AllowReciprocal;
769 static void WriteValueAsMetadata(const ValueAsMetadata *MD,
770 const ValueEnumerator &VE,
771 BitstreamWriter &Stream,
772 SmallVectorImpl<uint64_t> &Record) {
773 // Mimic an MDNode with a value as one operand.
774 Value *V = MD->getValue();
775 Record.push_back(VE.getTypeID(V->getType()));
776 Record.push_back(VE.getValueID(V));
777 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
781 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE,
782 BitstreamWriter &Stream,
783 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
784 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
785 Metadata *MD = N->getOperand(i);
786 assert(!(MD && isa<LocalAsMetadata>(MD)) &&
787 "Unexpected function-local metadata");
788 Record.push_back(VE.getMetadataOrNullID(MD));
790 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
791 : bitc::METADATA_NODE,
796 static void WriteDILocation(const DILocation *N, const ValueEnumerator &VE,
797 BitstreamWriter &Stream,
798 SmallVectorImpl<uint64_t> &Record,
800 Record.push_back(N->isDistinct());
801 Record.push_back(N->getLine());
802 Record.push_back(N->getColumn());
803 Record.push_back(VE.getMetadataID(N->getScope()));
804 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
806 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
810 static void WriteGenericDINode(const GenericDINode *N,
811 const ValueEnumerator &VE,
812 BitstreamWriter &Stream,
813 SmallVectorImpl<uint64_t> &Record,
815 Record.push_back(N->isDistinct());
816 Record.push_back(N->getTag());
817 Record.push_back(0); // Per-tag version field; unused for now.
819 for (auto &I : N->operands())
820 Record.push_back(VE.getMetadataOrNullID(I));
822 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
826 static uint64_t rotateSign(int64_t I) {
828 return I < 0 ? ~(U << 1) : U << 1;
831 static void WriteDISubrange(const DISubrange *N, const ValueEnumerator &,
832 BitstreamWriter &Stream,
833 SmallVectorImpl<uint64_t> &Record,
835 Record.push_back(N->isDistinct());
836 Record.push_back(N->getCount());
837 Record.push_back(rotateSign(N->getLowerBound()));
839 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
843 static void WriteDIEnumerator(const DIEnumerator *N, const ValueEnumerator &VE,
844 BitstreamWriter &Stream,
845 SmallVectorImpl<uint64_t> &Record,
847 Record.push_back(N->isDistinct());
848 Record.push_back(rotateSign(N->getValue()));
849 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
851 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
855 static void WriteDIBasicType(const DIBasicType *N, const ValueEnumerator &VE,
856 BitstreamWriter &Stream,
857 SmallVectorImpl<uint64_t> &Record,
859 Record.push_back(N->isDistinct());
860 Record.push_back(N->getTag());
861 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
862 Record.push_back(N->getSizeInBits());
863 Record.push_back(N->getAlignInBits());
864 Record.push_back(N->getEncoding());
866 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
870 static void WriteDIDerivedType(const DIDerivedType *N,
871 const ValueEnumerator &VE,
872 BitstreamWriter &Stream,
873 SmallVectorImpl<uint64_t> &Record,
875 Record.push_back(N->isDistinct());
876 Record.push_back(N->getTag());
877 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
878 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
879 Record.push_back(N->getLine());
880 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
881 Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
882 Record.push_back(N->getSizeInBits());
883 Record.push_back(N->getAlignInBits());
884 Record.push_back(N->getOffsetInBits());
885 Record.push_back(N->getFlags());
886 Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
888 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
892 static void WriteDICompositeType(const DICompositeType *N,
893 const ValueEnumerator &VE,
894 BitstreamWriter &Stream,
895 SmallVectorImpl<uint64_t> &Record,
897 Record.push_back(N->isDistinct());
898 Record.push_back(N->getTag());
899 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
900 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
901 Record.push_back(N->getLine());
902 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
903 Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
904 Record.push_back(N->getSizeInBits());
905 Record.push_back(N->getAlignInBits());
906 Record.push_back(N->getOffsetInBits());
907 Record.push_back(N->getFlags());
908 Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
909 Record.push_back(N->getRuntimeLang());
910 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
911 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
912 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
914 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
918 static void WriteDISubroutineType(const DISubroutineType *N,
919 const ValueEnumerator &VE,
920 BitstreamWriter &Stream,
921 SmallVectorImpl<uint64_t> &Record,
923 Record.push_back(N->isDistinct());
924 Record.push_back(N->getFlags());
925 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
927 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
931 static void WriteDIFile(const DIFile *N, const ValueEnumerator &VE,
932 BitstreamWriter &Stream,
933 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
934 Record.push_back(N->isDistinct());
935 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
936 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
938 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
942 static void WriteDICompileUnit(const DICompileUnit *N,
943 const ValueEnumerator &VE,
944 BitstreamWriter &Stream,
945 SmallVectorImpl<uint64_t> &Record,
947 assert(N->isDistinct() && "Expected distinct compile units");
948 Record.push_back(/* IsDistinct */ true);
949 Record.push_back(N->getSourceLanguage());
950 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
951 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
952 Record.push_back(N->isOptimized());
953 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
954 Record.push_back(N->getRuntimeVersion());
955 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
956 Record.push_back(N->getEmissionKind());
957 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
958 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
959 Record.push_back(VE.getMetadataOrNullID(N->getSubprograms().get()));
960 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
961 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
962 Record.push_back(N->getDWOId());
964 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
968 static void WriteDISubprogram(const DISubprogram *N, const ValueEnumerator &VE,
969 BitstreamWriter &Stream,
970 SmallVectorImpl<uint64_t> &Record,
972 Record.push_back(N->isDistinct());
973 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
974 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
975 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
976 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
977 Record.push_back(N->getLine());
978 Record.push_back(VE.getMetadataOrNullID(N->getType()));
979 Record.push_back(N->isLocalToUnit());
980 Record.push_back(N->isDefinition());
981 Record.push_back(N->getScopeLine());
982 Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
983 Record.push_back(N->getVirtuality());
984 Record.push_back(N->getVirtualIndex());
985 Record.push_back(N->getFlags());
986 Record.push_back(N->isOptimized());
987 Record.push_back(VE.getMetadataOrNullID(N->getRawFunction()));
988 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
989 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
990 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get()));
992 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
996 static void WriteDILexicalBlock(const DILexicalBlock *N,
997 const ValueEnumerator &VE,
998 BitstreamWriter &Stream,
999 SmallVectorImpl<uint64_t> &Record,
1001 Record.push_back(N->isDistinct());
1002 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1003 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1004 Record.push_back(N->getLine());
1005 Record.push_back(N->getColumn());
1007 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1011 static void WriteDILexicalBlockFile(const DILexicalBlockFile *N,
1012 const ValueEnumerator &VE,
1013 BitstreamWriter &Stream,
1014 SmallVectorImpl<uint64_t> &Record,
1016 Record.push_back(N->isDistinct());
1017 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1018 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1019 Record.push_back(N->getDiscriminator());
1021 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1025 static void WriteDINamespace(const DINamespace *N, const ValueEnumerator &VE,
1026 BitstreamWriter &Stream,
1027 SmallVectorImpl<uint64_t> &Record,
1029 Record.push_back(N->isDistinct());
1030 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1031 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1032 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1033 Record.push_back(N->getLine());
1035 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1039 static void WriteDIModule(const DIModule *N, const ValueEnumerator &VE,
1040 BitstreamWriter &Stream,
1041 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
1042 Record.push_back(N->isDistinct());
1043 for (auto &I : N->operands())
1044 Record.push_back(VE.getMetadataOrNullID(I));
1046 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1050 static void WriteDITemplateTypeParameter(const DITemplateTypeParameter *N,
1051 const ValueEnumerator &VE,
1052 BitstreamWriter &Stream,
1053 SmallVectorImpl<uint64_t> &Record,
1055 Record.push_back(N->isDistinct());
1056 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1057 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1059 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1063 static void WriteDITemplateValueParameter(const DITemplateValueParameter *N,
1064 const ValueEnumerator &VE,
1065 BitstreamWriter &Stream,
1066 SmallVectorImpl<uint64_t> &Record,
1068 Record.push_back(N->isDistinct());
1069 Record.push_back(N->getTag());
1070 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1071 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1072 Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1074 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1078 static void WriteDIGlobalVariable(const DIGlobalVariable *N,
1079 const ValueEnumerator &VE,
1080 BitstreamWriter &Stream,
1081 SmallVectorImpl<uint64_t> &Record,
1083 Record.push_back(N->isDistinct());
1084 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1085 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1086 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1087 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1088 Record.push_back(N->getLine());
1089 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1090 Record.push_back(N->isLocalToUnit());
1091 Record.push_back(N->isDefinition());
1092 Record.push_back(VE.getMetadataOrNullID(N->getRawVariable()));
1093 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1095 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1099 static void WriteDILocalVariable(const DILocalVariable *N,
1100 const ValueEnumerator &VE,
1101 BitstreamWriter &Stream,
1102 SmallVectorImpl<uint64_t> &Record,
1104 Record.push_back(N->isDistinct());
1105 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1106 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1107 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1108 Record.push_back(N->getLine());
1109 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1110 Record.push_back(N->getArg());
1111 Record.push_back(N->getFlags());
1113 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1117 static void WriteDIExpression(const DIExpression *N, const ValueEnumerator &,
1118 BitstreamWriter &Stream,
1119 SmallVectorImpl<uint64_t> &Record,
1121 Record.reserve(N->getElements().size() + 1);
1123 Record.push_back(N->isDistinct());
1124 Record.append(N->elements_begin(), N->elements_end());
1126 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1130 static void WriteDIObjCProperty(const DIObjCProperty *N,
1131 const ValueEnumerator &VE,
1132 BitstreamWriter &Stream,
1133 SmallVectorImpl<uint64_t> &Record,
1135 Record.push_back(N->isDistinct());
1136 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1137 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1138 Record.push_back(N->getLine());
1139 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
1140 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
1141 Record.push_back(N->getAttributes());
1142 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1144 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
1148 static void WriteDIImportedEntity(const DIImportedEntity *N,
1149 const ValueEnumerator &VE,
1150 BitstreamWriter &Stream,
1151 SmallVectorImpl<uint64_t> &Record,
1153 Record.push_back(N->isDistinct());
1154 Record.push_back(N->getTag());
1155 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1156 Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1157 Record.push_back(N->getLine());
1158 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1160 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1164 static void WriteModuleMetadata(const Module *M,
1165 const ValueEnumerator &VE,
1166 BitstreamWriter &Stream) {
1167 const auto &MDs = VE.getMDs();
1168 if (MDs.empty() && M->named_metadata_empty())
1171 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1173 unsigned MDSAbbrev = 0;
1174 if (VE.hasMDString()) {
1175 // Abbrev for METADATA_STRING.
1176 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1177 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
1178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1180 MDSAbbrev = Stream.EmitAbbrev(Abbv);
1183 // Initialize MDNode abbreviations.
1184 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1185 #include "llvm/IR/Metadata.def"
1187 if (VE.hasDILocation()) {
1188 // Abbrev for METADATA_LOCATION.
1190 // Assume the column is usually under 128, and always output the inlined-at
1191 // location (it's never more expensive than building an array size 1).
1192 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1193 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1194 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1195 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1197 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1198 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1199 DILocationAbbrev = Stream.EmitAbbrev(Abbv);
1202 if (VE.hasGenericDINode()) {
1203 // Abbrev for METADATA_GENERIC_DEBUG.
1205 // Assume the column is usually under 128, and always output the inlined-at
1206 // location (it's never more expensive than building an array size 1).
1207 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1208 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1209 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1210 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1211 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1214 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1215 GenericDINodeAbbrev = Stream.EmitAbbrev(Abbv);
1218 unsigned NameAbbrev = 0;
1219 if (!M->named_metadata_empty()) {
1220 // Abbrev for METADATA_NAME.
1221 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1222 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1223 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1224 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1225 NameAbbrev = Stream.EmitAbbrev(Abbv);
1228 SmallVector<uint64_t, 64> Record;
1229 for (const Metadata *MD : MDs) {
1230 if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1231 assert(N->isResolved() && "Expected forward references to be resolved");
1233 switch (N->getMetadataID()) {
1235 llvm_unreachable("Invalid MDNode subclass");
1236 #define HANDLE_MDNODE_LEAF(CLASS) \
1237 case Metadata::CLASS##Kind: \
1238 Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \
1240 #include "llvm/IR/Metadata.def"
1243 if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) {
1244 WriteValueAsMetadata(MDC, VE, Stream, Record);
1247 const MDString *MDS = cast<MDString>(MD);
1248 // Code: [strchar x N]
1249 Record.append(MDS->bytes_begin(), MDS->bytes_end());
1251 // Emit the finished record.
1252 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
1256 // Write named metadata.
1257 for (const NamedMDNode &NMD : M->named_metadata()) {
1259 StringRef Str = NMD.getName();
1260 Record.append(Str.bytes_begin(), Str.bytes_end());
1261 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev);
1264 // Write named metadata operands.
1265 for (const MDNode *N : NMD.operands())
1266 Record.push_back(VE.getMetadataID(N));
1267 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1274 static void WriteFunctionLocalMetadata(const Function &F,
1275 const ValueEnumerator &VE,
1276 BitstreamWriter &Stream) {
1277 bool StartedMetadataBlock = false;
1278 SmallVector<uint64_t, 64> Record;
1279 const SmallVectorImpl<const LocalAsMetadata *> &MDs =
1280 VE.getFunctionLocalMDs();
1281 for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1282 assert(MDs[i] && "Expected valid function-local metadata");
1283 if (!StartedMetadataBlock) {
1284 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1285 StartedMetadataBlock = true;
1287 WriteValueAsMetadata(MDs[i], VE, Stream, Record);
1290 if (StartedMetadataBlock)
1294 static void WriteMetadataAttachment(const Function &F,
1295 const ValueEnumerator &VE,
1296 BitstreamWriter &Stream) {
1297 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
1299 SmallVector<uint64_t, 64> Record;
1301 // Write metadata attachments
1302 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
1303 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1304 F.getAllMetadata(MDs);
1306 for (const auto &I : MDs) {
1307 Record.push_back(I.first);
1308 Record.push_back(VE.getMetadataID(I.second));
1310 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1314 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1315 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1318 I->getAllMetadataOtherThanDebugLoc(MDs);
1320 // If no metadata, ignore instruction.
1321 if (MDs.empty()) continue;
1323 Record.push_back(VE.getInstructionID(I));
1325 for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1326 Record.push_back(MDs[i].first);
1327 Record.push_back(VE.getMetadataID(MDs[i].second));
1329 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1336 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
1337 SmallVector<uint64_t, 64> Record;
1339 // Write metadata kinds
1340 // METADATA_KIND - [n x [id, name]]
1341 SmallVector<StringRef, 8> Names;
1342 M->getMDKindNames(Names);
1344 if (Names.empty()) return;
1346 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1348 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
1349 Record.push_back(MDKindID);
1350 StringRef KName = Names[MDKindID];
1351 Record.append(KName.begin(), KName.end());
1353 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
1360 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
1361 if ((int64_t)V >= 0)
1362 Vals.push_back(V << 1);
1364 Vals.push_back((-V << 1) | 1);
1367 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
1368 const ValueEnumerator &VE,
1369 BitstreamWriter &Stream, bool isGlobal) {
1370 if (FirstVal == LastVal) return;
1372 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
1374 unsigned AggregateAbbrev = 0;
1375 unsigned String8Abbrev = 0;
1376 unsigned CString7Abbrev = 0;
1377 unsigned CString6Abbrev = 0;
1378 // If this is a constant pool for the module, emit module-specific abbrevs.
1380 // Abbrev for CST_CODE_AGGREGATE.
1381 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1382 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
1383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
1385 AggregateAbbrev = Stream.EmitAbbrev(Abbv);
1387 // Abbrev for CST_CODE_STRING.
1388 Abbv = new BitCodeAbbrev();
1389 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
1390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1392 String8Abbrev = Stream.EmitAbbrev(Abbv);
1393 // Abbrev for CST_CODE_CSTRING.
1394 Abbv = new BitCodeAbbrev();
1395 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1396 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1398 CString7Abbrev = Stream.EmitAbbrev(Abbv);
1399 // Abbrev for CST_CODE_CSTRING.
1400 Abbv = new BitCodeAbbrev();
1401 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1402 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1403 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1404 CString6Abbrev = Stream.EmitAbbrev(Abbv);
1407 SmallVector<uint64_t, 64> Record;
1409 const ValueEnumerator::ValueList &Vals = VE.getValues();
1410 Type *LastTy = nullptr;
1411 for (unsigned i = FirstVal; i != LastVal; ++i) {
1412 const Value *V = Vals[i].first;
1413 // If we need to switch types, do so now.
1414 if (V->getType() != LastTy) {
1415 LastTy = V->getType();
1416 Record.push_back(VE.getTypeID(LastTy));
1417 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
1418 CONSTANTS_SETTYPE_ABBREV);
1422 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1423 Record.push_back(unsigned(IA->hasSideEffects()) |
1424 unsigned(IA->isAlignStack()) << 1 |
1425 unsigned(IA->getDialect()&1) << 2);
1427 // Add the asm string.
1428 const std::string &AsmStr = IA->getAsmString();
1429 Record.push_back(AsmStr.size());
1430 Record.append(AsmStr.begin(), AsmStr.end());
1432 // Add the constraint string.
1433 const std::string &ConstraintStr = IA->getConstraintString();
1434 Record.push_back(ConstraintStr.size());
1435 Record.append(ConstraintStr.begin(), ConstraintStr.end());
1436 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
1440 const Constant *C = cast<Constant>(V);
1441 unsigned Code = -1U;
1442 unsigned AbbrevToUse = 0;
1443 if (C->isNullValue()) {
1444 Code = bitc::CST_CODE_NULL;
1445 } else if (isa<UndefValue>(C)) {
1446 Code = bitc::CST_CODE_UNDEF;
1447 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
1448 if (IV->getBitWidth() <= 64) {
1449 uint64_t V = IV->getSExtValue();
1450 emitSignedInt64(Record, V);
1451 Code = bitc::CST_CODE_INTEGER;
1452 AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
1453 } else { // Wide integers, > 64 bits in size.
1454 // We have an arbitrary precision integer value to write whose
1455 // bit width is > 64. However, in canonical unsigned integer
1456 // format it is likely that the high bits are going to be zero.
1457 // So, we only write the number of active words.
1458 unsigned NWords = IV->getValue().getActiveWords();
1459 const uint64_t *RawWords = IV->getValue().getRawData();
1460 for (unsigned i = 0; i != NWords; ++i) {
1461 emitSignedInt64(Record, RawWords[i]);
1463 Code = bitc::CST_CODE_WIDE_INTEGER;
1465 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1466 Code = bitc::CST_CODE_FLOAT;
1467 Type *Ty = CFP->getType();
1468 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
1469 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
1470 } else if (Ty->isX86_FP80Ty()) {
1471 // api needed to prevent premature destruction
1472 // bits are not in the same order as a normal i80 APInt, compensate.
1473 APInt api = CFP->getValueAPF().bitcastToAPInt();
1474 const uint64_t *p = api.getRawData();
1475 Record.push_back((p[1] << 48) | (p[0] >> 16));
1476 Record.push_back(p[0] & 0xffffLL);
1477 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
1478 APInt api = CFP->getValueAPF().bitcastToAPInt();
1479 const uint64_t *p = api.getRawData();
1480 Record.push_back(p[0]);
1481 Record.push_back(p[1]);
1483 assert (0 && "Unknown FP type!");
1485 } else if (isa<ConstantDataSequential>(C) &&
1486 cast<ConstantDataSequential>(C)->isString()) {
1487 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
1488 // Emit constant strings specially.
1489 unsigned NumElts = Str->getNumElements();
1490 // If this is a null-terminated string, use the denser CSTRING encoding.
1491 if (Str->isCString()) {
1492 Code = bitc::CST_CODE_CSTRING;
1493 --NumElts; // Don't encode the null, which isn't allowed by char6.
1495 Code = bitc::CST_CODE_STRING;
1496 AbbrevToUse = String8Abbrev;
1498 bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
1499 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
1500 for (unsigned i = 0; i != NumElts; ++i) {
1501 unsigned char V = Str->getElementAsInteger(i);
1502 Record.push_back(V);
1503 isCStr7 &= (V & 128) == 0;
1505 isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
1509 AbbrevToUse = CString6Abbrev;
1511 AbbrevToUse = CString7Abbrev;
1512 } else if (const ConstantDataSequential *CDS =
1513 dyn_cast<ConstantDataSequential>(C)) {
1514 Code = bitc::CST_CODE_DATA;
1515 Type *EltTy = CDS->getType()->getElementType();
1516 if (isa<IntegerType>(EltTy)) {
1517 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
1518 Record.push_back(CDS->getElementAsInteger(i));
1519 } else if (EltTy->isFloatTy()) {
1520 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1521 union { float F; uint32_t I; };
1522 F = CDS->getElementAsFloat(i);
1523 Record.push_back(I);
1526 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
1527 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1528 union { double F; uint64_t I; };
1529 F = CDS->getElementAsDouble(i);
1530 Record.push_back(I);
1533 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
1534 isa<ConstantVector>(C)) {
1535 Code = bitc::CST_CODE_AGGREGATE;
1536 for (const Value *Op : C->operands())
1537 Record.push_back(VE.getValueID(Op));
1538 AbbrevToUse = AggregateAbbrev;
1539 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1540 switch (CE->getOpcode()) {
1542 if (Instruction::isCast(CE->getOpcode())) {
1543 Code = bitc::CST_CODE_CE_CAST;
1544 Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
1545 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1546 Record.push_back(VE.getValueID(C->getOperand(0)));
1547 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
1549 assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
1550 Code = bitc::CST_CODE_CE_BINOP;
1551 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
1552 Record.push_back(VE.getValueID(C->getOperand(0)));
1553 Record.push_back(VE.getValueID(C->getOperand(1)));
1554 uint64_t Flags = GetOptimizationFlags(CE);
1556 Record.push_back(Flags);
1559 case Instruction::GetElementPtr: {
1560 Code = bitc::CST_CODE_CE_GEP;
1561 const auto *GO = cast<GEPOperator>(C);
1562 if (GO->isInBounds())
1563 Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
1564 Record.push_back(VE.getTypeID(GO->getSourceElementType()));
1565 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
1566 Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
1567 Record.push_back(VE.getValueID(C->getOperand(i)));
1571 case Instruction::Select:
1572 Code = bitc::CST_CODE_CE_SELECT;
1573 Record.push_back(VE.getValueID(C->getOperand(0)));
1574 Record.push_back(VE.getValueID(C->getOperand(1)));
1575 Record.push_back(VE.getValueID(C->getOperand(2)));
1577 case Instruction::ExtractElement:
1578 Code = bitc::CST_CODE_CE_EXTRACTELT;
1579 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1580 Record.push_back(VE.getValueID(C->getOperand(0)));
1581 Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
1582 Record.push_back(VE.getValueID(C->getOperand(1)));
1584 case Instruction::InsertElement:
1585 Code = bitc::CST_CODE_CE_INSERTELT;
1586 Record.push_back(VE.getValueID(C->getOperand(0)));
1587 Record.push_back(VE.getValueID(C->getOperand(1)));
1588 Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
1589 Record.push_back(VE.getValueID(C->getOperand(2)));
1591 case Instruction::ShuffleVector:
1592 // If the return type and argument types are the same, this is a
1593 // standard shufflevector instruction. If the types are different,
1594 // then the shuffle is widening or truncating the input vectors, and
1595 // the argument type must also be encoded.
1596 if (C->getType() == C->getOperand(0)->getType()) {
1597 Code = bitc::CST_CODE_CE_SHUFFLEVEC;
1599 Code = bitc::CST_CODE_CE_SHUFVEC_EX;
1600 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1602 Record.push_back(VE.getValueID(C->getOperand(0)));
1603 Record.push_back(VE.getValueID(C->getOperand(1)));
1604 Record.push_back(VE.getValueID(C->getOperand(2)));
1606 case Instruction::ICmp:
1607 case Instruction::FCmp:
1608 Code = bitc::CST_CODE_CE_CMP;
1609 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1610 Record.push_back(VE.getValueID(C->getOperand(0)));
1611 Record.push_back(VE.getValueID(C->getOperand(1)));
1612 Record.push_back(CE->getPredicate());
1615 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
1616 Code = bitc::CST_CODE_BLOCKADDRESS;
1617 Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
1618 Record.push_back(VE.getValueID(BA->getFunction()));
1619 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
1624 llvm_unreachable("Unknown constant!");
1626 Stream.EmitRecord(Code, Record, AbbrevToUse);
1633 static void WriteModuleConstants(const ValueEnumerator &VE,
1634 BitstreamWriter &Stream) {
1635 const ValueEnumerator::ValueList &Vals = VE.getValues();
1637 // Find the first constant to emit, which is the first non-globalvalue value.
1638 // We know globalvalues have been emitted by WriteModuleInfo.
1639 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1640 if (!isa<GlobalValue>(Vals[i].first)) {
1641 WriteConstants(i, Vals.size(), VE, Stream, true);
1647 /// PushValueAndType - The file has to encode both the value and type id for
1648 /// many values, because we need to know what type to create for forward
1649 /// references. However, most operands are not forward references, so this type
1650 /// field is not needed.
1652 /// This function adds V's value ID to Vals. If the value ID is higher than the
1653 /// instruction ID, then it is a forward reference, and it also includes the
1654 /// type ID. The value ID that is written is encoded relative to the InstID.
1655 static bool PushValueAndType(const Value *V, unsigned InstID,
1656 SmallVectorImpl<unsigned> &Vals,
1657 ValueEnumerator &VE) {
1658 unsigned ValID = VE.getValueID(V);
1659 // Make encoding relative to the InstID.
1660 Vals.push_back(InstID - ValID);
1661 if (ValID >= InstID) {
1662 Vals.push_back(VE.getTypeID(V->getType()));
1668 /// pushValue - Like PushValueAndType, but where the type of the value is
1669 /// omitted (perhaps it was already encoded in an earlier operand).
1670 static void pushValue(const Value *V, unsigned InstID,
1671 SmallVectorImpl<unsigned> &Vals,
1672 ValueEnumerator &VE) {
1673 unsigned ValID = VE.getValueID(V);
1674 Vals.push_back(InstID - ValID);
1677 static void pushValueSigned(const Value *V, unsigned InstID,
1678 SmallVectorImpl<uint64_t> &Vals,
1679 ValueEnumerator &VE) {
1680 unsigned ValID = VE.getValueID(V);
1681 int64_t diff = ((int32_t)InstID - (int32_t)ValID);
1682 emitSignedInt64(Vals, diff);
1685 /// WriteInstruction - Emit an instruction to the specified stream.
1686 static void WriteInstruction(const Instruction &I, unsigned InstID,
1687 ValueEnumerator &VE, BitstreamWriter &Stream,
1688 SmallVectorImpl<unsigned> &Vals) {
1690 unsigned AbbrevToUse = 0;
1691 VE.setInstructionID(&I);
1692 switch (I.getOpcode()) {
1694 if (Instruction::isCast(I.getOpcode())) {
1695 Code = bitc::FUNC_CODE_INST_CAST;
1696 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1697 AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
1698 Vals.push_back(VE.getTypeID(I.getType()));
1699 Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
1701 assert(isa<BinaryOperator>(I) && "Unknown instruction!");
1702 Code = bitc::FUNC_CODE_INST_BINOP;
1703 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1704 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
1705 pushValue(I.getOperand(1), InstID, Vals, VE);
1706 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
1707 uint64_t Flags = GetOptimizationFlags(&I);
1709 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
1710 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
1711 Vals.push_back(Flags);
1716 case Instruction::GetElementPtr: {
1717 Code = bitc::FUNC_CODE_INST_GEP;
1718 AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
1719 auto &GEPInst = cast<GetElementPtrInst>(I);
1720 Vals.push_back(GEPInst.isInBounds());
1721 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
1722 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1723 PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1726 case Instruction::ExtractValue: {
1727 Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
1728 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1729 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
1730 Vals.append(EVI->idx_begin(), EVI->idx_end());
1733 case Instruction::InsertValue: {
1734 Code = bitc::FUNC_CODE_INST_INSERTVAL;
1735 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1736 PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1737 const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1738 Vals.append(IVI->idx_begin(), IVI->idx_end());
1741 case Instruction::Select:
1742 Code = bitc::FUNC_CODE_INST_VSELECT;
1743 PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1744 pushValue(I.getOperand(2), InstID, Vals, VE);
1745 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1747 case Instruction::ExtractElement:
1748 Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1749 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1750 PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1752 case Instruction::InsertElement:
1753 Code = bitc::FUNC_CODE_INST_INSERTELT;
1754 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1755 pushValue(I.getOperand(1), InstID, Vals, VE);
1756 PushValueAndType(I.getOperand(2), InstID, Vals, VE);
1758 case Instruction::ShuffleVector:
1759 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1760 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1761 pushValue(I.getOperand(1), InstID, Vals, VE);
1762 pushValue(I.getOperand(2), InstID, Vals, VE);
1764 case Instruction::ICmp:
1765 case Instruction::FCmp: {
1766 // compare returning Int1Ty or vector of Int1Ty
1767 Code = bitc::FUNC_CODE_INST_CMP2;
1768 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1769 pushValue(I.getOperand(1), InstID, Vals, VE);
1770 Vals.push_back(cast<CmpInst>(I).getPredicate());
1771 uint64_t Flags = GetOptimizationFlags(&I);
1773 Vals.push_back(Flags);
1777 case Instruction::Ret:
1779 Code = bitc::FUNC_CODE_INST_RET;
1780 unsigned NumOperands = I.getNumOperands();
1781 if (NumOperands == 0)
1782 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1783 else if (NumOperands == 1) {
1784 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1785 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1787 for (unsigned i = 0, e = NumOperands; i != e; ++i)
1788 PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1792 case Instruction::Br:
1794 Code = bitc::FUNC_CODE_INST_BR;
1795 const BranchInst &II = cast<BranchInst>(I);
1796 Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1797 if (II.isConditional()) {
1798 Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1799 pushValue(II.getCondition(), InstID, Vals, VE);
1803 case Instruction::Switch:
1805 Code = bitc::FUNC_CODE_INST_SWITCH;
1806 const SwitchInst &SI = cast<SwitchInst>(I);
1807 Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
1808 pushValue(SI.getCondition(), InstID, Vals, VE);
1809 Vals.push_back(VE.getValueID(SI.getDefaultDest()));
1810 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
1812 Vals.push_back(VE.getValueID(i.getCaseValue()));
1813 Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
1817 case Instruction::IndirectBr:
1818 Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1819 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1820 // Encode the address operand as relative, but not the basic blocks.
1821 pushValue(I.getOperand(0), InstID, Vals, VE);
1822 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
1823 Vals.push_back(VE.getValueID(I.getOperand(i)));
1826 case Instruction::Invoke: {
1827 const InvokeInst *II = cast<InvokeInst>(&I);
1828 const Value *Callee = II->getCalledValue();
1829 FunctionType *FTy = II->getFunctionType();
1830 Code = bitc::FUNC_CODE_INST_INVOKE;
1832 Vals.push_back(VE.getAttributeID(II->getAttributes()));
1833 Vals.push_back(II->getCallingConv() | 1 << 13);
1834 Vals.push_back(VE.getValueID(II->getNormalDest()));
1835 Vals.push_back(VE.getValueID(II->getUnwindDest()));
1836 Vals.push_back(VE.getTypeID(FTy));
1837 PushValueAndType(Callee, InstID, Vals, VE);
1839 // Emit value #'s for the fixed parameters.
1840 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1841 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param.
1843 // Emit type/value pairs for varargs params.
1844 if (FTy->isVarArg()) {
1845 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1847 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1851 case Instruction::Resume:
1852 Code = bitc::FUNC_CODE_INST_RESUME;
1853 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1855 case Instruction::CleanupRet: {
1856 Code = bitc::FUNC_CODE_INST_CLEANUPRET;
1857 const auto &CRI = cast<CleanupReturnInst>(I);
1858 pushValue(CRI.getCleanupPad(), InstID, Vals, VE);
1859 if (CRI.hasUnwindDest())
1860 Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
1863 case Instruction::CatchRet: {
1864 Code = bitc::FUNC_CODE_INST_CATCHRET;
1865 const auto &CRI = cast<CatchReturnInst>(I);
1866 pushValue(CRI.getCatchPad(), InstID, Vals, VE);
1867 Vals.push_back(VE.getValueID(CRI.getSuccessor()));
1870 case Instruction::CatchPad: {
1871 Code = bitc::FUNC_CODE_INST_CATCHPAD;
1872 const auto &CPI = cast<CatchPadInst>(I);
1873 Vals.push_back(VE.getValueID(CPI.getNormalDest()));
1874 Vals.push_back(VE.getValueID(CPI.getUnwindDest()));
1875 unsigned NumArgOperands = CPI.getNumArgOperands();
1876 Vals.push_back(NumArgOperands);
1877 for (unsigned Op = 0; Op != NumArgOperands; ++Op)
1878 PushValueAndType(CPI.getArgOperand(Op), InstID, Vals, VE);
1881 case Instruction::TerminatePad: {
1882 Code = bitc::FUNC_CODE_INST_TERMINATEPAD;
1883 const auto &TPI = cast<TerminatePadInst>(I);
1884 Vals.push_back(TPI.hasUnwindDest());
1885 if (TPI.hasUnwindDest())
1886 Vals.push_back(VE.getValueID(TPI.getUnwindDest()));
1887 unsigned NumArgOperands = TPI.getNumArgOperands();
1888 Vals.push_back(NumArgOperands);
1889 for (unsigned Op = 0; Op != NumArgOperands; ++Op)
1890 PushValueAndType(TPI.getArgOperand(Op), InstID, Vals, VE);
1893 case Instruction::CleanupPad: {
1894 Code = bitc::FUNC_CODE_INST_CLEANUPPAD;
1895 const auto &CPI = cast<CleanupPadInst>(I);
1896 unsigned NumOperands = CPI.getNumOperands();
1897 Vals.push_back(NumOperands);
1898 for (unsigned Op = 0; Op != NumOperands; ++Op)
1899 PushValueAndType(CPI.getOperand(Op), InstID, Vals, VE);
1902 case Instruction::CatchEndPad: {
1903 Code = bitc::FUNC_CODE_INST_CATCHENDPAD;
1904 const auto &CEPI = cast<CatchEndPadInst>(I);
1905 if (CEPI.hasUnwindDest())
1906 Vals.push_back(VE.getValueID(CEPI.getUnwindDest()));
1909 case Instruction::CleanupEndPad: {
1910 Code = bitc::FUNC_CODE_INST_CLEANUPENDPAD;
1911 const auto &CEPI = cast<CleanupEndPadInst>(I);
1912 pushValue(CEPI.getCleanupPad(), InstID, Vals, VE);
1913 if (CEPI.hasUnwindDest())
1914 Vals.push_back(VE.getValueID(CEPI.getUnwindDest()));
1917 case Instruction::Unreachable:
1918 Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1919 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1922 case Instruction::PHI: {
1923 const PHINode &PN = cast<PHINode>(I);
1924 Code = bitc::FUNC_CODE_INST_PHI;
1925 // With the newer instruction encoding, forward references could give
1926 // negative valued IDs. This is most common for PHIs, so we use
1928 SmallVector<uint64_t, 128> Vals64;
1929 Vals64.push_back(VE.getTypeID(PN.getType()));
1930 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1931 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE);
1932 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
1934 // Emit a Vals64 vector and exit.
1935 Stream.EmitRecord(Code, Vals64, AbbrevToUse);
1940 case Instruction::LandingPad: {
1941 const LandingPadInst &LP = cast<LandingPadInst>(I);
1942 Code = bitc::FUNC_CODE_INST_LANDINGPAD;
1943 Vals.push_back(VE.getTypeID(LP.getType()));
1944 Vals.push_back(LP.isCleanup());
1945 Vals.push_back(LP.getNumClauses());
1946 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
1948 Vals.push_back(LandingPadInst::Catch);
1950 Vals.push_back(LandingPadInst::Filter);
1951 PushValueAndType(LP.getClause(I), InstID, Vals, VE);
1956 case Instruction::Alloca: {
1957 Code = bitc::FUNC_CODE_INST_ALLOCA;
1958 const AllocaInst &AI = cast<AllocaInst>(I);
1959 Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
1960 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1961 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1962 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
1963 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
1964 "not enough bits for maximum alignment");
1965 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
1966 AlignRecord |= AI.isUsedWithInAlloca() << 5;
1967 AlignRecord |= 1 << 6;
1968 // Reserve bit 7 for SwiftError flag.
1969 // AlignRecord |= AI.isSwiftError() << 7;
1970 Vals.push_back(AlignRecord);
1974 case Instruction::Load:
1975 if (cast<LoadInst>(I).isAtomic()) {
1976 Code = bitc::FUNC_CODE_INST_LOADATOMIC;
1977 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1979 Code = bitc::FUNC_CODE_INST_LOAD;
1980 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr
1981 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1983 Vals.push_back(VE.getTypeID(I.getType()));
1984 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1985 Vals.push_back(cast<LoadInst>(I).isVolatile());
1986 if (cast<LoadInst>(I).isAtomic()) {
1987 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
1988 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
1991 case Instruction::Store:
1992 if (cast<StoreInst>(I).isAtomic())
1993 Code = bitc::FUNC_CODE_INST_STOREATOMIC;
1995 Code = bitc::FUNC_CODE_INST_STORE;
1996 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr
1997 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // valty + val
1998 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1999 Vals.push_back(cast<StoreInst>(I).isVolatile());
2000 if (cast<StoreInst>(I).isAtomic()) {
2001 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2002 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
2005 case Instruction::AtomicCmpXchg:
2006 Code = bitc::FUNC_CODE_INST_CMPXCHG;
2007 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr
2008 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // cmp.
2009 pushValue(I.getOperand(2), InstID, Vals, VE); // newval.
2010 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2011 Vals.push_back(GetEncodedOrdering(
2012 cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2013 Vals.push_back(GetEncodedSynchScope(
2014 cast<AtomicCmpXchgInst>(I).getSynchScope()));
2015 Vals.push_back(GetEncodedOrdering(
2016 cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2017 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2019 case Instruction::AtomicRMW:
2020 Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2021 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr
2022 pushValue(I.getOperand(1), InstID, Vals, VE); // val.
2023 Vals.push_back(GetEncodedRMWOperation(
2024 cast<AtomicRMWInst>(I).getOperation()));
2025 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2026 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2027 Vals.push_back(GetEncodedSynchScope(
2028 cast<AtomicRMWInst>(I).getSynchScope()));
2030 case Instruction::Fence:
2031 Code = bitc::FUNC_CODE_INST_FENCE;
2032 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2033 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
2035 case Instruction::Call: {
2036 const CallInst &CI = cast<CallInst>(I);
2037 FunctionType *FTy = CI.getFunctionType();
2039 Code = bitc::FUNC_CODE_INST_CALL;
2041 Vals.push_back(VE.getAttributeID(CI.getAttributes()));
2042 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) |
2043 unsigned(CI.isMustTailCall()) << 14 | 1 << 15);
2044 Vals.push_back(VE.getTypeID(FTy));
2045 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee
2047 // Emit value #'s for the fixed parameters.
2048 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2049 // Check for labels (can happen with asm labels).
2050 if (FTy->getParamType(i)->isLabelTy())
2051 Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
2053 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param.
2056 // Emit type/value pairs for varargs params.
2057 if (FTy->isVarArg()) {
2058 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
2060 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs
2064 case Instruction::VAArg:
2065 Code = bitc::FUNC_CODE_INST_VAARG;
2066 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
2067 pushValue(I.getOperand(0), InstID, Vals, VE); // valist.
2068 Vals.push_back(VE.getTypeID(I.getType())); // restype.
2072 Stream.EmitRecord(Code, Vals, AbbrevToUse);
2076 // Emit names for globals/functions etc.
2077 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
2078 const ValueEnumerator &VE,
2079 BitstreamWriter &Stream) {
2080 if (VST.empty()) return;
2081 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2083 // FIXME: Set up the abbrev, we know how many values there are!
2084 // FIXME: We know if the type names can use 7-bit ascii.
2085 SmallVector<unsigned, 64> NameVals;
2087 for (const ValueName &Name : VST) {
2089 // Figure out the encoding to use for the name.
2091 bool isChar6 = true;
2092 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
2095 isChar6 = BitCodeAbbrevOp::isChar6(*C);
2096 if ((unsigned char)*C & 128) {
2098 break; // don't bother scanning the rest.
2102 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
2104 // VST_ENTRY: [valueid, namechar x N]
2105 // VST_BBENTRY: [bbid, namechar x N]
2107 if (isa<BasicBlock>(Name.getValue())) {
2108 Code = bitc::VST_CODE_BBENTRY;
2110 AbbrevToUse = VST_BBENTRY_6_ABBREV;
2112 Code = bitc::VST_CODE_ENTRY;
2114 AbbrevToUse = VST_ENTRY_6_ABBREV;
2116 AbbrevToUse = VST_ENTRY_7_ABBREV;
2119 NameVals.push_back(VE.getValueID(Name.getValue()));
2120 for (const char *P = Name.getKeyData(),
2121 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
2122 NameVals.push_back((unsigned char)*P);
2124 // Emit the finished record.
2125 Stream.EmitRecord(Code, NameVals, AbbrevToUse);
2131 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order,
2132 BitstreamWriter &Stream) {
2133 assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
2135 if (isa<BasicBlock>(Order.V))
2136 Code = bitc::USELIST_CODE_BB;
2138 Code = bitc::USELIST_CODE_DEFAULT;
2140 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
2141 Record.push_back(VE.getValueID(Order.V));
2142 Stream.EmitRecord(Code, Record);
2145 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE,
2146 BitstreamWriter &Stream) {
2147 assert(VE.shouldPreserveUseListOrder() &&
2148 "Expected to be preserving use-list order");
2150 auto hasMore = [&]() {
2151 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
2157 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
2159 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream);
2160 VE.UseListOrders.pop_back();
2165 /// WriteFunction - Emit a function body to the module stream.
2166 static void WriteFunction(const Function &F, ValueEnumerator &VE,
2167 BitstreamWriter &Stream) {
2168 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
2169 VE.incorporateFunction(F);
2171 SmallVector<unsigned, 64> Vals;
2173 // Emit the number of basic blocks, so the reader can create them ahead of
2175 Vals.push_back(VE.getBasicBlocks().size());
2176 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
2179 // If there are function-local constants, emit them now.
2180 unsigned CstStart, CstEnd;
2181 VE.getFunctionConstantRange(CstStart, CstEnd);
2182 WriteConstants(CstStart, CstEnd, VE, Stream, false);
2184 // If there is function-local metadata, emit it now.
2185 WriteFunctionLocalMetadata(F, VE, Stream);
2187 // Keep a running idea of what the instruction ID is.
2188 unsigned InstID = CstEnd;
2190 bool NeedsMetadataAttachment = F.hasMetadata();
2192 DILocation *LastDL = nullptr;
2194 // Finally, emit all the instructions, in order.
2195 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
2196 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
2198 WriteInstruction(*I, InstID, VE, Stream, Vals);
2200 if (!I->getType()->isVoidTy())
2203 // If the instruction has metadata, write a metadata attachment later.
2204 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
2206 // If the instruction has a debug location, emit it.
2207 DILocation *DL = I->getDebugLoc();
2212 // Just repeat the same debug loc as last time.
2213 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
2217 Vals.push_back(DL->getLine());
2218 Vals.push_back(DL->getColumn());
2219 Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
2220 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
2221 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
2227 // Emit names for all the instructions etc.
2228 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
2230 if (NeedsMetadataAttachment)
2231 WriteMetadataAttachment(F, VE, Stream);
2232 if (VE.shouldPreserveUseListOrder())
2233 WriteUseListBlock(&F, VE, Stream);
2238 // Emit blockinfo, which defines the standard abbreviations etc.
2239 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
2240 // We only want to emit block info records for blocks that have multiple
2241 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
2242 // Other blocks can define their abbrevs inline.
2243 Stream.EnterBlockInfoBlock(2);
2245 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
2246 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2247 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
2248 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2249 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2250 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2251 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2252 Abbv) != VST_ENTRY_8_ABBREV)
2253 llvm_unreachable("Unexpected abbrev ordering!");
2256 { // 7-bit fixed width VST_ENTRY strings.
2257 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2258 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2259 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2260 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2261 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2262 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2263 Abbv) != VST_ENTRY_7_ABBREV)
2264 llvm_unreachable("Unexpected abbrev ordering!");
2266 { // 6-bit char6 VST_ENTRY strings.
2267 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2268 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2269 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2270 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2271 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2272 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2273 Abbv) != VST_ENTRY_6_ABBREV)
2274 llvm_unreachable("Unexpected abbrev ordering!");
2276 { // 6-bit char6 VST_BBENTRY strings.
2277 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2278 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
2279 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2280 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2281 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2282 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2283 Abbv) != VST_BBENTRY_6_ABBREV)
2284 llvm_unreachable("Unexpected abbrev ordering!");
2289 { // SETTYPE abbrev for CONSTANTS_BLOCK.
2290 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2291 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
2292 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
2293 VE.computeBitsRequiredForTypeIndicies()));
2294 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2295 Abbv) != CONSTANTS_SETTYPE_ABBREV)
2296 llvm_unreachable("Unexpected abbrev ordering!");
2299 { // INTEGER abbrev for CONSTANTS_BLOCK.
2300 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2301 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
2302 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2303 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2304 Abbv) != CONSTANTS_INTEGER_ABBREV)
2305 llvm_unreachable("Unexpected abbrev ordering!");
2308 { // CE_CAST abbrev for CONSTANTS_BLOCK.
2309 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2310 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
2311 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
2312 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
2313 VE.computeBitsRequiredForTypeIndicies()));
2314 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2316 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2317 Abbv) != CONSTANTS_CE_CAST_Abbrev)
2318 llvm_unreachable("Unexpected abbrev ordering!");
2320 { // NULL abbrev for CONSTANTS_BLOCK.
2321 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2322 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
2323 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2324 Abbv) != CONSTANTS_NULL_Abbrev)
2325 llvm_unreachable("Unexpected abbrev ordering!");
2328 // FIXME: This should only use space for first class types!
2330 { // INST_LOAD abbrev for FUNCTION_BLOCK.
2331 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2332 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
2333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
2334 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
2335 VE.computeBitsRequiredForTypeIndicies()));
2336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
2337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
2338 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2339 Abbv) != FUNCTION_INST_LOAD_ABBREV)
2340 llvm_unreachable("Unexpected abbrev ordering!");
2342 { // INST_BINOP abbrev for FUNCTION_BLOCK.
2343 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2344 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
2346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
2347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2348 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2349 Abbv) != FUNCTION_INST_BINOP_ABBREV)
2350 llvm_unreachable("Unexpected abbrev ordering!");
2352 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
2353 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2354 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
2356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
2357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
2359 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2360 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
2361 llvm_unreachable("Unexpected abbrev ordering!");
2363 { // INST_CAST abbrev for FUNCTION_BLOCK.
2364 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2365 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
2366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
2367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
2368 VE.computeBitsRequiredForTypeIndicies()));
2369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2370 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2371 Abbv) != FUNCTION_INST_CAST_ABBREV)
2372 llvm_unreachable("Unexpected abbrev ordering!");
2375 { // INST_RET abbrev for FUNCTION_BLOCK.
2376 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2377 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2378 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2379 Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
2380 llvm_unreachable("Unexpected abbrev ordering!");
2382 { // INST_RET abbrev for FUNCTION_BLOCK.
2383 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2384 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
2386 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2387 Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
2388 llvm_unreachable("Unexpected abbrev ordering!");
2390 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
2391 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2392 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
2393 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2394 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
2395 llvm_unreachable("Unexpected abbrev ordering!");
2398 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2399 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
2400 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
2401 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
2402 Log2_32_Ceil(VE.getTypes().size() + 1)));
2403 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2404 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2405 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
2406 FUNCTION_INST_GEP_ABBREV)
2407 llvm_unreachable("Unexpected abbrev ordering!");
2413 /// WriteModule - Emit the specified module to the bitstream.
2414 static void WriteModule(const Module *M, BitstreamWriter &Stream,
2415 bool ShouldPreserveUseListOrder) {
2416 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
2418 SmallVector<unsigned, 1> Vals;
2419 unsigned CurVersion = 1;
2420 Vals.push_back(CurVersion);
2421 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
2423 // Analyze the module, enumerating globals, functions, etc.
2424 ValueEnumerator VE(*M, ShouldPreserveUseListOrder);
2426 // Emit blockinfo, which defines the standard abbreviations etc.
2427 WriteBlockInfo(VE, Stream);
2429 // Emit information about attribute groups.
2430 WriteAttributeGroupTable(VE, Stream);
2432 // Emit information about parameter attributes.
2433 WriteAttributeTable(VE, Stream);
2435 // Emit information describing all of the types in the module.
2436 WriteTypeTable(VE, Stream);
2438 writeComdats(VE, Stream);
2440 // Emit top-level description of module, including target triple, inline asm,
2441 // descriptors for global variables, and function prototype info.
2442 WriteModuleInfo(M, VE, Stream);
2445 WriteModuleConstants(VE, Stream);
2448 WriteModuleMetadata(M, VE, Stream);
2451 WriteModuleMetadataStore(M, Stream);
2453 // Emit names for globals/functions etc.
2454 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
2456 // Emit module-level use-lists.
2457 if (VE.shouldPreserveUseListOrder())
2458 WriteUseListBlock(nullptr, VE, Stream);
2460 // Emit function bodies.
2461 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
2462 if (!F->isDeclaration())
2463 WriteFunction(*F, VE, Stream);
2468 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
2469 /// header and trailer to make it compatible with the system archiver. To do
2470 /// this we emit the following header, and then emit a trailer that pads the
2471 /// file out to be a multiple of 16 bytes.
2473 /// struct bc_header {
2474 /// uint32_t Magic; // 0x0B17C0DE
2475 /// uint32_t Version; // Version, currently always 0.
2476 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
2477 /// uint32_t BitcodeSize; // Size of traditional bitcode file.
2478 /// uint32_t CPUType; // CPU specifier.
2479 /// ... potentially more later ...
2482 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
2483 DarwinBCHeaderSize = 5*4
2486 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
2487 uint32_t &Position) {
2488 support::endian::write32le(&Buffer[Position], Value);
2492 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
2494 unsigned CPUType = ~0U;
2496 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
2497 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
2498 // number from /usr/include/mach/machine.h. It is ok to reproduce the
2499 // specific constants here because they are implicitly part of the Darwin ABI.
2501 DARWIN_CPU_ARCH_ABI64 = 0x01000000,
2502 DARWIN_CPU_TYPE_X86 = 7,
2503 DARWIN_CPU_TYPE_ARM = 12,
2504 DARWIN_CPU_TYPE_POWERPC = 18
2507 Triple::ArchType Arch = TT.getArch();
2508 if (Arch == Triple::x86_64)
2509 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
2510 else if (Arch == Triple::x86)
2511 CPUType = DARWIN_CPU_TYPE_X86;
2512 else if (Arch == Triple::ppc)
2513 CPUType = DARWIN_CPU_TYPE_POWERPC;
2514 else if (Arch == Triple::ppc64)
2515 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
2516 else if (Arch == Triple::arm || Arch == Triple::thumb)
2517 CPUType = DARWIN_CPU_TYPE_ARM;
2519 // Traditional Bitcode starts after header.
2520 assert(Buffer.size() >= DarwinBCHeaderSize &&
2521 "Expected header size to be reserved");
2522 unsigned BCOffset = DarwinBCHeaderSize;
2523 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
2525 // Write the magic and version.
2526 unsigned Position = 0;
2527 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
2528 WriteInt32ToBuffer(0 , Buffer, Position); // Version.
2529 WriteInt32ToBuffer(BCOffset , Buffer, Position);
2530 WriteInt32ToBuffer(BCSize , Buffer, Position);
2531 WriteInt32ToBuffer(CPUType , Buffer, Position);
2533 // If the file is not a multiple of 16 bytes, insert dummy padding.
2534 while (Buffer.size() & 15)
2535 Buffer.push_back(0);
2538 /// WriteBitcodeToFile - Write the specified module to the specified output
2540 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out,
2541 bool ShouldPreserveUseListOrder) {
2542 SmallVector<char, 0> Buffer;
2543 Buffer.reserve(256*1024);
2545 // If this is darwin or another generic macho target, reserve space for the
2547 Triple TT(M->getTargetTriple());
2548 if (TT.isOSDarwin())
2549 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
2551 // Emit the module into the buffer.
2553 BitstreamWriter Stream(Buffer);
2555 // Emit the file header.
2556 Stream.Emit((unsigned)'B', 8);
2557 Stream.Emit((unsigned)'C', 8);
2558 Stream.Emit(0x0, 4);
2559 Stream.Emit(0xC, 4);
2560 Stream.Emit(0xE, 4);
2561 Stream.Emit(0xD, 4);
2564 WriteModule(M, Stream, ShouldPreserveUseListOrder);
2567 if (TT.isOSDarwin())
2568 EmitDarwinBCHeaderAndTrailer(Buffer, TT);
2570 // Write the generated bitstream to "Out".
2571 Out.write((char*)&Buffer.front(), Buffer.size());