inline the global 'getInstrOperandRegClass' function into its callers
[oota-llvm.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Metadata.h"
23 #include "llvm/Module.h"
24 #include "llvm/Operator.h"
25 #include "llvm/TypeSymbolTable.h"
26 #include "llvm/ValueSymbolTable.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/MathExtras.h"
29 #include "llvm/Support/Streams.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/System/Program.h"
32 using namespace llvm;
33
34 /// These are manifest constants used by the bitcode writer. They do not need to
35 /// be kept in sync with the reader, but need to be consistent within this file.
36 enum {
37   CurVersion = 0,
38   
39   // VALUE_SYMTAB_BLOCK abbrev id's.
40   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
41   VST_ENTRY_7_ABBREV,
42   VST_ENTRY_6_ABBREV,
43   VST_BBENTRY_6_ABBREV,
44   
45   // CONSTANTS_BLOCK abbrev id's.
46   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
47   CONSTANTS_INTEGER_ABBREV,
48   CONSTANTS_CE_CAST_Abbrev,
49   CONSTANTS_NULL_Abbrev,
50   
51   // FUNCTION_BLOCK abbrev id's.
52   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
53   FUNCTION_INST_BINOP_ABBREV,
54   FUNCTION_INST_BINOP_FLAGS_ABBREV,
55   FUNCTION_INST_CAST_ABBREV,
56   FUNCTION_INST_RET_VOID_ABBREV,
57   FUNCTION_INST_RET_VAL_ABBREV,
58   FUNCTION_INST_UNREACHABLE_ABBREV
59 };
60
61
62 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
63   switch (Opcode) {
64   default: llvm_unreachable("Unknown cast instruction!");
65   case Instruction::Trunc   : return bitc::CAST_TRUNC;
66   case Instruction::ZExt    : return bitc::CAST_ZEXT;
67   case Instruction::SExt    : return bitc::CAST_SEXT;
68   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
69   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
70   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
71   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
72   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
73   case Instruction::FPExt   : return bitc::CAST_FPEXT;
74   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
75   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
76   case Instruction::BitCast : return bitc::CAST_BITCAST;
77   }
78 }
79
80 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
81   switch (Opcode) {
82   default: llvm_unreachable("Unknown binary instruction!");
83   case Instruction::Add:
84   case Instruction::FAdd: return bitc::BINOP_ADD;
85   case Instruction::Sub:
86   case Instruction::FSub: return bitc::BINOP_SUB;
87   case Instruction::Mul:
88   case Instruction::FMul: return bitc::BINOP_MUL;
89   case Instruction::UDiv: return bitc::BINOP_UDIV;
90   case Instruction::FDiv:
91   case Instruction::SDiv: return bitc::BINOP_SDIV;
92   case Instruction::URem: return bitc::BINOP_UREM;
93   case Instruction::FRem:
94   case Instruction::SRem: return bitc::BINOP_SREM;
95   case Instruction::Shl:  return bitc::BINOP_SHL;
96   case Instruction::LShr: return bitc::BINOP_LSHR;
97   case Instruction::AShr: return bitc::BINOP_ASHR;
98   case Instruction::And:  return bitc::BINOP_AND;
99   case Instruction::Or:   return bitc::BINOP_OR;
100   case Instruction::Xor:  return bitc::BINOP_XOR;
101   }
102 }
103
104
105
106 static void WriteStringRecord(unsigned Code, const std::string &Str, 
107                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
108   SmallVector<unsigned, 64> Vals;
109   
110   // Code: [strchar x N]
111   for (unsigned i = 0, e = Str.size(); i != e; ++i)
112     Vals.push_back(Str[i]);
113     
114   // Emit the finished record.
115   Stream.EmitRecord(Code, Vals, AbbrevToUse);
116 }
117
118 // Emit information about parameter attributes.
119 static void WriteAttributeTable(const ValueEnumerator &VE, 
120                                 BitstreamWriter &Stream) {
121   const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
122   if (Attrs.empty()) return;
123   
124   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
125
126   SmallVector<uint64_t, 64> Record;
127   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
128     const AttrListPtr &A = Attrs[i];
129     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
130       const AttributeWithIndex &PAWI = A.getSlot(i);
131       Record.push_back(PAWI.Index);
132
133       // FIXME: remove in LLVM 3.0
134       // Store the alignment in the bitcode as a 16-bit raw value instead of a
135       // 5-bit log2 encoded value. Shift the bits above the alignment up by
136       // 11 bits.
137       uint64_t FauxAttr = PAWI.Attrs & 0xffff;
138       if (PAWI.Attrs & Attribute::Alignment)
139         FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
140       FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
141
142       Record.push_back(FauxAttr);
143     }
144     
145     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
146     Record.clear();
147   }
148   
149   Stream.ExitBlock();
150 }
151
152 /// WriteTypeTable - Write out the type table for a module.
153 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
154   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
155   
156   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
157   SmallVector<uint64_t, 64> TypeVals;
158   
159   // Abbrev for TYPE_CODE_POINTER.
160   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
161   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
162   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
163                             Log2_32_Ceil(VE.getTypes().size()+1)));
164   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
165   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
166   
167   // Abbrev for TYPE_CODE_FUNCTION.
168   Abbv = new BitCodeAbbrev();
169   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
170   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
171   Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
172   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
173   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
174                             Log2_32_Ceil(VE.getTypes().size()+1)));
175   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
176   
177   // Abbrev for TYPE_CODE_STRUCT.
178   Abbv = new BitCodeAbbrev();
179   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
180   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
181   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
182   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
183                             Log2_32_Ceil(VE.getTypes().size()+1)));
184   unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
185  
186   // Abbrev for TYPE_CODE_ARRAY.
187   Abbv = new BitCodeAbbrev();
188   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
189   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
190   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
191                             Log2_32_Ceil(VE.getTypes().size()+1)));
192   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
193   
194   // Emit an entry count so the reader can reserve space.
195   TypeVals.push_back(TypeList.size());
196   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
197   TypeVals.clear();
198   
199   // Loop over all of the types, emitting each in turn.
200   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
201     const Type *T = TypeList[i].first;
202     int AbbrevToUse = 0;
203     unsigned Code = 0;
204     
205     switch (T->getTypeID()) {
206     default: llvm_unreachable("Unknown type!");
207     case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
208     case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
209     case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
210     case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
211     case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
212     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
213     case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
214     case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
215     case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
216     case Type::IntegerTyID:
217       // INTEGER: [width]
218       Code = bitc::TYPE_CODE_INTEGER;
219       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
220       break;
221     case Type::PointerTyID: {
222       const PointerType *PTy = cast<PointerType>(T);
223       // POINTER: [pointee type, address space]
224       Code = bitc::TYPE_CODE_POINTER;
225       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
226       unsigned AddressSpace = PTy->getAddressSpace();
227       TypeVals.push_back(AddressSpace);
228       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
229       break;
230     }
231     case Type::FunctionTyID: {
232       const FunctionType *FT = cast<FunctionType>(T);
233       // FUNCTION: [isvararg, attrid, retty, paramty x N]
234       Code = bitc::TYPE_CODE_FUNCTION;
235       TypeVals.push_back(FT->isVarArg());
236       TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
237       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
238       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
239         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
240       AbbrevToUse = FunctionAbbrev;
241       break;
242     }
243     case Type::StructTyID: {
244       const StructType *ST = cast<StructType>(T);
245       // STRUCT: [ispacked, eltty x N]
246       Code = bitc::TYPE_CODE_STRUCT;
247       TypeVals.push_back(ST->isPacked());
248       // Output all of the element types.
249       for (StructType::element_iterator I = ST->element_begin(),
250            E = ST->element_end(); I != E; ++I)
251         TypeVals.push_back(VE.getTypeID(*I));
252       AbbrevToUse = StructAbbrev;
253       break;
254     }
255     case Type::ArrayTyID: {
256       const ArrayType *AT = cast<ArrayType>(T);
257       // ARRAY: [numelts, eltty]
258       Code = bitc::TYPE_CODE_ARRAY;
259       TypeVals.push_back(AT->getNumElements());
260       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
261       AbbrevToUse = ArrayAbbrev;
262       break;
263     }
264     case Type::VectorTyID: {
265       const VectorType *VT = cast<VectorType>(T);
266       // VECTOR [numelts, eltty]
267       Code = bitc::TYPE_CODE_VECTOR;
268       TypeVals.push_back(VT->getNumElements());
269       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
270       break;
271     }
272     }
273
274     // Emit the finished record.
275     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
276     TypeVals.clear();
277   }
278   
279   Stream.ExitBlock();
280 }
281
282 static unsigned getEncodedLinkage(const GlobalValue *GV) {
283   switch (GV->getLinkage()) {
284   default: llvm_unreachable("Invalid linkage!");
285   case GlobalValue::GhostLinkage:  // Map ghost linkage onto external.
286   case GlobalValue::ExternalLinkage:            return 0;
287   case GlobalValue::WeakAnyLinkage:             return 1;
288   case GlobalValue::AppendingLinkage:           return 2;
289   case GlobalValue::InternalLinkage:            return 3;
290   case GlobalValue::LinkOnceAnyLinkage:         return 4;
291   case GlobalValue::DLLImportLinkage:           return 5;
292   case GlobalValue::DLLExportLinkage:           return 6;
293   case GlobalValue::ExternalWeakLinkage:        return 7;
294   case GlobalValue::CommonLinkage:              return 8;
295   case GlobalValue::PrivateLinkage:             return 9;
296   case GlobalValue::WeakODRLinkage:             return 10;
297   case GlobalValue::LinkOnceODRLinkage:         return 11;
298   case GlobalValue::AvailableExternallyLinkage: return 12;
299   case GlobalValue::LinkerPrivateLinkage:       return 13;
300   }
301 }
302
303 static unsigned getEncodedVisibility(const GlobalValue *GV) {
304   switch (GV->getVisibility()) {
305   default: llvm_unreachable("Invalid visibility!");
306   case GlobalValue::DefaultVisibility:   return 0;
307   case GlobalValue::HiddenVisibility:    return 1;
308   case GlobalValue::ProtectedVisibility: return 2;
309   }
310 }
311
312 // Emit top-level description of module, including target triple, inline asm,
313 // descriptors for global variables, and function prototype info.
314 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
315                             BitstreamWriter &Stream) {
316   // Emit the list of dependent libraries for the Module.
317   for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
318     WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
319
320   // Emit various pieces of data attached to a module.
321   if (!M->getTargetTriple().empty())
322     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
323                       0/*TODO*/, Stream);
324   if (!M->getDataLayout().empty())
325     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
326                       0/*TODO*/, Stream);
327   if (!M->getModuleInlineAsm().empty())
328     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
329                       0/*TODO*/, Stream);
330
331   // Emit information about sections and GC, computing how many there are. Also
332   // compute the maximum alignment value.
333   std::map<std::string, unsigned> SectionMap;
334   std::map<std::string, unsigned> GCMap;
335   unsigned MaxAlignment = 0;
336   unsigned MaxGlobalType = 0;
337   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
338        GV != E; ++GV) {
339     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
340     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
341     
342     if (!GV->hasSection()) continue;
343     // Give section names unique ID's.
344     unsigned &Entry = SectionMap[GV->getSection()];
345     if (Entry != 0) continue;
346     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
347                       0/*TODO*/, Stream);
348     Entry = SectionMap.size();
349   }
350   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
351     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
352     if (F->hasSection()) {
353       // Give section names unique ID's.
354       unsigned &Entry = SectionMap[F->getSection()];
355       if (!Entry) {
356         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
357                           0/*TODO*/, Stream);
358         Entry = SectionMap.size();
359       }
360     }
361     if (F->hasGC()) {
362       // Same for GC names.
363       unsigned &Entry = GCMap[F->getGC()];
364       if (!Entry) {
365         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
366                           0/*TODO*/, Stream);
367         Entry = GCMap.size();
368       }
369     }
370   }
371   
372   // Emit abbrev for globals, now that we know # sections and max alignment.
373   unsigned SimpleGVarAbbrev = 0;
374   if (!M->global_empty()) { 
375     // Add an abbrev for common globals with no visibility or thread localness.
376     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
377     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
378     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
379                               Log2_32_Ceil(MaxGlobalType+1)));
380     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
381     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
382     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
383     if (MaxAlignment == 0)                                      // Alignment.
384       Abbv->Add(BitCodeAbbrevOp(0));
385     else {
386       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
387       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
388                                Log2_32_Ceil(MaxEncAlignment+1)));
389     }
390     if (SectionMap.empty())                                    // Section.
391       Abbv->Add(BitCodeAbbrevOp(0));
392     else
393       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
394                                Log2_32_Ceil(SectionMap.size()+1)));
395     // Don't bother emitting vis + thread local.
396     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
397   }
398   
399   // Emit the global variable information.
400   SmallVector<unsigned, 64> Vals;
401   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
402        GV != E; ++GV) {
403     unsigned AbbrevToUse = 0;
404
405     // GLOBALVAR: [type, isconst, initid, 
406     //             linkage, alignment, section, visibility, threadlocal]
407     Vals.push_back(VE.getTypeID(GV->getType()));
408     Vals.push_back(GV->isConstant());
409     Vals.push_back(GV->isDeclaration() ? 0 :
410                    (VE.getValueID(GV->getInitializer()) + 1));
411     Vals.push_back(getEncodedLinkage(GV));
412     Vals.push_back(Log2_32(GV->getAlignment())+1);
413     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
414     if (GV->isThreadLocal() || 
415         GV->getVisibility() != GlobalValue::DefaultVisibility) {
416       Vals.push_back(getEncodedVisibility(GV));
417       Vals.push_back(GV->isThreadLocal());
418     } else {
419       AbbrevToUse = SimpleGVarAbbrev;
420     }
421     
422     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
423     Vals.clear();
424   }
425
426   // Emit the function proto information.
427   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
428     // FUNCTION:  [type, callingconv, isproto, paramattr,
429     //             linkage, alignment, section, visibility, gc]
430     Vals.push_back(VE.getTypeID(F->getType()));
431     Vals.push_back(F->getCallingConv());
432     Vals.push_back(F->isDeclaration());
433     Vals.push_back(getEncodedLinkage(F));
434     Vals.push_back(VE.getAttributeID(F->getAttributes()));
435     Vals.push_back(Log2_32(F->getAlignment())+1);
436     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
437     Vals.push_back(getEncodedVisibility(F));
438     Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
439     
440     unsigned AbbrevToUse = 0;
441     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
442     Vals.clear();
443   }
444   
445   
446   // Emit the alias information.
447   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
448        AI != E; ++AI) {
449     Vals.push_back(VE.getTypeID(AI->getType()));
450     Vals.push_back(VE.getValueID(AI->getAliasee()));
451     Vals.push_back(getEncodedLinkage(AI));
452     Vals.push_back(getEncodedVisibility(AI));
453     unsigned AbbrevToUse = 0;
454     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
455     Vals.clear();
456   }
457 }
458
459 static uint64_t GetOptimizationFlags(const Value *V) {
460   uint64_t Flags = 0;
461
462   if (const OverflowingBinaryOperator *OBO =
463         dyn_cast<OverflowingBinaryOperator>(V)) {
464     if (OBO->hasNoSignedOverflow())
465       Flags |= 1 << bitc::OBO_NO_SIGNED_OVERFLOW;
466     if (OBO->hasNoUnsignedOverflow())
467       Flags |= 1 << bitc::OBO_NO_UNSIGNED_OVERFLOW;
468   } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) {
469     if (Div->isExact())
470       Flags |= 1 << bitc::SDIV_EXACT;
471   }
472
473   return Flags;
474 }
475
476 static void WriteMDNode(const MDNode *N,
477                         const ValueEnumerator &VE,
478                         BitstreamWriter &Stream,
479                         SmallVector<uint64_t, 64> &Record) {
480   for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) {
481     if (N->getElement(i)) {
482       Record.push_back(VE.getTypeID(N->getElement(i)->getType()));
483       Record.push_back(VE.getValueID(N->getElement(i)));
484     } else {
485       Record.push_back(VE.getTypeID(Type::VoidTy));
486       Record.push_back(0);
487     }
488   }
489   Stream.EmitRecord(bitc::METADATA_NODE, Record, 0);
490   Record.clear();
491 }
492
493 static void WriteModuleMetadata(const ValueEnumerator &VE,
494                                 BitstreamWriter &Stream) {
495   const ValueEnumerator::ValueList &Vals = VE.getValues();
496   bool StartedMetadataBlock = false;
497   unsigned MDSAbbrev = 0;
498   SmallVector<uint64_t, 64> Record;
499   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
500     
501     if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
502       if (!StartedMetadataBlock) {
503         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
504         StartedMetadataBlock = true;
505       }
506       WriteMDNode(N, VE, Stream, Record);
507     } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
508       if (!StartedMetadataBlock)  {
509         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
510         
511         // Abbrev for METADATA_STRING.
512         BitCodeAbbrev *Abbv = new BitCodeAbbrev();
513         Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
514         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
515         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
516         MDSAbbrev = Stream.EmitAbbrev(Abbv);
517         StartedMetadataBlock = true;
518       }
519       
520       // Code: [strchar x N]
521       const char *StrBegin = MDS->begin();
522       for (unsigned i = 0, e = MDS->length(); i != e; ++i)
523         Record.push_back(StrBegin[i]);
524       
525       // Emit the finished record.
526       Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
527       Record.clear();
528     }
529   }
530   
531   if (StartedMetadataBlock)
532     Stream.ExitBlock();    
533 }
534
535 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
536                            const ValueEnumerator &VE,
537                            BitstreamWriter &Stream, bool isGlobal) {
538   if (FirstVal == LastVal) return;
539   
540   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
541
542   unsigned AggregateAbbrev = 0;
543   unsigned String8Abbrev = 0;
544   unsigned CString7Abbrev = 0;
545   unsigned CString6Abbrev = 0;
546   // If this is a constant pool for the module, emit module-specific abbrevs.
547   if (isGlobal) {
548     // Abbrev for CST_CODE_AGGREGATE.
549     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
550     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
551     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
552     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
553     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
554
555     // Abbrev for CST_CODE_STRING.
556     Abbv = new BitCodeAbbrev();
557     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
558     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
559     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
560     String8Abbrev = Stream.EmitAbbrev(Abbv);
561     // Abbrev for CST_CODE_CSTRING.
562     Abbv = new BitCodeAbbrev();
563     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
564     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
565     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
566     CString7Abbrev = Stream.EmitAbbrev(Abbv);
567     // Abbrev for CST_CODE_CSTRING.
568     Abbv = new BitCodeAbbrev();
569     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
570     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
571     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
572     CString6Abbrev = Stream.EmitAbbrev(Abbv);
573   }  
574   
575   SmallVector<uint64_t, 64> Record;
576
577   const ValueEnumerator::ValueList &Vals = VE.getValues();
578   const Type *LastTy = 0;
579   for (unsigned i = FirstVal; i != LastVal; ++i) {
580     const Value *V = Vals[i].first;
581     if (isa<MDString>(V) || isa<MDNode>(V))
582       continue;
583     // If we need to switch types, do so now.
584     if (V->getType() != LastTy) {
585       LastTy = V->getType();
586       Record.push_back(VE.getTypeID(LastTy));
587       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
588                         CONSTANTS_SETTYPE_ABBREV);
589       Record.clear();
590     }
591     
592     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
593       Record.push_back(unsigned(IA->hasSideEffects()));
594       
595       // Add the asm string.
596       const std::string &AsmStr = IA->getAsmString();
597       Record.push_back(AsmStr.size());
598       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
599         Record.push_back(AsmStr[i]);
600       
601       // Add the constraint string.
602       const std::string &ConstraintStr = IA->getConstraintString();
603       Record.push_back(ConstraintStr.size());
604       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
605         Record.push_back(ConstraintStr[i]);
606       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
607       Record.clear();
608       continue;
609     }
610     const Constant *C = cast<Constant>(V);
611     unsigned Code = -1U;
612     unsigned AbbrevToUse = 0;
613     if (C->isNullValue()) {
614       Code = bitc::CST_CODE_NULL;
615     } else if (isa<UndefValue>(C)) {
616       Code = bitc::CST_CODE_UNDEF;
617     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
618       if (IV->getBitWidth() <= 64) {
619         int64_t V = IV->getSExtValue();
620         if (V >= 0)
621           Record.push_back(V << 1);
622         else
623           Record.push_back((-V << 1) | 1);
624         Code = bitc::CST_CODE_INTEGER;
625         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
626       } else {                             // Wide integers, > 64 bits in size.
627         // We have an arbitrary precision integer value to write whose 
628         // bit width is > 64. However, in canonical unsigned integer 
629         // format it is likely that the high bits are going to be zero.
630         // So, we only write the number of active words.
631         unsigned NWords = IV->getValue().getActiveWords(); 
632         const uint64_t *RawWords = IV->getValue().getRawData();
633         for (unsigned i = 0; i != NWords; ++i) {
634           int64_t V = RawWords[i];
635           if (V >= 0)
636             Record.push_back(V << 1);
637           else
638             Record.push_back((-V << 1) | 1);
639         }
640         Code = bitc::CST_CODE_WIDE_INTEGER;
641       }
642     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
643       Code = bitc::CST_CODE_FLOAT;
644       const Type *Ty = CFP->getType();
645       if (Ty == Type::FloatTy || Ty == Type::DoubleTy) {
646         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
647       } else if (Ty == Type::X86_FP80Ty) {
648         // api needed to prevent premature destruction
649         // bits are not in the same order as a normal i80 APInt, compensate.
650         APInt api = CFP->getValueAPF().bitcastToAPInt();
651         const uint64_t *p = api.getRawData();
652         Record.push_back((p[1] << 48) | (p[0] >> 16));
653         Record.push_back(p[0] & 0xffffLL);
654       } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) {
655         APInt api = CFP->getValueAPF().bitcastToAPInt();
656         const uint64_t *p = api.getRawData();
657         Record.push_back(p[0]);
658         Record.push_back(p[1]);
659       } else {
660         assert (0 && "Unknown FP type!");
661       }
662     } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
663       // Emit constant strings specially.
664       unsigned NumOps = C->getNumOperands();
665       // If this is a null-terminated string, use the denser CSTRING encoding.
666       if (C->getOperand(NumOps-1)->isNullValue()) {
667         Code = bitc::CST_CODE_CSTRING;
668         --NumOps;  // Don't encode the null, which isn't allowed by char6.
669       } else {
670         Code = bitc::CST_CODE_STRING;
671         AbbrevToUse = String8Abbrev;
672       }
673       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
674       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
675       for (unsigned i = 0; i != NumOps; ++i) {
676         unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
677         Record.push_back(V);
678         isCStr7 &= (V & 128) == 0;
679         if (isCStrChar6) 
680           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
681       }
682       
683       if (isCStrChar6)
684         AbbrevToUse = CString6Abbrev;
685       else if (isCStr7)
686         AbbrevToUse = CString7Abbrev;
687     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
688                isa<ConstantVector>(V)) {
689       Code = bitc::CST_CODE_AGGREGATE;
690       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
691         Record.push_back(VE.getValueID(C->getOperand(i)));
692       AbbrevToUse = AggregateAbbrev;
693     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
694       switch (CE->getOpcode()) {
695       default:
696         if (Instruction::isCast(CE->getOpcode())) {
697           Code = bitc::CST_CODE_CE_CAST;
698           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
699           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
700           Record.push_back(VE.getValueID(C->getOperand(0)));
701           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
702         } else {
703           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
704           Code = bitc::CST_CODE_CE_BINOP;
705           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
706           Record.push_back(VE.getValueID(C->getOperand(0)));
707           Record.push_back(VE.getValueID(C->getOperand(1)));
708           uint64_t Flags = GetOptimizationFlags(CE);
709           if (Flags != 0)
710             Record.push_back(Flags);
711         }
712         break;
713       case Instruction::GetElementPtr:
714         Code = bitc::CST_CODE_CE_GEP;
715         if (cast<GEPOperator>(C)->isInBounds())
716           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
717         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
718           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
719           Record.push_back(VE.getValueID(C->getOperand(i)));
720         }
721         break;
722       case Instruction::Select:
723         Code = bitc::CST_CODE_CE_SELECT;
724         Record.push_back(VE.getValueID(C->getOperand(0)));
725         Record.push_back(VE.getValueID(C->getOperand(1)));
726         Record.push_back(VE.getValueID(C->getOperand(2)));
727         break;
728       case Instruction::ExtractElement:
729         Code = bitc::CST_CODE_CE_EXTRACTELT;
730         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
731         Record.push_back(VE.getValueID(C->getOperand(0)));
732         Record.push_back(VE.getValueID(C->getOperand(1)));
733         break;
734       case Instruction::InsertElement:
735         Code = bitc::CST_CODE_CE_INSERTELT;
736         Record.push_back(VE.getValueID(C->getOperand(0)));
737         Record.push_back(VE.getValueID(C->getOperand(1)));
738         Record.push_back(VE.getValueID(C->getOperand(2)));
739         break;
740       case Instruction::ShuffleVector:
741         // If the return type and argument types are the same, this is a
742         // standard shufflevector instruction.  If the types are different,
743         // then the shuffle is widening or truncating the input vectors, and
744         // the argument type must also be encoded.
745         if (C->getType() == C->getOperand(0)->getType()) {
746           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
747         } else {
748           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
749           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
750         }
751         Record.push_back(VE.getValueID(C->getOperand(0)));
752         Record.push_back(VE.getValueID(C->getOperand(1)));
753         Record.push_back(VE.getValueID(C->getOperand(2)));
754         break;
755       case Instruction::ICmp:
756       case Instruction::FCmp:
757         Code = bitc::CST_CODE_CE_CMP;
758         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
759         Record.push_back(VE.getValueID(C->getOperand(0)));
760         Record.push_back(VE.getValueID(C->getOperand(1)));
761         Record.push_back(CE->getPredicate());
762         break;
763       }
764     } else {
765       llvm_unreachable("Unknown constant!");
766     }
767     Stream.EmitRecord(Code, Record, AbbrevToUse);
768     Record.clear();
769   }
770
771   Stream.ExitBlock();
772 }
773
774 static void WriteModuleConstants(const ValueEnumerator &VE,
775                                  BitstreamWriter &Stream) {
776   const ValueEnumerator::ValueList &Vals = VE.getValues();
777   
778   // Find the first constant to emit, which is the first non-globalvalue value.
779   // We know globalvalues have been emitted by WriteModuleInfo.
780   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
781     if (!isa<GlobalValue>(Vals[i].first)) {
782       WriteConstants(i, Vals.size(), VE, Stream, true);
783       return;
784     }
785   }
786 }
787
788 /// PushValueAndType - The file has to encode both the value and type id for
789 /// many values, because we need to know what type to create for forward
790 /// references.  However, most operands are not forward references, so this type
791 /// field is not needed.
792 ///
793 /// This function adds V's value ID to Vals.  If the value ID is higher than the
794 /// instruction ID, then it is a forward reference, and it also includes the
795 /// type ID.
796 static bool PushValueAndType(const Value *V, unsigned InstID,
797                              SmallVector<unsigned, 64> &Vals, 
798                              ValueEnumerator &VE) {
799   unsigned ValID = VE.getValueID(V);
800   Vals.push_back(ValID);
801   if (ValID >= InstID) {
802     Vals.push_back(VE.getTypeID(V->getType()));
803     return true;
804   }
805   return false;
806 }
807
808 /// WriteInstruction - Emit an instruction to the specified stream.
809 static void WriteInstruction(const Instruction &I, unsigned InstID,
810                              ValueEnumerator &VE, BitstreamWriter &Stream,
811                              SmallVector<unsigned, 64> &Vals) {
812   unsigned Code = 0;
813   unsigned AbbrevToUse = 0;
814   switch (I.getOpcode()) {
815   default:
816     if (Instruction::isCast(I.getOpcode())) {
817       Code = bitc::FUNC_CODE_INST_CAST;
818       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
819         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
820       Vals.push_back(VE.getTypeID(I.getType()));
821       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
822     } else {
823       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
824       Code = bitc::FUNC_CODE_INST_BINOP;
825       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
826         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
827       Vals.push_back(VE.getValueID(I.getOperand(1)));
828       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
829       uint64_t Flags = GetOptimizationFlags(&I);
830       if (Flags != 0) {
831         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
832           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
833         Vals.push_back(Flags);
834       }
835     }
836     break;
837
838   case Instruction::GetElementPtr:
839     Code = bitc::FUNC_CODE_INST_GEP;
840     if (cast<GEPOperator>(&I)->isInBounds())
841       Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
842     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
843       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
844     break;
845   case Instruction::ExtractValue: {
846     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
847     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
848     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
849     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
850       Vals.push_back(*i);
851     break;
852   }
853   case Instruction::InsertValue: {
854     Code = bitc::FUNC_CODE_INST_INSERTVAL;
855     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
856     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
857     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
858     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
859       Vals.push_back(*i);
860     break;
861   }
862   case Instruction::Select:
863     Code = bitc::FUNC_CODE_INST_VSELECT;
864     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
865     Vals.push_back(VE.getValueID(I.getOperand(2)));
866     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
867     break;
868   case Instruction::ExtractElement:
869     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
870     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
871     Vals.push_back(VE.getValueID(I.getOperand(1)));
872     break;
873   case Instruction::InsertElement:
874     Code = bitc::FUNC_CODE_INST_INSERTELT;
875     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
876     Vals.push_back(VE.getValueID(I.getOperand(1)));
877     Vals.push_back(VE.getValueID(I.getOperand(2)));
878     break;
879   case Instruction::ShuffleVector:
880     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
881     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
882     Vals.push_back(VE.getValueID(I.getOperand(1)));
883     Vals.push_back(VE.getValueID(I.getOperand(2)));
884     break;
885   case Instruction::ICmp:
886   case Instruction::FCmp:
887     // compare returning Int1Ty or vector of Int1Ty
888     Code = bitc::FUNC_CODE_INST_CMP2;
889     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
890     Vals.push_back(VE.getValueID(I.getOperand(1)));
891     Vals.push_back(cast<CmpInst>(I).getPredicate());
892     break;
893
894   case Instruction::Ret: 
895     {
896       Code = bitc::FUNC_CODE_INST_RET;
897       unsigned NumOperands = I.getNumOperands();
898       if (NumOperands == 0)
899         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
900       else if (NumOperands == 1) {
901         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
902           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
903       } else {
904         for (unsigned i = 0, e = NumOperands; i != e; ++i)
905           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
906       }
907     }
908     break;
909   case Instruction::Br:
910     {
911       Code = bitc::FUNC_CODE_INST_BR;
912       BranchInst &II(cast<BranchInst>(I));
913       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
914       if (II.isConditional()) {
915         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
916         Vals.push_back(VE.getValueID(II.getCondition()));
917       }
918     }
919     break;
920   case Instruction::Switch:
921     Code = bitc::FUNC_CODE_INST_SWITCH;
922     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
923     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
924       Vals.push_back(VE.getValueID(I.getOperand(i)));
925     break;
926   case Instruction::Invoke: {
927     const InvokeInst *II = cast<InvokeInst>(&I);
928     const Value *Callee(II->getCalledValue());
929     const PointerType *PTy = cast<PointerType>(Callee->getType());
930     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
931     Code = bitc::FUNC_CODE_INST_INVOKE;
932     
933     Vals.push_back(VE.getAttributeID(II->getAttributes()));
934     Vals.push_back(II->getCallingConv());
935     Vals.push_back(VE.getValueID(II->getNormalDest()));
936     Vals.push_back(VE.getValueID(II->getUnwindDest()));
937     PushValueAndType(Callee, InstID, Vals, VE);
938     
939     // Emit value #'s for the fixed parameters.
940     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
941       Vals.push_back(VE.getValueID(I.getOperand(i+3)));  // fixed param.
942
943     // Emit type/value pairs for varargs params.
944     if (FTy->isVarArg()) {
945       for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
946            i != e; ++i)
947         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
948     }
949     break;
950   }
951   case Instruction::Unwind:
952     Code = bitc::FUNC_CODE_INST_UNWIND;
953     break;
954   case Instruction::Unreachable:
955     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
956     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
957     break;
958   
959   case Instruction::PHI:
960     Code = bitc::FUNC_CODE_INST_PHI;
961     Vals.push_back(VE.getTypeID(I.getType()));
962     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
963       Vals.push_back(VE.getValueID(I.getOperand(i)));
964     break;
965     
966   case Instruction::Malloc:
967     Code = bitc::FUNC_CODE_INST_MALLOC;
968     Vals.push_back(VE.getTypeID(I.getType()));
969     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
970     Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
971     break;
972     
973   case Instruction::Free:
974     Code = bitc::FUNC_CODE_INST_FREE;
975     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
976     break;
977     
978   case Instruction::Alloca:
979     Code = bitc::FUNC_CODE_INST_ALLOCA;
980     Vals.push_back(VE.getTypeID(I.getType()));
981     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
982     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
983     break;
984     
985   case Instruction::Load:
986     Code = bitc::FUNC_CODE_INST_LOAD;
987     if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
988       AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
989       
990     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
991     Vals.push_back(cast<LoadInst>(I).isVolatile());
992     break;
993   case Instruction::Store:
994     Code = bitc::FUNC_CODE_INST_STORE2;
995     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
996     Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
997     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
998     Vals.push_back(cast<StoreInst>(I).isVolatile());
999     break;
1000   case Instruction::Call: {
1001     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
1002     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1003
1004     Code = bitc::FUNC_CODE_INST_CALL;
1005     
1006     const CallInst *CI = cast<CallInst>(&I);
1007     Vals.push_back(VE.getAttributeID(CI->getAttributes()));
1008     Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
1009     PushValueAndType(CI->getOperand(0), InstID, Vals, VE);  // Callee
1010     
1011     // Emit value #'s for the fixed parameters.
1012     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1013       Vals.push_back(VE.getValueID(I.getOperand(i+1)));  // fixed param.
1014       
1015     // Emit type/value pairs for varargs params.
1016     if (FTy->isVarArg()) {
1017       unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
1018       for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
1019            i != e; ++i)
1020         PushValueAndType(I.getOperand(i), InstID, Vals, VE);  // varargs
1021     }
1022     break;
1023   }
1024   case Instruction::VAArg:
1025     Code = bitc::FUNC_CODE_INST_VAARG;
1026     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1027     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1028     Vals.push_back(VE.getTypeID(I.getType())); // restype.
1029     break;
1030   }
1031   
1032   Stream.EmitRecord(Code, Vals, AbbrevToUse);
1033   Vals.clear();
1034 }
1035
1036 // Emit names for globals/functions etc.
1037 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1038                                   const ValueEnumerator &VE,
1039                                   BitstreamWriter &Stream) {
1040   if (VST.empty()) return;
1041   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1042
1043   // FIXME: Set up the abbrev, we know how many values there are!
1044   // FIXME: We know if the type names can use 7-bit ascii.
1045   SmallVector<unsigned, 64> NameVals;
1046   
1047   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1048        SI != SE; ++SI) {
1049     
1050     const ValueName &Name = *SI;
1051     
1052     // Figure out the encoding to use for the name.
1053     bool is7Bit = true;
1054     bool isChar6 = true;
1055     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1056          C != E; ++C) {
1057       if (isChar6) 
1058         isChar6 = BitCodeAbbrevOp::isChar6(*C);
1059       if ((unsigned char)*C & 128) {
1060         is7Bit = false;
1061         break;  // don't bother scanning the rest.
1062       }
1063     }
1064     
1065     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1066     
1067     // VST_ENTRY:   [valueid, namechar x N]
1068     // VST_BBENTRY: [bbid, namechar x N]
1069     unsigned Code;
1070     if (isa<BasicBlock>(SI->getValue())) {
1071       Code = bitc::VST_CODE_BBENTRY;
1072       if (isChar6)
1073         AbbrevToUse = VST_BBENTRY_6_ABBREV;
1074     } else {
1075       Code = bitc::VST_CODE_ENTRY;
1076       if (isChar6)
1077         AbbrevToUse = VST_ENTRY_6_ABBREV;
1078       else if (is7Bit)
1079         AbbrevToUse = VST_ENTRY_7_ABBREV;
1080     }
1081     
1082     NameVals.push_back(VE.getValueID(SI->getValue()));
1083     for (const char *P = Name.getKeyData(),
1084          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1085       NameVals.push_back((unsigned char)*P);
1086     
1087     // Emit the finished record.
1088     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1089     NameVals.clear();
1090   }
1091   Stream.ExitBlock();
1092 }
1093
1094 /// WriteFunction - Emit a function body to the module stream.
1095 static void WriteFunction(const Function &F, ValueEnumerator &VE, 
1096                           BitstreamWriter &Stream) {
1097   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1098   VE.incorporateFunction(F);
1099
1100   SmallVector<unsigned, 64> Vals;
1101   
1102   // Emit the number of basic blocks, so the reader can create them ahead of
1103   // time.
1104   Vals.push_back(VE.getBasicBlocks().size());
1105   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1106   Vals.clear();
1107   
1108   // If there are function-local constants, emit them now.
1109   unsigned CstStart, CstEnd;
1110   VE.getFunctionConstantRange(CstStart, CstEnd);
1111   WriteConstants(CstStart, CstEnd, VE, Stream, false);
1112   
1113   // Keep a running idea of what the instruction ID is. 
1114   unsigned InstID = CstEnd;
1115   
1116   // Finally, emit all the instructions, in order.
1117   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1118     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1119          I != E; ++I) {
1120       WriteInstruction(*I, InstID, VE, Stream, Vals);
1121       if (I->getType() != Type::VoidTy)
1122         ++InstID;
1123     }
1124   
1125   // Emit names for all the instructions etc.
1126   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1127     
1128   VE.purgeFunction();
1129   Stream.ExitBlock();
1130 }
1131
1132 /// WriteTypeSymbolTable - Emit a block for the specified type symtab.
1133 static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
1134                                  const ValueEnumerator &VE,
1135                                  BitstreamWriter &Stream) {
1136   if (TST.empty()) return;
1137   
1138   Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
1139   
1140   // 7-bit fixed width VST_CODE_ENTRY strings.
1141   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1142   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1143   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1144                             Log2_32_Ceil(VE.getTypes().size()+1)));
1145   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1146   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1147   unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
1148   
1149   SmallVector<unsigned, 64> NameVals;
1150   
1151   for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 
1152        TI != TE; ++TI) {
1153     // TST_ENTRY: [typeid, namechar x N]
1154     NameVals.push_back(VE.getTypeID(TI->second));
1155     
1156     const std::string &Str = TI->first;
1157     bool is7Bit = true;
1158     for (unsigned i = 0, e = Str.size(); i != e; ++i) {
1159       NameVals.push_back((unsigned char)Str[i]);
1160       if (Str[i] & 128)
1161         is7Bit = false;
1162     }
1163     
1164     // Emit the finished record.
1165     Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
1166     NameVals.clear();
1167   }
1168   
1169   Stream.ExitBlock();
1170 }
1171
1172 // Emit blockinfo, which defines the standard abbreviations etc.
1173 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1174   // We only want to emit block info records for blocks that have multiple
1175   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1176   // blocks can defined their abbrevs inline.
1177   Stream.EnterBlockInfoBlock(2);
1178   
1179   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1180     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1181     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1182     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1183     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1184     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1185     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 
1186                                    Abbv) != VST_ENTRY_8_ABBREV)
1187       llvm_unreachable("Unexpected abbrev ordering!");
1188   }
1189   
1190   { // 7-bit fixed width VST_ENTRY strings.
1191     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1192     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1193     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1194     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1195     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1196     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1197                                    Abbv) != VST_ENTRY_7_ABBREV)
1198       llvm_unreachable("Unexpected abbrev ordering!");
1199   }
1200   { // 6-bit char6 VST_ENTRY strings.
1201     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1202     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1203     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1204     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1205     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1206     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1207                                    Abbv) != VST_ENTRY_6_ABBREV)
1208       llvm_unreachable("Unexpected abbrev ordering!");
1209   }
1210   { // 6-bit char6 VST_BBENTRY strings.
1211     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1212     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1213     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1214     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1215     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1216     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1217                                    Abbv) != VST_BBENTRY_6_ABBREV)
1218       llvm_unreachable("Unexpected abbrev ordering!");
1219   }
1220   
1221   
1222   
1223   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1224     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1225     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1226     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1227                               Log2_32_Ceil(VE.getTypes().size()+1)));
1228     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1229                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1230       llvm_unreachable("Unexpected abbrev ordering!");
1231   }
1232   
1233   { // INTEGER abbrev for CONSTANTS_BLOCK.
1234     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1235     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1236     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1237     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1238                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1239       llvm_unreachable("Unexpected abbrev ordering!");
1240   }
1241   
1242   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1243     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1244     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1245     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1246     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1247                               Log2_32_Ceil(VE.getTypes().size()+1)));
1248     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1249
1250     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1251                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1252       llvm_unreachable("Unexpected abbrev ordering!");
1253   }
1254   { // NULL abbrev for CONSTANTS_BLOCK.
1255     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1256     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1257     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1258                                    Abbv) != CONSTANTS_NULL_Abbrev)
1259       llvm_unreachable("Unexpected abbrev ordering!");
1260   }
1261   
1262   // FIXME: This should only use space for first class types!
1263  
1264   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1265     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1266     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1267     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1268     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1269     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1270     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1271                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1272       llvm_unreachable("Unexpected abbrev ordering!");
1273   }
1274   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1275     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1276     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1277     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1278     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1279     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1280     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1281                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1282       llvm_unreachable("Unexpected abbrev ordering!");
1283   }
1284   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1285     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1286     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1287     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1288     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1289     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1290     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1291     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1292                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1293       llvm_unreachable("Unexpected abbrev ordering!");
1294   }
1295   { // INST_CAST abbrev for FUNCTION_BLOCK.
1296     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1297     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1298     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1299     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1300                               Log2_32_Ceil(VE.getTypes().size()+1)));
1301     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1302     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1303                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1304       llvm_unreachable("Unexpected abbrev ordering!");
1305   }
1306   
1307   { // INST_RET abbrev for FUNCTION_BLOCK.
1308     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1309     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1310     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1311                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1312       llvm_unreachable("Unexpected abbrev ordering!");
1313   }
1314   { // INST_RET abbrev for FUNCTION_BLOCK.
1315     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1316     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1317     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1318     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1319                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1320       llvm_unreachable("Unexpected abbrev ordering!");
1321   }
1322   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1323     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1324     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1325     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1326                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1327       llvm_unreachable("Unexpected abbrev ordering!");
1328   }
1329   
1330   Stream.ExitBlock();
1331 }
1332
1333
1334 /// WriteModule - Emit the specified module to the bitstream.
1335 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1336   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1337   
1338   // Emit the version number if it is non-zero.
1339   if (CurVersion) {
1340     SmallVector<unsigned, 1> Vals;
1341     Vals.push_back(CurVersion);
1342     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1343   }
1344   
1345   // Analyze the module, enumerating globals, functions, etc.
1346   ValueEnumerator VE(M);
1347
1348   // Emit blockinfo, which defines the standard abbreviations etc.
1349   WriteBlockInfo(VE, Stream);
1350   
1351   // Emit information about parameter attributes.
1352   WriteAttributeTable(VE, Stream);
1353   
1354   // Emit information describing all of the types in the module.
1355   WriteTypeTable(VE, Stream);
1356   
1357   // Emit top-level description of module, including target triple, inline asm,
1358   // descriptors for global variables, and function prototype info.
1359   WriteModuleInfo(M, VE, Stream);
1360
1361   // Emit constants.
1362   WriteModuleConstants(VE, Stream);
1363
1364   // Emit metadata.
1365   WriteModuleMetadata(VE, Stream);
1366
1367   // Emit function bodies.
1368   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1369     if (!I->isDeclaration())
1370       WriteFunction(*I, VE, Stream);
1371   
1372   // Emit the type symbol table information.
1373   WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1374   
1375   // Emit names for globals/functions etc.
1376   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1377   
1378   Stream.ExitBlock();
1379 }
1380
1381 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1382 /// header and trailer to make it compatible with the system archiver.  To do
1383 /// this we emit the following header, and then emit a trailer that pads the
1384 /// file out to be a multiple of 16 bytes.
1385 /// 
1386 /// struct bc_header {
1387 ///   uint32_t Magic;         // 0x0B17C0DE
1388 ///   uint32_t Version;       // Version, currently always 0.
1389 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1390 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1391 ///   uint32_t CPUType;       // CPU specifier.
1392 ///   ... potentially more later ...
1393 /// };
1394 enum {
1395   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1396   DarwinBCHeaderSize = 5*4
1397 };
1398
1399 static void EmitDarwinBCHeader(BitstreamWriter &Stream,
1400                                const std::string &TT) {
1401   unsigned CPUType = ~0U;
1402   
1403   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*.  The CPUType is a
1404   // magic number from /usr/include/mach/machine.h.  It is ok to reproduce the
1405   // specific constants here because they are implicitly part of the Darwin ABI.
1406   enum {
1407     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1408     DARWIN_CPU_TYPE_X86        = 7,
1409     DARWIN_CPU_TYPE_POWERPC    = 18
1410   };
1411   
1412   if (TT.find("x86_64-") == 0)
1413     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1414   else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
1415            TT[4] == '-' && TT[1] - '3' < 6)
1416     CPUType = DARWIN_CPU_TYPE_X86;
1417   else if (TT.find("powerpc-") == 0)
1418     CPUType = DARWIN_CPU_TYPE_POWERPC;
1419   else if (TT.find("powerpc64-") == 0)
1420     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1421   
1422   // Traditional Bitcode starts after header.
1423   unsigned BCOffset = DarwinBCHeaderSize;
1424   
1425   Stream.Emit(0x0B17C0DE, 32);
1426   Stream.Emit(0         , 32);  // Version.
1427   Stream.Emit(BCOffset  , 32);
1428   Stream.Emit(0         , 32);  // Filled in later.
1429   Stream.Emit(CPUType   , 32);
1430 }
1431
1432 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
1433 /// finalize the header.
1434 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
1435   // Update the size field in the header.
1436   Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
1437   
1438   // If the file is not a multiple of 16 bytes, insert dummy padding.
1439   while (BufferSize & 15) {
1440     Stream.Emit(0, 8);
1441     ++BufferSize;
1442   }
1443 }
1444
1445
1446 /// WriteBitcodeToFile - Write the specified module to the specified output
1447 /// stream.
1448 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
1449   raw_os_ostream RawOut(Out);
1450   // If writing to stdout, set binary mode.
1451   if (llvm::cout == Out)
1452     sys::Program::ChangeStdoutToBinary();
1453   WriteBitcodeToFile(M, RawOut);
1454 }
1455
1456 /// WriteBitcodeToFile - Write the specified module to the specified output
1457 /// stream.
1458 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1459   std::vector<unsigned char> Buffer;
1460   BitstreamWriter Stream(Buffer);
1461   
1462   Buffer.reserve(256*1024);
1463
1464   WriteBitcodeToStream( M, Stream );
1465   
1466   // If writing to stdout, set binary mode.
1467   if (&llvm::outs() == &Out)
1468     sys::Program::ChangeStdoutToBinary();
1469
1470   // Write the generated bitstream to "Out".
1471   Out.write((char*)&Buffer.front(), Buffer.size());
1472   
1473   // Make sure it hits disk now.
1474   Out.flush();
1475 }
1476
1477 /// WriteBitcodeToStream - Write the specified module to the specified output
1478 /// stream.
1479 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
1480   // If this is darwin, emit a file header and trailer if needed.
1481   bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos;
1482   if (isDarwin)
1483     EmitDarwinBCHeader(Stream, M->getTargetTriple());
1484   
1485   // Emit the file header.
1486   Stream.Emit((unsigned)'B', 8);
1487   Stream.Emit((unsigned)'C', 8);
1488   Stream.Emit(0x0, 4);
1489   Stream.Emit(0xC, 4);
1490   Stream.Emit(0xE, 4);
1491   Stream.Emit(0xD, 4);
1492
1493   // Emit the module.
1494   WriteModule(M, Stream);
1495
1496   if (isDarwin)
1497     EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());
1498 }