1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by Chris Lattner and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // Bitcode writer implementation.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/Module.h"
22 #include "llvm/ParameterAttributes.h"
23 #include "llvm/TypeSymbolTable.h"
24 #include "llvm/ValueSymbolTable.h"
25 #include "llvm/Support/MathExtras.h"
28 /// These are manifest constants used by the bitcode writer. They do not need to
29 /// be kept in sync with the reader, but need to be consistent within this file.
33 // VALUE_SYMTAB_BLOCK abbrev id's.
34 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
39 // CONSTANTS_BLOCK abbrev id's.
40 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
41 CONSTANTS_INTEGER_ABBREV,
42 CONSTANTS_CE_CAST_Abbrev,
43 CONSTANTS_NULL_Abbrev,
45 // FUNCTION_BLOCK abbrev id's.
46 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV
50 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
52 default: assert(0 && "Unknown cast instruction!");
53 case Instruction::Trunc : return bitc::CAST_TRUNC;
54 case Instruction::ZExt : return bitc::CAST_ZEXT;
55 case Instruction::SExt : return bitc::CAST_SEXT;
56 case Instruction::FPToUI : return bitc::CAST_FPTOUI;
57 case Instruction::FPToSI : return bitc::CAST_FPTOSI;
58 case Instruction::UIToFP : return bitc::CAST_UITOFP;
59 case Instruction::SIToFP : return bitc::CAST_SITOFP;
60 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
61 case Instruction::FPExt : return bitc::CAST_FPEXT;
62 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
63 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
64 case Instruction::BitCast : return bitc::CAST_BITCAST;
68 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
70 default: assert(0 && "Unknown binary instruction!");
71 case Instruction::Add: return bitc::BINOP_ADD;
72 case Instruction::Sub: return bitc::BINOP_SUB;
73 case Instruction::Mul: return bitc::BINOP_MUL;
74 case Instruction::UDiv: return bitc::BINOP_UDIV;
75 case Instruction::FDiv:
76 case Instruction::SDiv: return bitc::BINOP_SDIV;
77 case Instruction::URem: return bitc::BINOP_UREM;
78 case Instruction::FRem:
79 case Instruction::SRem: return bitc::BINOP_SREM;
80 case Instruction::Shl: return bitc::BINOP_SHL;
81 case Instruction::LShr: return bitc::BINOP_LSHR;
82 case Instruction::AShr: return bitc::BINOP_ASHR;
83 case Instruction::And: return bitc::BINOP_AND;
84 case Instruction::Or: return bitc::BINOP_OR;
85 case Instruction::Xor: return bitc::BINOP_XOR;
91 static void WriteStringRecord(unsigned Code, const std::string &Str,
92 unsigned AbbrevToUse, BitstreamWriter &Stream) {
93 SmallVector<unsigned, 64> Vals;
95 // Code: [strchar x N]
96 for (unsigned i = 0, e = Str.size(); i != e; ++i)
97 Vals.push_back(Str[i]);
99 // Emit the finished record.
100 Stream.EmitRecord(Code, Vals, AbbrevToUse);
103 // Emit information about parameter attributes.
104 static void WriteParamAttrTable(const ValueEnumerator &VE,
105 BitstreamWriter &Stream) {
106 const std::vector<const ParamAttrsList*> &Attrs = VE.getParamAttrs();
107 if (Attrs.empty()) return;
109 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
111 SmallVector<uint64_t, 64> Record;
112 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
113 const ParamAttrsList *A = Attrs[i];
114 for (unsigned op = 0, e = A->size(); op != e; ++op) {
115 Record.push_back(A->getParamIndex(op));
116 Record.push_back(A->getParamAttrsAtIndex(op));
119 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
126 /// WriteTypeTable - Write out the type table for a module.
127 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
128 const ValueEnumerator::TypeList &TypeList = VE.getTypes();
130 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
131 SmallVector<uint64_t, 64> TypeVals;
133 // Abbrev for TYPE_CODE_POINTER.
134 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
135 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
136 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
137 Log2_32_Ceil(VE.getTypes().size()+1)));
138 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
140 // Abbrev for TYPE_CODE_FUNCTION.
141 Abbv = new BitCodeAbbrev();
142 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
143 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
144 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
145 Log2_32_Ceil(VE.getParamAttrs().size()+1)));
146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
148 Log2_32_Ceil(VE.getTypes().size()+1)));
149 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
151 // Abbrev for TYPE_CODE_STRUCT.
152 Abbv = new BitCodeAbbrev();
153 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
157 Log2_32_Ceil(VE.getTypes().size()+1)));
158 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
160 // Abbrev for TYPE_CODE_ARRAY.
161 Abbv = new BitCodeAbbrev();
162 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
165 Log2_32_Ceil(VE.getTypes().size()+1)));
166 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
168 // Emit an entry count so the reader can reserve space.
169 TypeVals.push_back(TypeList.size());
170 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
173 // Loop over all of the types, emitting each in turn.
174 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
175 const Type *T = TypeList[i].first;
179 switch (T->getTypeID()) {
180 case Type::PackedStructTyID: // FIXME: Delete Type::PackedStructTyID.
181 default: assert(0 && "Unknown type!");
182 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
183 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
184 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
185 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
186 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
187 case Type::IntegerTyID:
189 Code = bitc::TYPE_CODE_INTEGER;
190 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
192 case Type::PointerTyID:
193 // POINTER: [pointee type]
194 Code = bitc::TYPE_CODE_POINTER;
195 TypeVals.push_back(VE.getTypeID(cast<PointerType>(T)->getElementType()));
196 AbbrevToUse = PtrAbbrev;
199 case Type::FunctionTyID: {
200 const FunctionType *FT = cast<FunctionType>(T);
201 // FUNCTION: [isvararg, attrid, retty, paramty x N]
202 Code = bitc::TYPE_CODE_FUNCTION;
203 TypeVals.push_back(FT->isVarArg());
204 TypeVals.push_back(VE.getParamAttrID(FT->getParamAttrs()));
205 TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
206 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
207 TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
208 AbbrevToUse = FunctionAbbrev;
211 case Type::StructTyID: {
212 const StructType *ST = cast<StructType>(T);
213 // STRUCT: [ispacked, eltty x N]
214 Code = bitc::TYPE_CODE_STRUCT;
215 TypeVals.push_back(ST->isPacked());
216 // Output all of the element types.
217 for (StructType::element_iterator I = ST->element_begin(),
218 E = ST->element_end(); I != E; ++I)
219 TypeVals.push_back(VE.getTypeID(*I));
220 AbbrevToUse = StructAbbrev;
223 case Type::ArrayTyID: {
224 const ArrayType *AT = cast<ArrayType>(T);
225 // ARRAY: [numelts, eltty]
226 Code = bitc::TYPE_CODE_ARRAY;
227 TypeVals.push_back(AT->getNumElements());
228 TypeVals.push_back(VE.getTypeID(AT->getElementType()));
229 AbbrevToUse = ArrayAbbrev;
232 case Type::VectorTyID: {
233 const VectorType *VT = cast<VectorType>(T);
234 // VECTOR [numelts, eltty]
235 Code = bitc::TYPE_CODE_VECTOR;
236 TypeVals.push_back(VT->getNumElements());
237 TypeVals.push_back(VE.getTypeID(VT->getElementType()));
242 // Emit the finished record.
243 Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
250 static unsigned getEncodedLinkage(const GlobalValue *GV) {
251 switch (GV->getLinkage()) {
252 default: assert(0 && "Invalid linkage!");
253 case GlobalValue::ExternalLinkage: return 0;
254 case GlobalValue::WeakLinkage: return 1;
255 case GlobalValue::AppendingLinkage: return 2;
256 case GlobalValue::InternalLinkage: return 3;
257 case GlobalValue::LinkOnceLinkage: return 4;
258 case GlobalValue::DLLImportLinkage: return 5;
259 case GlobalValue::DLLExportLinkage: return 6;
260 case GlobalValue::ExternalWeakLinkage: return 7;
264 static unsigned getEncodedVisibility(const GlobalValue *GV) {
265 switch (GV->getVisibility()) {
266 default: assert(0 && "Invalid visibility!");
267 case GlobalValue::DefaultVisibility: return 0;
268 case GlobalValue::HiddenVisibility: return 1;
269 case GlobalValue::ProtectedVisibility: return 2;
273 // Emit top-level description of module, including target triple, inline asm,
274 // descriptors for global variables, and function prototype info.
275 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
276 BitstreamWriter &Stream) {
277 // Emit the list of dependent libraries for the Module.
278 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
279 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
281 // Emit various pieces of data attached to a module.
282 if (!M->getTargetTriple().empty())
283 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
285 if (!M->getDataLayout().empty())
286 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
288 if (!M->getModuleInlineAsm().empty())
289 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
292 // Emit information about sections, computing how many there are. Also
293 // compute the maximum alignment value.
294 std::map<std::string, unsigned> SectionMap;
295 unsigned MaxAlignment = 0;
296 unsigned MaxGlobalType = 0;
297 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
299 MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
300 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
302 if (!GV->hasSection()) continue;
303 // Give section names unique ID's.
304 unsigned &Entry = SectionMap[GV->getSection()];
305 if (Entry != 0) continue;
306 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
308 Entry = SectionMap.size();
310 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
311 MaxAlignment = std::max(MaxAlignment, F->getAlignment());
312 if (!F->hasSection()) continue;
313 // Give section names unique ID's.
314 unsigned &Entry = SectionMap[F->getSection()];
315 if (Entry != 0) continue;
316 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
318 Entry = SectionMap.size();
321 // Emit abbrev for globals, now that we know # sections and max alignment.
322 unsigned SimpleGVarAbbrev = 0;
323 if (!M->global_empty()) {
324 // Add an abbrev for common globals with no visibility or thread localness.
325 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
326 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
327 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
328 Log2_32_Ceil(MaxGlobalType+1)));
329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant.
330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // Linkage.
332 if (MaxAlignment == 0) // Alignment.
333 Abbv->Add(BitCodeAbbrevOp(0));
335 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
337 Log2_32_Ceil(MaxEncAlignment+1)));
339 if (SectionMap.empty()) // Section.
340 Abbv->Add(BitCodeAbbrevOp(0));
342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
343 Log2_32_Ceil(SectionMap.size()+1)));
344 // Don't bother emitting vis + thread local.
345 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
348 // Emit the global variable information.
349 SmallVector<unsigned, 64> Vals;
350 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
352 unsigned AbbrevToUse = 0;
354 // GLOBALVAR: [type, isconst, initid,
355 // linkage, alignment, section, visibility, threadlocal]
356 Vals.push_back(VE.getTypeID(GV->getType()));
357 Vals.push_back(GV->isConstant());
358 Vals.push_back(GV->isDeclaration() ? 0 :
359 (VE.getValueID(GV->getInitializer()) + 1));
360 Vals.push_back(getEncodedLinkage(GV));
361 Vals.push_back(Log2_32(GV->getAlignment())+1);
362 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
363 if (GV->isThreadLocal() ||
364 GV->getVisibility() != GlobalValue::DefaultVisibility) {
365 Vals.push_back(getEncodedVisibility(GV));
366 Vals.push_back(GV->isThreadLocal());
368 AbbrevToUse = SimpleGVarAbbrev;
371 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
375 // Emit the function proto information.
376 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
377 // FUNCTION: [type, callingconv, isproto, linkage, alignment, section,
379 Vals.push_back(VE.getTypeID(F->getType()));
380 Vals.push_back(F->getCallingConv());
381 Vals.push_back(F->isDeclaration());
382 Vals.push_back(getEncodedLinkage(F));
383 Vals.push_back(Log2_32(F->getAlignment())+1);
384 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
385 Vals.push_back(getEncodedVisibility(F));
387 unsigned AbbrevToUse = 0;
388 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
393 // Emit the alias information.
394 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
396 Vals.push_back(VE.getTypeID(AI->getType()));
397 Vals.push_back(VE.getValueID(AI->getAliasee()));
398 Vals.push_back(getEncodedLinkage(AI));
399 unsigned AbbrevToUse = 0;
400 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
406 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
407 const ValueEnumerator &VE,
408 BitstreamWriter &Stream, bool isGlobal) {
409 if (FirstVal == LastVal) return;
411 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
413 unsigned AggregateAbbrev = 0;
414 unsigned String7Abbrev = 0;
415 // If this is a constant pool for the module, emit module-specific abbrevs.
417 // Abbrev for CST_CODE_AGGREGATE.
418 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
419 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
420 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
421 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
422 AggregateAbbrev = Stream.EmitAbbrev(Abbv);
424 // Abbrev for CST_CODE_STRING.
425 Abbv = new BitCodeAbbrev();
426 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
428 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
429 String7Abbrev = Stream.EmitAbbrev(Abbv);
432 // FIXME: Install and use abbrevs to reduce size. Install them globally so
433 // they don't need to be reemitted for each function body.
435 SmallVector<uint64_t, 64> Record;
437 const ValueEnumerator::ValueList &Vals = VE.getValues();
438 const Type *LastTy = 0;
439 for (unsigned i = FirstVal; i != LastVal; ++i) {
440 const Value *V = Vals[i].first;
441 // If we need to switch types, do so now.
442 if (V->getType() != LastTy) {
443 LastTy = V->getType();
444 Record.push_back(VE.getTypeID(LastTy));
445 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
446 CONSTANTS_SETTYPE_ABBREV);
450 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
451 assert(0 && IA && "FIXME: Inline asm writing unimp!");
454 const Constant *C = cast<Constant>(V);
456 unsigned AbbrevToUse = 0;
457 if (C->isNullValue()) {
458 Code = bitc::CST_CODE_NULL;
459 } else if (isa<UndefValue>(C)) {
460 Code = bitc::CST_CODE_UNDEF;
461 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
462 if (IV->getBitWidth() <= 64) {
463 int64_t V = IV->getSExtValue();
465 Record.push_back(V << 1);
467 Record.push_back((-V << 1) | 1);
468 Code = bitc::CST_CODE_INTEGER;
469 AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
470 } else { // Wide integers, > 64 bits in size.
471 // We have an arbitrary precision integer value to write whose
472 // bit width is > 64. However, in canonical unsigned integer
473 // format it is likely that the high bits are going to be zero.
474 // So, we only write the number of active words.
475 unsigned NWords = IV->getValue().getActiveWords();
476 const uint64_t *RawWords = IV->getValue().getRawData();
477 for (unsigned i = 0; i != NWords; ++i) {
478 int64_t V = RawWords[i];
480 Record.push_back(V << 1);
482 Record.push_back((-V << 1) | 1);
484 Code = bitc::CST_CODE_WIDE_INTEGER;
486 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
487 Code = bitc::CST_CODE_FLOAT;
488 if (CFP->getType() == Type::FloatTy) {
489 Record.push_back(FloatToBits((float)CFP->getValue()));
491 assert (CFP->getType() == Type::DoubleTy && "Unknown FP type!");
492 Record.push_back(DoubleToBits((double)CFP->getValue()));
494 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
495 // Emit constant strings specially.
496 Code = bitc::CST_CODE_STRING;
498 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
499 unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
501 isStr7 &= (V & 128) == 0;
504 AbbrevToUse = String7Abbrev;
505 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
506 isa<ConstantVector>(V)) {
507 Code = bitc::CST_CODE_AGGREGATE;
508 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
509 Record.push_back(VE.getValueID(C->getOperand(i)));
510 AbbrevToUse = AggregateAbbrev;
511 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
512 switch (CE->getOpcode()) {
514 if (Instruction::isCast(CE->getOpcode())) {
515 Code = bitc::CST_CODE_CE_CAST;
516 Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
517 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
518 Record.push_back(VE.getValueID(C->getOperand(0)));
519 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
521 assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
522 Code = bitc::CST_CODE_CE_BINOP;
523 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
524 Record.push_back(VE.getValueID(C->getOperand(0)));
525 Record.push_back(VE.getValueID(C->getOperand(1)));
528 case Instruction::GetElementPtr:
529 Code = bitc::CST_CODE_CE_GEP;
530 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
531 Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
532 Record.push_back(VE.getValueID(C->getOperand(i)));
535 case Instruction::Select:
536 Code = bitc::CST_CODE_CE_SELECT;
537 Record.push_back(VE.getValueID(C->getOperand(0)));
538 Record.push_back(VE.getValueID(C->getOperand(1)));
539 Record.push_back(VE.getValueID(C->getOperand(2)));
541 case Instruction::ExtractElement:
542 Code = bitc::CST_CODE_CE_EXTRACTELT;
543 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
544 Record.push_back(VE.getValueID(C->getOperand(0)));
545 Record.push_back(VE.getValueID(C->getOperand(1)));
547 case Instruction::InsertElement:
548 Code = bitc::CST_CODE_CE_INSERTELT;
549 Record.push_back(VE.getValueID(C->getOperand(0)));
550 Record.push_back(VE.getValueID(C->getOperand(1)));
551 Record.push_back(VE.getValueID(C->getOperand(2)));
553 case Instruction::ShuffleVector:
554 Code = bitc::CST_CODE_CE_SHUFFLEVEC;
555 Record.push_back(VE.getValueID(C->getOperand(0)));
556 Record.push_back(VE.getValueID(C->getOperand(1)));
557 Record.push_back(VE.getValueID(C->getOperand(2)));
559 case Instruction::ICmp:
560 case Instruction::FCmp:
561 Code = bitc::CST_CODE_CE_CMP;
562 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
563 Record.push_back(VE.getValueID(C->getOperand(0)));
564 Record.push_back(VE.getValueID(C->getOperand(1)));
565 Record.push_back(CE->getPredicate());
569 assert(0 && "Unknown constant!");
571 Stream.EmitRecord(Code, Record, AbbrevToUse);
578 static void WriteModuleConstants(const ValueEnumerator &VE,
579 BitstreamWriter &Stream) {
580 const ValueEnumerator::ValueList &Vals = VE.getValues();
582 // Find the first constant to emit, which is the first non-globalvalue value.
583 // We know globalvalues have been emitted by WriteModuleInfo.
584 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
585 if (!isa<GlobalValue>(Vals[i].first)) {
586 WriteConstants(i, Vals.size(), VE, Stream, true);
592 /// PushValueAndType - The file has to encode both the value and type id for
593 /// many values, because we need to know what type to create for forward
594 /// references. However, most operands are not forward references, so this type
595 /// field is not needed.
597 /// This function adds V's value ID to Vals. If the value ID is higher than the
598 /// instruction ID, then it is a forward reference, and it also includes the
600 static bool PushValueAndType(Value *V, unsigned InstID,
601 SmallVector<unsigned, 64> &Vals,
602 ValueEnumerator &VE) {
603 unsigned ValID = VE.getValueID(V);
604 Vals.push_back(ValID);
605 if (ValID >= InstID) {
606 Vals.push_back(VE.getTypeID(V->getType()));
612 /// WriteInstruction - Emit an instruction to the specified stream.
613 static void WriteInstruction(const Instruction &I, unsigned InstID,
614 ValueEnumerator &VE, BitstreamWriter &Stream,
615 SmallVector<unsigned, 64> &Vals) {
617 unsigned AbbrevToUse = 0;
618 switch (I.getOpcode()) {
620 if (Instruction::isCast(I.getOpcode())) {
621 Code = bitc::FUNC_CODE_INST_CAST;
622 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
623 Vals.push_back(VE.getTypeID(I.getType()));
624 Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
626 assert(isa<BinaryOperator>(I) && "Unknown instruction!");
627 Code = bitc::FUNC_CODE_INST_BINOP;
628 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
629 Vals.push_back(VE.getValueID(I.getOperand(1)));
630 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
634 case Instruction::GetElementPtr:
635 Code = bitc::FUNC_CODE_INST_GEP;
636 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
637 PushValueAndType(I.getOperand(i), InstID, Vals, VE);
639 case Instruction::Select:
640 Code = bitc::FUNC_CODE_INST_SELECT;
641 PushValueAndType(I.getOperand(1), InstID, Vals, VE);
642 Vals.push_back(VE.getValueID(I.getOperand(2)));
643 Vals.push_back(VE.getValueID(I.getOperand(0)));
645 case Instruction::ExtractElement:
646 Code = bitc::FUNC_CODE_INST_EXTRACTELT;
647 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
648 Vals.push_back(VE.getValueID(I.getOperand(1)));
650 case Instruction::InsertElement:
651 Code = bitc::FUNC_CODE_INST_INSERTELT;
652 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
653 Vals.push_back(VE.getValueID(I.getOperand(1)));
654 Vals.push_back(VE.getValueID(I.getOperand(2)));
656 case Instruction::ShuffleVector:
657 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
658 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
659 Vals.push_back(VE.getValueID(I.getOperand(1)));
660 Vals.push_back(VE.getValueID(I.getOperand(2)));
662 case Instruction::ICmp:
663 case Instruction::FCmp:
664 Code = bitc::FUNC_CODE_INST_CMP;
665 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
666 Vals.push_back(VE.getValueID(I.getOperand(1)));
667 Vals.push_back(cast<CmpInst>(I).getPredicate());
670 case Instruction::Ret:
671 Code = bitc::FUNC_CODE_INST_RET;
672 if (I.getNumOperands())
673 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
675 case Instruction::Br:
676 Code = bitc::FUNC_CODE_INST_BR;
677 Vals.push_back(VE.getValueID(I.getOperand(0)));
678 if (cast<BranchInst>(I).isConditional()) {
679 Vals.push_back(VE.getValueID(I.getOperand(1)));
680 Vals.push_back(VE.getValueID(I.getOperand(2)));
683 case Instruction::Switch:
684 Code = bitc::FUNC_CODE_INST_SWITCH;
685 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
686 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
687 Vals.push_back(VE.getValueID(I.getOperand(i)));
689 case Instruction::Invoke: {
690 Code = bitc::FUNC_CODE_INST_INVOKE;
691 Vals.push_back(cast<InvokeInst>(I).getCallingConv());
692 Vals.push_back(VE.getValueID(I.getOperand(1))); // normal dest
693 Vals.push_back(VE.getValueID(I.getOperand(2))); // unwind dest
694 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // callee
696 // Emit value #'s for the fixed parameters.
697 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
698 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
699 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
700 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param.
702 // Emit type/value pairs for varargs params.
703 if (FTy->isVarArg()) {
704 for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
706 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
710 case Instruction::Unwind:
711 Code = bitc::FUNC_CODE_INST_UNWIND;
713 case Instruction::Unreachable:
714 Code = bitc::FUNC_CODE_INST_UNREACHABLE;
717 case Instruction::PHI:
718 Code = bitc::FUNC_CODE_INST_PHI;
719 Vals.push_back(VE.getTypeID(I.getType()));
720 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
721 Vals.push_back(VE.getValueID(I.getOperand(i)));
724 case Instruction::Malloc:
725 Code = bitc::FUNC_CODE_INST_MALLOC;
726 Vals.push_back(VE.getTypeID(I.getType()));
727 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
728 Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
731 case Instruction::Free:
732 Code = bitc::FUNC_CODE_INST_FREE;
733 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
736 case Instruction::Alloca:
737 Code = bitc::FUNC_CODE_INST_ALLOCA;
738 Vals.push_back(VE.getTypeID(I.getType()));
739 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
740 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
743 case Instruction::Load:
744 Code = bitc::FUNC_CODE_INST_LOAD;
745 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr
746 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
748 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
749 Vals.push_back(cast<LoadInst>(I).isVolatile());
751 case Instruction::Store:
752 Code = bitc::FUNC_CODE_INST_STORE;
753 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // val.
754 Vals.push_back(VE.getValueID(I.getOperand(1))); // ptr.
755 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
756 Vals.push_back(cast<StoreInst>(I).isVolatile());
758 case Instruction::Call: {
759 Code = bitc::FUNC_CODE_INST_CALL;
760 Vals.push_back((cast<CallInst>(I).getCallingConv() << 1) |
761 cast<CallInst>(I).isTailCall());
762 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // Callee
764 // Emit value #'s for the fixed parameters.
765 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
766 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
767 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
768 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param.
770 // Emit type/value pairs for varargs params.
771 if (FTy->isVarArg()) {
772 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
773 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
775 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs
779 case Instruction::VAArg:
780 Code = bitc::FUNC_CODE_INST_VAARG;
781 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
782 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
783 Vals.push_back(VE.getTypeID(I.getType())); // restype.
787 Stream.EmitRecord(Code, Vals, AbbrevToUse);
791 // Emit names for globals/functions etc.
792 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
793 const ValueEnumerator &VE,
794 BitstreamWriter &Stream) {
795 if (VST.empty()) return;
796 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
798 // FIXME: Set up the abbrev, we know how many values there are!
799 // FIXME: We know if the type names can use 7-bit ascii.
800 SmallVector<unsigned, 64> NameVals;
802 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
805 const ValueName &Name = *SI;
807 // Figure out the encoding to use for the name.
810 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
813 isChar6 = BitCodeAbbrevOp::isChar6(*C);
814 if ((unsigned char)*C & 128) {
816 break; // don't bother scanning the rest.
820 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
822 // VST_ENTRY: [valueid, namechar x N]
823 // VST_BBENTRY: [bbid, namechar x N]
825 if (isa<BasicBlock>(SI->getValue())) {
826 Code = bitc::VST_CODE_BBENTRY;
828 AbbrevToUse = VST_BBENTRY_6_ABBREV;
830 Code = bitc::VST_CODE_ENTRY;
832 AbbrevToUse = VST_ENTRY_6_ABBREV;
834 AbbrevToUse = VST_ENTRY_7_ABBREV;
837 NameVals.push_back(VE.getValueID(SI->getValue()));
838 for (const char *P = Name.getKeyData(),
839 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
840 NameVals.push_back((unsigned char)*P);
842 // Emit the finished record.
843 Stream.EmitRecord(Code, NameVals, AbbrevToUse);
849 /// WriteFunction - Emit a function body to the module stream.
850 static void WriteFunction(const Function &F, ValueEnumerator &VE,
851 BitstreamWriter &Stream) {
852 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 3);
853 VE.incorporateFunction(F);
855 SmallVector<unsigned, 64> Vals;
857 // Emit the number of basic blocks, so the reader can create them ahead of
859 Vals.push_back(VE.getBasicBlocks().size());
860 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
863 // FIXME: Function attributes?
865 // If there are function-local constants, emit them now.
866 unsigned CstStart, CstEnd;
867 VE.getFunctionConstantRange(CstStart, CstEnd);
868 WriteConstants(CstStart, CstEnd, VE, Stream, false);
870 // Keep a running idea of what the instruction ID is.
871 unsigned InstID = CstEnd;
873 // Finally, emit all the instructions, in order.
874 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
875 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
877 WriteInstruction(*I, InstID, VE, Stream, Vals);
878 if (I->getType() != Type::VoidTy)
882 // Emit names for all the instructions etc.
883 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
889 /// WriteTypeSymbolTable - Emit a block for the specified type symtab.
890 static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
891 const ValueEnumerator &VE,
892 BitstreamWriter &Stream) {
893 if (TST.empty()) return;
895 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
897 // 7-bit fixed width VST_CODE_ENTRY strings.
898 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
899 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
900 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
901 Log2_32_Ceil(VE.getTypes().size()+1)));
902 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
903 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
904 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
906 SmallVector<unsigned, 64> NameVals;
908 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
910 // TST_ENTRY: [typeid, namechar x N]
911 NameVals.push_back(VE.getTypeID(TI->second));
913 const std::string &Str = TI->first;
915 for (unsigned i = 0, e = Str.size(); i != e; ++i) {
916 NameVals.push_back((unsigned char)Str[i]);
921 // Emit the finished record.
922 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
929 // Emit blockinfo, which defines the standard abbreviations etc.
930 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
931 // We only want to emit block info records for blocks that have multiple
932 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other
933 // blocks can defined their abbrevs inline.
934 Stream.EnterBlockInfoBlock(2);
936 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
937 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
939 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
942 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
943 Abbv) != VST_ENTRY_8_ABBREV)
944 assert(0 && "Unexpected abbrev ordering!");
947 { // 7-bit fixed width VST_ENTRY strings.
948 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
949 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
950 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
951 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
953 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
954 Abbv) != VST_ENTRY_7_ABBREV)
955 assert(0 && "Unexpected abbrev ordering!");
957 { // 6-bit char6 VST_ENTRY strings.
958 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
959 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
960 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
961 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
962 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
963 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
964 Abbv) != VST_ENTRY_6_ABBREV)
965 assert(0 && "Unexpected abbrev ordering!");
967 { // 6-bit char6 VST_BBENTRY strings.
968 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
969 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
970 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
971 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
972 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
973 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
974 Abbv) != VST_BBENTRY_6_ABBREV)
975 assert(0 && "Unexpected abbrev ordering!");
980 { // SETTYPE abbrev for CONSTANTS_BLOCK.
981 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
982 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
983 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
984 Log2_32_Ceil(VE.getTypes().size()+1)));
985 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
986 Abbv) != CONSTANTS_SETTYPE_ABBREV)
987 assert(0 && "Unexpected abbrev ordering!");
990 { // INTEGER abbrev for CONSTANTS_BLOCK.
991 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
992 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
993 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
994 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
995 Abbv) != CONSTANTS_INTEGER_ABBREV)
996 assert(0 && "Unexpected abbrev ordering!");
999 { // CE_CAST abbrev for CONSTANTS_BLOCK.
1000 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1001 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1002 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
1003 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
1004 Log2_32_Ceil(VE.getTypes().size()+1)));
1005 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
1007 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1008 Abbv) != CONSTANTS_CE_CAST_Abbrev)
1009 assert(0 && "Unexpected abbrev ordering!");
1011 { // NULL abbrev for CONSTANTS_BLOCK.
1012 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1013 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1014 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1015 Abbv) != CONSTANTS_NULL_Abbrev)
1016 assert(0 && "Unexpected abbrev ordering!");
1019 // FIXME: This should only use space for first class types!
1021 { // INST_LOAD abbrev for FUNCTION_BLOCK.
1022 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1023 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1024 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1025 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1026 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1027 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1028 Abbv) != FUNCTION_INST_LOAD_ABBREV)
1029 assert(0 && "Unexpected abbrev ordering!");
1036 /// WriteModule - Emit the specified module to the bitstream.
1037 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1038 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1040 // Emit the version number if it is non-zero.
1042 SmallVector<unsigned, 1> Vals;
1043 Vals.push_back(CurVersion);
1044 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1047 // Analyze the module, enumerating globals, functions, etc.
1048 ValueEnumerator VE(M);
1050 // Emit blockinfo, which defines the standard abbreviations etc.
1051 WriteBlockInfo(VE, Stream);
1053 // Emit information about parameter attributes.
1054 WriteParamAttrTable(VE, Stream);
1056 // Emit information describing all of the types in the module.
1057 WriteTypeTable(VE, Stream);
1059 // Emit top-level description of module, including target triple, inline asm,
1060 // descriptors for global variables, and function prototype info.
1061 WriteModuleInfo(M, VE, Stream);
1064 WriteModuleConstants(VE, Stream);
1066 // If we have any aggregate values in the value table, purge them - these can
1067 // only be used to initialize global variables. Doing so makes the value
1068 // namespace smaller for code in functions.
1069 int NumNonAggregates = VE.PurgeAggregateValues();
1070 if (NumNonAggregates != -1) {
1071 SmallVector<unsigned, 1> Vals;
1072 Vals.push_back(NumNonAggregates);
1073 Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals);
1076 // Emit function bodies.
1077 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1078 if (!I->isDeclaration())
1079 WriteFunction(*I, VE, Stream);
1081 // Emit the type symbol table information.
1082 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1084 // Emit names for globals/functions etc.
1085 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1091 /// WriteBitcodeToFile - Write the specified module to the specified output
1093 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
1094 std::vector<unsigned char> Buffer;
1095 BitstreamWriter Stream(Buffer);
1097 Buffer.reserve(256*1024);
1099 // Emit the file header.
1100 Stream.Emit((unsigned)'B', 8);
1101 Stream.Emit((unsigned)'C', 8);
1102 Stream.Emit(0x0, 4);
1103 Stream.Emit(0xC, 4);
1104 Stream.Emit(0xE, 4);
1105 Stream.Emit(0xD, 4);
1108 WriteModule(M, Stream);
1110 // Write the generated bitstream to "Out".
1111 Out.write((char*)&Buffer.front(), Buffer.size());