1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines several CodeGen-specific LLVM IR analysis utilties.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/Analysis.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/IR/DataLayout.h"
18 #include "llvm/IR/DerivedTypes.h"
19 #include "llvm/IR/Function.h"
20 #include "llvm/IR/Instructions.h"
21 #include "llvm/IR/IntrinsicInst.h"
22 #include "llvm/IR/LLVMContext.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Target/TargetLowering.h"
29 /// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
30 /// of insertvalue or extractvalue indices that identify a member, return
31 /// the linearized index of the start of the member.
33 unsigned llvm::ComputeLinearIndex(Type *Ty,
34 const unsigned *Indices,
35 const unsigned *IndicesEnd,
37 // Base case: We're done.
38 if (Indices && Indices == IndicesEnd)
41 // Given a struct type, recursively traverse the elements.
42 if (StructType *STy = dyn_cast<StructType>(Ty)) {
43 for (StructType::element_iterator EB = STy->element_begin(),
45 EE = STy->element_end();
47 if (Indices && *Indices == unsigned(EI - EB))
48 return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex);
49 CurIndex = ComputeLinearIndex(*EI, 0, 0, CurIndex);
53 // Given an array type, recursively traverse the elements.
54 else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
55 Type *EltTy = ATy->getElementType();
56 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
57 if (Indices && *Indices == i)
58 return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
59 CurIndex = ComputeLinearIndex(EltTy, 0, 0, CurIndex);
63 // We haven't found the type we're looking for, so keep searching.
67 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
68 /// EVTs that represent all the individual underlying
69 /// non-aggregate types that comprise it.
71 /// If Offsets is non-null, it points to a vector to be filled in
72 /// with the in-memory offsets of each of the individual values.
74 void llvm::ComputeValueVTs(const TargetLowering &TLI, Type *Ty,
75 SmallVectorImpl<EVT> &ValueVTs,
76 SmallVectorImpl<uint64_t> *Offsets,
77 uint64_t StartingOffset) {
78 // Given a struct type, recursively traverse the elements.
79 if (StructType *STy = dyn_cast<StructType>(Ty)) {
80 const StructLayout *SL = TLI.getDataLayout()->getStructLayout(STy);
81 for (StructType::element_iterator EB = STy->element_begin(),
83 EE = STy->element_end();
85 ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
86 StartingOffset + SL->getElementOffset(EI - EB));
89 // Given an array type, recursively traverse the elements.
90 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
91 Type *EltTy = ATy->getElementType();
92 uint64_t EltSize = TLI.getDataLayout()->getTypeAllocSize(EltTy);
93 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
94 ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
95 StartingOffset + i * EltSize);
98 // Interpret void as zero return values.
101 // Base case: we can get an EVT for this LLVM IR type.
102 ValueVTs.push_back(TLI.getValueType(Ty));
104 Offsets->push_back(StartingOffset);
107 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
108 GlobalVariable *llvm::ExtractTypeInfo(Value *V) {
109 V = V->stripPointerCasts();
110 GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
112 if (GV && GV->getName() == "llvm.eh.catch.all.value") {
113 assert(GV->hasInitializer() &&
114 "The EH catch-all value must have an initializer");
115 Value *Init = GV->getInitializer();
116 GV = dyn_cast<GlobalVariable>(Init);
117 if (!GV) V = cast<ConstantPointerNull>(Init);
120 assert((GV || isa<ConstantPointerNull>(V)) &&
121 "TypeInfo must be a global variable or NULL");
125 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
126 /// processed uses a memory 'm' constraint.
128 llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos,
129 const TargetLowering &TLI) {
130 for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
131 InlineAsm::ConstraintInfo &CI = CInfos[i];
132 for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
133 TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
134 if (CType == TargetLowering::C_Memory)
138 // Indirect operand accesses access memory.
146 /// getFCmpCondCode - Return the ISD condition code corresponding to
147 /// the given LLVM IR floating-point condition code. This includes
148 /// consideration of global floating-point math flags.
150 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
152 case FCmpInst::FCMP_FALSE: return ISD::SETFALSE;
153 case FCmpInst::FCMP_OEQ: return ISD::SETOEQ;
154 case FCmpInst::FCMP_OGT: return ISD::SETOGT;
155 case FCmpInst::FCMP_OGE: return ISD::SETOGE;
156 case FCmpInst::FCMP_OLT: return ISD::SETOLT;
157 case FCmpInst::FCMP_OLE: return ISD::SETOLE;
158 case FCmpInst::FCMP_ONE: return ISD::SETONE;
159 case FCmpInst::FCMP_ORD: return ISD::SETO;
160 case FCmpInst::FCMP_UNO: return ISD::SETUO;
161 case FCmpInst::FCMP_UEQ: return ISD::SETUEQ;
162 case FCmpInst::FCMP_UGT: return ISD::SETUGT;
163 case FCmpInst::FCMP_UGE: return ISD::SETUGE;
164 case FCmpInst::FCMP_ULT: return ISD::SETULT;
165 case FCmpInst::FCMP_ULE: return ISD::SETULE;
166 case FCmpInst::FCMP_UNE: return ISD::SETUNE;
167 case FCmpInst::FCMP_TRUE: return ISD::SETTRUE;
168 default: llvm_unreachable("Invalid FCmp predicate opcode!");
172 ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) {
174 case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ;
175 case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE;
176 case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT;
177 case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE;
178 case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT;
179 case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE;
184 /// getICmpCondCode - Return the ISD condition code corresponding to
185 /// the given LLVM IR integer condition code.
187 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
189 case ICmpInst::ICMP_EQ: return ISD::SETEQ;
190 case ICmpInst::ICMP_NE: return ISD::SETNE;
191 case ICmpInst::ICMP_SLE: return ISD::SETLE;
192 case ICmpInst::ICMP_ULE: return ISD::SETULE;
193 case ICmpInst::ICMP_SGE: return ISD::SETGE;
194 case ICmpInst::ICMP_UGE: return ISD::SETUGE;
195 case ICmpInst::ICMP_SLT: return ISD::SETLT;
196 case ICmpInst::ICMP_ULT: return ISD::SETULT;
197 case ICmpInst::ICMP_SGT: return ISD::SETGT;
198 case ICmpInst::ICMP_UGT: return ISD::SETUGT;
200 llvm_unreachable("Invalid ICmp predicate opcode!");
204 static bool isNoopBitcast(Type *T1, Type *T2,
205 const TargetLowering& TLI) {
206 return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) ||
207 (isa<VectorType>(T1) && isa<VectorType>(T2) &&
208 TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2)));
211 /// sameNoopInput - Return true if V1 == V2, else if either V1 or V2 is a noop
212 /// (i.e., lowers to no machine code), look through it (and any transitive noop
213 /// operands to it) and check if it has the same noop input value. This is
214 /// used to determine if a tail call can be formed.
215 static bool sameNoopInput(const Value *V1, const Value *V2,
216 SmallVectorImpl<unsigned> &Els1,
217 SmallVectorImpl<unsigned> &Els2,
218 const TargetLowering &TLI) {
220 bool swapParity = false;
221 bool equalEls = Els1 == Els2;
223 if ((equalEls && V1 == V2) || isa<UndefValue>(V1) || isa<UndefValue>(V2)) {
225 // Revert to original Els1 and Els2 to avoid confusing recursive calls
230 // Try to look through V1; if V1 is not an instruction, it can't be looked
232 const Instruction *I = dyn_cast<Instruction>(V1);
233 const Value *NoopInput = 0;
234 if (I != 0 && I->getNumOperands() > 0) {
235 Value *Op = I->getOperand(0);
236 if (isa<TruncInst>(I)) {
237 // Look through truly no-op truncates.
238 if (TLI.isTruncateFree(Op->getType(), I->getType()))
240 } else if (isa<BitCastInst>(I)) {
241 // Look through truly no-op bitcasts.
242 if (isNoopBitcast(Op->getType(), I->getType(), TLI))
244 } else if (isa<GetElementPtrInst>(I)) {
245 // Look through getelementptr
246 if (cast<GetElementPtrInst>(I)->hasAllZeroIndices())
248 } else if (isa<IntToPtrInst>(I)) {
249 // Look through inttoptr.
250 // Make sure this isn't a truncating or extending cast. We could
251 // support this eventually, but don't bother for now.
252 if (!isa<VectorType>(I->getType()) &&
253 TLI.getPointerTy().getSizeInBits() ==
254 cast<IntegerType>(Op->getType())->getBitWidth())
256 } else if (isa<PtrToIntInst>(I)) {
257 // Look through ptrtoint.
258 // Make sure this isn't a truncating or extending cast. We could
259 // support this eventually, but don't bother for now.
260 if (!isa<VectorType>(I->getType()) &&
261 TLI.getPointerTy().getSizeInBits() ==
262 cast<IntegerType>(I->getType())->getBitWidth())
264 } else if (isa<CallInst>(I)) {
266 for (User::const_op_iterator i = I->op_begin(),
270 unsigned attrInd = i - I->op_begin() + 1;
271 if (cast<CallInst>(I)->paramHasAttr(attrInd, Attribute::Returned) &&
272 isNoopBitcast((*i)->getType(), I->getType(), TLI)) {
277 } else if (isa<InvokeInst>(I)) {
278 // Look through invoke
279 for (User::const_op_iterator i = I->op_begin(),
280 // Skip BB, BB, Callee
283 unsigned attrInd = i - I->op_begin() + 1;
284 if (cast<InvokeInst>(I)->paramHasAttr(attrInd, Attribute::Returned) &&
285 isNoopBitcast((*i)->getType(), I->getType(), TLI)) {
298 // If we already swapped, avoid infinite loop
302 // Otherwise, swap V1<->V2, Els1<->Els2
305 swapParity = !swapParity;
308 for (unsigned n = 0; n < 2; ++n) {
309 if (isa<InsertValueInst>(V1)) {
310 if (isa<StructType>(V1->getType())) {
311 // Look through insertvalue
313 for (i = 0, e = cast<StructType>(V1->getType())->getNumElements();
315 const Value *InScalar = FindInsertedValue(const_cast<Value*>(V1), i);
319 if (!sameNoopInput(InScalar, V2, Els1, Els2, TLI)) {
331 } else if (!Els1.empty() && isa<ExtractValueInst>(V1)) {
332 const ExtractValueInst *EVI = cast<ExtractValueInst>(V1);
333 unsigned i = Els1.back();
334 // If the scalar value being inserted is an extractvalue of the right
335 // index from the call, then everything is good.
336 if (isa<StructType>(EVI->getOperand(0)->getType()) &&
337 EVI->getNumIndices() == 1 && EVI->getIndices()[0] == i) {
338 // Look through extractvalue
340 if (sameNoopInput(EVI->getOperand(0), V2, Els1, Els2, TLI)) {
352 swapParity = !swapParity;
360 /// Test if the given instruction is in a position to be optimized
361 /// with a tail-call. This roughly means that it's in a block with
362 /// a return and there's nothing that needs to be scheduled
363 /// between it and the return.
365 /// This function only tests target-independent requirements.
366 bool llvm::isInTailCallPosition(ImmutableCallSite CS,
367 const TargetLowering &TLI) {
368 const Instruction *I = CS.getInstruction();
369 const BasicBlock *ExitBB = I->getParent();
370 const TerminatorInst *Term = ExitBB->getTerminator();
371 const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
373 // The block must end in a return statement or unreachable.
375 // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
376 // an unreachable, for now. The way tailcall optimization is currently
377 // implemented means it will add an epilogue followed by a jump. That is
378 // not profitable. Also, if the callee is a special function (e.g.
379 // longjmp on x86), it can end up causing miscompilation that has not
380 // been fully understood.
382 (!TLI.getTargetMachine().Options.GuaranteedTailCallOpt ||
383 !isa<UnreachableInst>(Term)))
386 // If I will have a chain, make sure no other instruction that will have a
387 // chain interposes between I and the return.
388 if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
389 !isSafeToSpeculativelyExecute(I))
390 for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ;
394 // Debug info intrinsics do not get in the way of tail call optimization.
395 if (isa<DbgInfoIntrinsic>(BBI))
397 if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
398 !isSafeToSpeculativelyExecute(BBI))
402 // If the block ends with a void return or unreachable, it doesn't matter
403 // what the call's return type is.
404 if (!Ret || Ret->getNumOperands() == 0) return true;
406 // If the return value is undef, it doesn't matter what the call's
408 if (isa<UndefValue>(Ret->getOperand(0))) return true;
410 // Conservatively require the attributes of the call to match those of
411 // the return. Ignore noalias because it doesn't affect the call sequence.
412 const Function *F = ExitBB->getParent();
413 AttributeSet CallerAttrs = F->getAttributes();
414 if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex).
415 removeAttribute(Attribute::NoAlias) !=
416 AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex).
417 removeAttribute(Attribute::NoAlias))
420 // It's not safe to eliminate the sign / zero extension of the return value.
421 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
422 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
425 // Otherwise, make sure the return value and I have the same value
426 SmallVector<unsigned, 4> Els1, Els2;
427 return sameNoopInput(Ret->getOperand(0), I, Els1, Els2, TLI);