1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by Chris Lattner and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // Bitcode writer implementation.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Module.h"
23 #include "llvm/ParameterAttributes.h"
24 #include "llvm/TypeSymbolTable.h"
25 #include "llvm/ValueSymbolTable.h"
26 #include "llvm/Support/MathExtras.h"
29 /// These are manifest constants used by the bitcode writer. They do not need to
30 /// be kept in sync with the reader, but need to be consistent within this file.
34 // VALUE_SYMTAB_BLOCK abbrev id's.
35 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
40 // CONSTANTS_BLOCK abbrev id's.
41 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
42 CONSTANTS_INTEGER_ABBREV,
43 CONSTANTS_CE_CAST_Abbrev,
44 CONSTANTS_NULL_Abbrev,
46 // FUNCTION_BLOCK abbrev id's.
47 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
48 FUNCTION_INST_BINOP_ABBREV,
49 FUNCTION_INST_CAST_ABBREV,
50 FUNCTION_INST_RET_VOID_ABBREV,
51 FUNCTION_INST_RET_VAL_ABBREV,
52 FUNCTION_INST_UNREACHABLE_ABBREV
56 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
58 default: assert(0 && "Unknown cast instruction!");
59 case Instruction::Trunc : return bitc::CAST_TRUNC;
60 case Instruction::ZExt : return bitc::CAST_ZEXT;
61 case Instruction::SExt : return bitc::CAST_SEXT;
62 case Instruction::FPToUI : return bitc::CAST_FPTOUI;
63 case Instruction::FPToSI : return bitc::CAST_FPTOSI;
64 case Instruction::UIToFP : return bitc::CAST_UITOFP;
65 case Instruction::SIToFP : return bitc::CAST_SITOFP;
66 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
67 case Instruction::FPExt : return bitc::CAST_FPEXT;
68 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
69 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
70 case Instruction::BitCast : return bitc::CAST_BITCAST;
74 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
76 default: assert(0 && "Unknown binary instruction!");
77 case Instruction::Add: return bitc::BINOP_ADD;
78 case Instruction::Sub: return bitc::BINOP_SUB;
79 case Instruction::Mul: return bitc::BINOP_MUL;
80 case Instruction::UDiv: return bitc::BINOP_UDIV;
81 case Instruction::FDiv:
82 case Instruction::SDiv: return bitc::BINOP_SDIV;
83 case Instruction::URem: return bitc::BINOP_UREM;
84 case Instruction::FRem:
85 case Instruction::SRem: return bitc::BINOP_SREM;
86 case Instruction::Shl: return bitc::BINOP_SHL;
87 case Instruction::LShr: return bitc::BINOP_LSHR;
88 case Instruction::AShr: return bitc::BINOP_ASHR;
89 case Instruction::And: return bitc::BINOP_AND;
90 case Instruction::Or: return bitc::BINOP_OR;
91 case Instruction::Xor: return bitc::BINOP_XOR;
97 static void WriteStringRecord(unsigned Code, const std::string &Str,
98 unsigned AbbrevToUse, BitstreamWriter &Stream) {
99 SmallVector<unsigned, 64> Vals;
101 // Code: [strchar x N]
102 for (unsigned i = 0, e = Str.size(); i != e; ++i)
103 Vals.push_back(Str[i]);
105 // Emit the finished record.
106 Stream.EmitRecord(Code, Vals, AbbrevToUse);
109 // Emit information about parameter attributes.
110 static void WriteParamAttrTable(const ValueEnumerator &VE,
111 BitstreamWriter &Stream) {
112 const std::vector<const ParamAttrsList*> &Attrs = VE.getParamAttrs();
113 if (Attrs.empty()) return;
115 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
117 SmallVector<uint64_t, 64> Record;
118 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
119 const ParamAttrsList *A = Attrs[i];
120 for (unsigned op = 0, e = A->size(); op != e; ++op) {
121 Record.push_back(A->getParamIndex(op));
122 Record.push_back(A->getParamAttrsAtIndex(op));
125 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
132 /// WriteTypeTable - Write out the type table for a module.
133 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
134 const ValueEnumerator::TypeList &TypeList = VE.getTypes();
136 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
137 SmallVector<uint64_t, 64> TypeVals;
139 // Abbrev for TYPE_CODE_POINTER.
140 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
141 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
142 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
143 Log2_32_Ceil(VE.getTypes().size()+1)));
144 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
146 // Abbrev for TYPE_CODE_FUNCTION.
147 Abbv = new BitCodeAbbrev();
148 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
151 Log2_32_Ceil(VE.getParamAttrs().size()+1)));
152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
154 Log2_32_Ceil(VE.getTypes().size()+1)));
155 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
157 // Abbrev for TYPE_CODE_STRUCT.
158 Abbv = new BitCodeAbbrev();
159 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
163 Log2_32_Ceil(VE.getTypes().size()+1)));
164 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
166 // Abbrev for TYPE_CODE_ARRAY.
167 Abbv = new BitCodeAbbrev();
168 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
171 Log2_32_Ceil(VE.getTypes().size()+1)));
172 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
174 // Emit an entry count so the reader can reserve space.
175 TypeVals.push_back(TypeList.size());
176 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
179 // Loop over all of the types, emitting each in turn.
180 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
181 const Type *T = TypeList[i].first;
185 switch (T->getTypeID()) {
186 case Type::PackedStructTyID: // FIXME: Delete Type::PackedStructTyID.
187 default: assert(0 && "Unknown type!");
188 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
189 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
190 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
191 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
192 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
193 case Type::IntegerTyID:
195 Code = bitc::TYPE_CODE_INTEGER;
196 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
198 case Type::PointerTyID:
199 // POINTER: [pointee type]
200 Code = bitc::TYPE_CODE_POINTER;
201 TypeVals.push_back(VE.getTypeID(cast<PointerType>(T)->getElementType()));
202 AbbrevToUse = PtrAbbrev;
205 case Type::FunctionTyID: {
206 const FunctionType *FT = cast<FunctionType>(T);
207 // FUNCTION: [isvararg, attrid, retty, paramty x N]
208 Code = bitc::TYPE_CODE_FUNCTION;
209 TypeVals.push_back(FT->isVarArg());
210 TypeVals.push_back(VE.getParamAttrID(FT->getParamAttrs()));
211 TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
212 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
213 TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
214 AbbrevToUse = FunctionAbbrev;
217 case Type::StructTyID: {
218 const StructType *ST = cast<StructType>(T);
219 // STRUCT: [ispacked, eltty x N]
220 Code = bitc::TYPE_CODE_STRUCT;
221 TypeVals.push_back(ST->isPacked());
222 // Output all of the element types.
223 for (StructType::element_iterator I = ST->element_begin(),
224 E = ST->element_end(); I != E; ++I)
225 TypeVals.push_back(VE.getTypeID(*I));
226 AbbrevToUse = StructAbbrev;
229 case Type::ArrayTyID: {
230 const ArrayType *AT = cast<ArrayType>(T);
231 // ARRAY: [numelts, eltty]
232 Code = bitc::TYPE_CODE_ARRAY;
233 TypeVals.push_back(AT->getNumElements());
234 TypeVals.push_back(VE.getTypeID(AT->getElementType()));
235 AbbrevToUse = ArrayAbbrev;
238 case Type::VectorTyID: {
239 const VectorType *VT = cast<VectorType>(T);
240 // VECTOR [numelts, eltty]
241 Code = bitc::TYPE_CODE_VECTOR;
242 TypeVals.push_back(VT->getNumElements());
243 TypeVals.push_back(VE.getTypeID(VT->getElementType()));
248 // Emit the finished record.
249 Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
256 static unsigned getEncodedLinkage(const GlobalValue *GV) {
257 switch (GV->getLinkage()) {
258 default: assert(0 && "Invalid linkage!");
259 case GlobalValue::ExternalLinkage: return 0;
260 case GlobalValue::WeakLinkage: return 1;
261 case GlobalValue::AppendingLinkage: return 2;
262 case GlobalValue::InternalLinkage: return 3;
263 case GlobalValue::LinkOnceLinkage: return 4;
264 case GlobalValue::DLLImportLinkage: return 5;
265 case GlobalValue::DLLExportLinkage: return 6;
266 case GlobalValue::ExternalWeakLinkage: return 7;
270 static unsigned getEncodedVisibility(const GlobalValue *GV) {
271 switch (GV->getVisibility()) {
272 default: assert(0 && "Invalid visibility!");
273 case GlobalValue::DefaultVisibility: return 0;
274 case GlobalValue::HiddenVisibility: return 1;
275 case GlobalValue::ProtectedVisibility: return 2;
279 // Emit top-level description of module, including target triple, inline asm,
280 // descriptors for global variables, and function prototype info.
281 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
282 BitstreamWriter &Stream) {
283 // Emit the list of dependent libraries for the Module.
284 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
285 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
287 // Emit various pieces of data attached to a module.
288 if (!M->getTargetTriple().empty())
289 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
291 if (!M->getDataLayout().empty())
292 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
294 if (!M->getModuleInlineAsm().empty())
295 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
298 // Emit information about sections, computing how many there are. Also
299 // compute the maximum alignment value.
300 std::map<std::string, unsigned> SectionMap;
301 unsigned MaxAlignment = 0;
302 unsigned MaxGlobalType = 0;
303 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
305 MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
306 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
308 if (!GV->hasSection()) continue;
309 // Give section names unique ID's.
310 unsigned &Entry = SectionMap[GV->getSection()];
311 if (Entry != 0) continue;
312 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
314 Entry = SectionMap.size();
316 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
317 MaxAlignment = std::max(MaxAlignment, F->getAlignment());
318 if (!F->hasSection()) continue;
319 // Give section names unique ID's.
320 unsigned &Entry = SectionMap[F->getSection()];
321 if (Entry != 0) continue;
322 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
324 Entry = SectionMap.size();
327 // Emit abbrev for globals, now that we know # sections and max alignment.
328 unsigned SimpleGVarAbbrev = 0;
329 if (!M->global_empty()) {
330 // Add an abbrev for common globals with no visibility or thread localness.
331 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
332 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
334 Log2_32_Ceil(MaxGlobalType+1)));
335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant.
336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // Linkage.
338 if (MaxAlignment == 0) // Alignment.
339 Abbv->Add(BitCodeAbbrevOp(0));
341 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
343 Log2_32_Ceil(MaxEncAlignment+1)));
345 if (SectionMap.empty()) // Section.
346 Abbv->Add(BitCodeAbbrevOp(0));
348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
349 Log2_32_Ceil(SectionMap.size()+1)));
350 // Don't bother emitting vis + thread local.
351 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
354 // Emit the global variable information.
355 SmallVector<unsigned, 64> Vals;
356 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
358 unsigned AbbrevToUse = 0;
360 // GLOBALVAR: [type, isconst, initid,
361 // linkage, alignment, section, visibility, threadlocal]
362 Vals.push_back(VE.getTypeID(GV->getType()));
363 Vals.push_back(GV->isConstant());
364 Vals.push_back(GV->isDeclaration() ? 0 :
365 (VE.getValueID(GV->getInitializer()) + 1));
366 Vals.push_back(getEncodedLinkage(GV));
367 Vals.push_back(Log2_32(GV->getAlignment())+1);
368 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
369 if (GV->isThreadLocal() ||
370 GV->getVisibility() != GlobalValue::DefaultVisibility) {
371 Vals.push_back(getEncodedVisibility(GV));
372 Vals.push_back(GV->isThreadLocal());
374 AbbrevToUse = SimpleGVarAbbrev;
377 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
381 // Emit the function proto information.
382 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
383 // FUNCTION: [type, callingconv, isproto, linkage, alignment, section,
385 Vals.push_back(VE.getTypeID(F->getType()));
386 Vals.push_back(F->getCallingConv());
387 Vals.push_back(F->isDeclaration());
388 Vals.push_back(getEncodedLinkage(F));
389 Vals.push_back(Log2_32(F->getAlignment())+1);
390 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
391 Vals.push_back(getEncodedVisibility(F));
393 unsigned AbbrevToUse = 0;
394 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
399 // Emit the alias information.
400 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
402 Vals.push_back(VE.getTypeID(AI->getType()));
403 Vals.push_back(VE.getValueID(AI->getAliasee()));
404 Vals.push_back(getEncodedLinkage(AI));
405 unsigned AbbrevToUse = 0;
406 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
412 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
413 const ValueEnumerator &VE,
414 BitstreamWriter &Stream, bool isGlobal) {
415 if (FirstVal == LastVal) return;
417 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
419 unsigned AggregateAbbrev = 0;
420 unsigned String8Abbrev = 0;
421 unsigned CString7Abbrev = 0;
422 unsigned CString6Abbrev = 0;
423 // If this is a constant pool for the module, emit module-specific abbrevs.
425 // Abbrev for CST_CODE_AGGREGATE.
426 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
427 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
428 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
429 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
430 AggregateAbbrev = Stream.EmitAbbrev(Abbv);
432 // Abbrev for CST_CODE_STRING.
433 Abbv = new BitCodeAbbrev();
434 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
437 String8Abbrev = Stream.EmitAbbrev(Abbv);
438 // Abbrev for CST_CODE_CSTRING.
439 Abbv = new BitCodeAbbrev();
440 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
441 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
442 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
443 CString7Abbrev = Stream.EmitAbbrev(Abbv);
444 // Abbrev for CST_CODE_CSTRING.
445 Abbv = new BitCodeAbbrev();
446 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
449 CString6Abbrev = Stream.EmitAbbrev(Abbv);
452 SmallVector<uint64_t, 64> Record;
454 const ValueEnumerator::ValueList &Vals = VE.getValues();
455 const Type *LastTy = 0;
456 for (unsigned i = FirstVal; i != LastVal; ++i) {
457 const Value *V = Vals[i].first;
458 // If we need to switch types, do so now.
459 if (V->getType() != LastTy) {
460 LastTy = V->getType();
461 Record.push_back(VE.getTypeID(LastTy));
462 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
463 CONSTANTS_SETTYPE_ABBREV);
467 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
468 Record.push_back(unsigned(IA->hasSideEffects()));
470 // Add the asm string.
471 const std::string &AsmStr = IA->getAsmString();
472 Record.push_back(AsmStr.size());
473 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
474 Record.push_back(AsmStr[i]);
476 // Add the constraint string.
477 const std::string &ConstraintStr = IA->getConstraintString();
478 Record.push_back(ConstraintStr.size());
479 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
480 Record.push_back(ConstraintStr[i]);
481 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
485 const Constant *C = cast<Constant>(V);
487 unsigned AbbrevToUse = 0;
488 if (C->isNullValue()) {
489 Code = bitc::CST_CODE_NULL;
490 } else if (isa<UndefValue>(C)) {
491 Code = bitc::CST_CODE_UNDEF;
492 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
493 if (IV->getBitWidth() <= 64) {
494 int64_t V = IV->getSExtValue();
496 Record.push_back(V << 1);
498 Record.push_back((-V << 1) | 1);
499 Code = bitc::CST_CODE_INTEGER;
500 AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
501 } else { // Wide integers, > 64 bits in size.
502 // We have an arbitrary precision integer value to write whose
503 // bit width is > 64. However, in canonical unsigned integer
504 // format it is likely that the high bits are going to be zero.
505 // So, we only write the number of active words.
506 unsigned NWords = IV->getValue().getActiveWords();
507 const uint64_t *RawWords = IV->getValue().getRawData();
508 for (unsigned i = 0; i != NWords; ++i) {
509 int64_t V = RawWords[i];
511 Record.push_back(V << 1);
513 Record.push_back((-V << 1) | 1);
515 Code = bitc::CST_CODE_WIDE_INTEGER;
517 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
518 Code = bitc::CST_CODE_FLOAT;
519 if (CFP->getType() == Type::FloatTy) {
520 Record.push_back(FloatToBits((float)CFP->getValue()));
522 assert (CFP->getType() == Type::DoubleTy && "Unknown FP type!");
523 Record.push_back(DoubleToBits((double)CFP->getValue()));
525 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
526 // Emit constant strings specially.
527 unsigned NumOps = C->getNumOperands();
528 // If this is a null-terminated string, use the denser CSTRING encoding.
529 if (C->getOperand(NumOps-1)->isNullValue()) {
530 Code = bitc::CST_CODE_CSTRING;
531 --NumOps; // Don't encode the null, which isn't allowed by char6.
533 Code = bitc::CST_CODE_STRING;
534 AbbrevToUse = String8Abbrev;
536 bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
537 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
538 for (unsigned i = 0; i != NumOps; ++i) {
539 unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
541 isCStr7 &= (V & 128) == 0;
543 isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
547 AbbrevToUse = CString6Abbrev;
549 AbbrevToUse = CString7Abbrev;
550 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
551 isa<ConstantVector>(V)) {
552 Code = bitc::CST_CODE_AGGREGATE;
553 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
554 Record.push_back(VE.getValueID(C->getOperand(i)));
555 AbbrevToUse = AggregateAbbrev;
556 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
557 switch (CE->getOpcode()) {
559 if (Instruction::isCast(CE->getOpcode())) {
560 Code = bitc::CST_CODE_CE_CAST;
561 Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
562 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
563 Record.push_back(VE.getValueID(C->getOperand(0)));
564 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
566 assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
567 Code = bitc::CST_CODE_CE_BINOP;
568 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
569 Record.push_back(VE.getValueID(C->getOperand(0)));
570 Record.push_back(VE.getValueID(C->getOperand(1)));
573 case Instruction::GetElementPtr:
574 Code = bitc::CST_CODE_CE_GEP;
575 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
576 Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
577 Record.push_back(VE.getValueID(C->getOperand(i)));
580 case Instruction::Select:
581 Code = bitc::CST_CODE_CE_SELECT;
582 Record.push_back(VE.getValueID(C->getOperand(0)));
583 Record.push_back(VE.getValueID(C->getOperand(1)));
584 Record.push_back(VE.getValueID(C->getOperand(2)));
586 case Instruction::ExtractElement:
587 Code = bitc::CST_CODE_CE_EXTRACTELT;
588 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
589 Record.push_back(VE.getValueID(C->getOperand(0)));
590 Record.push_back(VE.getValueID(C->getOperand(1)));
592 case Instruction::InsertElement:
593 Code = bitc::CST_CODE_CE_INSERTELT;
594 Record.push_back(VE.getValueID(C->getOperand(0)));
595 Record.push_back(VE.getValueID(C->getOperand(1)));
596 Record.push_back(VE.getValueID(C->getOperand(2)));
598 case Instruction::ShuffleVector:
599 Code = bitc::CST_CODE_CE_SHUFFLEVEC;
600 Record.push_back(VE.getValueID(C->getOperand(0)));
601 Record.push_back(VE.getValueID(C->getOperand(1)));
602 Record.push_back(VE.getValueID(C->getOperand(2)));
604 case Instruction::ICmp:
605 case Instruction::FCmp:
606 Code = bitc::CST_CODE_CE_CMP;
607 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
608 Record.push_back(VE.getValueID(C->getOperand(0)));
609 Record.push_back(VE.getValueID(C->getOperand(1)));
610 Record.push_back(CE->getPredicate());
614 assert(0 && "Unknown constant!");
616 Stream.EmitRecord(Code, Record, AbbrevToUse);
623 static void WriteModuleConstants(const ValueEnumerator &VE,
624 BitstreamWriter &Stream) {
625 const ValueEnumerator::ValueList &Vals = VE.getValues();
627 // Find the first constant to emit, which is the first non-globalvalue value.
628 // We know globalvalues have been emitted by WriteModuleInfo.
629 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
630 if (!isa<GlobalValue>(Vals[i].first)) {
631 WriteConstants(i, Vals.size(), VE, Stream, true);
637 /// PushValueAndType - The file has to encode both the value and type id for
638 /// many values, because we need to know what type to create for forward
639 /// references. However, most operands are not forward references, so this type
640 /// field is not needed.
642 /// This function adds V's value ID to Vals. If the value ID is higher than the
643 /// instruction ID, then it is a forward reference, and it also includes the
645 static bool PushValueAndType(Value *V, unsigned InstID,
646 SmallVector<unsigned, 64> &Vals,
647 ValueEnumerator &VE) {
648 unsigned ValID = VE.getValueID(V);
649 Vals.push_back(ValID);
650 if (ValID >= InstID) {
651 Vals.push_back(VE.getTypeID(V->getType()));
657 /// WriteInstruction - Emit an instruction to the specified stream.
658 static void WriteInstruction(const Instruction &I, unsigned InstID,
659 ValueEnumerator &VE, BitstreamWriter &Stream,
660 SmallVector<unsigned, 64> &Vals) {
662 unsigned AbbrevToUse = 0;
663 switch (I.getOpcode()) {
665 if (Instruction::isCast(I.getOpcode())) {
666 Code = bitc::FUNC_CODE_INST_CAST;
667 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
668 AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
669 Vals.push_back(VE.getTypeID(I.getType()));
670 Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
672 assert(isa<BinaryOperator>(I) && "Unknown instruction!");
673 Code = bitc::FUNC_CODE_INST_BINOP;
674 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
675 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
676 Vals.push_back(VE.getValueID(I.getOperand(1)));
677 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
681 case Instruction::GetElementPtr:
682 Code = bitc::FUNC_CODE_INST_GEP;
683 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
684 PushValueAndType(I.getOperand(i), InstID, Vals, VE);
686 case Instruction::Select:
687 Code = bitc::FUNC_CODE_INST_SELECT;
688 PushValueAndType(I.getOperand(1), InstID, Vals, VE);
689 Vals.push_back(VE.getValueID(I.getOperand(2)));
690 Vals.push_back(VE.getValueID(I.getOperand(0)));
692 case Instruction::ExtractElement:
693 Code = bitc::FUNC_CODE_INST_EXTRACTELT;
694 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
695 Vals.push_back(VE.getValueID(I.getOperand(1)));
697 case Instruction::InsertElement:
698 Code = bitc::FUNC_CODE_INST_INSERTELT;
699 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
700 Vals.push_back(VE.getValueID(I.getOperand(1)));
701 Vals.push_back(VE.getValueID(I.getOperand(2)));
703 case Instruction::ShuffleVector:
704 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
705 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
706 Vals.push_back(VE.getValueID(I.getOperand(1)));
707 Vals.push_back(VE.getValueID(I.getOperand(2)));
709 case Instruction::ICmp:
710 case Instruction::FCmp:
711 Code = bitc::FUNC_CODE_INST_CMP;
712 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
713 Vals.push_back(VE.getValueID(I.getOperand(1)));
714 Vals.push_back(cast<CmpInst>(I).getPredicate());
717 case Instruction::Ret:
718 Code = bitc::FUNC_CODE_INST_RET;
719 if (!I.getNumOperands())
720 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
721 else if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
722 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
724 case Instruction::Br:
725 Code = bitc::FUNC_CODE_INST_BR;
726 Vals.push_back(VE.getValueID(I.getOperand(0)));
727 if (cast<BranchInst>(I).isConditional()) {
728 Vals.push_back(VE.getValueID(I.getOperand(1)));
729 Vals.push_back(VE.getValueID(I.getOperand(2)));
732 case Instruction::Switch:
733 Code = bitc::FUNC_CODE_INST_SWITCH;
734 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
735 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
736 Vals.push_back(VE.getValueID(I.getOperand(i)));
738 case Instruction::Invoke: {
739 Code = bitc::FUNC_CODE_INST_INVOKE;
740 Vals.push_back(cast<InvokeInst>(I).getCallingConv());
741 Vals.push_back(VE.getValueID(I.getOperand(1))); // normal dest
742 Vals.push_back(VE.getValueID(I.getOperand(2))); // unwind dest
743 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // callee
745 // Emit value #'s for the fixed parameters.
746 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
747 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
748 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
749 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param.
751 // Emit type/value pairs for varargs params.
752 if (FTy->isVarArg()) {
753 for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
755 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
759 case Instruction::Unwind:
760 Code = bitc::FUNC_CODE_INST_UNWIND;
762 case Instruction::Unreachable:
763 Code = bitc::FUNC_CODE_INST_UNREACHABLE;
764 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
767 case Instruction::PHI:
768 Code = bitc::FUNC_CODE_INST_PHI;
769 Vals.push_back(VE.getTypeID(I.getType()));
770 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
771 Vals.push_back(VE.getValueID(I.getOperand(i)));
774 case Instruction::Malloc:
775 Code = bitc::FUNC_CODE_INST_MALLOC;
776 Vals.push_back(VE.getTypeID(I.getType()));
777 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
778 Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
781 case Instruction::Free:
782 Code = bitc::FUNC_CODE_INST_FREE;
783 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
786 case Instruction::Alloca:
787 Code = bitc::FUNC_CODE_INST_ALLOCA;
788 Vals.push_back(VE.getTypeID(I.getType()));
789 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
790 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
793 case Instruction::Load:
794 Code = bitc::FUNC_CODE_INST_LOAD;
795 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr
796 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
798 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
799 Vals.push_back(cast<LoadInst>(I).isVolatile());
801 case Instruction::Store:
802 Code = bitc::FUNC_CODE_INST_STORE;
803 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // val.
804 Vals.push_back(VE.getValueID(I.getOperand(1))); // ptr.
805 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
806 Vals.push_back(cast<StoreInst>(I).isVolatile());
808 case Instruction::Call: {
809 Code = bitc::FUNC_CODE_INST_CALL;
810 Vals.push_back((cast<CallInst>(I).getCallingConv() << 1) |
811 unsigned(cast<CallInst>(I).isTailCall()));
812 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // Callee
814 // Emit value #'s for the fixed parameters.
815 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
816 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
817 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
818 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param.
820 // Emit type/value pairs for varargs params.
821 if (FTy->isVarArg()) {
822 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
823 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
825 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs
829 case Instruction::VAArg:
830 Code = bitc::FUNC_CODE_INST_VAARG;
831 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
832 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
833 Vals.push_back(VE.getTypeID(I.getType())); // restype.
837 Stream.EmitRecord(Code, Vals, AbbrevToUse);
841 // Emit names for globals/functions etc.
842 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
843 const ValueEnumerator &VE,
844 BitstreamWriter &Stream) {
845 if (VST.empty()) return;
846 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
848 // FIXME: Set up the abbrev, we know how many values there are!
849 // FIXME: We know if the type names can use 7-bit ascii.
850 SmallVector<unsigned, 64> NameVals;
852 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
855 const ValueName &Name = *SI;
857 // Figure out the encoding to use for the name.
860 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
863 isChar6 = BitCodeAbbrevOp::isChar6(*C);
864 if ((unsigned char)*C & 128) {
866 break; // don't bother scanning the rest.
870 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
872 // VST_ENTRY: [valueid, namechar x N]
873 // VST_BBENTRY: [bbid, namechar x N]
875 if (isa<BasicBlock>(SI->getValue())) {
876 Code = bitc::VST_CODE_BBENTRY;
878 AbbrevToUse = VST_BBENTRY_6_ABBREV;
880 Code = bitc::VST_CODE_ENTRY;
882 AbbrevToUse = VST_ENTRY_6_ABBREV;
884 AbbrevToUse = VST_ENTRY_7_ABBREV;
887 NameVals.push_back(VE.getValueID(SI->getValue()));
888 for (const char *P = Name.getKeyData(),
889 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
890 NameVals.push_back((unsigned char)*P);
892 // Emit the finished record.
893 Stream.EmitRecord(Code, NameVals, AbbrevToUse);
899 /// WriteFunction - Emit a function body to the module stream.
900 static void WriteFunction(const Function &F, ValueEnumerator &VE,
901 BitstreamWriter &Stream) {
902 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
903 VE.incorporateFunction(F);
905 SmallVector<unsigned, 64> Vals;
907 // Emit the number of basic blocks, so the reader can create them ahead of
909 Vals.push_back(VE.getBasicBlocks().size());
910 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
913 // If there are function-local constants, emit them now.
914 unsigned CstStart, CstEnd;
915 VE.getFunctionConstantRange(CstStart, CstEnd);
916 WriteConstants(CstStart, CstEnd, VE, Stream, false);
918 // Keep a running idea of what the instruction ID is.
919 unsigned InstID = CstEnd;
921 // Finally, emit all the instructions, in order.
922 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
923 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
925 WriteInstruction(*I, InstID, VE, Stream, Vals);
926 if (I->getType() != Type::VoidTy)
930 // Emit names for all the instructions etc.
931 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
937 /// WriteTypeSymbolTable - Emit a block for the specified type symtab.
938 static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
939 const ValueEnumerator &VE,
940 BitstreamWriter &Stream) {
941 if (TST.empty()) return;
943 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
945 // 7-bit fixed width VST_CODE_ENTRY strings.
946 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
947 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
949 Log2_32_Ceil(VE.getTypes().size()+1)));
950 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
951 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
952 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
954 SmallVector<unsigned, 64> NameVals;
956 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
958 // TST_ENTRY: [typeid, namechar x N]
959 NameVals.push_back(VE.getTypeID(TI->second));
961 const std::string &Str = TI->first;
963 for (unsigned i = 0, e = Str.size(); i != e; ++i) {
964 NameVals.push_back((unsigned char)Str[i]);
969 // Emit the finished record.
970 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
977 // Emit blockinfo, which defines the standard abbreviations etc.
978 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
979 // We only want to emit block info records for blocks that have multiple
980 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other
981 // blocks can defined their abbrevs inline.
982 Stream.EnterBlockInfoBlock(2);
984 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
985 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
986 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
987 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
988 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
989 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
990 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
991 Abbv) != VST_ENTRY_8_ABBREV)
992 assert(0 && "Unexpected abbrev ordering!");
995 { // 7-bit fixed width VST_ENTRY strings.
996 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
997 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
998 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
999 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1000 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1001 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1002 Abbv) != VST_ENTRY_7_ABBREV)
1003 assert(0 && "Unexpected abbrev ordering!");
1005 { // 6-bit char6 VST_ENTRY strings.
1006 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1007 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1008 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1009 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1010 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1011 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1012 Abbv) != VST_ENTRY_6_ABBREV)
1013 assert(0 && "Unexpected abbrev ordering!");
1015 { // 6-bit char6 VST_BBENTRY strings.
1016 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1017 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1018 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1019 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1020 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1021 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1022 Abbv) != VST_BBENTRY_6_ABBREV)
1023 assert(0 && "Unexpected abbrev ordering!");
1028 { // SETTYPE abbrev for CONSTANTS_BLOCK.
1029 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1030 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1031 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1032 Log2_32_Ceil(VE.getTypes().size()+1)));
1033 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1034 Abbv) != CONSTANTS_SETTYPE_ABBREV)
1035 assert(0 && "Unexpected abbrev ordering!");
1038 { // INTEGER abbrev for CONSTANTS_BLOCK.
1039 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1040 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1041 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1042 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1043 Abbv) != CONSTANTS_INTEGER_ABBREV)
1044 assert(0 && "Unexpected abbrev ordering!");
1047 { // CE_CAST abbrev for CONSTANTS_BLOCK.
1048 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1049 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1050 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
1051 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
1052 Log2_32_Ceil(VE.getTypes().size()+1)));
1053 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
1055 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1056 Abbv) != CONSTANTS_CE_CAST_Abbrev)
1057 assert(0 && "Unexpected abbrev ordering!");
1059 { // NULL abbrev for CONSTANTS_BLOCK.
1060 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1061 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1062 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1063 Abbv) != CONSTANTS_NULL_Abbrev)
1064 assert(0 && "Unexpected abbrev ordering!");
1067 // FIXME: This should only use space for first class types!
1069 { // INST_LOAD abbrev for FUNCTION_BLOCK.
1070 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1071 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1072 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1073 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1074 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1075 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1076 Abbv) != FUNCTION_INST_LOAD_ABBREV)
1077 assert(0 && "Unexpected abbrev ordering!");
1079 { // INST_BINOP abbrev for FUNCTION_BLOCK.
1080 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1081 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1082 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1083 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1084 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1085 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1086 Abbv) != FUNCTION_INST_BINOP_ABBREV)
1087 assert(0 && "Unexpected abbrev ordering!");
1089 { // INST_CAST abbrev for FUNCTION_BLOCK.
1090 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1091 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1092 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
1093 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
1094 Log2_32_Ceil(VE.getTypes().size()+1)));
1095 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1096 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1097 Abbv) != FUNCTION_INST_CAST_ABBREV)
1098 assert(0 && "Unexpected abbrev ordering!");
1101 { // INST_RET abbrev for FUNCTION_BLOCK.
1102 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1103 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1104 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1105 Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1106 assert(0 && "Unexpected abbrev ordering!");
1108 { // INST_RET abbrev for FUNCTION_BLOCK.
1109 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1110 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1111 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1112 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1113 Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1114 assert(0 && "Unexpected abbrev ordering!");
1116 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1117 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1118 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1119 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1120 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1121 assert(0 && "Unexpected abbrev ordering!");
1128 /// WriteModule - Emit the specified module to the bitstream.
1129 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1130 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1132 // Emit the version number if it is non-zero.
1134 SmallVector<unsigned, 1> Vals;
1135 Vals.push_back(CurVersion);
1136 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1139 // Analyze the module, enumerating globals, functions, etc.
1140 ValueEnumerator VE(M);
1142 // Emit blockinfo, which defines the standard abbreviations etc.
1143 WriteBlockInfo(VE, Stream);
1145 // Emit information about parameter attributes.
1146 WriteParamAttrTable(VE, Stream);
1148 // Emit information describing all of the types in the module.
1149 WriteTypeTable(VE, Stream);
1151 // Emit top-level description of module, including target triple, inline asm,
1152 // descriptors for global variables, and function prototype info.
1153 WriteModuleInfo(M, VE, Stream);
1156 WriteModuleConstants(VE, Stream);
1158 // If we have any aggregate values in the value table, purge them - these can
1159 // only be used to initialize global variables. Doing so makes the value
1160 // namespace smaller for code in functions.
1161 int NumNonAggregates = VE.PurgeAggregateValues();
1162 if (NumNonAggregates != -1) {
1163 SmallVector<unsigned, 1> Vals;
1164 Vals.push_back(NumNonAggregates);
1165 Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals);
1168 // Emit function bodies.
1169 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1170 if (!I->isDeclaration())
1171 WriteFunction(*I, VE, Stream);
1173 // Emit the type symbol table information.
1174 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1176 // Emit names for globals/functions etc.
1177 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1183 /// WriteBitcodeToFile - Write the specified module to the specified output
1185 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
1186 std::vector<unsigned char> Buffer;
1187 BitstreamWriter Stream(Buffer);
1189 Buffer.reserve(256*1024);
1191 // Emit the file header.
1192 Stream.Emit((unsigned)'B', 8);
1193 Stream.Emit((unsigned)'C', 8);
1194 Stream.Emit(0x0, 4);
1195 Stream.Emit(0xC, 4);
1196 Stream.Emit(0xE, 4);
1197 Stream.Emit(0xD, 4);
1200 WriteModule(M, Stream);
1202 // Write the generated bitstream to "Out".
1203 Out.write((char*)&Buffer.front(), Buffer.size());
1205 // Make sure it hits disk now.