Add special case bitcode support for DebugLoc. This avoids
[oota-llvm.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Module.h"
23 #include "llvm/Operator.h"
24 #include "llvm/TypeSymbolTable.h"
25 #include "llvm/ValueSymbolTable.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/System/Program.h"
30 using namespace llvm;
31
32 /// These are manifest constants used by the bitcode writer. They do not need to
33 /// be kept in sync with the reader, but need to be consistent within this file.
34 enum {
35   CurVersion = 0,
36
37   // VALUE_SYMTAB_BLOCK abbrev id's.
38   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
39   VST_ENTRY_7_ABBREV,
40   VST_ENTRY_6_ABBREV,
41   VST_BBENTRY_6_ABBREV,
42
43   // CONSTANTS_BLOCK abbrev id's.
44   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
45   CONSTANTS_INTEGER_ABBREV,
46   CONSTANTS_CE_CAST_Abbrev,
47   CONSTANTS_NULL_Abbrev,
48
49   // FUNCTION_BLOCK abbrev id's.
50   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
51   FUNCTION_INST_BINOP_ABBREV,
52   FUNCTION_INST_BINOP_FLAGS_ABBREV,
53   FUNCTION_INST_CAST_ABBREV,
54   FUNCTION_INST_RET_VOID_ABBREV,
55   FUNCTION_INST_RET_VAL_ABBREV,
56   FUNCTION_INST_UNREACHABLE_ABBREV
57 };
58
59
60 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
61   switch (Opcode) {
62   default: llvm_unreachable("Unknown cast instruction!");
63   case Instruction::Trunc   : return bitc::CAST_TRUNC;
64   case Instruction::ZExt    : return bitc::CAST_ZEXT;
65   case Instruction::SExt    : return bitc::CAST_SEXT;
66   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
67   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
68   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
69   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
70   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
71   case Instruction::FPExt   : return bitc::CAST_FPEXT;
72   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
73   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
74   case Instruction::BitCast : return bitc::CAST_BITCAST;
75   }
76 }
77
78 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
79   switch (Opcode) {
80   default: llvm_unreachable("Unknown binary instruction!");
81   case Instruction::Add:
82   case Instruction::FAdd: return bitc::BINOP_ADD;
83   case Instruction::Sub:
84   case Instruction::FSub: return bitc::BINOP_SUB;
85   case Instruction::Mul:
86   case Instruction::FMul: return bitc::BINOP_MUL;
87   case Instruction::UDiv: return bitc::BINOP_UDIV;
88   case Instruction::FDiv:
89   case Instruction::SDiv: return bitc::BINOP_SDIV;
90   case Instruction::URem: return bitc::BINOP_UREM;
91   case Instruction::FRem:
92   case Instruction::SRem: return bitc::BINOP_SREM;
93   case Instruction::Shl:  return bitc::BINOP_SHL;
94   case Instruction::LShr: return bitc::BINOP_LSHR;
95   case Instruction::AShr: return bitc::BINOP_ASHR;
96   case Instruction::And:  return bitc::BINOP_AND;
97   case Instruction::Or:   return bitc::BINOP_OR;
98   case Instruction::Xor:  return bitc::BINOP_XOR;
99   }
100 }
101
102
103
104 static void WriteStringRecord(unsigned Code, const std::string &Str,
105                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
106   SmallVector<unsigned, 64> Vals;
107
108   // Code: [strchar x N]
109   for (unsigned i = 0, e = Str.size(); i != e; ++i)
110     Vals.push_back(Str[i]);
111
112   // Emit the finished record.
113   Stream.EmitRecord(Code, Vals, AbbrevToUse);
114 }
115
116 // Emit information about parameter attributes.
117 static void WriteAttributeTable(const ValueEnumerator &VE,
118                                 BitstreamWriter &Stream) {
119   const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
120   if (Attrs.empty()) return;
121
122   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
123
124   SmallVector<uint64_t, 64> Record;
125   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
126     const AttrListPtr &A = Attrs[i];
127     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
128       const AttributeWithIndex &PAWI = A.getSlot(i);
129       Record.push_back(PAWI.Index);
130
131       // FIXME: remove in LLVM 3.0
132       // Store the alignment in the bitcode as a 16-bit raw value instead of a
133       // 5-bit log2 encoded value. Shift the bits above the alignment up by
134       // 11 bits.
135       uint64_t FauxAttr = PAWI.Attrs & 0xffff;
136       if (PAWI.Attrs & Attribute::Alignment)
137         FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
138       FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
139
140       Record.push_back(FauxAttr);
141     }
142
143     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
144     Record.clear();
145   }
146
147   Stream.ExitBlock();
148 }
149
150 /// WriteTypeTable - Write out the type table for a module.
151 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
152   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
153
154   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
155   SmallVector<uint64_t, 64> TypeVals;
156
157   // Abbrev for TYPE_CODE_POINTER.
158   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
159   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
160   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
161                             Log2_32_Ceil(VE.getTypes().size()+1)));
162   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
163   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
164
165   // Abbrev for TYPE_CODE_FUNCTION.
166   Abbv = new BitCodeAbbrev();
167   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
168   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
169   Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
170   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
171   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
172                             Log2_32_Ceil(VE.getTypes().size()+1)));
173   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
174
175   // Abbrev for TYPE_CODE_STRUCT.
176   Abbv = new BitCodeAbbrev();
177   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
178   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
179   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
180   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
181                             Log2_32_Ceil(VE.getTypes().size()+1)));
182   unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
183
184   // Abbrev for TYPE_CODE_UNION.
185   Abbv = new BitCodeAbbrev();
186   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_UNION));
187   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
188   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
189                             Log2_32_Ceil(VE.getTypes().size()+1)));
190   unsigned UnionAbbrev = Stream.EmitAbbrev(Abbv);
191
192   // Abbrev for TYPE_CODE_ARRAY.
193   Abbv = new BitCodeAbbrev();
194   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
195   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
196   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
197                             Log2_32_Ceil(VE.getTypes().size()+1)));
198   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
199
200   // Emit an entry count so the reader can reserve space.
201   TypeVals.push_back(TypeList.size());
202   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
203   TypeVals.clear();
204
205   // Loop over all of the types, emitting each in turn.
206   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
207     const Type *T = TypeList[i].first;
208     int AbbrevToUse = 0;
209     unsigned Code = 0;
210
211     switch (T->getTypeID()) {
212     default: llvm_unreachable("Unknown type!");
213     case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
214     case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
215     case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
216     case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
217     case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
218     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
219     case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
220     case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
221     case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
222     case Type::IntegerTyID:
223       // INTEGER: [width]
224       Code = bitc::TYPE_CODE_INTEGER;
225       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
226       break;
227     case Type::PointerTyID: {
228       const PointerType *PTy = cast<PointerType>(T);
229       // POINTER: [pointee type, address space]
230       Code = bitc::TYPE_CODE_POINTER;
231       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
232       unsigned AddressSpace = PTy->getAddressSpace();
233       TypeVals.push_back(AddressSpace);
234       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
235       break;
236     }
237     case Type::FunctionTyID: {
238       const FunctionType *FT = cast<FunctionType>(T);
239       // FUNCTION: [isvararg, attrid, retty, paramty x N]
240       Code = bitc::TYPE_CODE_FUNCTION;
241       TypeVals.push_back(FT->isVarArg());
242       TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
243       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
244       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
245         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
246       AbbrevToUse = FunctionAbbrev;
247       break;
248     }
249     case Type::StructTyID: {
250       const StructType *ST = cast<StructType>(T);
251       // STRUCT: [ispacked, eltty x N]
252       Code = bitc::TYPE_CODE_STRUCT;
253       TypeVals.push_back(ST->isPacked());
254       // Output all of the element types.
255       for (StructType::element_iterator I = ST->element_begin(),
256            E = ST->element_end(); I != E; ++I)
257         TypeVals.push_back(VE.getTypeID(*I));
258       AbbrevToUse = StructAbbrev;
259       break;
260     }
261     case Type::UnionTyID: {
262       const UnionType *UT = cast<UnionType>(T);
263       // UNION: [eltty x N]
264       Code = bitc::TYPE_CODE_UNION;
265       // Output all of the element types.
266       for (UnionType::element_iterator I = UT->element_begin(),
267            E = UT->element_end(); I != E; ++I)
268         TypeVals.push_back(VE.getTypeID(*I));
269       AbbrevToUse = UnionAbbrev;
270       break;
271     }
272     case Type::ArrayTyID: {
273       const ArrayType *AT = cast<ArrayType>(T);
274       // ARRAY: [numelts, eltty]
275       Code = bitc::TYPE_CODE_ARRAY;
276       TypeVals.push_back(AT->getNumElements());
277       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
278       AbbrevToUse = ArrayAbbrev;
279       break;
280     }
281     case Type::VectorTyID: {
282       const VectorType *VT = cast<VectorType>(T);
283       // VECTOR [numelts, eltty]
284       Code = bitc::TYPE_CODE_VECTOR;
285       TypeVals.push_back(VT->getNumElements());
286       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
287       break;
288     }
289     }
290
291     // Emit the finished record.
292     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
293     TypeVals.clear();
294   }
295
296   Stream.ExitBlock();
297 }
298
299 static unsigned getEncodedLinkage(const GlobalValue *GV) {
300   switch (GV->getLinkage()) {
301   default: llvm_unreachable("Invalid linkage!");
302   case GlobalValue::ExternalLinkage:            return 0;
303   case GlobalValue::WeakAnyLinkage:             return 1;
304   case GlobalValue::AppendingLinkage:           return 2;
305   case GlobalValue::InternalLinkage:            return 3;
306   case GlobalValue::LinkOnceAnyLinkage:         return 4;
307   case GlobalValue::DLLImportLinkage:           return 5;
308   case GlobalValue::DLLExportLinkage:           return 6;
309   case GlobalValue::ExternalWeakLinkage:        return 7;
310   case GlobalValue::CommonLinkage:              return 8;
311   case GlobalValue::PrivateLinkage:             return 9;
312   case GlobalValue::WeakODRLinkage:             return 10;
313   case GlobalValue::LinkOnceODRLinkage:         return 11;
314   case GlobalValue::AvailableExternallyLinkage: return 12;
315   case GlobalValue::LinkerPrivateLinkage:       return 13;
316   }
317 }
318
319 static unsigned getEncodedVisibility(const GlobalValue *GV) {
320   switch (GV->getVisibility()) {
321   default: llvm_unreachable("Invalid visibility!");
322   case GlobalValue::DefaultVisibility:   return 0;
323   case GlobalValue::HiddenVisibility:    return 1;
324   case GlobalValue::ProtectedVisibility: return 2;
325   }
326 }
327
328 // Emit top-level description of module, including target triple, inline asm,
329 // descriptors for global variables, and function prototype info.
330 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
331                             BitstreamWriter &Stream) {
332   // Emit the list of dependent libraries for the Module.
333   for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
334     WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
335
336   // Emit various pieces of data attached to a module.
337   if (!M->getTargetTriple().empty())
338     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
339                       0/*TODO*/, Stream);
340   if (!M->getDataLayout().empty())
341     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
342                       0/*TODO*/, Stream);
343   if (!M->getModuleInlineAsm().empty())
344     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
345                       0/*TODO*/, Stream);
346
347   // Emit information about sections and GC, computing how many there are. Also
348   // compute the maximum alignment value.
349   std::map<std::string, unsigned> SectionMap;
350   std::map<std::string, unsigned> GCMap;
351   unsigned MaxAlignment = 0;
352   unsigned MaxGlobalType = 0;
353   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
354        GV != E; ++GV) {
355     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
356     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
357
358     if (!GV->hasSection()) continue;
359     // Give section names unique ID's.
360     unsigned &Entry = SectionMap[GV->getSection()];
361     if (Entry != 0) continue;
362     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
363                       0/*TODO*/, Stream);
364     Entry = SectionMap.size();
365   }
366   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
367     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
368     if (F->hasSection()) {
369       // Give section names unique ID's.
370       unsigned &Entry = SectionMap[F->getSection()];
371       if (!Entry) {
372         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
373                           0/*TODO*/, Stream);
374         Entry = SectionMap.size();
375       }
376     }
377     if (F->hasGC()) {
378       // Same for GC names.
379       unsigned &Entry = GCMap[F->getGC()];
380       if (!Entry) {
381         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
382                           0/*TODO*/, Stream);
383         Entry = GCMap.size();
384       }
385     }
386   }
387
388   // Emit abbrev for globals, now that we know # sections and max alignment.
389   unsigned SimpleGVarAbbrev = 0;
390   if (!M->global_empty()) {
391     // Add an abbrev for common globals with no visibility or thread localness.
392     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
393     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
394     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
395                               Log2_32_Ceil(MaxGlobalType+1)));
396     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
397     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
398     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
399     if (MaxAlignment == 0)                                      // Alignment.
400       Abbv->Add(BitCodeAbbrevOp(0));
401     else {
402       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
403       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
404                                Log2_32_Ceil(MaxEncAlignment+1)));
405     }
406     if (SectionMap.empty())                                    // Section.
407       Abbv->Add(BitCodeAbbrevOp(0));
408     else
409       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
410                                Log2_32_Ceil(SectionMap.size()+1)));
411     // Don't bother emitting vis + thread local.
412     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
413   }
414
415   // Emit the global variable information.
416   SmallVector<unsigned, 64> Vals;
417   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
418        GV != E; ++GV) {
419     unsigned AbbrevToUse = 0;
420
421     // GLOBALVAR: [type, isconst, initid,
422     //             linkage, alignment, section, visibility, threadlocal]
423     Vals.push_back(VE.getTypeID(GV->getType()));
424     Vals.push_back(GV->isConstant());
425     Vals.push_back(GV->isDeclaration() ? 0 :
426                    (VE.getValueID(GV->getInitializer()) + 1));
427     Vals.push_back(getEncodedLinkage(GV));
428     Vals.push_back(Log2_32(GV->getAlignment())+1);
429     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
430     if (GV->isThreadLocal() ||
431         GV->getVisibility() != GlobalValue::DefaultVisibility) {
432       Vals.push_back(getEncodedVisibility(GV));
433       Vals.push_back(GV->isThreadLocal());
434     } else {
435       AbbrevToUse = SimpleGVarAbbrev;
436     }
437
438     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
439     Vals.clear();
440   }
441
442   // Emit the function proto information.
443   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
444     // FUNCTION:  [type, callingconv, isproto, paramattr,
445     //             linkage, alignment, section, visibility, gc]
446     Vals.push_back(VE.getTypeID(F->getType()));
447     Vals.push_back(F->getCallingConv());
448     Vals.push_back(F->isDeclaration());
449     Vals.push_back(getEncodedLinkage(F));
450     Vals.push_back(VE.getAttributeID(F->getAttributes()));
451     Vals.push_back(Log2_32(F->getAlignment())+1);
452     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
453     Vals.push_back(getEncodedVisibility(F));
454     Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
455
456     unsigned AbbrevToUse = 0;
457     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
458     Vals.clear();
459   }
460
461
462   // Emit the alias information.
463   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
464        AI != E; ++AI) {
465     Vals.push_back(VE.getTypeID(AI->getType()));
466     Vals.push_back(VE.getValueID(AI->getAliasee()));
467     Vals.push_back(getEncodedLinkage(AI));
468     Vals.push_back(getEncodedVisibility(AI));
469     unsigned AbbrevToUse = 0;
470     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
471     Vals.clear();
472   }
473 }
474
475 static uint64_t GetOptimizationFlags(const Value *V) {
476   uint64_t Flags = 0;
477
478   if (const OverflowingBinaryOperator *OBO =
479         dyn_cast<OverflowingBinaryOperator>(V)) {
480     if (OBO->hasNoSignedWrap())
481       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
482     if (OBO->hasNoUnsignedWrap())
483       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
484   } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) {
485     if (Div->isExact())
486       Flags |= 1 << bitc::SDIV_EXACT;
487   }
488
489   return Flags;
490 }
491
492 static void WriteMDNode(const MDNode *N,
493                         const ValueEnumerator &VE,
494                         BitstreamWriter &Stream,
495                         SmallVector<uint64_t, 64> &Record) {
496   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
497     if (N->getOperand(i)) {
498       Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
499       Record.push_back(VE.getValueID(N->getOperand(i)));
500     } else {
501       Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
502       Record.push_back(0);
503     }
504   }
505   unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE :
506                                            bitc::METADATA_NODE;
507   Stream.EmitRecord(MDCode, Record, 0);
508   Record.clear();
509 }
510
511 static void WriteModuleMetadata(const ValueEnumerator &VE,
512                                 BitstreamWriter &Stream) {
513   const ValueEnumerator::ValueList &Vals = VE.getMDValues();
514   bool StartedMetadataBlock = false;
515   unsigned MDSAbbrev = 0;
516   SmallVector<uint64_t, 64> Record;
517   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
518
519     if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
520       if (!N->isFunctionLocal() || !N->getFunction()) {
521         if (!StartedMetadataBlock) {
522           Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
523           StartedMetadataBlock = true;
524         }
525         WriteMDNode(N, VE, Stream, Record);
526       }
527     } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
528       if (!StartedMetadataBlock)  {
529         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
530
531         // Abbrev for METADATA_STRING.
532         BitCodeAbbrev *Abbv = new BitCodeAbbrev();
533         Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
534         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
535         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
536         MDSAbbrev = Stream.EmitAbbrev(Abbv);
537         StartedMetadataBlock = true;
538       }
539
540       // Code: [strchar x N]
541       Record.append(MDS->begin(), MDS->end());
542
543       // Emit the finished record.
544       Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
545       Record.clear();
546     } else if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(Vals[i].first)) {
547       if (!StartedMetadataBlock)  {
548         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
549         StartedMetadataBlock = true;
550       }
551
552       // Write name.
553       StringRef Str = NMD->getName();
554       for (unsigned i = 0, e = Str.size(); i != e; ++i)
555         Record.push_back(Str[i]);
556       Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
557       Record.clear();
558
559       // Write named metadata operands.
560       for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
561         if (NMD->getOperand(i))
562           Record.push_back(VE.getValueID(NMD->getOperand(i)));
563         else
564           Record.push_back(~0U);
565       }
566       Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
567       Record.clear();
568     }
569   }
570
571   if (StartedMetadataBlock)
572     Stream.ExitBlock();
573 }
574
575 static void WriteFunctionLocalMetadata(const Function &F,
576                                        const ValueEnumerator &VE,
577                                        BitstreamWriter &Stream) {
578   bool StartedMetadataBlock = false;
579   SmallVector<uint64_t, 64> Record;
580   const ValueEnumerator::ValueList &Vals = VE.getMDValues();
581   
582   for (unsigned i = 0, e = Vals.size(); i != e; ++i)
583     if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first))
584       if (N->isFunctionLocal() && N->getFunction() == &F) {
585         if (!StartedMetadataBlock) {
586           Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
587           StartedMetadataBlock = true;
588         }
589         WriteMDNode(N, VE, Stream, Record);
590       }
591
592   if (StartedMetadataBlock)
593     Stream.ExitBlock();
594 }
595
596 static void WriteMetadataAttachment(const Function &F,
597                                     const ValueEnumerator &VE,
598                                     BitstreamWriter &Stream) {
599   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
600
601   SmallVector<uint64_t, 64> Record;
602
603   // Write metadata attachments
604   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
605   SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
606   
607   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
608     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
609          I != E; ++I) {
610       MDs.clear();
611       I->getAllMetadataOtherThanDebugLoc(MDs);
612       
613       // If no metadata, ignore instruction.
614       if (MDs.empty()) continue;
615
616       Record.push_back(VE.getInstructionID(I));
617       
618       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
619         Record.push_back(MDs[i].first);
620         Record.push_back(VE.getValueID(MDs[i].second));
621       }
622       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
623       Record.clear();
624     }
625
626   Stream.ExitBlock();
627 }
628
629 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
630   SmallVector<uint64_t, 64> Record;
631
632   // Write metadata kinds
633   // METADATA_KIND - [n x [id, name]]
634   SmallVector<StringRef, 4> Names;
635   M->getMDKindNames(Names);
636   
637   assert(Names[0] == "" && "MDKind #0 is invalid");
638   if (Names.size() == 1) return;
639
640   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
641   
642   for (unsigned MDKindID = 1, e = Names.size(); MDKindID != e; ++MDKindID) {
643     Record.push_back(MDKindID);
644     StringRef KName = Names[MDKindID];
645     Record.append(KName.begin(), KName.end());
646     
647     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
648     Record.clear();
649   }
650
651   Stream.ExitBlock();
652 }
653
654 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
655                            const ValueEnumerator &VE,
656                            BitstreamWriter &Stream, bool isGlobal) {
657   if (FirstVal == LastVal) return;
658
659   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
660
661   unsigned AggregateAbbrev = 0;
662   unsigned String8Abbrev = 0;
663   unsigned CString7Abbrev = 0;
664   unsigned CString6Abbrev = 0;
665   // If this is a constant pool for the module, emit module-specific abbrevs.
666   if (isGlobal) {
667     // Abbrev for CST_CODE_AGGREGATE.
668     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
669     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
670     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
671     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
672     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
673
674     // Abbrev for CST_CODE_STRING.
675     Abbv = new BitCodeAbbrev();
676     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
677     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
678     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
679     String8Abbrev = Stream.EmitAbbrev(Abbv);
680     // Abbrev for CST_CODE_CSTRING.
681     Abbv = new BitCodeAbbrev();
682     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
683     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
684     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
685     CString7Abbrev = Stream.EmitAbbrev(Abbv);
686     // Abbrev for CST_CODE_CSTRING.
687     Abbv = new BitCodeAbbrev();
688     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
689     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
690     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
691     CString6Abbrev = Stream.EmitAbbrev(Abbv);
692   }
693
694   SmallVector<uint64_t, 64> Record;
695
696   const ValueEnumerator::ValueList &Vals = VE.getValues();
697   const Type *LastTy = 0;
698   for (unsigned i = FirstVal; i != LastVal; ++i) {
699     const Value *V = Vals[i].first;
700     // If we need to switch types, do so now.
701     if (V->getType() != LastTy) {
702       LastTy = V->getType();
703       Record.push_back(VE.getTypeID(LastTy));
704       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
705                         CONSTANTS_SETTYPE_ABBREV);
706       Record.clear();
707     }
708
709     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
710       Record.push_back(unsigned(IA->hasSideEffects()) |
711                        unsigned(IA->isAlignStack()) << 1);
712
713       // Add the asm string.
714       const std::string &AsmStr = IA->getAsmString();
715       Record.push_back(AsmStr.size());
716       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
717         Record.push_back(AsmStr[i]);
718
719       // Add the constraint string.
720       const std::string &ConstraintStr = IA->getConstraintString();
721       Record.push_back(ConstraintStr.size());
722       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
723         Record.push_back(ConstraintStr[i]);
724       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
725       Record.clear();
726       continue;
727     }
728     const Constant *C = cast<Constant>(V);
729     unsigned Code = -1U;
730     unsigned AbbrevToUse = 0;
731     if (C->isNullValue()) {
732       Code = bitc::CST_CODE_NULL;
733     } else if (isa<UndefValue>(C)) {
734       Code = bitc::CST_CODE_UNDEF;
735     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
736       if (IV->getBitWidth() <= 64) {
737         int64_t V = IV->getSExtValue();
738         if (V >= 0)
739           Record.push_back(V << 1);
740         else
741           Record.push_back((-V << 1) | 1);
742         Code = bitc::CST_CODE_INTEGER;
743         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
744       } else {                             // Wide integers, > 64 bits in size.
745         // We have an arbitrary precision integer value to write whose
746         // bit width is > 64. However, in canonical unsigned integer
747         // format it is likely that the high bits are going to be zero.
748         // So, we only write the number of active words.
749         unsigned NWords = IV->getValue().getActiveWords();
750         const uint64_t *RawWords = IV->getValue().getRawData();
751         for (unsigned i = 0; i != NWords; ++i) {
752           int64_t V = RawWords[i];
753           if (V >= 0)
754             Record.push_back(V << 1);
755           else
756             Record.push_back((-V << 1) | 1);
757         }
758         Code = bitc::CST_CODE_WIDE_INTEGER;
759       }
760     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
761       Code = bitc::CST_CODE_FLOAT;
762       const Type *Ty = CFP->getType();
763       if (Ty->isFloatTy() || Ty->isDoubleTy()) {
764         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
765       } else if (Ty->isX86_FP80Ty()) {
766         // api needed to prevent premature destruction
767         // bits are not in the same order as a normal i80 APInt, compensate.
768         APInt api = CFP->getValueAPF().bitcastToAPInt();
769         const uint64_t *p = api.getRawData();
770         Record.push_back((p[1] << 48) | (p[0] >> 16));
771         Record.push_back(p[0] & 0xffffLL);
772       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
773         APInt api = CFP->getValueAPF().bitcastToAPInt();
774         const uint64_t *p = api.getRawData();
775         Record.push_back(p[0]);
776         Record.push_back(p[1]);
777       } else {
778         assert (0 && "Unknown FP type!");
779       }
780     } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
781       const ConstantArray *CA = cast<ConstantArray>(C);
782       // Emit constant strings specially.
783       unsigned NumOps = CA->getNumOperands();
784       // If this is a null-terminated string, use the denser CSTRING encoding.
785       if (CA->getOperand(NumOps-1)->isNullValue()) {
786         Code = bitc::CST_CODE_CSTRING;
787         --NumOps;  // Don't encode the null, which isn't allowed by char6.
788       } else {
789         Code = bitc::CST_CODE_STRING;
790         AbbrevToUse = String8Abbrev;
791       }
792       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
793       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
794       for (unsigned i = 0; i != NumOps; ++i) {
795         unsigned char V = cast<ConstantInt>(CA->getOperand(i))->getZExtValue();
796         Record.push_back(V);
797         isCStr7 &= (V & 128) == 0;
798         if (isCStrChar6)
799           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
800       }
801
802       if (isCStrChar6)
803         AbbrevToUse = CString6Abbrev;
804       else if (isCStr7)
805         AbbrevToUse = CString7Abbrev;
806     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
807                isa<ConstantVector>(V)) {
808       Code = bitc::CST_CODE_AGGREGATE;
809       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
810         Record.push_back(VE.getValueID(C->getOperand(i)));
811       AbbrevToUse = AggregateAbbrev;
812     } else if (isa<ConstantUnion>(C)) {
813       Code = bitc::CST_CODE_AGGREGATE;
814
815       // Unions only have one entry but we must send type along with it.
816       const Type *EntryKind = C->getOperand(0)->getType();
817
818       const UnionType *UnTy = cast<UnionType>(C->getType());
819       int UnionIndex = UnTy->getElementTypeIndex(EntryKind);
820       assert(UnionIndex != -1 && "Constant union contains invalid entry");
821
822       Record.push_back(UnionIndex);
823       Record.push_back(VE.getValueID(C->getOperand(0)));
824
825       AbbrevToUse = AggregateAbbrev;
826     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
827       switch (CE->getOpcode()) {
828       default:
829         if (Instruction::isCast(CE->getOpcode())) {
830           Code = bitc::CST_CODE_CE_CAST;
831           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
832           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
833           Record.push_back(VE.getValueID(C->getOperand(0)));
834           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
835         } else {
836           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
837           Code = bitc::CST_CODE_CE_BINOP;
838           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
839           Record.push_back(VE.getValueID(C->getOperand(0)));
840           Record.push_back(VE.getValueID(C->getOperand(1)));
841           uint64_t Flags = GetOptimizationFlags(CE);
842           if (Flags != 0)
843             Record.push_back(Flags);
844         }
845         break;
846       case Instruction::GetElementPtr:
847         Code = bitc::CST_CODE_CE_GEP;
848         if (cast<GEPOperator>(C)->isInBounds())
849           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
850         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
851           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
852           Record.push_back(VE.getValueID(C->getOperand(i)));
853         }
854         break;
855       case Instruction::Select:
856         Code = bitc::CST_CODE_CE_SELECT;
857         Record.push_back(VE.getValueID(C->getOperand(0)));
858         Record.push_back(VE.getValueID(C->getOperand(1)));
859         Record.push_back(VE.getValueID(C->getOperand(2)));
860         break;
861       case Instruction::ExtractElement:
862         Code = bitc::CST_CODE_CE_EXTRACTELT;
863         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
864         Record.push_back(VE.getValueID(C->getOperand(0)));
865         Record.push_back(VE.getValueID(C->getOperand(1)));
866         break;
867       case Instruction::InsertElement:
868         Code = bitc::CST_CODE_CE_INSERTELT;
869         Record.push_back(VE.getValueID(C->getOperand(0)));
870         Record.push_back(VE.getValueID(C->getOperand(1)));
871         Record.push_back(VE.getValueID(C->getOperand(2)));
872         break;
873       case Instruction::ShuffleVector:
874         // If the return type and argument types are the same, this is a
875         // standard shufflevector instruction.  If the types are different,
876         // then the shuffle is widening or truncating the input vectors, and
877         // the argument type must also be encoded.
878         if (C->getType() == C->getOperand(0)->getType()) {
879           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
880         } else {
881           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
882           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
883         }
884         Record.push_back(VE.getValueID(C->getOperand(0)));
885         Record.push_back(VE.getValueID(C->getOperand(1)));
886         Record.push_back(VE.getValueID(C->getOperand(2)));
887         break;
888       case Instruction::ICmp:
889       case Instruction::FCmp:
890         Code = bitc::CST_CODE_CE_CMP;
891         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
892         Record.push_back(VE.getValueID(C->getOperand(0)));
893         Record.push_back(VE.getValueID(C->getOperand(1)));
894         Record.push_back(CE->getPredicate());
895         break;
896       }
897     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
898       assert(BA->getFunction() == BA->getBasicBlock()->getParent() &&
899              "Malformed blockaddress");
900       Code = bitc::CST_CODE_BLOCKADDRESS;
901       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
902       Record.push_back(VE.getValueID(BA->getFunction()));
903       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
904     } else {
905       llvm_unreachable("Unknown constant!");
906     }
907     Stream.EmitRecord(Code, Record, AbbrevToUse);
908     Record.clear();
909   }
910
911   Stream.ExitBlock();
912 }
913
914 static void WriteModuleConstants(const ValueEnumerator &VE,
915                                  BitstreamWriter &Stream) {
916   const ValueEnumerator::ValueList &Vals = VE.getValues();
917
918   // Find the first constant to emit, which is the first non-globalvalue value.
919   // We know globalvalues have been emitted by WriteModuleInfo.
920   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
921     if (!isa<GlobalValue>(Vals[i].first)) {
922       WriteConstants(i, Vals.size(), VE, Stream, true);
923       return;
924     }
925   }
926 }
927
928 /// PushValueAndType - The file has to encode both the value and type id for
929 /// many values, because we need to know what type to create for forward
930 /// references.  However, most operands are not forward references, so this type
931 /// field is not needed.
932 ///
933 /// This function adds V's value ID to Vals.  If the value ID is higher than the
934 /// instruction ID, then it is a forward reference, and it also includes the
935 /// type ID.
936 static bool PushValueAndType(const Value *V, unsigned InstID,
937                              SmallVector<unsigned, 64> &Vals,
938                              ValueEnumerator &VE) {
939   unsigned ValID = VE.getValueID(V);
940   Vals.push_back(ValID);
941   if (ValID >= InstID) {
942     Vals.push_back(VE.getTypeID(V->getType()));
943     return true;
944   }
945   return false;
946 }
947
948 /// WriteInstruction - Emit an instruction to the specified stream.
949 static void WriteInstruction(const Instruction &I, unsigned InstID,
950                              ValueEnumerator &VE, BitstreamWriter &Stream,
951                              SmallVector<unsigned, 64> &Vals) {
952   unsigned Code = 0;
953   unsigned AbbrevToUse = 0;
954   VE.setInstructionID(&I);
955   switch (I.getOpcode()) {
956   default:
957     if (Instruction::isCast(I.getOpcode())) {
958       Code = bitc::FUNC_CODE_INST_CAST;
959       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
960         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
961       Vals.push_back(VE.getTypeID(I.getType()));
962       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
963     } else {
964       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
965       Code = bitc::FUNC_CODE_INST_BINOP;
966       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
967         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
968       Vals.push_back(VE.getValueID(I.getOperand(1)));
969       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
970       uint64_t Flags = GetOptimizationFlags(&I);
971       if (Flags != 0) {
972         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
973           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
974         Vals.push_back(Flags);
975       }
976     }
977     break;
978
979   case Instruction::GetElementPtr:
980     Code = bitc::FUNC_CODE_INST_GEP;
981     if (cast<GEPOperator>(&I)->isInBounds())
982       Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
983     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
984       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
985     break;
986   case Instruction::ExtractValue: {
987     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
988     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
989     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
990     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
991       Vals.push_back(*i);
992     break;
993   }
994   case Instruction::InsertValue: {
995     Code = bitc::FUNC_CODE_INST_INSERTVAL;
996     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
997     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
998     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
999     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1000       Vals.push_back(*i);
1001     break;
1002   }
1003   case Instruction::Select:
1004     Code = bitc::FUNC_CODE_INST_VSELECT;
1005     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1006     Vals.push_back(VE.getValueID(I.getOperand(2)));
1007     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1008     break;
1009   case Instruction::ExtractElement:
1010     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1011     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1012     Vals.push_back(VE.getValueID(I.getOperand(1)));
1013     break;
1014   case Instruction::InsertElement:
1015     Code = bitc::FUNC_CODE_INST_INSERTELT;
1016     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1017     Vals.push_back(VE.getValueID(I.getOperand(1)));
1018     Vals.push_back(VE.getValueID(I.getOperand(2)));
1019     break;
1020   case Instruction::ShuffleVector:
1021     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1022     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1023     Vals.push_back(VE.getValueID(I.getOperand(1)));
1024     Vals.push_back(VE.getValueID(I.getOperand(2)));
1025     break;
1026   case Instruction::ICmp:
1027   case Instruction::FCmp:
1028     // compare returning Int1Ty or vector of Int1Ty
1029     Code = bitc::FUNC_CODE_INST_CMP2;
1030     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1031     Vals.push_back(VE.getValueID(I.getOperand(1)));
1032     Vals.push_back(cast<CmpInst>(I).getPredicate());
1033     break;
1034
1035   case Instruction::Ret:
1036     {
1037       Code = bitc::FUNC_CODE_INST_RET;
1038       unsigned NumOperands = I.getNumOperands();
1039       if (NumOperands == 0)
1040         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1041       else if (NumOperands == 1) {
1042         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1043           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1044       } else {
1045         for (unsigned i = 0, e = NumOperands; i != e; ++i)
1046           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1047       }
1048     }
1049     break;
1050   case Instruction::Br:
1051     {
1052       Code = bitc::FUNC_CODE_INST_BR;
1053       BranchInst &II = cast<BranchInst>(I);
1054       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1055       if (II.isConditional()) {
1056         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1057         Vals.push_back(VE.getValueID(II.getCondition()));
1058       }
1059     }
1060     break;
1061   case Instruction::Switch:
1062     Code = bitc::FUNC_CODE_INST_SWITCH;
1063     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1064     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1065       Vals.push_back(VE.getValueID(I.getOperand(i)));
1066     break;
1067   case Instruction::IndirectBr:
1068     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1069     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1070     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1071       Vals.push_back(VE.getValueID(I.getOperand(i)));
1072     break;
1073       
1074   case Instruction::Invoke: {
1075     const InvokeInst *II = cast<InvokeInst>(&I);
1076     const Value *Callee(II->getCalledValue());
1077     const PointerType *PTy = cast<PointerType>(Callee->getType());
1078     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1079     Code = bitc::FUNC_CODE_INST_INVOKE;
1080
1081     Vals.push_back(VE.getAttributeID(II->getAttributes()));
1082     Vals.push_back(II->getCallingConv());
1083     Vals.push_back(VE.getValueID(II->getNormalDest()));
1084     Vals.push_back(VE.getValueID(II->getUnwindDest()));
1085     PushValueAndType(Callee, InstID, Vals, VE);
1086
1087     // Emit value #'s for the fixed parameters.
1088     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1089       Vals.push_back(VE.getValueID(I.getOperand(i)));  // fixed param.
1090
1091     // Emit type/value pairs for varargs params.
1092     if (FTy->isVarArg()) {
1093       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1094            i != e; ++i)
1095         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1096     }
1097     break;
1098   }
1099   case Instruction::Unwind:
1100     Code = bitc::FUNC_CODE_INST_UNWIND;
1101     break;
1102   case Instruction::Unreachable:
1103     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1104     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1105     break;
1106
1107   case Instruction::PHI:
1108     Code = bitc::FUNC_CODE_INST_PHI;
1109     Vals.push_back(VE.getTypeID(I.getType()));
1110     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1111       Vals.push_back(VE.getValueID(I.getOperand(i)));
1112     break;
1113
1114   case Instruction::Alloca:
1115     Code = bitc::FUNC_CODE_INST_ALLOCA;
1116     Vals.push_back(VE.getTypeID(I.getType()));
1117     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1118     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1119     break;
1120
1121   case Instruction::Load:
1122     Code = bitc::FUNC_CODE_INST_LOAD;
1123     if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1124       AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1125
1126     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1127     Vals.push_back(cast<LoadInst>(I).isVolatile());
1128     break;
1129   case Instruction::Store:
1130     Code = bitc::FUNC_CODE_INST_STORE2;
1131     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1132     Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
1133     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1134     Vals.push_back(cast<StoreInst>(I).isVolatile());
1135     break;
1136   case Instruction::Call: {
1137     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
1138     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1139
1140     Code = bitc::FUNC_CODE_INST_CALL;
1141
1142     const CallInst *CI = cast<CallInst>(&I);
1143     Vals.push_back(VE.getAttributeID(CI->getAttributes()));
1144     Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
1145     PushValueAndType(CI->getOperand(0), InstID, Vals, VE);  // Callee
1146
1147     // Emit value #'s for the fixed parameters.
1148     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1149       Vals.push_back(VE.getValueID(I.getOperand(i+1)));  // fixed param.
1150
1151     // Emit type/value pairs for varargs params.
1152     if (FTy->isVarArg()) {
1153       unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
1154       for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
1155            i != e; ++i)
1156         PushValueAndType(I.getOperand(i), InstID, Vals, VE);  // varargs
1157     }
1158     break;
1159   }
1160   case Instruction::VAArg:
1161     Code = bitc::FUNC_CODE_INST_VAARG;
1162     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1163     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1164     Vals.push_back(VE.getTypeID(I.getType())); // restype.
1165     break;
1166   }
1167
1168   Stream.EmitRecord(Code, Vals, AbbrevToUse);
1169   Vals.clear();
1170 }
1171
1172 // Emit names for globals/functions etc.
1173 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1174                                   const ValueEnumerator &VE,
1175                                   BitstreamWriter &Stream) {
1176   if (VST.empty()) return;
1177   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1178
1179   // FIXME: Set up the abbrev, we know how many values there are!
1180   // FIXME: We know if the type names can use 7-bit ascii.
1181   SmallVector<unsigned, 64> NameVals;
1182
1183   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1184        SI != SE; ++SI) {
1185
1186     const ValueName &Name = *SI;
1187
1188     // Figure out the encoding to use for the name.
1189     bool is7Bit = true;
1190     bool isChar6 = true;
1191     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1192          C != E; ++C) {
1193       if (isChar6)
1194         isChar6 = BitCodeAbbrevOp::isChar6(*C);
1195       if ((unsigned char)*C & 128) {
1196         is7Bit = false;
1197         break;  // don't bother scanning the rest.
1198       }
1199     }
1200
1201     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1202
1203     // VST_ENTRY:   [valueid, namechar x N]
1204     // VST_BBENTRY: [bbid, namechar x N]
1205     unsigned Code;
1206     if (isa<BasicBlock>(SI->getValue())) {
1207       Code = bitc::VST_CODE_BBENTRY;
1208       if (isChar6)
1209         AbbrevToUse = VST_BBENTRY_6_ABBREV;
1210     } else {
1211       Code = bitc::VST_CODE_ENTRY;
1212       if (isChar6)
1213         AbbrevToUse = VST_ENTRY_6_ABBREV;
1214       else if (is7Bit)
1215         AbbrevToUse = VST_ENTRY_7_ABBREV;
1216     }
1217
1218     NameVals.push_back(VE.getValueID(SI->getValue()));
1219     for (const char *P = Name.getKeyData(),
1220          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1221       NameVals.push_back((unsigned char)*P);
1222
1223     // Emit the finished record.
1224     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1225     NameVals.clear();
1226   }
1227   Stream.ExitBlock();
1228 }
1229
1230 /// WriteFunction - Emit a function body to the module stream.
1231 static void WriteFunction(const Function &F, ValueEnumerator &VE,
1232                           BitstreamWriter &Stream) {
1233   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1234   VE.incorporateFunction(F);
1235
1236   SmallVector<unsigned, 64> Vals;
1237
1238   // Emit the number of basic blocks, so the reader can create them ahead of
1239   // time.
1240   Vals.push_back(VE.getBasicBlocks().size());
1241   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1242   Vals.clear();
1243
1244   // If there are function-local constants, emit them now.
1245   unsigned CstStart, CstEnd;
1246   VE.getFunctionConstantRange(CstStart, CstEnd);
1247   WriteConstants(CstStart, CstEnd, VE, Stream, false);
1248
1249   // If there is function-local metadata, emit it now.
1250   WriteFunctionLocalMetadata(F, VE, Stream);
1251
1252   // Keep a running idea of what the instruction ID is.
1253   unsigned InstID = CstEnd;
1254
1255   bool NeedsMetadataAttachment = false;
1256   
1257   DebugLoc LastDL;
1258   
1259   // Finally, emit all the instructions, in order.
1260   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1261     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1262          I != E; ++I) {
1263       WriteInstruction(*I, InstID, VE, Stream, Vals);
1264       
1265       if (!I->getType()->isVoidTy())
1266         ++InstID;
1267       
1268       // If the instruction has metadata, write a metadata attachment later.
1269       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
1270       
1271       // If the instruction has a debug location, emit it.
1272       DebugLoc DL = I->getDebugLoc();
1273       if (DL.isUnknown()) {
1274         // nothing todo.
1275       } else if (DL == LastDL) {
1276         // Just repeat the same debug loc as last time.
1277         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
1278       } else {
1279         MDNode *Scope, *IA;
1280         DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
1281         
1282         Vals.push_back(DL.getLine());
1283         Vals.push_back(DL.getCol());
1284         Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0);
1285         Vals.push_back(IA ? VE.getValueID(IA)+1 : 0);
1286         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
1287         Vals.clear();
1288         
1289         LastDL = DL;
1290       }
1291     }
1292
1293   // Emit names for all the instructions etc.
1294   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1295
1296   if (NeedsMetadataAttachment)
1297     WriteMetadataAttachment(F, VE, Stream);
1298   VE.purgeFunction();
1299   Stream.ExitBlock();
1300 }
1301
1302 /// WriteTypeSymbolTable - Emit a block for the specified type symtab.
1303 static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
1304                                  const ValueEnumerator &VE,
1305                                  BitstreamWriter &Stream) {
1306   if (TST.empty()) return;
1307
1308   Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
1309
1310   // 7-bit fixed width VST_CODE_ENTRY strings.
1311   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1312   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1313   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1314                             Log2_32_Ceil(VE.getTypes().size()+1)));
1315   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1316   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1317   unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
1318
1319   SmallVector<unsigned, 64> NameVals;
1320
1321   for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
1322        TI != TE; ++TI) {
1323     // TST_ENTRY: [typeid, namechar x N]
1324     NameVals.push_back(VE.getTypeID(TI->second));
1325
1326     const std::string &Str = TI->first;
1327     bool is7Bit = true;
1328     for (unsigned i = 0, e = Str.size(); i != e; ++i) {
1329       NameVals.push_back((unsigned char)Str[i]);
1330       if (Str[i] & 128)
1331         is7Bit = false;
1332     }
1333
1334     // Emit the finished record.
1335     Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
1336     NameVals.clear();
1337   }
1338
1339   Stream.ExitBlock();
1340 }
1341
1342 // Emit blockinfo, which defines the standard abbreviations etc.
1343 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1344   // We only want to emit block info records for blocks that have multiple
1345   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1346   // blocks can defined their abbrevs inline.
1347   Stream.EnterBlockInfoBlock(2);
1348
1349   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1350     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1351     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1352     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1353     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1354     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1355     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1356                                    Abbv) != VST_ENTRY_8_ABBREV)
1357       llvm_unreachable("Unexpected abbrev ordering!");
1358   }
1359
1360   { // 7-bit fixed width VST_ENTRY strings.
1361     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1362     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1363     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1364     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1365     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1366     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1367                                    Abbv) != VST_ENTRY_7_ABBREV)
1368       llvm_unreachable("Unexpected abbrev ordering!");
1369   }
1370   { // 6-bit char6 VST_ENTRY strings.
1371     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1372     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1373     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1374     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1375     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1376     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1377                                    Abbv) != VST_ENTRY_6_ABBREV)
1378       llvm_unreachable("Unexpected abbrev ordering!");
1379   }
1380   { // 6-bit char6 VST_BBENTRY strings.
1381     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1382     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1383     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1384     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1385     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1386     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1387                                    Abbv) != VST_BBENTRY_6_ABBREV)
1388       llvm_unreachable("Unexpected abbrev ordering!");
1389   }
1390
1391
1392
1393   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1394     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1395     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1396     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1397                               Log2_32_Ceil(VE.getTypes().size()+1)));
1398     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1399                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1400       llvm_unreachable("Unexpected abbrev ordering!");
1401   }
1402
1403   { // INTEGER abbrev for CONSTANTS_BLOCK.
1404     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1405     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1406     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1407     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1408                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1409       llvm_unreachable("Unexpected abbrev ordering!");
1410   }
1411
1412   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1413     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1414     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1415     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1416     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1417                               Log2_32_Ceil(VE.getTypes().size()+1)));
1418     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1419
1420     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1421                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1422       llvm_unreachable("Unexpected abbrev ordering!");
1423   }
1424   { // NULL abbrev for CONSTANTS_BLOCK.
1425     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1426     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1427     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1428                                    Abbv) != CONSTANTS_NULL_Abbrev)
1429       llvm_unreachable("Unexpected abbrev ordering!");
1430   }
1431
1432   // FIXME: This should only use space for first class types!
1433
1434   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1435     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1436     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1437     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1438     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1439     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1440     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1441                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1442       llvm_unreachable("Unexpected abbrev ordering!");
1443   }
1444   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1445     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1446     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1447     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1448     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1449     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1450     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1451                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1452       llvm_unreachable("Unexpected abbrev ordering!");
1453   }
1454   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1455     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1456     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1457     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1458     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1459     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1460     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1461     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1462                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1463       llvm_unreachable("Unexpected abbrev ordering!");
1464   }
1465   { // INST_CAST abbrev for FUNCTION_BLOCK.
1466     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1467     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1468     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1469     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1470                               Log2_32_Ceil(VE.getTypes().size()+1)));
1471     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1472     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1473                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1474       llvm_unreachable("Unexpected abbrev ordering!");
1475   }
1476
1477   { // INST_RET abbrev for FUNCTION_BLOCK.
1478     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1479     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1480     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1481                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1482       llvm_unreachable("Unexpected abbrev ordering!");
1483   }
1484   { // INST_RET abbrev for FUNCTION_BLOCK.
1485     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1486     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1487     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1488     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1489                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1490       llvm_unreachable("Unexpected abbrev ordering!");
1491   }
1492   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1493     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1494     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1495     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1496                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1497       llvm_unreachable("Unexpected abbrev ordering!");
1498   }
1499
1500   Stream.ExitBlock();
1501 }
1502
1503
1504 /// WriteModule - Emit the specified module to the bitstream.
1505 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1506   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1507
1508   // Emit the version number if it is non-zero.
1509   if (CurVersion) {
1510     SmallVector<unsigned, 1> Vals;
1511     Vals.push_back(CurVersion);
1512     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1513   }
1514
1515   // Analyze the module, enumerating globals, functions, etc.
1516   ValueEnumerator VE(M);
1517
1518   // Emit blockinfo, which defines the standard abbreviations etc.
1519   WriteBlockInfo(VE, Stream);
1520
1521   // Emit information about parameter attributes.
1522   WriteAttributeTable(VE, Stream);
1523
1524   // Emit information describing all of the types in the module.
1525   WriteTypeTable(VE, Stream);
1526
1527   // Emit top-level description of module, including target triple, inline asm,
1528   // descriptors for global variables, and function prototype info.
1529   WriteModuleInfo(M, VE, Stream);
1530
1531   // Emit constants.
1532   WriteModuleConstants(VE, Stream);
1533
1534   // Emit metadata.
1535   WriteModuleMetadata(VE, Stream);
1536
1537   // Emit function bodies.
1538   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1539     if (!I->isDeclaration())
1540       WriteFunction(*I, VE, Stream);
1541
1542   // Emit metadata.
1543   WriteModuleMetadataStore(M, Stream);
1544
1545   // Emit the type symbol table information.
1546   WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1547
1548   // Emit names for globals/functions etc.
1549   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1550
1551   Stream.ExitBlock();
1552 }
1553
1554 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1555 /// header and trailer to make it compatible with the system archiver.  To do
1556 /// this we emit the following header, and then emit a trailer that pads the
1557 /// file out to be a multiple of 16 bytes.
1558 ///
1559 /// struct bc_header {
1560 ///   uint32_t Magic;         // 0x0B17C0DE
1561 ///   uint32_t Version;       // Version, currently always 0.
1562 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1563 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1564 ///   uint32_t CPUType;       // CPU specifier.
1565 ///   ... potentially more later ...
1566 /// };
1567 enum {
1568   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1569   DarwinBCHeaderSize = 5*4
1570 };
1571
1572 /// isARMTriplet - Return true if the triplet looks like:
1573 /// arm-*, thumb-*, armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*.
1574 static bool isARMTriplet(const std::string &TT) {
1575   size_t Pos = 0;
1576   size_t Size = TT.size();
1577   if (Size >= 6 &&
1578       TT[0] == 't' && TT[1] == 'h' && TT[2] == 'u' &&
1579       TT[3] == 'm' && TT[4] == 'b')
1580     Pos = 5;
1581   else if (Size >= 4 && TT[0] == 'a' && TT[1] == 'r' && TT[2] == 'm')
1582     Pos = 3;
1583   else
1584     return false;
1585
1586   if (TT[Pos] == '-')
1587     return true;
1588   else if (TT[Pos] == 'v') {
1589     if (Size >= Pos+4 &&
1590         TT[Pos+1] == '6' && TT[Pos+2] == 't' && TT[Pos+3] == '2')
1591       return true;
1592     else if (Size >= Pos+4 &&
1593              TT[Pos+1] == '5' && TT[Pos+2] == 't' && TT[Pos+3] == 'e')
1594       return true;
1595   } else
1596     return false;
1597   while (++Pos < Size && TT[Pos] != '-') {
1598     if (!isdigit(TT[Pos]))
1599       return false;
1600   }
1601   return true;
1602 }
1603
1604 static void EmitDarwinBCHeader(BitstreamWriter &Stream,
1605                                const std::string &TT) {
1606   unsigned CPUType = ~0U;
1607
1608   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
1609   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
1610   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
1611   // specific constants here because they are implicitly part of the Darwin ABI.
1612   enum {
1613     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1614     DARWIN_CPU_TYPE_X86        = 7,
1615     DARWIN_CPU_TYPE_ARM        = 12,
1616     DARWIN_CPU_TYPE_POWERPC    = 18
1617   };
1618
1619   if (TT.find("x86_64-") == 0)
1620     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1621   else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
1622            TT[4] == '-' && TT[1] - '3' < 6)
1623     CPUType = DARWIN_CPU_TYPE_X86;
1624   else if (TT.find("powerpc-") == 0)
1625     CPUType = DARWIN_CPU_TYPE_POWERPC;
1626   else if (TT.find("powerpc64-") == 0)
1627     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1628   else if (isARMTriplet(TT))
1629     CPUType = DARWIN_CPU_TYPE_ARM;
1630
1631   // Traditional Bitcode starts after header.
1632   unsigned BCOffset = DarwinBCHeaderSize;
1633
1634   Stream.Emit(0x0B17C0DE, 32);
1635   Stream.Emit(0         , 32);  // Version.
1636   Stream.Emit(BCOffset  , 32);
1637   Stream.Emit(0         , 32);  // Filled in later.
1638   Stream.Emit(CPUType   , 32);
1639 }
1640
1641 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
1642 /// finalize the header.
1643 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
1644   // Update the size field in the header.
1645   Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
1646
1647   // If the file is not a multiple of 16 bytes, insert dummy padding.
1648   while (BufferSize & 15) {
1649     Stream.Emit(0, 8);
1650     ++BufferSize;
1651   }
1652 }
1653
1654
1655 /// WriteBitcodeToFile - Write the specified module to the specified output
1656 /// stream.
1657 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1658   std::vector<unsigned char> Buffer;
1659   BitstreamWriter Stream(Buffer);
1660
1661   Buffer.reserve(256*1024);
1662
1663   WriteBitcodeToStream( M, Stream );
1664
1665   // If writing to stdout, set binary mode.
1666   if (&llvm::outs() == &Out)
1667     sys::Program::ChangeStdoutToBinary();
1668
1669   // Write the generated bitstream to "Out".
1670   Out.write((char*)&Buffer.front(), Buffer.size());
1671
1672   // Make sure it hits disk now.
1673   Out.flush();
1674 }
1675
1676 /// WriteBitcodeToStream - Write the specified module to the specified output
1677 /// stream.
1678 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
1679   // If this is darwin, emit a file header and trailer if needed.
1680   bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos;
1681   if (isDarwin)
1682     EmitDarwinBCHeader(Stream, M->getTargetTriple());
1683
1684   // Emit the file header.
1685   Stream.Emit((unsigned)'B', 8);
1686   Stream.Emit((unsigned)'C', 8);
1687   Stream.Emit(0x0, 4);
1688   Stream.Emit(0xC, 4);
1689   Stream.Emit(0xE, 4);
1690   Stream.Emit(0xD, 4);
1691
1692   // Emit the module.
1693   WriteModule(M, Stream);
1694
1695   if (isDarwin)
1696     EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());
1697 }