1 //===- Reader.cpp - Code to read bytecode files ---------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This library implements the functionality defined in llvm/Bytecode/Reader.h
12 // Note that this library should be as fast as possible, reentrant, and
15 // TODO: Allow passing in an option to ignore the symbol table
17 //===----------------------------------------------------------------------===//
20 #include "llvm/Assembly/AutoUpgrade.h"
21 #include "llvm/Bytecode/BytecodeHandler.h"
22 #include "llvm/BasicBlock.h"
23 #include "llvm/CallingConv.h"
24 #include "llvm/Constants.h"
25 #include "llvm/InlineAsm.h"
26 #include "llvm/Instructions.h"
27 #include "llvm/SymbolTable.h"
28 #include "llvm/Bytecode/Format.h"
29 #include "llvm/Config/alloca.h"
30 #include "llvm/Support/GetElementPtrTypeIterator.h"
31 #include "llvm/Support/Compressor.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/ADT/StringExtras.h"
39 /// @brief A class for maintaining the slot number definition
40 /// as a placeholder for the actual definition for forward constants defs.
41 class ConstantPlaceHolder : public ConstantExpr {
42 ConstantPlaceHolder(); // DO NOT IMPLEMENT
43 void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
46 ConstantPlaceHolder(const Type *Ty)
47 : ConstantExpr(Ty, Instruction::UserOp1, &Op, 1),
48 Op(UndefValue::get(Type::IntTy), this) {
53 // Provide some details on error
54 inline void BytecodeReader::error(std::string err) {
56 err += itostr(RevisionNum) ;
58 err += itostr(At-MemStart);
63 //===----------------------------------------------------------------------===//
64 // Bytecode Reading Methods
65 //===----------------------------------------------------------------------===//
67 /// Determine if the current block being read contains any more data.
68 inline bool BytecodeReader::moreInBlock() {
72 /// Throw an error if we've read past the end of the current block
73 inline void BytecodeReader::checkPastBlockEnd(const char * block_name) {
75 error(std::string("Attempt to read past the end of ") + block_name +
79 /// Align the buffer position to a 32 bit boundary
80 inline void BytecodeReader::align32() {
83 At = (const unsigned char *)((intptr_t)(At+3) & (~3UL));
85 if (Handler) Handler->handleAlignment(At - Save);
87 error("Ran out of data while aligning!");
91 /// Read a whole unsigned integer
92 inline unsigned BytecodeReader::read_uint() {
94 error("Ran out of data reading uint!");
96 return At[-4] | (At[-3] << 8) | (At[-2] << 16) | (At[-1] << 24);
99 /// Read a variable-bit-rate encoded unsigned integer
100 inline unsigned BytecodeReader::read_vbr_uint() {
107 error("Ran out of data reading vbr_uint!");
108 Result |= (unsigned)((*At++) & 0x7F) << Shift;
110 } while (At[-1] & 0x80);
111 if (Handler) Handler->handleVBR32(At-Save);
115 /// Read a variable-bit-rate encoded unsigned 64-bit integer.
116 inline uint64_t BytecodeReader::read_vbr_uint64() {
123 error("Ran out of data reading vbr_uint64!");
124 Result |= (uint64_t)((*At++) & 0x7F) << Shift;
126 } while (At[-1] & 0x80);
127 if (Handler) Handler->handleVBR64(At-Save);
131 /// Read a variable-bit-rate encoded signed 64-bit integer.
132 inline int64_t BytecodeReader::read_vbr_int64() {
133 uint64_t R = read_vbr_uint64();
136 return -(int64_t)(R >> 1);
137 else // There is no such thing as -0 with integers. "-0" really means
138 // 0x8000000000000000.
141 return (int64_t)(R >> 1);
144 /// Read a pascal-style string (length followed by text)
145 inline std::string BytecodeReader::read_str() {
146 unsigned Size = read_vbr_uint();
147 const unsigned char *OldAt = At;
149 if (At > BlockEnd) // Size invalid?
150 error("Ran out of data reading a string!");
151 return std::string((char*)OldAt, Size);
154 /// Read an arbitrary block of data
155 inline void BytecodeReader::read_data(void *Ptr, void *End) {
156 unsigned char *Start = (unsigned char *)Ptr;
157 unsigned Amount = (unsigned char *)End - Start;
158 if (At+Amount > BlockEnd)
159 error("Ran out of data!");
160 std::copy(At, At+Amount, Start);
164 /// Read a float value in little-endian order
165 inline void BytecodeReader::read_float(float& FloatVal) {
166 /// FIXME: This isn't optimal, it has size problems on some platforms
167 /// where FP is not IEEE.
168 FloatVal = BitsToFloat(At[0] | (At[1] << 8) | (At[2] << 16) | (At[3] << 24));
169 At+=sizeof(uint32_t);
172 /// Read a double value in little-endian order
173 inline void BytecodeReader::read_double(double& DoubleVal) {
174 /// FIXME: This isn't optimal, it has size problems on some platforms
175 /// where FP is not IEEE.
176 DoubleVal = BitsToDouble((uint64_t(At[0]) << 0) | (uint64_t(At[1]) << 8) |
177 (uint64_t(At[2]) << 16) | (uint64_t(At[3]) << 24) |
178 (uint64_t(At[4]) << 32) | (uint64_t(At[5]) << 40) |
179 (uint64_t(At[6]) << 48) | (uint64_t(At[7]) << 56));
180 At+=sizeof(uint64_t);
183 /// Read a block header and obtain its type and size
184 inline void BytecodeReader::read_block(unsigned &Type, unsigned &Size) {
185 if ( hasLongBlockHeaders ) {
189 case BytecodeFormat::Reserved_DoNotUse :
190 error("Reserved_DoNotUse used as Module Type?");
191 Type = BytecodeFormat::ModuleBlockID; break;
192 case BytecodeFormat::Module:
193 Type = BytecodeFormat::ModuleBlockID; break;
194 case BytecodeFormat::Function:
195 Type = BytecodeFormat::FunctionBlockID; break;
196 case BytecodeFormat::ConstantPool:
197 Type = BytecodeFormat::ConstantPoolBlockID; break;
198 case BytecodeFormat::SymbolTable:
199 Type = BytecodeFormat::SymbolTableBlockID; break;
200 case BytecodeFormat::ModuleGlobalInfo:
201 Type = BytecodeFormat::ModuleGlobalInfoBlockID; break;
202 case BytecodeFormat::GlobalTypePlane:
203 Type = BytecodeFormat::GlobalTypePlaneBlockID; break;
204 case BytecodeFormat::InstructionList:
205 Type = BytecodeFormat::InstructionListBlockID; break;
206 case BytecodeFormat::CompactionTable:
207 Type = BytecodeFormat::CompactionTableBlockID; break;
208 case BytecodeFormat::BasicBlock:
209 /// This block type isn't used after version 1.1. However, we have to
210 /// still allow the value in case this is an old bc format file.
211 /// We just let its value creep thru.
214 error("Invalid block id found: " + utostr(Type));
219 Type = Size & 0x1F; // mask low order five bits
220 Size >>= 5; // get rid of five low order bits, leaving high 27
223 if (At + Size > BlockEnd)
224 error("Attempt to size a block past end of memory");
225 BlockEnd = At + Size;
226 if (Handler) Handler->handleBlock(Type, BlockStart, Size);
230 /// In LLVM 1.2 and before, Types were derived from Value and so they were
231 /// written as part of the type planes along with any other Value. In LLVM
232 /// 1.3 this changed so that Type does not derive from Value. Consequently,
233 /// the BytecodeReader's containers for Values can't contain Types because
234 /// there's no inheritance relationship. This means that the "Type Type"
235 /// plane is defunct along with the Type::TypeTyID TypeID. In LLVM 1.3
236 /// whenever a bytecode construct must have both types and values together,
237 /// the types are always read/written first and then the Values. Furthermore
238 /// since Type::TypeTyID no longer exists, its value (12) now corresponds to
239 /// Type::LabelTyID. In order to overcome this we must "sanitize" all the
240 /// type TypeIDs we encounter. For LLVM 1.3 bytecode files, there's no change.
241 /// For LLVM 1.2 and before, this function will decrement the type id by
242 /// one to account for the missing Type::TypeTyID enumerator if the value is
243 /// larger than 12 (Type::LabelTyID). If the value is exactly 12, then this
244 /// function returns true, otherwise false. This helps detect situations
245 /// where the pre 1.3 bytecode is indicating that what follows is a type.
246 /// @returns true iff type id corresponds to pre 1.3 "type type"
247 inline bool BytecodeReader::sanitizeTypeId(unsigned &TypeId) {
248 if (hasTypeDerivedFromValue) { /// do nothing if 1.3 or later
249 if (TypeId == Type::LabelTyID) {
250 TypeId = Type::VoidTyID; // sanitize it
251 return true; // indicate we got TypeTyID in pre 1.3 bytecode
252 } else if (TypeId > Type::LabelTyID)
253 --TypeId; // shift all planes down because type type plane is missing
258 /// Reads a vbr uint to read in a type id and does the necessary
259 /// conversion on it by calling sanitizeTypeId.
260 /// @returns true iff \p TypeId read corresponds to a pre 1.3 "type type"
261 /// @see sanitizeTypeId
262 inline bool BytecodeReader::read_typeid(unsigned &TypeId) {
263 TypeId = read_vbr_uint();
264 if ( !has32BitTypes )
265 if ( TypeId == 0x00FFFFFF )
266 TypeId = read_vbr_uint();
267 return sanitizeTypeId(TypeId);
270 //===----------------------------------------------------------------------===//
272 //===----------------------------------------------------------------------===//
274 /// Determine if a type id has an implicit null value
275 inline bool BytecodeReader::hasImplicitNull(unsigned TyID) {
276 if (!hasExplicitPrimitiveZeros)
277 return TyID != Type::LabelTyID && TyID != Type::VoidTyID;
278 return TyID >= Type::FirstDerivedTyID;
281 /// Obtain a type given a typeid and account for things like compaction tables,
282 /// function level vs module level, and the offsetting for the primitive types.
283 const Type *BytecodeReader::getType(unsigned ID) {
284 if (ID < Type::FirstDerivedTyID)
285 if (const Type *T = Type::getPrimitiveType((Type::TypeID)ID))
286 return T; // Asked for a primitive type...
288 // Otherwise, derived types need offset...
289 ID -= Type::FirstDerivedTyID;
291 if (!CompactionTypes.empty()) {
292 if (ID >= CompactionTypes.size())
293 error("Type ID out of range for compaction table!");
294 return CompactionTypes[ID].first;
297 // Is it a module-level type?
298 if (ID < ModuleTypes.size())
299 return ModuleTypes[ID].get();
301 // Nope, is it a function-level type?
302 ID -= ModuleTypes.size();
303 if (ID < FunctionTypes.size())
304 return FunctionTypes[ID].get();
306 error("Illegal type reference!");
310 /// Get a sanitized type id. This just makes sure that the \p ID
311 /// is both sanitized and not the "type type" of pre-1.3 bytecode.
312 /// @see sanitizeTypeId
313 inline const Type* BytecodeReader::getSanitizedType(unsigned& ID) {
314 if (sanitizeTypeId(ID))
315 error("Invalid type id encountered");
319 /// This method just saves some coding. It uses read_typeid to read
320 /// in a sanitized type id, errors that its not the type type, and
321 /// then calls getType to return the type value.
322 inline const Type* BytecodeReader::readSanitizedType() {
325 error("Invalid type id encountered");
329 /// Get the slot number associated with a type accounting for primitive
330 /// types, compaction tables, and function level vs module level.
331 unsigned BytecodeReader::getTypeSlot(const Type *Ty) {
332 if (Ty->isPrimitiveType())
333 return Ty->getTypeID();
335 // Scan the compaction table for the type if needed.
336 if (!CompactionTypes.empty()) {
337 for (unsigned i = 0, e = CompactionTypes.size(); i != e; ++i)
338 if (CompactionTypes[i].first == Ty)
339 return Type::FirstDerivedTyID + i;
341 error("Couldn't find type specified in compaction table!");
344 // Check the function level types first...
345 TypeListTy::iterator I = std::find(FunctionTypes.begin(),
346 FunctionTypes.end(), Ty);
348 if (I != FunctionTypes.end())
349 return Type::FirstDerivedTyID + ModuleTypes.size() +
350 (&*I - &FunctionTypes[0]);
352 // If we don't have our cache yet, build it now.
353 if (ModuleTypeIDCache.empty()) {
355 ModuleTypeIDCache.reserve(ModuleTypes.size());
356 for (TypeListTy::iterator I = ModuleTypes.begin(), E = ModuleTypes.end();
358 ModuleTypeIDCache.push_back(std::make_pair(*I, N));
360 std::sort(ModuleTypeIDCache.begin(), ModuleTypeIDCache.end());
363 // Binary search the cache for the entry.
364 std::vector<std::pair<const Type*, unsigned> >::iterator IT =
365 std::lower_bound(ModuleTypeIDCache.begin(), ModuleTypeIDCache.end(),
366 std::make_pair(Ty, 0U));
367 if (IT == ModuleTypeIDCache.end() || IT->first != Ty)
368 error("Didn't find type in ModuleTypes.");
370 return Type::FirstDerivedTyID + IT->second;
373 /// This is just like getType, but when a compaction table is in use, it is
374 /// ignored. It also ignores function level types.
376 const Type *BytecodeReader::getGlobalTableType(unsigned Slot) {
377 if (Slot < Type::FirstDerivedTyID) {
378 const Type *Ty = Type::getPrimitiveType((Type::TypeID)Slot);
380 error("Not a primitive type ID?");
383 Slot -= Type::FirstDerivedTyID;
384 if (Slot >= ModuleTypes.size())
385 error("Illegal compaction table type reference!");
386 return ModuleTypes[Slot];
389 /// This is just like getTypeSlot, but when a compaction table is in use, it
390 /// is ignored. It also ignores function level types.
391 unsigned BytecodeReader::getGlobalTableTypeSlot(const Type *Ty) {
392 if (Ty->isPrimitiveType())
393 return Ty->getTypeID();
395 // If we don't have our cache yet, build it now.
396 if (ModuleTypeIDCache.empty()) {
398 ModuleTypeIDCache.reserve(ModuleTypes.size());
399 for (TypeListTy::iterator I = ModuleTypes.begin(), E = ModuleTypes.end();
401 ModuleTypeIDCache.push_back(std::make_pair(*I, N));
403 std::sort(ModuleTypeIDCache.begin(), ModuleTypeIDCache.end());
406 // Binary search the cache for the entry.
407 std::vector<std::pair<const Type*, unsigned> >::iterator IT =
408 std::lower_bound(ModuleTypeIDCache.begin(), ModuleTypeIDCache.end(),
409 std::make_pair(Ty, 0U));
410 if (IT == ModuleTypeIDCache.end() || IT->first != Ty)
411 error("Didn't find type in ModuleTypes.");
413 return Type::FirstDerivedTyID + IT->second;
416 /// Retrieve a value of a given type and slot number, possibly creating
417 /// it if it doesn't already exist.
418 Value * BytecodeReader::getValue(unsigned type, unsigned oNum, bool Create) {
419 assert(type != Type::LabelTyID && "getValue() cannot get blocks!");
422 // If there is a compaction table active, it defines the low-level numbers.
423 // If not, the module values define the low-level numbers.
424 if (CompactionValues.size() > type && !CompactionValues[type].empty()) {
425 if (Num < CompactionValues[type].size())
426 return CompactionValues[type][Num];
427 Num -= CompactionValues[type].size();
429 // By default, the global type id is the type id passed in
430 unsigned GlobalTyID = type;
432 // If the type plane was compactified, figure out the global type ID by
433 // adding the derived type ids and the distance.
434 if (!CompactionTypes.empty() && type >= Type::FirstDerivedTyID)
435 GlobalTyID = CompactionTypes[type-Type::FirstDerivedTyID].second;
437 if (hasImplicitNull(GlobalTyID)) {
438 const Type *Ty = getType(type);
439 if (!isa<OpaqueType>(Ty)) {
441 return Constant::getNullValue(Ty);
446 if (GlobalTyID < ModuleValues.size() && ModuleValues[GlobalTyID]) {
447 if (Num < ModuleValues[GlobalTyID]->size())
448 return ModuleValues[GlobalTyID]->getOperand(Num);
449 Num -= ModuleValues[GlobalTyID]->size();
453 if (FunctionValues.size() > type &&
454 FunctionValues[type] &&
455 Num < FunctionValues[type]->size())
456 return FunctionValues[type]->getOperand(Num);
458 if (!Create) return 0; // Do not create a placeholder?
460 // Did we already create a place holder?
461 std::pair<unsigned,unsigned> KeyValue(type, oNum);
462 ForwardReferenceMap::iterator I = ForwardReferences.lower_bound(KeyValue);
463 if (I != ForwardReferences.end() && I->first == KeyValue)
464 return I->second; // We have already created this placeholder
466 // If the type exists (it should)
467 if (const Type* Ty = getType(type)) {
468 // Create the place holder
469 Value *Val = new Argument(Ty);
470 ForwardReferences.insert(I, std::make_pair(KeyValue, Val));
473 throw "Can't create placeholder for value of type slot #" + utostr(type);
476 /// This is just like getValue, but when a compaction table is in use, it
477 /// is ignored. Also, no forward references or other fancy features are
479 Value* BytecodeReader::getGlobalTableValue(unsigned TyID, unsigned SlotNo) {
481 return Constant::getNullValue(getType(TyID));
483 if (!CompactionTypes.empty() && TyID >= Type::FirstDerivedTyID) {
484 TyID -= Type::FirstDerivedTyID;
485 if (TyID >= CompactionTypes.size())
486 error("Type ID out of range for compaction table!");
487 TyID = CompactionTypes[TyID].second;
492 if (TyID >= ModuleValues.size() || ModuleValues[TyID] == 0 ||
493 SlotNo >= ModuleValues[TyID]->size()) {
494 if (TyID >= ModuleValues.size() || ModuleValues[TyID] == 0)
495 error("Corrupt compaction table entry!"
496 + utostr(TyID) + ", " + utostr(SlotNo) + ": "
497 + utostr(ModuleValues.size()));
499 error("Corrupt compaction table entry!"
500 + utostr(TyID) + ", " + utostr(SlotNo) + ": "
501 + utostr(ModuleValues.size()) + ", "
502 + utohexstr(reinterpret_cast<uint64_t>(((void*)ModuleValues[TyID])))
504 + utostr(ModuleValues[TyID]->size()));
506 return ModuleValues[TyID]->getOperand(SlotNo);
509 /// Just like getValue, except that it returns a null pointer
510 /// only on error. It always returns a constant (meaning that if the value is
511 /// defined, but is not a constant, that is an error). If the specified
512 /// constant hasn't been parsed yet, a placeholder is defined and used.
513 /// Later, after the real value is parsed, the placeholder is eliminated.
514 Constant* BytecodeReader::getConstantValue(unsigned TypeSlot, unsigned Slot) {
515 if (Value *V = getValue(TypeSlot, Slot, false))
516 if (Constant *C = dyn_cast<Constant>(V))
517 return C; // If we already have the value parsed, just return it
519 error("Value for slot " + utostr(Slot) +
520 " is expected to be a constant!");
522 std::pair<unsigned, unsigned> Key(TypeSlot, Slot);
523 ConstantRefsType::iterator I = ConstantFwdRefs.lower_bound(Key);
525 if (I != ConstantFwdRefs.end() && I->first == Key) {
528 // Create a placeholder for the constant reference and
529 // keep track of the fact that we have a forward ref to recycle it
530 Constant *C = new ConstantPlaceHolder(getType(TypeSlot));
532 // Keep track of the fact that we have a forward ref to recycle it
533 ConstantFwdRefs.insert(I, std::make_pair(Key, C));
538 //===----------------------------------------------------------------------===//
539 // IR Construction Methods
540 //===----------------------------------------------------------------------===//
542 /// As values are created, they are inserted into the appropriate place
543 /// with this method. The ValueTable argument must be one of ModuleValues
544 /// or FunctionValues data members of this class.
545 unsigned BytecodeReader::insertValue(Value *Val, unsigned type,
546 ValueTable &ValueTab) {
547 assert((!isa<Constant>(Val) || !cast<Constant>(Val)->isNullValue()) ||
548 !hasImplicitNull(type) &&
549 "Cannot read null values from bytecode!");
551 if (ValueTab.size() <= type)
552 ValueTab.resize(type+1);
554 if (!ValueTab[type]) ValueTab[type] = new ValueList();
556 ValueTab[type]->push_back(Val);
558 bool HasOffset = hasImplicitNull(type) && !isa<OpaqueType>(Val->getType());
559 return ValueTab[type]->size()-1 + HasOffset;
562 /// Insert the arguments of a function as new values in the reader.
563 void BytecodeReader::insertArguments(Function* F) {
564 const FunctionType *FT = F->getFunctionType();
565 Function::arg_iterator AI = F->arg_begin();
566 for (FunctionType::param_iterator It = FT->param_begin();
567 It != FT->param_end(); ++It, ++AI)
568 insertValue(AI, getTypeSlot(AI->getType()), FunctionValues);
571 //===----------------------------------------------------------------------===//
572 // Bytecode Parsing Methods
573 //===----------------------------------------------------------------------===//
575 /// This method parses a single instruction. The instruction is
576 /// inserted at the end of the \p BB provided. The arguments of
577 /// the instruction are provided in the \p Oprnds vector.
578 void BytecodeReader::ParseInstruction(std::vector<unsigned> &Oprnds,
582 // Clear instruction data
586 unsigned Op = read_uint();
588 // bits Instruction format: Common to all formats
589 // --------------------------
590 // 01-00: Opcode type, fixed to 1.
592 Opcode = (Op >> 2) & 63;
593 Oprnds.resize((Op >> 0) & 03);
595 // Extract the operands
596 switch (Oprnds.size()) {
598 // bits Instruction format:
599 // --------------------------
600 // 19-08: Resulting type plane
601 // 31-20: Operand #1 (if set to (2^12-1), then zero operands)
603 iType = (Op >> 8) & 4095;
604 Oprnds[0] = (Op >> 20) & 4095;
605 if (Oprnds[0] == 4095) // Handle special encoding for 0 operands...
609 // bits Instruction format:
610 // --------------------------
611 // 15-08: Resulting type plane
615 iType = (Op >> 8) & 255;
616 Oprnds[0] = (Op >> 16) & 255;
617 Oprnds[1] = (Op >> 24) & 255;
620 // bits Instruction format:
621 // --------------------------
622 // 13-08: Resulting type plane
627 iType = (Op >> 8) & 63;
628 Oprnds[0] = (Op >> 14) & 63;
629 Oprnds[1] = (Op >> 20) & 63;
630 Oprnds[2] = (Op >> 26) & 63;
633 At -= 4; // Hrm, try this again...
634 Opcode = read_vbr_uint();
636 iType = read_vbr_uint();
638 unsigned NumOprnds = read_vbr_uint();
639 Oprnds.resize(NumOprnds);
642 error("Zero-argument instruction found; this is invalid.");
644 for (unsigned i = 0; i != NumOprnds; ++i)
645 Oprnds[i] = read_vbr_uint();
650 const Type *InstTy = getSanitizedType(iType);
652 // We have enough info to inform the handler now.
653 if (Handler) Handler->handleInstruction(Opcode, InstTy, Oprnds, At-SaveAt);
655 // Declare the resulting instruction we'll build.
656 Instruction *Result = 0;
658 // If this is a bytecode format that did not include the unreachable
659 // instruction, bump up all opcodes numbers to make space.
660 if (hasNoUnreachableInst) {
661 if (Opcode >= Instruction::Unreachable &&
667 // Handle binary operators
668 if (Opcode >= Instruction::BinaryOpsBegin &&
669 Opcode < Instruction::BinaryOpsEnd && Oprnds.size() == 2)
670 Result = BinaryOperator::create((Instruction::BinaryOps)Opcode,
671 getValue(iType, Oprnds[0]),
672 getValue(iType, Oprnds[1]));
678 error("Illegal instruction read!");
680 case Instruction::VAArg:
681 Result = new VAArgInst(getValue(iType, Oprnds[0]),
682 getSanitizedType(Oprnds[1]));
684 case 32: { //VANext_old
685 const Type* ArgTy = getValue(iType, Oprnds[0])->getType();
686 Function* NF = TheModule->getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy,
690 //foo = alloca 1 of t
695 AllocaInst* foo = new AllocaInst(ArgTy, 0, "vanext.fix");
696 BB->getInstList().push_back(foo);
697 CallInst* bar = new CallInst(NF, getValue(iType, Oprnds[0]));
698 BB->getInstList().push_back(bar);
699 BB->getInstList().push_back(new StoreInst(bar, foo));
700 Instruction* tmp = new VAArgInst(foo, getSanitizedType(Oprnds[1]));
701 BB->getInstList().push_back(tmp);
702 Result = new LoadInst(foo);
705 case 33: { //VAArg_old
706 const Type* ArgTy = getValue(iType, Oprnds[0])->getType();
707 Function* NF = TheModule->getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy,
711 //foo = alloca 1 of t
715 AllocaInst* foo = new AllocaInst(ArgTy, 0, "vaarg.fix");
716 BB->getInstList().push_back(foo);
717 CallInst* bar = new CallInst(NF, getValue(iType, Oprnds[0]));
718 BB->getInstList().push_back(bar);
719 BB->getInstList().push_back(new StoreInst(bar, foo));
720 Result = new VAArgInst(foo, getSanitizedType(Oprnds[1]));
723 case Instruction::ExtractElement: {
724 if (Oprnds.size() != 2)
725 throw std::string("Invalid extractelement instruction!");
726 Result = new ExtractElementInst(getValue(iType, Oprnds[0]),
727 getValue(Type::UIntTyID, Oprnds[1]));
730 case Instruction::InsertElement: {
731 const PackedType *PackedTy = dyn_cast<PackedType>(InstTy);
732 if (!PackedTy || Oprnds.size() != 3)
733 throw std::string("Invalid insertelement instruction!");
735 new InsertElementInst(getValue(iType, Oprnds[0]),
736 getValue(getTypeSlot(PackedTy->getElementType()),
738 getValue(Type::UIntTyID, Oprnds[2]));
741 case Instruction::Cast:
742 Result = new CastInst(getValue(iType, Oprnds[0]),
743 getSanitizedType(Oprnds[1]));
745 case Instruction::Select:
746 Result = new SelectInst(getValue(Type::BoolTyID, Oprnds[0]),
747 getValue(iType, Oprnds[1]),
748 getValue(iType, Oprnds[2]));
750 case Instruction::PHI: {
751 if (Oprnds.size() == 0 || (Oprnds.size() & 1))
752 error("Invalid phi node encountered!");
754 PHINode *PN = new PHINode(InstTy);
755 PN->reserveOperandSpace(Oprnds.size());
756 for (unsigned i = 0, e = Oprnds.size(); i != e; i += 2)
757 PN->addIncoming(getValue(iType, Oprnds[i]), getBasicBlock(Oprnds[i+1]));
762 case Instruction::Shl:
763 case Instruction::Shr:
764 Result = new ShiftInst((Instruction::OtherOps)Opcode,
765 getValue(iType, Oprnds[0]),
766 getValue(Type::UByteTyID, Oprnds[1]));
768 case Instruction::Ret:
769 if (Oprnds.size() == 0)
770 Result = new ReturnInst();
771 else if (Oprnds.size() == 1)
772 Result = new ReturnInst(getValue(iType, Oprnds[0]));
774 error("Unrecognized instruction!");
777 case Instruction::Br:
778 if (Oprnds.size() == 1)
779 Result = new BranchInst(getBasicBlock(Oprnds[0]));
780 else if (Oprnds.size() == 3)
781 Result = new BranchInst(getBasicBlock(Oprnds[0]),
782 getBasicBlock(Oprnds[1]), getValue(Type::BoolTyID , Oprnds[2]));
784 error("Invalid number of operands for a 'br' instruction!");
786 case Instruction::Switch: {
787 if (Oprnds.size() & 1)
788 error("Switch statement with odd number of arguments!");
790 SwitchInst *I = new SwitchInst(getValue(iType, Oprnds[0]),
791 getBasicBlock(Oprnds[1]),
793 for (unsigned i = 2, e = Oprnds.size(); i != e; i += 2)
794 I->addCase(cast<ConstantInt>(getValue(iType, Oprnds[i])),
795 getBasicBlock(Oprnds[i+1]));
800 case 58: // Call with extra operand for calling conv
801 case 59: // tail call, Fast CC
802 case 60: // normal call, Fast CC
803 case 61: // tail call, C Calling Conv
804 case Instruction::Call: { // Normal Call, C Calling Convention
805 if (Oprnds.size() == 0)
806 error("Invalid call instruction encountered!");
808 Value *F = getValue(iType, Oprnds[0]);
810 unsigned CallingConv = CallingConv::C;
811 bool isTailCall = false;
813 if (Opcode == 61 || Opcode == 59)
816 // Check to make sure we have a pointer to function type
817 const PointerType *PTy = dyn_cast<PointerType>(F->getType());
818 if (PTy == 0) error("Call to non function pointer value!");
819 const FunctionType *FTy = dyn_cast<FunctionType>(PTy->getElementType());
820 if (FTy == 0) error("Call to non function pointer value!");
822 std::vector<Value *> Params;
823 if (!FTy->isVarArg()) {
824 FunctionType::param_iterator It = FTy->param_begin();
827 isTailCall = Oprnds.back() & 1;
828 CallingConv = Oprnds.back() >> 1;
830 } else if (Opcode == 59 || Opcode == 60)
831 CallingConv = CallingConv::Fast;
833 for (unsigned i = 1, e = Oprnds.size(); i != e; ++i) {
834 if (It == FTy->param_end())
835 error("Invalid call instruction!");
836 Params.push_back(getValue(getTypeSlot(*It++), Oprnds[i]));
838 if (It != FTy->param_end())
839 error("Invalid call instruction!");
841 Oprnds.erase(Oprnds.begin(), Oprnds.begin()+1);
843 unsigned FirstVariableOperand;
844 if (Oprnds.size() < FTy->getNumParams())
845 error("Call instruction missing operands!");
847 // Read all of the fixed arguments
848 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
849 Params.push_back(getValue(getTypeSlot(FTy->getParamType(i)),Oprnds[i]));
851 FirstVariableOperand = FTy->getNumParams();
853 if ((Oprnds.size()-FirstVariableOperand) & 1)
854 error("Invalid call instruction!"); // Must be pairs of type/value
856 for (unsigned i = FirstVariableOperand, e = Oprnds.size();
858 Params.push_back(getValue(Oprnds[i], Oprnds[i+1]));
861 Result = new CallInst(F, Params);
862 if (isTailCall) cast<CallInst>(Result)->setTailCall();
863 if (CallingConv) cast<CallInst>(Result)->setCallingConv(CallingConv);
867 case 56: // Invoke with encoded CC
868 case 57: // Invoke Fast CC
869 case Instruction::Invoke: { // Invoke C CC
870 if (Oprnds.size() < 3)
871 error("Invalid invoke instruction!");
872 Value *F = getValue(iType, Oprnds[0]);
874 // Check to make sure we have a pointer to function type
875 const PointerType *PTy = dyn_cast<PointerType>(F->getType());
877 error("Invoke to non function pointer value!");
878 const FunctionType *FTy = dyn_cast<FunctionType>(PTy->getElementType());
880 error("Invoke to non function pointer value!");
882 std::vector<Value *> Params;
883 BasicBlock *Normal, *Except;
884 unsigned CallingConv = CallingConv::C;
887 CallingConv = CallingConv::Fast;
888 else if (Opcode == 56) {
889 CallingConv = Oprnds.back();
893 if (!FTy->isVarArg()) {
894 Normal = getBasicBlock(Oprnds[1]);
895 Except = getBasicBlock(Oprnds[2]);
897 FunctionType::param_iterator It = FTy->param_begin();
898 for (unsigned i = 3, e = Oprnds.size(); i != e; ++i) {
899 if (It == FTy->param_end())
900 error("Invalid invoke instruction!");
901 Params.push_back(getValue(getTypeSlot(*It++), Oprnds[i]));
903 if (It != FTy->param_end())
904 error("Invalid invoke instruction!");
906 Oprnds.erase(Oprnds.begin(), Oprnds.begin()+1);
908 Normal = getBasicBlock(Oprnds[0]);
909 Except = getBasicBlock(Oprnds[1]);
911 unsigned FirstVariableArgument = FTy->getNumParams()+2;
912 for (unsigned i = 2; i != FirstVariableArgument; ++i)
913 Params.push_back(getValue(getTypeSlot(FTy->getParamType(i-2)),
916 if (Oprnds.size()-FirstVariableArgument & 1) // Must be type/value pairs
917 error("Invalid invoke instruction!");
919 for (unsigned i = FirstVariableArgument; i < Oprnds.size(); i += 2)
920 Params.push_back(getValue(Oprnds[i], Oprnds[i+1]));
923 Result = new InvokeInst(F, Normal, Except, Params);
924 if (CallingConv) cast<InvokeInst>(Result)->setCallingConv(CallingConv);
927 case Instruction::Malloc: {
929 if (Oprnds.size() == 2)
930 Align = (1 << Oprnds[1]) >> 1;
931 else if (Oprnds.size() > 2)
932 error("Invalid malloc instruction!");
933 if (!isa<PointerType>(InstTy))
934 error("Invalid malloc instruction!");
936 Result = new MallocInst(cast<PointerType>(InstTy)->getElementType(),
937 getValue(Type::UIntTyID, Oprnds[0]), Align);
941 case Instruction::Alloca: {
943 if (Oprnds.size() == 2)
944 Align = (1 << Oprnds[1]) >> 1;
945 else if (Oprnds.size() > 2)
946 error("Invalid alloca instruction!");
947 if (!isa<PointerType>(InstTy))
948 error("Invalid alloca instruction!");
950 Result = new AllocaInst(cast<PointerType>(InstTy)->getElementType(),
951 getValue(Type::UIntTyID, Oprnds[0]), Align);
954 case Instruction::Free:
955 if (!isa<PointerType>(InstTy))
956 error("Invalid free instruction!");
957 Result = new FreeInst(getValue(iType, Oprnds[0]));
959 case Instruction::GetElementPtr: {
960 if (Oprnds.size() == 0 || !isa<PointerType>(InstTy))
961 error("Invalid getelementptr instruction!");
963 std::vector<Value*> Idx;
965 const Type *NextTy = InstTy;
966 for (unsigned i = 1, e = Oprnds.size(); i != e; ++i) {
967 const CompositeType *TopTy = dyn_cast_or_null<CompositeType>(NextTy);
969 error("Invalid getelementptr instruction!");
971 unsigned ValIdx = Oprnds[i];
973 if (!hasRestrictedGEPTypes) {
974 // Struct indices are always uints, sequential type indices can be any
975 // of the 32 or 64-bit integer types. The actual choice of type is
976 // encoded in the low two bits of the slot number.
977 if (isa<StructType>(TopTy))
978 IdxTy = Type::UIntTyID;
980 switch (ValIdx & 3) {
982 case 0: IdxTy = Type::UIntTyID; break;
983 case 1: IdxTy = Type::IntTyID; break;
984 case 2: IdxTy = Type::ULongTyID; break;
985 case 3: IdxTy = Type::LongTyID; break;
990 IdxTy = isa<StructType>(TopTy) ? Type::UByteTyID : Type::LongTyID;
993 Idx.push_back(getValue(IdxTy, ValIdx));
995 // Convert ubyte struct indices into uint struct indices.
996 if (isa<StructType>(TopTy) && hasRestrictedGEPTypes)
997 if (ConstantUInt *C = dyn_cast<ConstantUInt>(Idx.back()))
998 Idx[Idx.size()-1] = ConstantExpr::getCast(C, Type::UIntTy);
1000 NextTy = GetElementPtrInst::getIndexedType(InstTy, Idx, true);
1003 Result = new GetElementPtrInst(getValue(iType, Oprnds[0]), Idx);
1007 case 62: // volatile load
1008 case Instruction::Load:
1009 if (Oprnds.size() != 1 || !isa<PointerType>(InstTy))
1010 error("Invalid load instruction!");
1011 Result = new LoadInst(getValue(iType, Oprnds[0]), "", Opcode == 62);
1014 case 63: // volatile store
1015 case Instruction::Store: {
1016 if (!isa<PointerType>(InstTy) || Oprnds.size() != 2)
1017 error("Invalid store instruction!");
1019 Value *Ptr = getValue(iType, Oprnds[1]);
1020 const Type *ValTy = cast<PointerType>(Ptr->getType())->getElementType();
1021 Result = new StoreInst(getValue(getTypeSlot(ValTy), Oprnds[0]), Ptr,
1025 case Instruction::Unwind:
1026 if (Oprnds.size() != 0) error("Invalid unwind instruction!");
1027 Result = new UnwindInst();
1029 case Instruction::Unreachable:
1030 if (Oprnds.size() != 0) error("Invalid unreachable instruction!");
1031 Result = new UnreachableInst();
1033 } // end switch(Opcode)
1035 BB->getInstList().push_back(Result);
1037 if (this->hasUpgradedIntrinsicFunctions && isCall)
1038 if (Instruction* inst = UpgradeIntrinsicCall(cast<CallInst>(Result))) {
1039 Result->replaceAllUsesWith(inst);
1040 Result->eraseFromParent();
1045 if (Result->getType() == InstTy)
1048 TypeSlot = getTypeSlot(Result->getType());
1050 insertValue(Result, TypeSlot, FunctionValues);
1053 /// Get a particular numbered basic block, which might be a forward reference.
1054 /// This works together with ParseBasicBlock to handle these forward references
1055 /// in a clean manner. This function is used when constructing phi, br, switch,
1056 /// and other instructions that reference basic blocks. Blocks are numbered
1057 /// sequentially as they appear in the function.
1058 BasicBlock *BytecodeReader::getBasicBlock(unsigned ID) {
1059 // Make sure there is room in the table...
1060 if (ParsedBasicBlocks.size() <= ID) ParsedBasicBlocks.resize(ID+1);
1062 // First check to see if this is a backwards reference, i.e., ParseBasicBlock
1063 // has already created this block, or if the forward reference has already
1065 if (ParsedBasicBlocks[ID])
1066 return ParsedBasicBlocks[ID];
1068 // Otherwise, the basic block has not yet been created. Do so and add it to
1069 // the ParsedBasicBlocks list.
1070 return ParsedBasicBlocks[ID] = new BasicBlock();
1073 /// In LLVM 1.0 bytecode files, we used to output one basicblock at a time.
1074 /// This method reads in one of the basicblock packets. This method is not used
1075 /// for bytecode files after LLVM 1.0
1076 /// @returns The basic block constructed.
1077 BasicBlock *BytecodeReader::ParseBasicBlock(unsigned BlockNo) {
1078 if (Handler) Handler->handleBasicBlockBegin(BlockNo);
1082 if (ParsedBasicBlocks.size() == BlockNo)
1083 ParsedBasicBlocks.push_back(BB = new BasicBlock());
1084 else if (ParsedBasicBlocks[BlockNo] == 0)
1085 BB = ParsedBasicBlocks[BlockNo] = new BasicBlock();
1087 BB = ParsedBasicBlocks[BlockNo];
1089 std::vector<unsigned> Operands;
1090 while (moreInBlock())
1091 ParseInstruction(Operands, BB);
1093 if (Handler) Handler->handleBasicBlockEnd(BlockNo);
1097 /// Parse all of the BasicBlock's & Instruction's in the body of a function.
1098 /// In post 1.0 bytecode files, we no longer emit basic block individually,
1099 /// in order to avoid per-basic-block overhead.
1100 /// @returns Rhe number of basic blocks encountered.
1101 unsigned BytecodeReader::ParseInstructionList(Function* F) {
1102 unsigned BlockNo = 0;
1103 std::vector<unsigned> Args;
1105 while (moreInBlock()) {
1106 if (Handler) Handler->handleBasicBlockBegin(BlockNo);
1108 if (ParsedBasicBlocks.size() == BlockNo)
1109 ParsedBasicBlocks.push_back(BB = new BasicBlock());
1110 else if (ParsedBasicBlocks[BlockNo] == 0)
1111 BB = ParsedBasicBlocks[BlockNo] = new BasicBlock();
1113 BB = ParsedBasicBlocks[BlockNo];
1115 F->getBasicBlockList().push_back(BB);
1117 // Read instructions into this basic block until we get to a terminator
1118 while (moreInBlock() && !BB->getTerminator())
1119 ParseInstruction(Args, BB);
1121 if (!BB->getTerminator())
1122 error("Non-terminated basic block found!");
1124 if (Handler) Handler->handleBasicBlockEnd(BlockNo-1);
1130 /// Parse a symbol table. This works for both module level and function
1131 /// level symbol tables. For function level symbol tables, the CurrentFunction
1132 /// parameter must be non-zero and the ST parameter must correspond to
1133 /// CurrentFunction's symbol table. For Module level symbol tables, the
1134 /// CurrentFunction argument must be zero.
1135 void BytecodeReader::ParseSymbolTable(Function *CurrentFunction,
1137 if (Handler) Handler->handleSymbolTableBegin(CurrentFunction,ST);
1139 // Allow efficient basic block lookup by number.
1140 std::vector<BasicBlock*> BBMap;
1141 if (CurrentFunction)
1142 for (Function::iterator I = CurrentFunction->begin(),
1143 E = CurrentFunction->end(); I != E; ++I)
1146 /// In LLVM 1.3 we write types separately from values so
1147 /// The types are always first in the symbol table. This is
1148 /// because Type no longer derives from Value.
1149 if (!hasTypeDerivedFromValue) {
1150 // Symtab block header: [num entries]
1151 unsigned NumEntries = read_vbr_uint();
1152 for (unsigned i = 0; i < NumEntries; ++i) {
1153 // Symtab entry: [def slot #][name]
1154 unsigned slot = read_vbr_uint();
1155 std::string Name = read_str();
1156 const Type* T = getType(slot);
1157 ST->insert(Name, T);
1161 while (moreInBlock()) {
1162 // Symtab block header: [num entries][type id number]
1163 unsigned NumEntries = read_vbr_uint();
1165 bool isTypeType = read_typeid(Typ);
1166 const Type *Ty = getType(Typ);
1168 for (unsigned i = 0; i != NumEntries; ++i) {
1169 // Symtab entry: [def slot #][name]
1170 unsigned slot = read_vbr_uint();
1171 std::string Name = read_str();
1173 // if we're reading a pre 1.3 bytecode file and the type plane
1174 // is the "type type", handle it here
1176 const Type* T = getType(slot);
1178 error("Failed type look-up for name '" + Name + "'");
1179 ST->insert(Name, T);
1180 continue; // code below must be short circuited
1183 if (Typ == Type::LabelTyID) {
1184 if (slot < BBMap.size())
1187 V = getValue(Typ, slot, false); // Find mapping...
1190 error("Failed value look-up for name '" + Name + "'");
1195 checkPastBlockEnd("Symbol Table");
1196 if (Handler) Handler->handleSymbolTableEnd();
1199 /// Read in the types portion of a compaction table.
1200 void BytecodeReader::ParseCompactionTypes(unsigned NumEntries) {
1201 for (unsigned i = 0; i != NumEntries; ++i) {
1202 unsigned TypeSlot = 0;
1203 if (read_typeid(TypeSlot))
1204 error("Invalid type in compaction table: type type");
1205 const Type *Typ = getGlobalTableType(TypeSlot);
1206 CompactionTypes.push_back(std::make_pair(Typ, TypeSlot));
1207 if (Handler) Handler->handleCompactionTableType(i, TypeSlot, Typ);
1211 /// Parse a compaction table.
1212 void BytecodeReader::ParseCompactionTable() {
1214 // Notify handler that we're beginning a compaction table.
1215 if (Handler) Handler->handleCompactionTableBegin();
1217 // In LLVM 1.3 Type no longer derives from Value. So,
1218 // we always write them first in the compaction table
1219 // because they can't occupy a "type plane" where the
1221 if (! hasTypeDerivedFromValue) {
1222 unsigned NumEntries = read_vbr_uint();
1223 ParseCompactionTypes(NumEntries);
1226 // Compaction tables live in separate blocks so we have to loop
1227 // until we've read the whole thing.
1228 while (moreInBlock()) {
1229 // Read the number of Value* entries in the compaction table
1230 unsigned NumEntries = read_vbr_uint();
1232 unsigned isTypeType = false;
1234 // Decode the type from value read in. Most compaction table
1235 // planes will have one or two entries in them. If that's the
1236 // case then the length is encoded in the bottom two bits and
1237 // the higher bits encode the type. This saves another VBR value.
1238 if ((NumEntries & 3) == 3) {
1239 // In this case, both low-order bits are set (value 3). This
1240 // is a signal that the typeid follows.
1242 isTypeType = read_typeid(Ty);
1244 // In this case, the low-order bits specify the number of entries
1245 // and the high order bits specify the type.
1246 Ty = NumEntries >> 2;
1247 isTypeType = sanitizeTypeId(Ty);
1251 // if we're reading a pre 1.3 bytecode file and the type plane
1252 // is the "type type", handle it here
1254 ParseCompactionTypes(NumEntries);
1256 // Make sure we have enough room for the plane.
1257 if (Ty >= CompactionValues.size())
1258 CompactionValues.resize(Ty+1);
1260 // Make sure the plane is empty or we have some kind of error.
1261 if (!CompactionValues[Ty].empty())
1262 error("Compaction table plane contains multiple entries!");
1264 // Notify handler about the plane.
1265 if (Handler) Handler->handleCompactionTablePlane(Ty, NumEntries);
1267 // Push the implicit zero.
1268 CompactionValues[Ty].push_back(Constant::getNullValue(getType(Ty)));
1270 // Read in each of the entries, put them in the compaction table
1271 // and notify the handler that we have a new compaction table value.
1272 for (unsigned i = 0; i != NumEntries; ++i) {
1273 unsigned ValSlot = read_vbr_uint();
1274 Value *V = getGlobalTableValue(Ty, ValSlot);
1275 CompactionValues[Ty].push_back(V);
1276 if (Handler) Handler->handleCompactionTableValue(i, Ty, ValSlot);
1280 // Notify handler that the compaction table is done.
1281 if (Handler) Handler->handleCompactionTableEnd();
1284 // Parse a single type. The typeid is read in first. If its a primitive type
1285 // then nothing else needs to be read, we know how to instantiate it. If its
1286 // a derived type, then additional data is read to fill out the type
1288 const Type *BytecodeReader::ParseType() {
1289 unsigned PrimType = 0;
1290 if (read_typeid(PrimType))
1291 error("Invalid type (type type) in type constants!");
1293 const Type *Result = 0;
1294 if ((Result = Type::getPrimitiveType((Type::TypeID)PrimType)))
1298 case Type::FunctionTyID: {
1299 const Type *RetType = readSanitizedType();
1301 unsigned NumParams = read_vbr_uint();
1303 std::vector<const Type*> Params;
1305 Params.push_back(readSanitizedType());
1307 bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
1308 if (isVarArg) Params.pop_back();
1310 Result = FunctionType::get(RetType, Params, isVarArg);
1313 case Type::ArrayTyID: {
1314 const Type *ElementType = readSanitizedType();
1315 unsigned NumElements = read_vbr_uint();
1316 Result = ArrayType::get(ElementType, NumElements);
1319 case Type::PackedTyID: {
1320 const Type *ElementType = readSanitizedType();
1321 unsigned NumElements = read_vbr_uint();
1322 Result = PackedType::get(ElementType, NumElements);
1325 case Type::StructTyID: {
1326 std::vector<const Type*> Elements;
1328 if (read_typeid(Typ))
1329 error("Invalid element type (type type) for structure!");
1331 while (Typ) { // List is terminated by void/0 typeid
1332 Elements.push_back(getType(Typ));
1333 if (read_typeid(Typ))
1334 error("Invalid element type (type type) for structure!");
1337 Result = StructType::get(Elements);
1340 case Type::PointerTyID: {
1341 Result = PointerType::get(readSanitizedType());
1345 case Type::OpaqueTyID: {
1346 Result = OpaqueType::get();
1351 error("Don't know how to deserialize primitive type " + utostr(PrimType));
1354 if (Handler) Handler->handleType(Result);
1358 // ParseTypes - We have to use this weird code to handle recursive
1359 // types. We know that recursive types will only reference the current slab of
1360 // values in the type plane, but they can forward reference types before they
1361 // have been read. For example, Type #0 might be '{ Ty#1 }' and Type #1 might
1362 // be 'Ty#0*'. When reading Type #0, type number one doesn't exist. To fix
1363 // this ugly problem, we pessimistically insert an opaque type for each type we
1364 // are about to read. This means that forward references will resolve to
1365 // something and when we reread the type later, we can replace the opaque type
1366 // with a new resolved concrete type.
1368 void BytecodeReader::ParseTypes(TypeListTy &Tab, unsigned NumEntries){
1369 assert(Tab.size() == 0 && "should not have read type constants in before!");
1371 // Insert a bunch of opaque types to be resolved later...
1372 Tab.reserve(NumEntries);
1373 for (unsigned i = 0; i != NumEntries; ++i)
1374 Tab.push_back(OpaqueType::get());
1377 Handler->handleTypeList(NumEntries);
1379 // If we are about to resolve types, make sure the type cache is clear.
1381 ModuleTypeIDCache.clear();
1383 // Loop through reading all of the types. Forward types will make use of the
1384 // opaque types just inserted.
1386 for (unsigned i = 0; i != NumEntries; ++i) {
1387 const Type* NewTy = ParseType();
1388 const Type* OldTy = Tab[i].get();
1390 error("Couldn't parse type!");
1392 // Don't directly push the new type on the Tab. Instead we want to replace
1393 // the opaque type we previously inserted with the new concrete value. This
1394 // approach helps with forward references to types. The refinement from the
1395 // abstract (opaque) type to the new type causes all uses of the abstract
1396 // type to use the concrete type (NewTy). This will also cause the opaque
1397 // type to be deleted.
1398 cast<DerivedType>(const_cast<Type*>(OldTy))->refineAbstractTypeTo(NewTy);
1400 // This should have replaced the old opaque type with the new type in the
1401 // value table... or with a preexisting type that was already in the system.
1402 // Let's just make sure it did.
1403 assert(Tab[i] != OldTy && "refineAbstractType didn't work!");
1407 /// Parse a single constant value
1408 Value *BytecodeReader::ParseConstantPoolValue(unsigned TypeID) {
1409 // We must check for a ConstantExpr before switching by type because
1410 // a ConstantExpr can be of any type, and has no explicit value.
1412 // 0 if not expr; numArgs if is expr
1413 unsigned isExprNumArgs = read_vbr_uint();
1415 if (isExprNumArgs) {
1416 if (!hasNoUndefValue) {
1417 // 'undef' is encoded with 'exprnumargs' == 1.
1418 if (isExprNumArgs == 1)
1419 return UndefValue::get(getType(TypeID));
1421 // Inline asm is encoded with exprnumargs == ~0U.
1422 if (isExprNumArgs == ~0U) {
1423 std::string AsmStr = read_str();
1424 std::string ConstraintStr = read_str();
1425 unsigned Flags = read_vbr_uint();
1427 const PointerType *PTy = dyn_cast<PointerType>(getType(TypeID));
1428 const FunctionType *FTy =
1429 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
1431 if (!FTy || !InlineAsm::Verify(FTy, ConstraintStr))
1432 error("Invalid constraints for inline asm");
1434 error("Invalid flags for inline asm");
1435 bool HasSideEffects = Flags & 1;
1436 return InlineAsm::get(FTy, AsmStr, ConstraintStr, HasSideEffects);
1442 // FIXME: Encoding of constant exprs could be much more compact!
1443 std::vector<Constant*> ArgVec;
1444 ArgVec.reserve(isExprNumArgs);
1445 unsigned Opcode = read_vbr_uint();
1447 // Bytecode files before LLVM 1.4 need have a missing terminator inst.
1448 if (hasNoUnreachableInst) Opcode++;
1450 // Read the slot number and types of each of the arguments
1451 for (unsigned i = 0; i != isExprNumArgs; ++i) {
1452 unsigned ArgValSlot = read_vbr_uint();
1453 unsigned ArgTypeSlot = 0;
1454 if (read_typeid(ArgTypeSlot))
1455 error("Invalid argument type (type type) for constant value");
1457 // Get the arg value from its slot if it exists, otherwise a placeholder
1458 ArgVec.push_back(getConstantValue(ArgTypeSlot, ArgValSlot));
1461 // Construct a ConstantExpr of the appropriate kind
1462 if (isExprNumArgs == 1) { // All one-operand expressions
1463 if (Opcode != Instruction::Cast)
1464 error("Only cast instruction has one argument for ConstantExpr");
1466 Constant* Result = ConstantExpr::getCast(ArgVec[0], getType(TypeID));
1467 if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
1469 } else if (Opcode == Instruction::GetElementPtr) { // GetElementPtr
1470 std::vector<Constant*> IdxList(ArgVec.begin()+1, ArgVec.end());
1472 if (hasRestrictedGEPTypes) {
1473 const Type *BaseTy = ArgVec[0]->getType();
1474 generic_gep_type_iterator<std::vector<Constant*>::iterator>
1475 GTI = gep_type_begin(BaseTy, IdxList.begin(), IdxList.end()),
1476 E = gep_type_end(BaseTy, IdxList.begin(), IdxList.end());
1477 for (unsigned i = 0; GTI != E; ++GTI, ++i)
1478 if (isa<StructType>(*GTI)) {
1479 if (IdxList[i]->getType() != Type::UByteTy)
1480 error("Invalid index for getelementptr!");
1481 IdxList[i] = ConstantExpr::getCast(IdxList[i], Type::UIntTy);
1485 Constant* Result = ConstantExpr::getGetElementPtr(ArgVec[0], IdxList);
1486 if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
1488 } else if (Opcode == Instruction::Select) {
1489 if (ArgVec.size() != 3)
1490 error("Select instruction must have three arguments.");
1491 Constant* Result = ConstantExpr::getSelect(ArgVec[0], ArgVec[1],
1493 if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
1495 } else if (Opcode == Instruction::ExtractElement) {
1496 if (ArgVec.size() != 2)
1497 error("ExtractElement instruction must have two arguments.");
1498 Constant* Result = ConstantExpr::getExtractElement(ArgVec[0], ArgVec[1]);
1499 if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
1501 } else if (Opcode == Instruction::InsertElement) {
1502 if (ArgVec.size() != 3)
1503 error("InsertElement instruction must have three arguments.");
1505 ConstantExpr::getInsertElement(ArgVec[0], ArgVec[1], ArgVec[2]);
1506 if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
1508 } else { // All other 2-operand expressions
1509 Constant* Result = ConstantExpr::get(Opcode, ArgVec[0], ArgVec[1]);
1510 if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
1515 // Ok, not an ConstantExpr. We now know how to read the given type...
1516 const Type *Ty = getType(TypeID);
1517 switch (Ty->getTypeID()) {
1518 case Type::BoolTyID: {
1519 unsigned Val = read_vbr_uint();
1520 if (Val != 0 && Val != 1)
1521 error("Invalid boolean value read.");
1522 Constant* Result = ConstantBool::get(Val == 1);
1523 if (Handler) Handler->handleConstantValue(Result);
1527 case Type::UByteTyID: // Unsigned integer types...
1528 case Type::UShortTyID:
1529 case Type::UIntTyID: {
1530 unsigned Val = read_vbr_uint();
1531 if (!ConstantUInt::isValueValidForType(Ty, Val))
1532 error("Invalid unsigned byte/short/int read.");
1533 Constant* Result = ConstantUInt::get(Ty, Val);
1534 if (Handler) Handler->handleConstantValue(Result);
1538 case Type::ULongTyID: {
1539 Constant* Result = ConstantUInt::get(Ty, read_vbr_uint64());
1540 if (Handler) Handler->handleConstantValue(Result);
1544 case Type::SByteTyID: // Signed integer types...
1545 case Type::ShortTyID:
1546 case Type::IntTyID: {
1547 case Type::LongTyID:
1548 int64_t Val = read_vbr_int64();
1549 if (!ConstantSInt::isValueValidForType(Ty, Val))
1550 error("Invalid signed byte/short/int/long read.");
1551 Constant* Result = ConstantSInt::get(Ty, Val);
1552 if (Handler) Handler->handleConstantValue(Result);
1556 case Type::FloatTyID: {
1559 Constant* Result = ConstantFP::get(Ty, Val);
1560 if (Handler) Handler->handleConstantValue(Result);
1564 case Type::DoubleTyID: {
1567 Constant* Result = ConstantFP::get(Ty, Val);
1568 if (Handler) Handler->handleConstantValue(Result);
1572 case Type::ArrayTyID: {
1573 const ArrayType *AT = cast<ArrayType>(Ty);
1574 unsigned NumElements = AT->getNumElements();
1575 unsigned TypeSlot = getTypeSlot(AT->getElementType());
1576 std::vector<Constant*> Elements;
1577 Elements.reserve(NumElements);
1578 while (NumElements--) // Read all of the elements of the constant.
1579 Elements.push_back(getConstantValue(TypeSlot,
1581 Constant* Result = ConstantArray::get(AT, Elements);
1582 if (Handler) Handler->handleConstantArray(AT, Elements, TypeSlot, Result);
1586 case Type::StructTyID: {
1587 const StructType *ST = cast<StructType>(Ty);
1589 std::vector<Constant *> Elements;
1590 Elements.reserve(ST->getNumElements());
1591 for (unsigned i = 0; i != ST->getNumElements(); ++i)
1592 Elements.push_back(getConstantValue(ST->getElementType(i),
1595 Constant* Result = ConstantStruct::get(ST, Elements);
1596 if (Handler) Handler->handleConstantStruct(ST, Elements, Result);
1600 case Type::PackedTyID: {
1601 const PackedType *PT = cast<PackedType>(Ty);
1602 unsigned NumElements = PT->getNumElements();
1603 unsigned TypeSlot = getTypeSlot(PT->getElementType());
1604 std::vector<Constant*> Elements;
1605 Elements.reserve(NumElements);
1606 while (NumElements--) // Read all of the elements of the constant.
1607 Elements.push_back(getConstantValue(TypeSlot,
1609 Constant* Result = ConstantPacked::get(PT, Elements);
1610 if (Handler) Handler->handleConstantPacked(PT, Elements, TypeSlot, Result);
1614 case Type::PointerTyID: { // ConstantPointerRef value (backwards compat).
1615 const PointerType *PT = cast<PointerType>(Ty);
1616 unsigned Slot = read_vbr_uint();
1618 // Check to see if we have already read this global variable...
1619 Value *Val = getValue(TypeID, Slot, false);
1621 GlobalValue *GV = dyn_cast<GlobalValue>(Val);
1622 if (!GV) error("GlobalValue not in ValueTable!");
1623 if (Handler) Handler->handleConstantPointer(PT, Slot, GV);
1626 error("Forward references are not allowed here.");
1631 error("Don't know how to deserialize constant value of type '" +
1632 Ty->getDescription());
1638 /// Resolve references for constants. This function resolves the forward
1639 /// referenced constants in the ConstantFwdRefs map. It uses the
1640 /// replaceAllUsesWith method of Value class to substitute the placeholder
1641 /// instance with the actual instance.
1642 void BytecodeReader::ResolveReferencesToConstant(Constant *NewV, unsigned Typ,
1644 ConstantRefsType::iterator I =
1645 ConstantFwdRefs.find(std::make_pair(Typ, Slot));
1646 if (I == ConstantFwdRefs.end()) return; // Never forward referenced?
1648 Value *PH = I->second; // Get the placeholder...
1649 PH->replaceAllUsesWith(NewV);
1650 delete PH; // Delete the old placeholder
1651 ConstantFwdRefs.erase(I); // Remove the map entry for it
1654 /// Parse the constant strings section.
1655 void BytecodeReader::ParseStringConstants(unsigned NumEntries, ValueTable &Tab){
1656 for (; NumEntries; --NumEntries) {
1658 if (read_typeid(Typ))
1659 error("Invalid type (type type) for string constant");
1660 const Type *Ty = getType(Typ);
1661 if (!isa<ArrayType>(Ty))
1662 error("String constant data invalid!");
1664 const ArrayType *ATy = cast<ArrayType>(Ty);
1665 if (ATy->getElementType() != Type::SByteTy &&
1666 ATy->getElementType() != Type::UByteTy)
1667 error("String constant data invalid!");
1669 // Read character data. The type tells us how long the string is.
1670 char *Data = reinterpret_cast<char *>(alloca(ATy->getNumElements()));
1671 read_data(Data, Data+ATy->getNumElements());
1673 std::vector<Constant*> Elements(ATy->getNumElements());
1674 if (ATy->getElementType() == Type::SByteTy)
1675 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
1676 Elements[i] = ConstantSInt::get(Type::SByteTy, (signed char)Data[i]);
1678 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
1679 Elements[i] = ConstantUInt::get(Type::UByteTy, (unsigned char)Data[i]);
1681 // Create the constant, inserting it as needed.
1682 Constant *C = ConstantArray::get(ATy, Elements);
1683 unsigned Slot = insertValue(C, Typ, Tab);
1684 ResolveReferencesToConstant(C, Typ, Slot);
1685 if (Handler) Handler->handleConstantString(cast<ConstantArray>(C));
1689 /// Parse the constant pool.
1690 void BytecodeReader::ParseConstantPool(ValueTable &Tab,
1691 TypeListTy &TypeTab,
1693 if (Handler) Handler->handleGlobalConstantsBegin();
1695 /// In LLVM 1.3 Type does not derive from Value so the types
1696 /// do not occupy a plane. Consequently, we read the types
1697 /// first in the constant pool.
1698 if (isFunction && !hasTypeDerivedFromValue) {
1699 unsigned NumEntries = read_vbr_uint();
1700 ParseTypes(TypeTab, NumEntries);
1703 while (moreInBlock()) {
1704 unsigned NumEntries = read_vbr_uint();
1706 bool isTypeType = read_typeid(Typ);
1708 /// In LLVM 1.2 and before, Types were written to the
1709 /// bytecode file in the "Type Type" plane (#12).
1710 /// In 1.3 plane 12 is now the label plane. Handle this here.
1712 ParseTypes(TypeTab, NumEntries);
1713 } else if (Typ == Type::VoidTyID) {
1714 /// Use of Type::VoidTyID is a misnomer. It actually means
1715 /// that the following plane is constant strings
1716 assert(&Tab == &ModuleValues && "Cannot read strings in functions!");
1717 ParseStringConstants(NumEntries, Tab);
1719 for (unsigned i = 0; i < NumEntries; ++i) {
1720 Value *V = ParseConstantPoolValue(Typ);
1721 assert(V && "ParseConstantPoolValue returned NULL!");
1722 unsigned Slot = insertValue(V, Typ, Tab);
1724 // If we are reading a function constant table, make sure that we adjust
1725 // the slot number to be the real global constant number.
1727 if (&Tab != &ModuleValues && Typ < ModuleValues.size() &&
1729 Slot += ModuleValues[Typ]->size();
1730 if (Constant *C = dyn_cast<Constant>(V))
1731 ResolveReferencesToConstant(C, Typ, Slot);
1736 // After we have finished parsing the constant pool, we had better not have
1737 // any dangling references left.
1738 if (!ConstantFwdRefs.empty()) {
1739 ConstantRefsType::const_iterator I = ConstantFwdRefs.begin();
1740 Constant* missingConst = I->second;
1741 error(utostr(ConstantFwdRefs.size()) +
1742 " unresolved constant reference exist. First one is '" +
1743 missingConst->getName() + "' of type '" +
1744 missingConst->getType()->getDescription() + "'.");
1747 checkPastBlockEnd("Constant Pool");
1748 if (Handler) Handler->handleGlobalConstantsEnd();
1751 /// Parse the contents of a function. Note that this function can be
1752 /// called lazily by materializeFunction
1753 /// @see materializeFunction
1754 void BytecodeReader::ParseFunctionBody(Function* F) {
1756 unsigned FuncSize = BlockEnd - At;
1757 GlobalValue::LinkageTypes Linkage = GlobalValue::ExternalLinkage;
1759 unsigned LinkageType = read_vbr_uint();
1760 switch (LinkageType) {
1761 case 0: Linkage = GlobalValue::ExternalLinkage; break;
1762 case 1: Linkage = GlobalValue::WeakLinkage; break;
1763 case 2: Linkage = GlobalValue::AppendingLinkage; break;
1764 case 3: Linkage = GlobalValue::InternalLinkage; break;
1765 case 4: Linkage = GlobalValue::LinkOnceLinkage; break;
1767 error("Invalid linkage type for Function.");
1768 Linkage = GlobalValue::InternalLinkage;
1772 F->setLinkage(Linkage);
1773 if (Handler) Handler->handleFunctionBegin(F,FuncSize);
1775 // Keep track of how many basic blocks we have read in...
1776 unsigned BlockNum = 0;
1777 bool InsertedArguments = false;
1779 BufPtr MyEnd = BlockEnd;
1780 while (At < MyEnd) {
1781 unsigned Type, Size;
1783 read_block(Type, Size);
1786 case BytecodeFormat::ConstantPoolBlockID:
1787 if (!InsertedArguments) {
1788 // Insert arguments into the value table before we parse the first basic
1789 // block in the function, but after we potentially read in the
1790 // compaction table.
1792 InsertedArguments = true;
1795 ParseConstantPool(FunctionValues, FunctionTypes, true);
1798 case BytecodeFormat::CompactionTableBlockID:
1799 ParseCompactionTable();
1802 case BytecodeFormat::BasicBlock: {
1803 if (!InsertedArguments) {
1804 // Insert arguments into the value table before we parse the first basic
1805 // block in the function, but after we potentially read in the
1806 // compaction table.
1808 InsertedArguments = true;
1811 BasicBlock *BB = ParseBasicBlock(BlockNum++);
1812 F->getBasicBlockList().push_back(BB);
1816 case BytecodeFormat::InstructionListBlockID: {
1817 // Insert arguments into the value table before we parse the instruction
1818 // list for the function, but after we potentially read in the compaction
1820 if (!InsertedArguments) {
1822 InsertedArguments = true;
1826 error("Already parsed basic blocks!");
1827 BlockNum = ParseInstructionList(F);
1831 case BytecodeFormat::SymbolTableBlockID:
1832 ParseSymbolTable(F, &F->getSymbolTable());
1838 error("Wrapped around reading bytecode.");
1843 // Malformed bc file if read past end of block.
1847 // Make sure there were no references to non-existant basic blocks.
1848 if (BlockNum != ParsedBasicBlocks.size())
1849 error("Illegal basic block operand reference");
1851 ParsedBasicBlocks.clear();
1853 // Resolve forward references. Replace any uses of a forward reference value
1854 // with the real value.
1855 while (!ForwardReferences.empty()) {
1856 std::map<std::pair<unsigned,unsigned>, Value*>::iterator
1857 I = ForwardReferences.begin();
1858 Value *V = getValue(I->first.first, I->first.second, false);
1859 Value *PlaceHolder = I->second;
1860 PlaceHolder->replaceAllUsesWith(V);
1861 ForwardReferences.erase(I);
1865 // Clear out function-level types...
1866 FunctionTypes.clear();
1867 CompactionTypes.clear();
1868 CompactionValues.clear();
1869 freeTable(FunctionValues);
1871 if (Handler) Handler->handleFunctionEnd(F);
1874 /// This function parses LLVM functions lazily. It obtains the type of the
1875 /// function and records where the body of the function is in the bytecode
1876 /// buffer. The caller can then use the ParseNextFunction and
1877 /// ParseAllFunctionBodies to get handler events for the functions.
1878 void BytecodeReader::ParseFunctionLazily() {
1879 if (FunctionSignatureList.empty())
1880 error("FunctionSignatureList empty!");
1882 Function *Func = FunctionSignatureList.back();
1883 FunctionSignatureList.pop_back();
1885 // Save the information for future reading of the function
1886 LazyFunctionLoadMap[Func] = LazyFunctionInfo(BlockStart, BlockEnd);
1888 // This function has a body but it's not loaded so it appears `External'.
1889 // Mark it as a `Ghost' instead to notify the users that it has a body.
1890 Func->setLinkage(GlobalValue::GhostLinkage);
1892 // Pretend we've `parsed' this function
1896 /// The ParserFunction method lazily parses one function. Use this method to
1897 /// casue the parser to parse a specific function in the module. Note that
1898 /// this will remove the function from what is to be included by
1899 /// ParseAllFunctionBodies.
1900 /// @see ParseAllFunctionBodies
1901 /// @see ParseBytecode
1902 void BytecodeReader::ParseFunction(Function* Func) {
1903 // Find {start, end} pointers and slot in the map. If not there, we're done.
1904 LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.find(Func);
1906 // Make sure we found it
1907 if (Fi == LazyFunctionLoadMap.end()) {
1908 error("Unrecognized function of type " + Func->getType()->getDescription());
1912 BlockStart = At = Fi->second.Buf;
1913 BlockEnd = Fi->second.EndBuf;
1914 assert(Fi->first == Func && "Found wrong function?");
1916 LazyFunctionLoadMap.erase(Fi);
1918 this->ParseFunctionBody(Func);
1921 /// The ParseAllFunctionBodies method parses through all the previously
1922 /// unparsed functions in the bytecode file. If you want to completely parse
1923 /// a bytecode file, this method should be called after Parsebytecode because
1924 /// Parsebytecode only records the locations in the bytecode file of where
1925 /// the function definitions are located. This function uses that information
1926 /// to materialize the functions.
1927 /// @see ParseBytecode
1928 void BytecodeReader::ParseAllFunctionBodies() {
1929 LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.begin();
1930 LazyFunctionMap::iterator Fe = LazyFunctionLoadMap.end();
1933 Function* Func = Fi->first;
1934 BlockStart = At = Fi->second.Buf;
1935 BlockEnd = Fi->second.EndBuf;
1936 ParseFunctionBody(Func);
1939 LazyFunctionLoadMap.clear();
1942 /// Parse the global type list
1943 void BytecodeReader::ParseGlobalTypes() {
1944 // Read the number of types
1945 unsigned NumEntries = read_vbr_uint();
1947 // Ignore the type plane identifier for types if the bc file is pre 1.3
1948 if (hasTypeDerivedFromValue)
1951 ParseTypes(ModuleTypes, NumEntries);
1954 /// Parse the Global info (types, global vars, constants)
1955 void BytecodeReader::ParseModuleGlobalInfo() {
1957 if (Handler) Handler->handleModuleGlobalsBegin();
1959 // SectionID - If a global has an explicit section specified, this map
1960 // remembers the ID until we can translate it into a string.
1961 std::map<GlobalValue*, unsigned> SectionID;
1963 // Read global variables...
1964 unsigned VarType = read_vbr_uint();
1965 while (VarType != Type::VoidTyID) { // List is terminated by Void
1966 // VarType Fields: bit0 = isConstant, bit1 = hasInitializer, bit2,3,4 =
1967 // Linkage, bit4+ = slot#
1968 unsigned SlotNo = VarType >> 5;
1969 if (sanitizeTypeId(SlotNo))
1970 error("Invalid type (type type) for global var!");
1971 unsigned LinkageID = (VarType >> 2) & 7;
1972 bool isConstant = VarType & 1;
1973 bool hasInitializer = (VarType & 2) != 0;
1974 unsigned Alignment = 0;
1975 unsigned GlobalSectionID = 0;
1977 // An extension word is present when linkage = 3 (internal) and hasinit = 0.
1978 if (LinkageID == 3 && !hasInitializer) {
1979 unsigned ExtWord = read_vbr_uint();
1980 // The extension word has this format: bit 0 = has initializer, bit 1-3 =
1981 // linkage, bit 4-8 = alignment (log2), bits 10+ = future use.
1982 hasInitializer = ExtWord & 1;
1983 LinkageID = (ExtWord >> 1) & 7;
1984 Alignment = (1 << ((ExtWord >> 4) & 31)) >> 1;
1986 if (ExtWord & (1 << 9)) // Has a section ID.
1987 GlobalSectionID = read_vbr_uint();
1990 GlobalValue::LinkageTypes Linkage;
1991 switch (LinkageID) {
1992 case 0: Linkage = GlobalValue::ExternalLinkage; break;
1993 case 1: Linkage = GlobalValue::WeakLinkage; break;
1994 case 2: Linkage = GlobalValue::AppendingLinkage; break;
1995 case 3: Linkage = GlobalValue::InternalLinkage; break;
1996 case 4: Linkage = GlobalValue::LinkOnceLinkage; break;
1998 error("Unknown linkage type: " + utostr(LinkageID));
1999 Linkage = GlobalValue::InternalLinkage;
2003 const Type *Ty = getType(SlotNo);
2005 error("Global has no type! SlotNo=" + utostr(SlotNo));
2007 if (!isa<PointerType>(Ty))
2008 error("Global not a pointer type! Ty= " + Ty->getDescription());
2010 const Type *ElTy = cast<PointerType>(Ty)->getElementType();
2012 // Create the global variable...
2013 GlobalVariable *GV = new GlobalVariable(ElTy, isConstant, Linkage,
2015 GV->setAlignment(Alignment);
2016 insertValue(GV, SlotNo, ModuleValues);
2018 if (GlobalSectionID != 0)
2019 SectionID[GV] = GlobalSectionID;
2021 unsigned initSlot = 0;
2022 if (hasInitializer) {
2023 initSlot = read_vbr_uint();
2024 GlobalInits.push_back(std::make_pair(GV, initSlot));
2027 // Notify handler about the global value.
2029 Handler->handleGlobalVariable(ElTy, isConstant, Linkage, SlotNo,initSlot);
2032 VarType = read_vbr_uint();
2035 // Read the function objects for all of the functions that are coming
2036 unsigned FnSignature = read_vbr_uint();
2038 if (hasNoFlagsForFunctions)
2039 FnSignature = (FnSignature << 5) + 1;
2041 // List is terminated by VoidTy.
2042 while (((FnSignature & (~0U >> 1)) >> 5) != Type::VoidTyID) {
2043 const Type *Ty = getType((FnSignature & (~0U >> 1)) >> 5);
2044 if (!isa<PointerType>(Ty) ||
2045 !isa<FunctionType>(cast<PointerType>(Ty)->getElementType())) {
2046 error("Function not a pointer to function type! Ty = " +
2047 Ty->getDescription());
2050 // We create functions by passing the underlying FunctionType to create...
2051 const FunctionType* FTy =
2052 cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
2054 // Insert the place holder.
2055 Function *Func = new Function(FTy, GlobalValue::ExternalLinkage,
2058 // Replace with upgraded intrinsic function, if applicable.
2059 if (Function* upgrdF = UpgradeIntrinsicFunction(Func)) {
2060 hasUpgradedIntrinsicFunctions = true;
2061 Func->eraseFromParent();
2065 insertValue(Func, (FnSignature & (~0U >> 1)) >> 5, ModuleValues);
2067 // Flags are not used yet.
2068 unsigned Flags = FnSignature & 31;
2070 // Save this for later so we know type of lazily instantiated functions.
2071 // Note that known-external functions do not have FunctionInfo blocks, so we
2072 // do not add them to the FunctionSignatureList.
2073 if ((Flags & (1 << 4)) == 0)
2074 FunctionSignatureList.push_back(Func);
2076 // Get the calling convention from the low bits.
2077 unsigned CC = Flags & 15;
2078 unsigned Alignment = 0;
2079 if (FnSignature & (1 << 31)) { // Has extension word?
2080 unsigned ExtWord = read_vbr_uint();
2081 Alignment = (1 << (ExtWord & 31)) >> 1;
2082 CC |= ((ExtWord >> 5) & 15) << 4;
2084 if (ExtWord & (1 << 10)) // Has a section ID.
2085 SectionID[Func] = read_vbr_uint();
2088 Func->setCallingConv(CC-1);
2089 Func->setAlignment(Alignment);
2091 if (Handler) Handler->handleFunctionDeclaration(Func);
2093 // Get the next function signature.
2094 FnSignature = read_vbr_uint();
2095 if (hasNoFlagsForFunctions)
2096 FnSignature = (FnSignature << 5) + 1;
2099 // Now that the function signature list is set up, reverse it so that we can
2100 // remove elements efficiently from the back of the vector.
2101 std::reverse(FunctionSignatureList.begin(), FunctionSignatureList.end());
2103 /// SectionNames - This contains the list of section names encoded in the
2104 /// moduleinfoblock. Functions and globals with an explicit section index
2105 /// into this to get their section name.
2106 std::vector<std::string> SectionNames;
2108 if (hasInconsistentModuleGlobalInfo) {
2110 } else if (!hasNoDependentLibraries) {
2111 // If this bytecode format has dependent library information in it, read in
2112 // the number of dependent library items that follow.
2113 unsigned num_dep_libs = read_vbr_uint();
2114 std::string dep_lib;
2115 while (num_dep_libs--) {
2116 dep_lib = read_str();
2117 TheModule->addLibrary(dep_lib);
2119 Handler->handleDependentLibrary(dep_lib);
2122 // Read target triple and place into the module.
2123 std::string triple = read_str();
2124 TheModule->setTargetTriple(triple);
2126 Handler->handleTargetTriple(triple);
2128 if (!hasAlignment && At != BlockEnd) {
2129 // If the file has section info in it, read the section names now.
2130 unsigned NumSections = read_vbr_uint();
2131 while (NumSections--)
2132 SectionNames.push_back(read_str());
2135 // If the file has module-level inline asm, read it now.
2136 if (!hasAlignment && At != BlockEnd)
2137 TheModule->setModuleInlineAsm(read_str());
2140 // If any globals are in specified sections, assign them now.
2141 for (std::map<GlobalValue*, unsigned>::iterator I = SectionID.begin(), E =
2142 SectionID.end(); I != E; ++I)
2144 if (I->second > SectionID.size())
2145 error("SectionID out of range for global!");
2146 I->first->setSection(SectionNames[I->second-1]);
2149 // This is for future proofing... in the future extra fields may be added that
2150 // we don't understand, so we transparently ignore them.
2154 if (Handler) Handler->handleModuleGlobalsEnd();
2157 /// Parse the version information and decode it by setting flags on the
2158 /// Reader that enable backward compatibility of the reader.
2159 void BytecodeReader::ParseVersionInfo() {
2160 unsigned Version = read_vbr_uint();
2162 // Unpack version number: low four bits are for flags, top bits = version
2163 Module::Endianness Endianness;
2164 Module::PointerSize PointerSize;
2165 Endianness = (Version & 1) ? Module::BigEndian : Module::LittleEndian;
2166 PointerSize = (Version & 2) ? Module::Pointer64 : Module::Pointer32;
2168 bool hasNoEndianness = Version & 4;
2169 bool hasNoPointerSize = Version & 8;
2171 RevisionNum = Version >> 4;
2173 // Default values for the current bytecode version
2174 hasInconsistentModuleGlobalInfo = false;
2175 hasExplicitPrimitiveZeros = false;
2176 hasRestrictedGEPTypes = false;
2177 hasTypeDerivedFromValue = false;
2178 hasLongBlockHeaders = false;
2179 has32BitTypes = false;
2180 hasNoDependentLibraries = false;
2181 hasAlignment = false;
2182 hasNoUndefValue = false;
2183 hasNoFlagsForFunctions = false;
2184 hasNoUnreachableInst = false;
2186 switch (RevisionNum) {
2187 case 0: // LLVM 1.0, 1.1 (Released)
2188 // Base LLVM 1.0 bytecode format.
2189 hasInconsistentModuleGlobalInfo = true;
2190 hasExplicitPrimitiveZeros = true;
2194 case 1: // LLVM 1.2 (Released)
2195 // LLVM 1.2 added explicit support for emitting strings efficiently.
2197 // Also, it fixed the problem where the size of the ModuleGlobalInfo block
2198 // included the size for the alignment at the end, where the rest of the
2201 // LLVM 1.2 and before required that GEP indices be ubyte constants for
2202 // structures and longs for sequential types.
2203 hasRestrictedGEPTypes = true;
2205 // LLVM 1.2 and before had the Type class derive from Value class. This
2206 // changed in release 1.3 and consequently LLVM 1.3 bytecode files are
2207 // written differently because Types can no longer be part of the
2208 // type planes for Values.
2209 hasTypeDerivedFromValue = true;
2213 case 2: // 1.2.5 (Not Released)
2215 // LLVM 1.2 and earlier had two-word block headers. This is a bit wasteful,
2216 // especially for small files where the 8 bytes per block is a large
2217 // fraction of the total block size. In LLVM 1.3, the block type and length
2218 // are compressed into a single 32-bit unsigned integer. 27 bits for length,
2219 // 5 bits for block type.
2220 hasLongBlockHeaders = true;
2222 // LLVM 1.2 and earlier wrote type slot numbers as vbr_uint32. In LLVM 1.3
2223 // this has been reduced to vbr_uint24. It shouldn't make much difference
2224 // since we haven't run into a module with > 24 million types, but for
2225 // safety the 24-bit restriction has been enforced in 1.3 to free some bits
2226 // in various places and to ensure consistency.
2227 has32BitTypes = true;
2229 // LLVM 1.2 and earlier did not provide a target triple nor a list of
2230 // libraries on which the bytecode is dependent. LLVM 1.3 provides these
2231 // features, for use in future versions of LLVM.
2232 hasNoDependentLibraries = true;
2236 case 3: // LLVM 1.3 (Released)
2237 // LLVM 1.3 and earlier caused alignment bytes to be written on some block
2238 // boundaries and at the end of some strings. In extreme cases (e.g. lots
2239 // of GEP references to a constant array), this can increase the file size
2240 // by 30% or more. In version 1.4 alignment is done away with completely.
2241 hasAlignment = true;
2245 case 4: // 1.3.1 (Not Released)
2246 // In version 4, we did not support the 'undef' constant.
2247 hasNoUndefValue = true;
2249 // In version 4 and above, we did not include space for flags for functions
2250 // in the module info block.
2251 hasNoFlagsForFunctions = true;
2253 // In version 4 and above, we did not include the 'unreachable' instruction
2254 // in the opcode numbering in the bytecode file.
2255 hasNoUnreachableInst = true;
2260 case 5: // 1.4 (Released)
2264 error("Unknown bytecode version number: " + itostr(RevisionNum));
2267 if (hasNoEndianness) Endianness = Module::AnyEndianness;
2268 if (hasNoPointerSize) PointerSize = Module::AnyPointerSize;
2270 TheModule->setEndianness(Endianness);
2271 TheModule->setPointerSize(PointerSize);
2273 if (Handler) Handler->handleVersionInfo(RevisionNum, Endianness, PointerSize);
2276 /// Parse a whole module.
2277 void BytecodeReader::ParseModule() {
2278 unsigned Type, Size;
2280 FunctionSignatureList.clear(); // Just in case...
2282 // Read into instance variables...
2286 bool SeenModuleGlobalInfo = false;
2287 bool SeenGlobalTypePlane = false;
2288 BufPtr MyEnd = BlockEnd;
2289 while (At < MyEnd) {
2291 read_block(Type, Size);
2295 case BytecodeFormat::GlobalTypePlaneBlockID:
2296 if (SeenGlobalTypePlane)
2297 error("Two GlobalTypePlane Blocks Encountered!");
2301 SeenGlobalTypePlane = true;
2304 case BytecodeFormat::ModuleGlobalInfoBlockID:
2305 if (SeenModuleGlobalInfo)
2306 error("Two ModuleGlobalInfo Blocks Encountered!");
2307 ParseModuleGlobalInfo();
2308 SeenModuleGlobalInfo = true;
2311 case BytecodeFormat::ConstantPoolBlockID:
2312 ParseConstantPool(ModuleValues, ModuleTypes,false);
2315 case BytecodeFormat::FunctionBlockID:
2316 ParseFunctionLazily();
2319 case BytecodeFormat::SymbolTableBlockID:
2320 ParseSymbolTable(0, &TheModule->getSymbolTable());
2326 error("Unexpected Block of Type #" + utostr(Type) + " encountered!");
2334 // After the module constant pool has been read, we can safely initialize
2335 // global variables...
2336 while (!GlobalInits.empty()) {
2337 GlobalVariable *GV = GlobalInits.back().first;
2338 unsigned Slot = GlobalInits.back().second;
2339 GlobalInits.pop_back();
2341 // Look up the initializer value...
2342 // FIXME: Preserve this type ID!
2344 const llvm::PointerType* GVType = GV->getType();
2345 unsigned TypeSlot = getTypeSlot(GVType->getElementType());
2346 if (Constant *CV = getConstantValue(TypeSlot, Slot)) {
2347 if (GV->hasInitializer())
2348 error("Global *already* has an initializer?!");
2349 if (Handler) Handler->handleGlobalInitializer(GV,CV);
2350 GV->setInitializer(CV);
2352 error("Cannot find initializer value.");
2355 if (!ConstantFwdRefs.empty())
2356 error("Use of undefined constants in a module");
2358 /// Make sure we pulled them all out. If we didn't then there's a declaration
2359 /// but a missing body. That's not allowed.
2360 if (!FunctionSignatureList.empty())
2361 error("Function declared, but bytecode stream ended before definition");
2364 /// This function completely parses a bytecode buffer given by the \p Buf
2365 /// and \p Length parameters.
2366 void BytecodeReader::ParseBytecode(BufPtr Buf, unsigned Length,
2367 const std::string &ModuleID) {
2371 At = MemStart = BlockStart = Buf;
2372 MemEnd = BlockEnd = Buf + Length;
2374 // Create the module
2375 TheModule = new Module(ModuleID);
2377 if (Handler) Handler->handleStart(TheModule, Length);
2379 // Read the four bytes of the signature.
2380 unsigned Sig = read_uint();
2382 // If this is a compressed file
2383 if (Sig == ('l' | ('l' << 8) | ('v' << 16) | ('c' << 24))) {
2385 // Invoke the decompression of the bytecode. Note that we have to skip the
2386 // file's magic number which is not part of the compressed block. Hence,
2387 // the Buf+4 and Length-4. The result goes into decompressedBlock, a data
2388 // member for retention until BytecodeReader is destructed.
2389 unsigned decompressedLength = Compressor::decompressToNewBuffer(
2390 (char*)Buf+4,Length-4,decompressedBlock);
2392 // We must adjust the buffer pointers used by the bytecode reader to point
2393 // into the new decompressed block. After decompression, the
2394 // decompressedBlock will point to a contiguous memory area that has
2395 // the decompressed data.
2396 At = MemStart = BlockStart = Buf = (BufPtr) decompressedBlock;
2397 MemEnd = BlockEnd = Buf + decompressedLength;
2399 // else if this isn't a regular (uncompressed) bytecode file, then its
2400 // and error, generate that now.
2401 } else if (Sig != ('l' | ('l' << 8) | ('v' << 16) | ('m' << 24))) {
2402 error("Invalid bytecode signature: " + utohexstr(Sig));
2405 // Tell the handler we're starting a module
2406 if (Handler) Handler->handleModuleBegin(ModuleID);
2408 // Get the module block and size and verify. This is handled specially
2409 // because the module block/size is always written in long format. Other
2410 // blocks are written in short format so the read_block method is used.
2411 unsigned Type, Size;
2414 if (Type != BytecodeFormat::ModuleBlockID) {
2415 error("Expected Module Block! Type:" + utostr(Type) + ", Size:"
2419 // It looks like the darwin ranlib program is broken, and adds trailing
2420 // garbage to the end of some bytecode files. This hack allows the bc
2421 // reader to ignore trailing garbage on bytecode files.
2422 if (At + Size < MemEnd)
2423 MemEnd = BlockEnd = At+Size;
2425 if (At + Size != MemEnd)
2426 error("Invalid Top Level Block Length! Type:" + utostr(Type)
2427 + ", Size:" + utostr(Size));
2429 // Parse the module contents
2430 this->ParseModule();
2432 // Check for missing functions
2434 error("Function expected, but bytecode stream ended!");
2436 // Tell the handler we're done with the module
2438 Handler->handleModuleEnd(ModuleID);
2440 // Tell the handler we're finished the parse
2441 if (Handler) Handler->handleFinish();
2443 } catch (std::string& errstr) {
2444 if (Handler) Handler->handleError(errstr);
2448 if (decompressedBlock != 0 ) {
2449 ::free(decompressedBlock);
2450 decompressedBlock = 0;
2454 std::string msg("Unknown Exception Occurred");
2455 if (Handler) Handler->handleError(msg);
2459 if (decompressedBlock != 0) {
2460 ::free(decompressedBlock);
2461 decompressedBlock = 0;
2467 //===----------------------------------------------------------------------===//
2468 //=== Default Implementations of Handler Methods
2469 //===----------------------------------------------------------------------===//
2471 BytecodeHandler::~BytecodeHandler() {}