Allow the asm printer to print fp128 values properly.
[oota-llvm.git] / lib / CodeGen / AsmPrinter / AsmPrinter.cpp
1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AsmPrinter class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "asm-printer"
15 #include "llvm/CodeGen/AsmPrinter.h"
16 #include "DwarfDebug.h"
17 #include "DwarfException.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/ConstantFolding.h"
21 #include "llvm/Assembly/Writer.h"
22 #include "llvm/CodeGen/GCMetadataPrinter.h"
23 #include "llvm/CodeGen/MachineConstantPool.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineJumpTableInfo.h"
27 #include "llvm/CodeGen/MachineLoopInfo.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/DebugInfo.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/Operator.h"
33 #include "llvm/MC/MCAsmInfo.h"
34 #include "llvm/MC/MCContext.h"
35 #include "llvm/MC/MCExpr.h"
36 #include "llvm/MC/MCInst.h"
37 #include "llvm/MC/MCSection.h"
38 #include "llvm/MC/MCStreamer.h"
39 #include "llvm/MC/MCSymbol.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/Format.h"
42 #include "llvm/Support/MathExtras.h"
43 #include "llvm/Support/Timer.h"
44 #include "llvm/Target/Mangler.h"
45 #include "llvm/Target/TargetInstrInfo.h"
46 #include "llvm/Target/TargetLowering.h"
47 #include "llvm/Target/TargetLoweringObjectFile.h"
48 #include "llvm/Target/TargetOptions.h"
49 #include "llvm/Target/TargetRegisterInfo.h"
50 using namespace llvm;
51
52 static const char *DWARFGroupName = "DWARF Emission";
53 static const char *DbgTimerName = "DWARF Debug Writer";
54 static const char *EHTimerName = "DWARF Exception Writer";
55
56 STATISTIC(EmittedInsts, "Number of machine instrs printed");
57
58 char AsmPrinter::ID = 0;
59
60 typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type;
61 static gcp_map_type &getGCMap(void *&P) {
62   if (P == 0)
63     P = new gcp_map_type();
64   return *(gcp_map_type*)P;
65 }
66
67
68 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
69 /// value in log2 form.  This rounds up to the preferred alignment if possible
70 /// and legal.
71 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD,
72                                    unsigned InBits = 0) {
73   unsigned NumBits = 0;
74   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
75     NumBits = TD.getPreferredAlignmentLog(GVar);
76
77   // If InBits is specified, round it to it.
78   if (InBits > NumBits)
79     NumBits = InBits;
80
81   // If the GV has a specified alignment, take it into account.
82   if (GV->getAlignment() == 0)
83     return NumBits;
84
85   unsigned GVAlign = Log2_32(GV->getAlignment());
86
87   // If the GVAlign is larger than NumBits, or if we are required to obey
88   // NumBits because the GV has an assigned section, obey it.
89   if (GVAlign > NumBits || GV->hasSection())
90     NumBits = GVAlign;
91   return NumBits;
92 }
93
94 AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
95   : MachineFunctionPass(ID),
96     TM(tm), MAI(tm.getMCAsmInfo()),
97     OutContext(Streamer.getContext()),
98     OutStreamer(Streamer),
99     LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) {
100   DD = 0; DE = 0; MMI = 0; LI = 0;
101   CurrentFnSym = CurrentFnSymForSize = 0;
102   GCMetadataPrinters = 0;
103   VerboseAsm = Streamer.isVerboseAsm();
104 }
105
106 AsmPrinter::~AsmPrinter() {
107   assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized");
108
109   if (GCMetadataPrinters != 0) {
110     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
111
112     for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I)
113       delete I->second;
114     delete &GCMap;
115     GCMetadataPrinters = 0;
116   }
117
118   delete &OutStreamer;
119 }
120
121 /// getFunctionNumber - Return a unique ID for the current function.
122 ///
123 unsigned AsmPrinter::getFunctionNumber() const {
124   return MF->getFunctionNumber();
125 }
126
127 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
128   return TM.getTargetLowering()->getObjFileLowering();
129 }
130
131 /// getDataLayout - Return information about data layout.
132 const DataLayout &AsmPrinter::getDataLayout() const {
133   return *TM.getDataLayout();
134 }
135
136 /// getCurrentSection() - Return the current section we are emitting to.
137 const MCSection *AsmPrinter::getCurrentSection() const {
138   return OutStreamer.getCurrentSection();
139 }
140
141
142
143 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
144   AU.setPreservesAll();
145   MachineFunctionPass::getAnalysisUsage(AU);
146   AU.addRequired<MachineModuleInfo>();
147   AU.addRequired<GCModuleInfo>();
148   if (isVerbose())
149     AU.addRequired<MachineLoopInfo>();
150 }
151
152 bool AsmPrinter::doInitialization(Module &M) {
153   OutStreamer.InitStreamer();
154
155   MMI = getAnalysisIfAvailable<MachineModuleInfo>();
156   MMI->AnalyzeModule(M);
157
158   // Initialize TargetLoweringObjectFile.
159   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
160     .Initialize(OutContext, TM);
161
162   Mang = new Mangler(OutContext, *TM.getDataLayout());
163
164   // Allow the target to emit any magic that it wants at the start of the file.
165   EmitStartOfAsmFile(M);
166
167   // Very minimal debug info. It is ignored if we emit actual debug info. If we
168   // don't, this at least helps the user find where a global came from.
169   if (MAI->hasSingleParameterDotFile()) {
170     // .file "foo.c"
171     OutStreamer.EmitFileDirective(M.getModuleIdentifier());
172   }
173
174   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
175   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
176   for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
177     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
178       MP->beginAssembly(*this);
179
180   // Emit module-level inline asm if it exists.
181   if (!M.getModuleInlineAsm().empty()) {
182     OutStreamer.AddComment("Start of file scope inline assembly");
183     OutStreamer.AddBlankLine();
184     EmitInlineAsm(M.getModuleInlineAsm()+"\n");
185     OutStreamer.AddComment("End of file scope inline assembly");
186     OutStreamer.AddBlankLine();
187   }
188
189   if (MAI->doesSupportDebugInformation())
190     DD = new DwarfDebug(this, &M);
191
192   switch (MAI->getExceptionHandlingType()) {
193   case ExceptionHandling::None:
194     return false;
195   case ExceptionHandling::SjLj:
196   case ExceptionHandling::DwarfCFI:
197     DE = new DwarfCFIException(this);
198     return false;
199   case ExceptionHandling::ARM:
200     DE = new ARMException(this);
201     return false;
202   case ExceptionHandling::Win64:
203     DE = new Win64Exception(this);
204     return false;
205   }
206
207   llvm_unreachable("Unknown exception type.");
208 }
209
210 void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const {
211   switch ((GlobalValue::LinkageTypes)Linkage) {
212   case GlobalValue::CommonLinkage:
213   case GlobalValue::LinkOnceAnyLinkage:
214   case GlobalValue::LinkOnceODRLinkage:
215   case GlobalValue::LinkOnceODRAutoHideLinkage:
216   case GlobalValue::WeakAnyLinkage:
217   case GlobalValue::WeakODRLinkage:
218   case GlobalValue::LinkerPrivateWeakLinkage:
219     if (MAI->getWeakDefDirective() != 0) {
220       // .globl _foo
221       OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
222
223       if ((GlobalValue::LinkageTypes)Linkage !=
224           GlobalValue::LinkOnceODRAutoHideLinkage)
225         // .weak_definition _foo
226         OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
227       else
228         OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
229     } else if (MAI->getLinkOnceDirective() != 0) {
230       // .globl _foo
231       OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
232       //NOTE: linkonce is handled by the section the symbol was assigned to.
233     } else {
234       // .weak _foo
235       OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
236     }
237     break;
238   case GlobalValue::DLLExportLinkage:
239   case GlobalValue::AppendingLinkage:
240     // FIXME: appending linkage variables should go into a section of
241     // their name or something.  For now, just emit them as external.
242   case GlobalValue::ExternalLinkage:
243     // If external or appending, declare as a global symbol.
244     // .globl _foo
245     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
246     break;
247   case GlobalValue::PrivateLinkage:
248   case GlobalValue::InternalLinkage:
249   case GlobalValue::LinkerPrivateLinkage:
250     break;
251   default:
252     llvm_unreachable("Unknown linkage type!");
253   }
254 }
255
256
257 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
258 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
259   if (GV->hasInitializer()) {
260     // Check to see if this is a special global used by LLVM, if so, emit it.
261     if (EmitSpecialLLVMGlobal(GV))
262       return;
263
264     if (isVerbose()) {
265       WriteAsOperand(OutStreamer.GetCommentOS(), GV,
266                      /*PrintType=*/false, GV->getParent());
267       OutStreamer.GetCommentOS() << '\n';
268     }
269   }
270
271   MCSymbol *GVSym = Mang->getSymbol(GV);
272   EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
273
274   if (!GV->hasInitializer())   // External globals require no extra code.
275     return;
276
277   if (MAI->hasDotTypeDotSizeDirective())
278     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
279
280   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
281
282   const DataLayout *TD = TM.getDataLayout();
283   uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
284
285   // If the alignment is specified, we *must* obey it.  Overaligning a global
286   // with a specified alignment is a prompt way to break globals emitted to
287   // sections and expected to be contiguous (e.g. ObjC metadata).
288   unsigned AlignLog = getGVAlignmentLog2(GV, *TD);
289
290   // Handle common and BSS local symbols (.lcomm).
291   if (GVKind.isCommon() || GVKind.isBSSLocal()) {
292     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
293     unsigned Align = 1 << AlignLog;
294
295     // Handle common symbols.
296     if (GVKind.isCommon()) {
297       if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
298         Align = 0;
299
300       // .comm _foo, 42, 4
301       OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
302       return;
303     }
304
305     // Handle local BSS symbols.
306     if (MAI->hasMachoZeroFillDirective()) {
307       const MCSection *TheSection =
308         getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
309       // .zerofill __DATA, __bss, _foo, 400, 5
310       OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
311       return;
312     }
313
314     // Use .lcomm only if it supports user-specified alignment.
315     // Otherwise, while it would still be correct to use .lcomm in some
316     // cases (e.g. when Align == 1), the external assembler might enfore
317     // some -unknown- default alignment behavior, which could cause
318     // spurious differences between external and integrated assembler.
319     // Prefer to simply fall back to .local / .comm in this case.
320     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
321       // .lcomm _foo, 42
322       OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
323       return;
324     }
325
326     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
327       Align = 0;
328
329     // .local _foo
330     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
331     // .comm _foo, 42, 4
332     OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
333     return;
334   }
335
336   const MCSection *TheSection =
337     getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
338
339   // Handle the zerofill directive on darwin, which is a special form of BSS
340   // emission.
341   if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
342     if (Size == 0) Size = 1;  // zerofill of 0 bytes is undefined.
343
344     // .globl _foo
345     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
346     // .zerofill __DATA, __common, _foo, 400, 5
347     OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
348     return;
349   }
350
351   // Handle thread local data for mach-o which requires us to output an
352   // additional structure of data and mangle the original symbol so that we
353   // can reference it later.
354   //
355   // TODO: This should become an "emit thread local global" method on TLOF.
356   // All of this macho specific stuff should be sunk down into TLOFMachO and
357   // stuff like "TLSExtraDataSection" should no longer be part of the parent
358   // TLOF class.  This will also make it more obvious that stuff like
359   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
360   // specific code.
361   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
362     // Emit the .tbss symbol
363     MCSymbol *MangSym =
364       OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
365
366     if (GVKind.isThreadBSS())
367       OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
368     else if (GVKind.isThreadData()) {
369       OutStreamer.SwitchSection(TheSection);
370
371       EmitAlignment(AlignLog, GV);
372       OutStreamer.EmitLabel(MangSym);
373
374       EmitGlobalConstant(GV->getInitializer());
375     }
376
377     OutStreamer.AddBlankLine();
378
379     // Emit the variable struct for the runtime.
380     const MCSection *TLVSect
381       = getObjFileLowering().getTLSExtraDataSection();
382
383     OutStreamer.SwitchSection(TLVSect);
384     // Emit the linkage here.
385     EmitLinkage(GV->getLinkage(), GVSym);
386     OutStreamer.EmitLabel(GVSym);
387
388     // Three pointers in size:
389     //   - __tlv_bootstrap - used to make sure support exists
390     //   - spare pointer, used when mapped by the runtime
391     //   - pointer to mangled symbol above with initializer
392     unsigned PtrSize = TD->getPointerSizeInBits()/8;
393     OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
394                           PtrSize, 0);
395     OutStreamer.EmitIntValue(0, PtrSize, 0);
396     OutStreamer.EmitSymbolValue(MangSym, PtrSize, 0);
397
398     OutStreamer.AddBlankLine();
399     return;
400   }
401
402   OutStreamer.SwitchSection(TheSection);
403
404   EmitLinkage(GV->getLinkage(), GVSym);
405   EmitAlignment(AlignLog, GV);
406
407   OutStreamer.EmitLabel(GVSym);
408
409   EmitGlobalConstant(GV->getInitializer());
410
411   if (MAI->hasDotTypeDotSizeDirective())
412     // .size foo, 42
413     OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
414
415   OutStreamer.AddBlankLine();
416 }
417
418 /// EmitFunctionHeader - This method emits the header for the current
419 /// function.
420 void AsmPrinter::EmitFunctionHeader() {
421   // Print out constants referenced by the function
422   EmitConstantPool();
423
424   // Print the 'header' of function.
425   const Function *F = MF->getFunction();
426
427   OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
428   EmitVisibility(CurrentFnSym, F->getVisibility());
429
430   EmitLinkage(F->getLinkage(), CurrentFnSym);
431   EmitAlignment(MF->getAlignment(), F);
432
433   if (MAI->hasDotTypeDotSizeDirective())
434     OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
435
436   if (isVerbose()) {
437     WriteAsOperand(OutStreamer.GetCommentOS(), F,
438                    /*PrintType=*/false, F->getParent());
439     OutStreamer.GetCommentOS() << '\n';
440   }
441
442   // Emit the CurrentFnSym.  This is a virtual function to allow targets to
443   // do their wild and crazy things as required.
444   EmitFunctionEntryLabel();
445
446   // If the function had address-taken blocks that got deleted, then we have
447   // references to the dangling symbols.  Emit them at the start of the function
448   // so that we don't get references to undefined symbols.
449   std::vector<MCSymbol*> DeadBlockSyms;
450   MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
451   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
452     OutStreamer.AddComment("Address taken block that was later removed");
453     OutStreamer.EmitLabel(DeadBlockSyms[i]);
454   }
455
456   // Add some workaround for linkonce linkage on Cygwin\MinGW.
457   if (MAI->getLinkOnceDirective() != 0 &&
458       (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) {
459     // FIXME: What is this?
460     MCSymbol *FakeStub =
461       OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+
462                                    CurrentFnSym->getName());
463     OutStreamer.EmitLabel(FakeStub);
464   }
465
466   // Emit pre-function debug and/or EH information.
467   if (DE) {
468     NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
469     DE->BeginFunction(MF);
470   }
471   if (DD) {
472     NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
473     DD->beginFunction(MF);
474   }
475 }
476
477 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
478 /// function.  This can be overridden by targets as required to do custom stuff.
479 void AsmPrinter::EmitFunctionEntryLabel() {
480   // The function label could have already been emitted if two symbols end up
481   // conflicting due to asm renaming.  Detect this and emit an error.
482   if (CurrentFnSym->isUndefined())
483     return OutStreamer.EmitLabel(CurrentFnSym);
484
485   report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
486                      "' label emitted multiple times to assembly file");
487 }
488
489 /// emitComments - Pretty-print comments for instructions.
490 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
491   const MachineFunction *MF = MI.getParent()->getParent();
492   const TargetMachine &TM = MF->getTarget();
493
494   // Check for spills and reloads
495   int FI;
496
497   const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
498
499   // We assume a single instruction only has a spill or reload, not
500   // both.
501   const MachineMemOperand *MMO;
502   if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
503     if (FrameInfo->isSpillSlotObjectIndex(FI)) {
504       MMO = *MI.memoperands_begin();
505       CommentOS << MMO->getSize() << "-byte Reload\n";
506     }
507   } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
508     if (FrameInfo->isSpillSlotObjectIndex(FI))
509       CommentOS << MMO->getSize() << "-byte Folded Reload\n";
510   } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
511     if (FrameInfo->isSpillSlotObjectIndex(FI)) {
512       MMO = *MI.memoperands_begin();
513       CommentOS << MMO->getSize() << "-byte Spill\n";
514     }
515   } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
516     if (FrameInfo->isSpillSlotObjectIndex(FI))
517       CommentOS << MMO->getSize() << "-byte Folded Spill\n";
518   }
519
520   // Check for spill-induced copies
521   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
522     CommentOS << " Reload Reuse\n";
523 }
524
525 /// emitImplicitDef - This method emits the specified machine instruction
526 /// that is an implicit def.
527 static void emitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) {
528   unsigned RegNo = MI->getOperand(0).getReg();
529   AP.OutStreamer.AddComment(Twine("implicit-def: ") +
530                             AP.TM.getRegisterInfo()->getName(RegNo));
531   AP.OutStreamer.AddBlankLine();
532 }
533
534 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
535   std::string Str = "kill:";
536   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
537     const MachineOperand &Op = MI->getOperand(i);
538     assert(Op.isReg() && "KILL instruction must have only register operands");
539     Str += ' ';
540     Str += AP.TM.getRegisterInfo()->getName(Op.getReg());
541     Str += (Op.isDef() ? "<def>" : "<kill>");
542   }
543   AP.OutStreamer.AddComment(Str);
544   AP.OutStreamer.AddBlankLine();
545 }
546
547 /// emitDebugValueComment - This method handles the target-independent form
548 /// of DBG_VALUE, returning true if it was able to do so.  A false return
549 /// means the target will need to handle MI in EmitInstruction.
550 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
551   // This code handles only the 3-operand target-independent form.
552   if (MI->getNumOperands() != 3)
553     return false;
554
555   SmallString<128> Str;
556   raw_svector_ostream OS(Str);
557   OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: ";
558
559   // cast away const; DIetc do not take const operands for some reason.
560   DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata()));
561   if (V.getContext().isSubprogram())
562     OS << DISubprogram(V.getContext()).getDisplayName() << ":";
563   OS << V.getName() << " <- ";
564
565   // Register or immediate value. Register 0 means undef.
566   if (MI->getOperand(0).isFPImm()) {
567     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
568     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
569       OS << (double)APF.convertToFloat();
570     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
571       OS << APF.convertToDouble();
572     } else {
573       // There is no good way to print long double.  Convert a copy to
574       // double.  Ah well, it's only a comment.
575       bool ignored;
576       APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
577                   &ignored);
578       OS << "(long double) " << APF.convertToDouble();
579     }
580   } else if (MI->getOperand(0).isImm()) {
581     OS << MI->getOperand(0).getImm();
582   } else if (MI->getOperand(0).isCImm()) {
583     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
584   } else {
585     assert(MI->getOperand(0).isReg() && "Unknown operand type");
586     if (MI->getOperand(0).getReg() == 0) {
587       // Suppress offset, it is not meaningful here.
588       OS << "undef";
589       // NOTE: Want this comment at start of line, don't emit with AddComment.
590       AP.OutStreamer.EmitRawText(OS.str());
591       return true;
592     }
593     OS << AP.TM.getRegisterInfo()->getName(MI->getOperand(0).getReg());
594   }
595
596   OS << '+' << MI->getOperand(1).getImm();
597   // NOTE: Want this comment at start of line, don't emit with AddComment.
598   AP.OutStreamer.EmitRawText(OS.str());
599   return true;
600 }
601
602 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
603   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
604       MF->getFunction()->needsUnwindTableEntry())
605     return CFI_M_EH;
606
607   if (MMI->hasDebugInfo())
608     return CFI_M_Debug;
609
610   return CFI_M_None;
611 }
612
613 bool AsmPrinter::needsSEHMoves() {
614   return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 &&
615     MF->getFunction()->needsUnwindTableEntry();
616 }
617
618 bool AsmPrinter::needsRelocationsForDwarfStringPool() const {
619   return MAI->doesDwarfUseRelocationsAcrossSections();
620 }
621
622 void AsmPrinter::emitPrologLabel(const MachineInstr &MI) {
623   MCSymbol *Label = MI.getOperand(0).getMCSymbol();
624
625   if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
626     return;
627
628   if (needsCFIMoves() == CFI_M_None)
629     return;
630
631   if (MMI->getCompactUnwindEncoding() != 0)
632     OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding());
633
634   MachineModuleInfo &MMI = MF->getMMI();
635   std::vector<MachineMove> &Moves = MMI.getFrameMoves();
636   bool FoundOne = false;
637   (void)FoundOne;
638   for (std::vector<MachineMove>::iterator I = Moves.begin(),
639          E = Moves.end(); I != E; ++I) {
640     if (I->getLabel() == Label) {
641       EmitCFIFrameMove(*I);
642       FoundOne = true;
643     }
644   }
645   assert(FoundOne);
646 }
647
648 /// EmitFunctionBody - This method emits the body and trailer for a
649 /// function.
650 void AsmPrinter::EmitFunctionBody() {
651   // Emit target-specific gunk before the function body.
652   EmitFunctionBodyStart();
653
654   bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo();
655
656   // Print out code for the function.
657   bool HasAnyRealCode = false;
658   const MachineInstr *LastMI = 0;
659   for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
660        I != E; ++I) {
661     // Print a label for the basic block.
662     EmitBasicBlockStart(I);
663     for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
664          II != IE; ++II) {
665       LastMI = II;
666
667       // Print the assembly for the instruction.
668       if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() &&
669           !II->isDebugValue()) {
670         HasAnyRealCode = true;
671         ++EmittedInsts;
672       }
673
674       if (ShouldPrintDebugScopes) {
675         NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
676         DD->beginInstruction(II);
677       }
678
679       if (isVerbose())
680         emitComments(*II, OutStreamer.GetCommentOS());
681
682       switch (II->getOpcode()) {
683       case TargetOpcode::PROLOG_LABEL:
684         emitPrologLabel(*II);
685         break;
686
687       case TargetOpcode::EH_LABEL:
688       case TargetOpcode::GC_LABEL:
689         OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol());
690         break;
691       case TargetOpcode::INLINEASM:
692         EmitInlineAsm(II);
693         break;
694       case TargetOpcode::DBG_VALUE:
695         if (isVerbose()) {
696           if (!emitDebugValueComment(II, *this))
697             EmitInstruction(II);
698         }
699         break;
700       case TargetOpcode::IMPLICIT_DEF:
701         if (isVerbose()) emitImplicitDef(II, *this);
702         break;
703       case TargetOpcode::KILL:
704         if (isVerbose()) emitKill(II, *this);
705         break;
706       default:
707         if (!TM.hasMCUseLoc())
708           MCLineEntry::Make(&OutStreamer, getCurrentSection());
709
710         EmitInstruction(II);
711         break;
712       }
713
714       if (ShouldPrintDebugScopes) {
715         NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
716         DD->endInstruction(II);
717       }
718     }
719   }
720
721   // If the last instruction was a prolog label, then we have a situation where
722   // we emitted a prolog but no function body. This results in the ending prolog
723   // label equaling the end of function label and an invalid "row" in the
724   // FDE. We need to emit a noop in this situation so that the FDE's rows are
725   // valid.
726   bool RequiresNoop = LastMI && LastMI->isPrologLabel();
727
728   // If the function is empty and the object file uses .subsections_via_symbols,
729   // then we need to emit *something* to the function body to prevent the
730   // labels from collapsing together.  Just emit a noop.
731   if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) {
732     MCInst Noop;
733     TM.getInstrInfo()->getNoopForMachoTarget(Noop);
734     if (Noop.getOpcode()) {
735       OutStreamer.AddComment("avoids zero-length function");
736       OutStreamer.EmitInstruction(Noop);
737     } else  // Target not mc-ized yet.
738       OutStreamer.EmitRawText(StringRef("\tnop\n"));
739   }
740
741   const Function *F = MF->getFunction();
742   for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) {
743     const BasicBlock *BB = i;
744     if (!BB->hasAddressTaken())
745       continue;
746     MCSymbol *Sym = GetBlockAddressSymbol(BB);
747     if (Sym->isDefined())
748       continue;
749     OutStreamer.AddComment("Address of block that was removed by CodeGen");
750     OutStreamer.EmitLabel(Sym);
751   }
752
753   // Emit target-specific gunk after the function body.
754   EmitFunctionBodyEnd();
755
756   // If the target wants a .size directive for the size of the function, emit
757   // it.
758   if (MAI->hasDotTypeDotSizeDirective()) {
759     // Create a symbol for the end of function, so we can get the size as
760     // difference between the function label and the temp label.
761     MCSymbol *FnEndLabel = OutContext.CreateTempSymbol();
762     OutStreamer.EmitLabel(FnEndLabel);
763
764     const MCExpr *SizeExp =
765       MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext),
766                               MCSymbolRefExpr::Create(CurrentFnSymForSize,
767                                                       OutContext),
768                               OutContext);
769     OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
770   }
771
772   // Emit post-function debug information.
773   if (DD) {
774     NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
775     DD->endFunction(MF);
776   }
777   if (DE) {
778     NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
779     DE->EndFunction();
780   }
781   MMI->EndFunction();
782
783   // Print out jump tables referenced by the function.
784   EmitJumpTableInfo();
785
786   OutStreamer.AddBlankLine();
787 }
788
789 /// getDebugValueLocation - Get location information encoded by DBG_VALUE
790 /// operands.
791 MachineLocation AsmPrinter::
792 getDebugValueLocation(const MachineInstr *MI) const {
793   // Target specific DBG_VALUE instructions are handled by each target.
794   return MachineLocation();
795 }
796
797 /// EmitDwarfRegOp - Emit dwarf register operation.
798 void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const {
799   const TargetRegisterInfo *TRI = TM.getRegisterInfo();
800   int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false);
801
802   for (MCSuperRegIterator SR(MLoc.getReg(), TRI); SR.isValid() && Reg < 0;
803        ++SR) {
804     Reg = TRI->getDwarfRegNum(*SR, false);
805     // FIXME: Get the bit range this register uses of the superregister
806     // so that we can produce a DW_OP_bit_piece
807   }
808
809   // FIXME: Handle cases like a super register being encoded as
810   // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33
811
812   // FIXME: We have no reasonable way of handling errors in here. The
813   // caller might be in the middle of an dwarf expression. We should
814   // probably assert that Reg >= 0 once debug info generation is more mature.
815
816   if (int Offset =  MLoc.getOffset()) {
817     if (Reg < 32) {
818       OutStreamer.AddComment(
819         dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg));
820       EmitInt8(dwarf::DW_OP_breg0 + Reg);
821     } else {
822       OutStreamer.AddComment("DW_OP_bregx");
823       EmitInt8(dwarf::DW_OP_bregx);
824       OutStreamer.AddComment(Twine(Reg));
825       EmitULEB128(Reg);
826     }
827     EmitSLEB128(Offset);
828   } else {
829     if (Reg < 32) {
830       OutStreamer.AddComment(
831         dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg));
832       EmitInt8(dwarf::DW_OP_reg0 + Reg);
833     } else {
834       OutStreamer.AddComment("DW_OP_regx");
835       EmitInt8(dwarf::DW_OP_regx);
836       OutStreamer.AddComment(Twine(Reg));
837       EmitULEB128(Reg);
838     }
839   }
840
841   // FIXME: Produce a DW_OP_bit_piece if we used a superregister
842 }
843
844 bool AsmPrinter::doFinalization(Module &M) {
845   // Emit global variables.
846   for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
847        I != E; ++I)
848     EmitGlobalVariable(I);
849
850   // Emit visibility info for declarations
851   for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
852     const Function &F = *I;
853     if (!F.isDeclaration())
854       continue;
855     GlobalValue::VisibilityTypes V = F.getVisibility();
856     if (V == GlobalValue::DefaultVisibility)
857       continue;
858
859     MCSymbol *Name = Mang->getSymbol(&F);
860     EmitVisibility(Name, V, false);
861   }
862
863   // Emit module flags.
864   SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
865   M.getModuleFlagsMetadata(ModuleFlags);
866   if (!ModuleFlags.empty())
867     getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, Mang, TM);
868
869   // Finalize debug and EH information.
870   if (DE) {
871     {
872       NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
873       DE->EndModule();
874     }
875     delete DE; DE = 0;
876   }
877   if (DD) {
878     {
879       NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
880       DD->endModule();
881     }
882     delete DD; DD = 0;
883   }
884
885   // If the target wants to know about weak references, print them all.
886   if (MAI->getWeakRefDirective()) {
887     // FIXME: This is not lazy, it would be nice to only print weak references
888     // to stuff that is actually used.  Note that doing so would require targets
889     // to notice uses in operands (due to constant exprs etc).  This should
890     // happen with the MC stuff eventually.
891
892     // Print out module-level global variables here.
893     for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
894          I != E; ++I) {
895       if (!I->hasExternalWeakLinkage()) continue;
896       OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
897     }
898
899     for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
900       if (!I->hasExternalWeakLinkage()) continue;
901       OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
902     }
903   }
904
905   if (MAI->hasSetDirective()) {
906     OutStreamer.AddBlankLine();
907     for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
908          I != E; ++I) {
909       MCSymbol *Name = Mang->getSymbol(I);
910
911       const GlobalValue *GV = I->getAliasedGlobal();
912       MCSymbol *Target = Mang->getSymbol(GV);
913
914       if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
915         OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
916       else if (I->hasWeakLinkage())
917         OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
918       else
919         assert(I->hasLocalLinkage() && "Invalid alias linkage");
920
921       EmitVisibility(Name, I->getVisibility());
922
923       // Emit the directives as assignments aka .set:
924       OutStreamer.EmitAssignment(Name,
925                                  MCSymbolRefExpr::Create(Target, OutContext));
926     }
927   }
928
929   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
930   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
931   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
932     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
933       MP->finishAssembly(*this);
934
935   // If we don't have any trampolines, then we don't require stack memory
936   // to be executable. Some targets have a directive to declare this.
937   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
938   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
939     if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
940       OutStreamer.SwitchSection(S);
941
942   // Allow the target to emit any magic that it wants at the end of the file,
943   // after everything else has gone out.
944   EmitEndOfAsmFile(M);
945
946   delete Mang; Mang = 0;
947   MMI = 0;
948
949   OutStreamer.Finish();
950   OutStreamer.reset();
951
952   return false;
953 }
954
955 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
956   this->MF = &MF;
957   // Get the function symbol.
958   CurrentFnSym = Mang->getSymbol(MF.getFunction());
959   CurrentFnSymForSize = CurrentFnSym;
960
961   if (isVerbose())
962     LI = &getAnalysis<MachineLoopInfo>();
963 }
964
965 namespace {
966   // SectionCPs - Keep track the alignment, constpool entries per Section.
967   struct SectionCPs {
968     const MCSection *S;
969     unsigned Alignment;
970     SmallVector<unsigned, 4> CPEs;
971     SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
972   };
973 }
974
975 /// EmitConstantPool - Print to the current output stream assembly
976 /// representations of the constants in the constant pool MCP. This is
977 /// used to print out constants which have been "spilled to memory" by
978 /// the code generator.
979 ///
980 void AsmPrinter::EmitConstantPool() {
981   const MachineConstantPool *MCP = MF->getConstantPool();
982   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
983   if (CP.empty()) return;
984
985   // Calculate sections for constant pool entries. We collect entries to go into
986   // the same section together to reduce amount of section switch statements.
987   SmallVector<SectionCPs, 4> CPSections;
988   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
989     const MachineConstantPoolEntry &CPE = CP[i];
990     unsigned Align = CPE.getAlignment();
991
992     SectionKind Kind;
993     switch (CPE.getRelocationInfo()) {
994     default: llvm_unreachable("Unknown section kind");
995     case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
996     case 1:
997       Kind = SectionKind::getReadOnlyWithRelLocal();
998       break;
999     case 0:
1000     switch (TM.getDataLayout()->getTypeAllocSize(CPE.getType())) {
1001     case 4:  Kind = SectionKind::getMergeableConst4(); break;
1002     case 8:  Kind = SectionKind::getMergeableConst8(); break;
1003     case 16: Kind = SectionKind::getMergeableConst16();break;
1004     default: Kind = SectionKind::getMergeableConst(); break;
1005     }
1006     }
1007
1008     const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
1009
1010     // The number of sections are small, just do a linear search from the
1011     // last section to the first.
1012     bool Found = false;
1013     unsigned SecIdx = CPSections.size();
1014     while (SecIdx != 0) {
1015       if (CPSections[--SecIdx].S == S) {
1016         Found = true;
1017         break;
1018       }
1019     }
1020     if (!Found) {
1021       SecIdx = CPSections.size();
1022       CPSections.push_back(SectionCPs(S, Align));
1023     }
1024
1025     if (Align > CPSections[SecIdx].Alignment)
1026       CPSections[SecIdx].Alignment = Align;
1027     CPSections[SecIdx].CPEs.push_back(i);
1028   }
1029
1030   // Now print stuff into the calculated sections.
1031   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1032     OutStreamer.SwitchSection(CPSections[i].S);
1033     EmitAlignment(Log2_32(CPSections[i].Alignment));
1034
1035     unsigned Offset = 0;
1036     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1037       unsigned CPI = CPSections[i].CPEs[j];
1038       MachineConstantPoolEntry CPE = CP[CPI];
1039
1040       // Emit inter-object padding for alignment.
1041       unsigned AlignMask = CPE.getAlignment() - 1;
1042       unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1043       OutStreamer.EmitFill(NewOffset - Offset, 0/*fillval*/, 0/*addrspace*/);
1044
1045       Type *Ty = CPE.getType();
1046       Offset = NewOffset + TM.getDataLayout()->getTypeAllocSize(Ty);
1047       OutStreamer.EmitLabel(GetCPISymbol(CPI));
1048
1049       if (CPE.isMachineConstantPoolEntry())
1050         EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1051       else
1052         EmitGlobalConstant(CPE.Val.ConstVal);
1053     }
1054   }
1055 }
1056
1057 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1058 /// by the current function to the current output stream.
1059 ///
1060 void AsmPrinter::EmitJumpTableInfo() {
1061   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1062   if (MJTI == 0) return;
1063   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1064   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1065   if (JT.empty()) return;
1066
1067   // Pick the directive to use to print the jump table entries, and switch to
1068   // the appropriate section.
1069   const Function *F = MF->getFunction();
1070   bool JTInDiffSection = false;
1071   if (// In PIC mode, we need to emit the jump table to the same section as the
1072       // function body itself, otherwise the label differences won't make sense.
1073       // FIXME: Need a better predicate for this: what about custom entries?
1074       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
1075       // We should also do if the section name is NULL or function is declared
1076       // in discardable section
1077       // FIXME: this isn't the right predicate, should be based on the MCSection
1078       // for the function.
1079       F->isWeakForLinker()) {
1080     OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM));
1081   } else {
1082     // Otherwise, drop it in the readonly section.
1083     const MCSection *ReadOnlySection =
1084       getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
1085     OutStreamer.SwitchSection(ReadOnlySection);
1086     JTInDiffSection = true;
1087   }
1088
1089   EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getDataLayout())));
1090
1091   // Jump tables in code sections are marked with a data_region directive
1092   // where that's supported.
1093   if (!JTInDiffSection)
1094     OutStreamer.EmitDataRegion(MCDR_DataRegionJT32);
1095
1096   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1097     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1098
1099     // If this jump table was deleted, ignore it.
1100     if (JTBBs.empty()) continue;
1101
1102     // For the EK_LabelDifference32 entry, if the target supports .set, emit a
1103     // .set directive for each unique entry.  This reduces the number of
1104     // relocations the assembler will generate for the jump table.
1105     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1106         MAI->hasSetDirective()) {
1107       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1108       const TargetLowering *TLI = TM.getTargetLowering();
1109       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1110       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1111         const MachineBasicBlock *MBB = JTBBs[ii];
1112         if (!EmittedSets.insert(MBB)) continue;
1113
1114         // .set LJTSet, LBB32-base
1115         const MCExpr *LHS =
1116           MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1117         OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1118                                 MCBinaryExpr::CreateSub(LHS, Base, OutContext));
1119       }
1120     }
1121
1122     // On some targets (e.g. Darwin) we want to emit two consecutive labels
1123     // before each jump table.  The first label is never referenced, but tells
1124     // the assembler and linker the extents of the jump table object.  The
1125     // second label is actually referenced by the code.
1126     if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0])
1127       // FIXME: This doesn't have to have any specific name, just any randomly
1128       // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1129       OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
1130
1131     OutStreamer.EmitLabel(GetJTISymbol(JTI));
1132
1133     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1134       EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1135   }
1136   if (!JTInDiffSection)
1137     OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
1138 }
1139
1140 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1141 /// current stream.
1142 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1143                                     const MachineBasicBlock *MBB,
1144                                     unsigned UID) const {
1145   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1146   const MCExpr *Value = 0;
1147   switch (MJTI->getEntryKind()) {
1148   case MachineJumpTableInfo::EK_Inline:
1149     llvm_unreachable("Cannot emit EK_Inline jump table entry");
1150   case MachineJumpTableInfo::EK_Custom32:
1151     Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID,
1152                                                               OutContext);
1153     break;
1154   case MachineJumpTableInfo::EK_BlockAddress:
1155     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1156     //     .word LBB123
1157     Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1158     break;
1159   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1160     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1161     // with a relocation as gp-relative, e.g.:
1162     //     .gprel32 LBB123
1163     MCSymbol *MBBSym = MBB->getSymbol();
1164     OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1165     return;
1166   }
1167
1168   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1169     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1170     // with a relocation as gp-relative, e.g.:
1171     //     .gpdword LBB123
1172     MCSymbol *MBBSym = MBB->getSymbol();
1173     OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1174     return;
1175   }
1176
1177   case MachineJumpTableInfo::EK_LabelDifference32: {
1178     // EK_LabelDifference32 - Each entry is the address of the block minus
1179     // the address of the jump table.  This is used for PIC jump tables where
1180     // gprel32 is not supported.  e.g.:
1181     //      .word LBB123 - LJTI1_2
1182     // If the .set directive is supported, this is emitted as:
1183     //      .set L4_5_set_123, LBB123 - LJTI1_2
1184     //      .word L4_5_set_123
1185
1186     // If we have emitted set directives for the jump table entries, print
1187     // them rather than the entries themselves.  If we're emitting PIC, then
1188     // emit the table entries as differences between two text section labels.
1189     if (MAI->hasSetDirective()) {
1190       // If we used .set, reference the .set's symbol.
1191       Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
1192                                       OutContext);
1193       break;
1194     }
1195     // Otherwise, use the difference as the jump table entry.
1196     Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1197     const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext);
1198     Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext);
1199     break;
1200   }
1201   }
1202
1203   assert(Value && "Unknown entry kind!");
1204
1205   unsigned EntrySize = MJTI->getEntrySize(*TM.getDataLayout());
1206   OutStreamer.EmitValue(Value, EntrySize, /*addrspace*/0);
1207 }
1208
1209
1210 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1211 /// special global used by LLVM.  If so, emit it and return true, otherwise
1212 /// do nothing and return false.
1213 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1214   if (GV->getName() == "llvm.used") {
1215     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1216       EmitLLVMUsedList(GV->getInitializer());
1217     return true;
1218   }
1219
1220   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1221   if (GV->getSection() == "llvm.metadata" ||
1222       GV->hasAvailableExternallyLinkage())
1223     return true;
1224
1225   if (!GV->hasAppendingLinkage()) return false;
1226
1227   assert(GV->hasInitializer() && "Not a special LLVM global!");
1228
1229   if (GV->getName() == "llvm.global_ctors") {
1230     EmitXXStructorList(GV->getInitializer(), /* isCtor */ true);
1231
1232     if (TM.getRelocationModel() == Reloc::Static &&
1233         MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1234       StringRef Sym(".constructors_used");
1235       OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1236                                       MCSA_Reference);
1237     }
1238     return true;
1239   }
1240
1241   if (GV->getName() == "llvm.global_dtors") {
1242     EmitXXStructorList(GV->getInitializer(), /* isCtor */ false);
1243
1244     if (TM.getRelocationModel() == Reloc::Static &&
1245         MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1246       StringRef Sym(".destructors_used");
1247       OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1248                                       MCSA_Reference);
1249     }
1250     return true;
1251   }
1252
1253   return false;
1254 }
1255
1256 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1257 /// global in the specified llvm.used list for which emitUsedDirectiveFor
1258 /// is true, as being used with this directive.
1259 void AsmPrinter::EmitLLVMUsedList(const Constant *List) {
1260   // Should be an array of 'i8*'.
1261   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1262   if (InitList == 0) return;
1263
1264   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1265     const GlobalValue *GV =
1266       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1267     if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang))
1268       OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip);
1269   }
1270 }
1271
1272 typedef std::pair<unsigned, Constant*> Structor;
1273
1274 static bool priority_order(const Structor& lhs, const Structor& rhs) {
1275   return lhs.first < rhs.first;
1276 }
1277
1278 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1279 /// priority.
1280 void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
1281   // Should be an array of '{ int, void ()* }' structs.  The first value is the
1282   // init priority.
1283   if (!isa<ConstantArray>(List)) return;
1284
1285   // Sanity check the structors list.
1286   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1287   if (!InitList) return; // Not an array!
1288   StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1289   if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs!
1290   if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1291       !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1292
1293   // Gather the structors in a form that's convenient for sorting by priority.
1294   SmallVector<Structor, 8> Structors;
1295   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1296     ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
1297     if (!CS) continue; // Malformed.
1298     if (CS->getOperand(1)->isNullValue())
1299       break;  // Found a null terminator, skip the rest.
1300     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1301     if (!Priority) continue; // Malformed.
1302     Structors.push_back(std::make_pair(Priority->getLimitedValue(65535),
1303                                        CS->getOperand(1)));
1304   }
1305
1306   // Emit the function pointers in the target-specific order
1307   const DataLayout *TD = TM.getDataLayout();
1308   unsigned Align = Log2_32(TD->getPointerPrefAlignment());
1309   std::stable_sort(Structors.begin(), Structors.end(), priority_order);
1310   for (unsigned i = 0, e = Structors.size(); i != e; ++i) {
1311     const MCSection *OutputSection =
1312       (isCtor ?
1313        getObjFileLowering().getStaticCtorSection(Structors[i].first) :
1314        getObjFileLowering().getStaticDtorSection(Structors[i].first));
1315     OutStreamer.SwitchSection(OutputSection);
1316     if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection())
1317       EmitAlignment(Align);
1318     EmitXXStructor(Structors[i].second);
1319   }
1320 }
1321
1322 //===--------------------------------------------------------------------===//
1323 // Emission and print routines
1324 //
1325
1326 /// EmitInt8 - Emit a byte directive and value.
1327 ///
1328 void AsmPrinter::EmitInt8(int Value) const {
1329   OutStreamer.EmitIntValue(Value, 1, 0/*addrspace*/);
1330 }
1331
1332 /// EmitInt16 - Emit a short directive and value.
1333 ///
1334 void AsmPrinter::EmitInt16(int Value) const {
1335   OutStreamer.EmitIntValue(Value, 2, 0/*addrspace*/);
1336 }
1337
1338 /// EmitInt32 - Emit a long directive and value.
1339 ///
1340 void AsmPrinter::EmitInt32(int Value) const {
1341   OutStreamer.EmitIntValue(Value, 4, 0/*addrspace*/);
1342 }
1343
1344 /// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size
1345 /// in bytes of the directive is specified by Size and Hi/Lo specify the
1346 /// labels.  This implicitly uses .set if it is available.
1347 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1348                                      unsigned Size) const {
1349   // Get the Hi-Lo expression.
1350   const MCExpr *Diff =
1351     MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
1352                             MCSymbolRefExpr::Create(Lo, OutContext),
1353                             OutContext);
1354
1355   if (!MAI->hasSetDirective()) {
1356     OutStreamer.EmitValue(Diff, Size, 0/*AddrSpace*/);
1357     return;
1358   }
1359
1360   // Otherwise, emit with .set (aka assignment).
1361   MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1362   OutStreamer.EmitAssignment(SetLabel, Diff);
1363   OutStreamer.EmitSymbolValue(SetLabel, Size, 0/*AddrSpace*/);
1364 }
1365
1366 /// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo"
1367 /// where the size in bytes of the directive is specified by Size and Hi/Lo
1368 /// specify the labels.  This implicitly uses .set if it is available.
1369 void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
1370                                            const MCSymbol *Lo, unsigned Size)
1371   const {
1372
1373   // Emit Hi+Offset - Lo
1374   // Get the Hi+Offset expression.
1375   const MCExpr *Plus =
1376     MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext),
1377                             MCConstantExpr::Create(Offset, OutContext),
1378                             OutContext);
1379
1380   // Get the Hi+Offset-Lo expression.
1381   const MCExpr *Diff =
1382     MCBinaryExpr::CreateSub(Plus,
1383                             MCSymbolRefExpr::Create(Lo, OutContext),
1384                             OutContext);
1385
1386   if (!MAI->hasSetDirective())
1387     OutStreamer.EmitValue(Diff, 4, 0/*AddrSpace*/);
1388   else {
1389     // Otherwise, emit with .set (aka assignment).
1390     MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1391     OutStreamer.EmitAssignment(SetLabel, Diff);
1392     OutStreamer.EmitSymbolValue(SetLabel, 4, 0/*AddrSpace*/);
1393   }
1394 }
1395
1396 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1397 /// where the size in bytes of the directive is specified by Size and Label
1398 /// specifies the label.  This implicitly uses .set if it is available.
1399 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1400                                       unsigned Size)
1401   const {
1402
1403   // Emit Label+Offset (or just Label if Offset is zero)
1404   const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext);
1405   if (Offset)
1406     Expr = MCBinaryExpr::CreateAdd(Expr,
1407                                    MCConstantExpr::Create(Offset, OutContext),
1408                                    OutContext);
1409
1410   OutStreamer.EmitValue(Expr, Size, 0/*AddrSpace*/);
1411 }
1412
1413
1414 //===----------------------------------------------------------------------===//
1415
1416 // EmitAlignment - Emit an alignment directive to the specified power of
1417 // two boundary.  For example, if you pass in 3 here, you will get an 8
1418 // byte alignment.  If a global value is specified, and if that global has
1419 // an explicit alignment requested, it will override the alignment request
1420 // if required for correctness.
1421 //
1422 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const {
1423   if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(), NumBits);
1424
1425   if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
1426
1427   if (getCurrentSection()->getKind().isText())
1428     OutStreamer.EmitCodeAlignment(1 << NumBits);
1429   else
1430     OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0);
1431 }
1432
1433 //===----------------------------------------------------------------------===//
1434 // Constant emission.
1435 //===----------------------------------------------------------------------===//
1436
1437 /// lowerConstant - Lower the specified LLVM Constant to an MCExpr.
1438 ///
1439 static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) {
1440   MCContext &Ctx = AP.OutContext;
1441
1442   if (CV->isNullValue() || isa<UndefValue>(CV))
1443     return MCConstantExpr::Create(0, Ctx);
1444
1445   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1446     return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
1447
1448   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1449     return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx);
1450
1451   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1452     return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
1453
1454   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1455   if (CE == 0) {
1456     llvm_unreachable("Unknown constant value to lower!");
1457   }
1458
1459   switch (CE->getOpcode()) {
1460   default:
1461     // If the code isn't optimized, there may be outstanding folding
1462     // opportunities. Attempt to fold the expression using DataLayout as a
1463     // last resort before giving up.
1464     if (Constant *C =
1465           ConstantFoldConstantExpression(CE, AP.TM.getDataLayout()))
1466       if (C != CE)
1467         return lowerConstant(C, AP);
1468
1469     // Otherwise report the problem to the user.
1470     {
1471       std::string S;
1472       raw_string_ostream OS(S);
1473       OS << "Unsupported expression in static initializer: ";
1474       WriteAsOperand(OS, CE, /*PrintType=*/false,
1475                      !AP.MF ? 0 : AP.MF->getFunction()->getParent());
1476       report_fatal_error(OS.str());
1477     }
1478   case Instruction::GetElementPtr: {
1479     const DataLayout &TD = *AP.TM.getDataLayout();
1480     // Generate a symbolic expression for the byte address
1481     APInt OffsetAI(TD.getPointerSizeInBits(), 0);
1482     cast<GEPOperator>(CE)->accumulateConstantOffset(TD, OffsetAI);
1483
1484     const MCExpr *Base = lowerConstant(CE->getOperand(0), AP);
1485     if (!OffsetAI)
1486       return Base;
1487
1488     int64_t Offset = OffsetAI.getSExtValue();
1489     return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
1490                                    Ctx);
1491   }
1492
1493   case Instruction::Trunc:
1494     // We emit the value and depend on the assembler to truncate the generated
1495     // expression properly.  This is important for differences between
1496     // blockaddress labels.  Since the two labels are in the same function, it
1497     // is reasonable to treat their delta as a 32-bit value.
1498     // FALL THROUGH.
1499   case Instruction::BitCast:
1500     return lowerConstant(CE->getOperand(0), AP);
1501
1502   case Instruction::IntToPtr: {
1503     const DataLayout &TD = *AP.TM.getDataLayout();
1504     // Handle casts to pointers by changing them into casts to the appropriate
1505     // integer type.  This promotes constant folding and simplifies this code.
1506     Constant *Op = CE->getOperand(0);
1507     Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
1508                                       false/*ZExt*/);
1509     return lowerConstant(Op, AP);
1510   }
1511
1512   case Instruction::PtrToInt: {
1513     const DataLayout &TD = *AP.TM.getDataLayout();
1514     // Support only foldable casts to/from pointers that can be eliminated by
1515     // changing the pointer to the appropriately sized integer type.
1516     Constant *Op = CE->getOperand(0);
1517     Type *Ty = CE->getType();
1518
1519     const MCExpr *OpExpr = lowerConstant(Op, AP);
1520
1521     // We can emit the pointer value into this slot if the slot is an
1522     // integer slot equal to the size of the pointer.
1523     if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
1524       return OpExpr;
1525
1526     // Otherwise the pointer is smaller than the resultant integer, mask off
1527     // the high bits so we are sure to get a proper truncation if the input is
1528     // a constant expr.
1529     unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
1530     const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
1531     return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
1532   }
1533
1534   // The MC library also has a right-shift operator, but it isn't consistently
1535   // signed or unsigned between different targets.
1536   case Instruction::Add:
1537   case Instruction::Sub:
1538   case Instruction::Mul:
1539   case Instruction::SDiv:
1540   case Instruction::SRem:
1541   case Instruction::Shl:
1542   case Instruction::And:
1543   case Instruction::Or:
1544   case Instruction::Xor: {
1545     const MCExpr *LHS = lowerConstant(CE->getOperand(0), AP);
1546     const MCExpr *RHS = lowerConstant(CE->getOperand(1), AP);
1547     switch (CE->getOpcode()) {
1548     default: llvm_unreachable("Unknown binary operator constant cast expr");
1549     case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
1550     case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
1551     case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
1552     case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
1553     case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
1554     case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
1555     case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
1556     case Instruction::Or:  return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
1557     case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
1558     }
1559   }
1560   }
1561 }
1562
1563 static void emitGlobalConstantImpl(const Constant *C, unsigned AddrSpace,
1564                                    AsmPrinter &AP);
1565
1566 /// isRepeatedByteSequence - Determine whether the given value is
1567 /// composed of a repeated sequence of identical bytes and return the
1568 /// byte value.  If it is not a repeated sequence, return -1.
1569 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
1570   StringRef Data = V->getRawDataValues();
1571   assert(!Data.empty() && "Empty aggregates should be CAZ node");
1572   char C = Data[0];
1573   for (unsigned i = 1, e = Data.size(); i != e; ++i)
1574     if (Data[i] != C) return -1;
1575   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
1576 }
1577
1578
1579 /// isRepeatedByteSequence - Determine whether the given value is
1580 /// composed of a repeated sequence of identical bytes and return the
1581 /// byte value.  If it is not a repeated sequence, return -1.
1582 static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
1583
1584   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1585     if (CI->getBitWidth() > 64) return -1;
1586
1587     uint64_t Size = TM.getDataLayout()->getTypeAllocSize(V->getType());
1588     uint64_t Value = CI->getZExtValue();
1589
1590     // Make sure the constant is at least 8 bits long and has a power
1591     // of 2 bit width.  This guarantees the constant bit width is
1592     // always a multiple of 8 bits, avoiding issues with padding out
1593     // to Size and other such corner cases.
1594     if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
1595
1596     uint8_t Byte = static_cast<uint8_t>(Value);
1597
1598     for (unsigned i = 1; i < Size; ++i) {
1599       Value >>= 8;
1600       if (static_cast<uint8_t>(Value) != Byte) return -1;
1601     }
1602     return Byte;
1603   }
1604   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1605     // Make sure all array elements are sequences of the same repeated
1606     // byte.
1607     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
1608     int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
1609     if (Byte == -1) return -1;
1610
1611     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1612       int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
1613       if (ThisByte == -1) return -1;
1614       if (Byte != ThisByte) return -1;
1615     }
1616     return Byte;
1617   }
1618
1619   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
1620     return isRepeatedByteSequence(CDS);
1621
1622   return -1;
1623 }
1624
1625 static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
1626                                              unsigned AddrSpace,AsmPrinter &AP){
1627
1628   // See if we can aggregate this into a .fill, if so, emit it as such.
1629   int Value = isRepeatedByteSequence(CDS, AP.TM);
1630   if (Value != -1) {
1631     uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CDS->getType());
1632     // Don't emit a 1-byte object as a .fill.
1633     if (Bytes > 1)
1634       return AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
1635   }
1636
1637   // If this can be emitted with .ascii/.asciz, emit it as such.
1638   if (CDS->isString())
1639     return AP.OutStreamer.EmitBytes(CDS->getAsString(), AddrSpace);
1640
1641   // Otherwise, emit the values in successive locations.
1642   unsigned ElementByteSize = CDS->getElementByteSize();
1643   if (isa<IntegerType>(CDS->getElementType())) {
1644     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1645       if (AP.isVerbose())
1646         AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1647                                                 CDS->getElementAsInteger(i));
1648       AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i),
1649                                   ElementByteSize, AddrSpace);
1650     }
1651   } else if (ElementByteSize == 4) {
1652     // FP Constants are printed as integer constants to avoid losing
1653     // precision.
1654     assert(CDS->getElementType()->isFloatTy());
1655     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1656       union {
1657         float F;
1658         uint32_t I;
1659       };
1660
1661       F = CDS->getElementAsFloat(i);
1662       if (AP.isVerbose())
1663         AP.OutStreamer.GetCommentOS() << "float " << F << '\n';
1664       AP.OutStreamer.EmitIntValue(I, 4, AddrSpace);
1665     }
1666   } else {
1667     assert(CDS->getElementType()->isDoubleTy());
1668     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1669       union {
1670         double F;
1671         uint64_t I;
1672       };
1673
1674       F = CDS->getElementAsDouble(i);
1675       if (AP.isVerbose())
1676         AP.OutStreamer.GetCommentOS() << "double " << F << '\n';
1677       AP.OutStreamer.EmitIntValue(I, 8, AddrSpace);
1678     }
1679   }
1680
1681   const DataLayout &TD = *AP.TM.getDataLayout();
1682   unsigned Size = TD.getTypeAllocSize(CDS->getType());
1683   unsigned EmittedSize = TD.getTypeAllocSize(CDS->getType()->getElementType()) *
1684                         CDS->getNumElements();
1685   if (unsigned Padding = Size - EmittedSize)
1686     AP.OutStreamer.EmitZeros(Padding, AddrSpace);
1687
1688 }
1689
1690 static void emitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace,
1691                                     AsmPrinter &AP) {
1692   // See if we can aggregate some values.  Make sure it can be
1693   // represented as a series of bytes of the constant value.
1694   int Value = isRepeatedByteSequence(CA, AP.TM);
1695
1696   if (Value != -1) {
1697     uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CA->getType());
1698     AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
1699   }
1700   else {
1701     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1702       emitGlobalConstantImpl(CA->getOperand(i), AddrSpace, AP);
1703   }
1704 }
1705
1706 static void emitGlobalConstantVector(const ConstantVector *CV,
1707                                      unsigned AddrSpace, AsmPrinter &AP) {
1708   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
1709     emitGlobalConstantImpl(CV->getOperand(i), AddrSpace, AP);
1710
1711   const DataLayout &TD = *AP.TM.getDataLayout();
1712   unsigned Size = TD.getTypeAllocSize(CV->getType());
1713   unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) *
1714                          CV->getType()->getNumElements();
1715   if (unsigned Padding = Size - EmittedSize)
1716     AP.OutStreamer.EmitZeros(Padding, AddrSpace);
1717 }
1718
1719 static void emitGlobalConstantStruct(const ConstantStruct *CS,
1720                                      unsigned AddrSpace, AsmPrinter &AP) {
1721   // Print the fields in successive locations. Pad to align if needed!
1722   const DataLayout *TD = AP.TM.getDataLayout();
1723   unsigned Size = TD->getTypeAllocSize(CS->getType());
1724   const StructLayout *Layout = TD->getStructLayout(CS->getType());
1725   uint64_t SizeSoFar = 0;
1726   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
1727     const Constant *Field = CS->getOperand(i);
1728
1729     // Check if padding is needed and insert one or more 0s.
1730     uint64_t FieldSize = TD->getTypeAllocSize(Field->getType());
1731     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
1732                         - Layout->getElementOffset(i)) - FieldSize;
1733     SizeSoFar += FieldSize + PadSize;
1734
1735     // Now print the actual field value.
1736     emitGlobalConstantImpl(Field, AddrSpace, AP);
1737
1738     // Insert padding - this may include padding to increase the size of the
1739     // current field up to the ABI size (if the struct is not packed) as well
1740     // as padding to ensure that the next field starts at the right offset.
1741     AP.OutStreamer.EmitZeros(PadSize, AddrSpace);
1742   }
1743   assert(SizeSoFar == Layout->getSizeInBytes() &&
1744          "Layout of constant struct may be incorrect!");
1745 }
1746
1747 static void emitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace,
1748                                  AsmPrinter &AP) {
1749   if (CFP->getType()->isHalfTy()) {
1750     if (AP.isVerbose()) {
1751       SmallString<10> Str;
1752       CFP->getValueAPF().toString(Str);
1753       AP.OutStreamer.GetCommentOS() << "half " << Str << '\n';
1754     }
1755     uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1756     AP.OutStreamer.EmitIntValue(Val, 2, AddrSpace);
1757     return;
1758   }
1759
1760   if (CFP->getType()->isFloatTy()) {
1761     if (AP.isVerbose()) {
1762       float Val = CFP->getValueAPF().convertToFloat();
1763       uint64_t IntVal = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1764       AP.OutStreamer.GetCommentOS() << "float " << Val << '\n'
1765                                     << " (" << format("0x%x", IntVal) << ")\n";
1766     }
1767     uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1768     AP.OutStreamer.EmitIntValue(Val, 4, AddrSpace);
1769     return;
1770   }
1771
1772   // FP Constants are printed as integer constants to avoid losing
1773   // precision.
1774   if (CFP->getType()->isDoubleTy()) {
1775     if (AP.isVerbose()) {
1776       double Val = CFP->getValueAPF().convertToDouble();
1777       uint64_t IntVal = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1778       AP.OutStreamer.GetCommentOS() << "double " << Val << '\n'
1779                                     << " (" << format("0x%lx", IntVal) << ")\n";
1780     }
1781
1782     uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1783     AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
1784     return;
1785   }
1786
1787   if (CFP->getType()->isX86_FP80Ty() || CFP->getType()->isFP128Ty()) {
1788     // all long double variants are printed as hex
1789     // API needed to prevent premature destruction
1790     APInt API = CFP->getValueAPF().bitcastToAPInt();
1791     const uint64_t *p = API.getRawData();
1792     if (AP.isVerbose()) {
1793       // Convert to double so we can print the approximate val as a comment.
1794       SmallString<8> StrVal;
1795       CFP->getValueAPF().toString(StrVal);
1796
1797       const char *TyNote = CFP->getType()->isFP128Ty() ? "fp128 " : "x86_fp80 ";
1798       AP.OutStreamer.GetCommentOS() << TyNote << StrVal << '\n';
1799     }
1800
1801     // The 80-bit type is made of a 64-bit and 16-bit value, the 128-bit has 2
1802     // 64-bit words.
1803     uint32_t TrailingSize = CFP->getType()->isFP128Ty() ? 8 : 2;
1804
1805     if (AP.TM.getDataLayout()->isBigEndian()) {
1806       AP.OutStreamer.EmitIntValue(p[1], TrailingSize, AddrSpace);
1807       AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1808     } else {
1809       AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1810       AP.OutStreamer.EmitIntValue(p[1], TrailingSize, AddrSpace);
1811     }
1812
1813     // Emit the tail padding for the long double.
1814     const DataLayout &TD = *AP.TM.getDataLayout();
1815     AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) -
1816                              TD.getTypeStoreSize(CFP->getType()), AddrSpace);
1817     return;
1818   }
1819
1820   assert(CFP->getType()->isPPC_FP128Ty() &&
1821          "Floating point constant type not handled");
1822   // All long double variants are printed as hex
1823   // API needed to prevent premature destruction.
1824   APInt API = CFP->getValueAPF().bitcastToAPInt();
1825   const uint64_t *p = API.getRawData();
1826   if (AP.TM.getDataLayout()->isBigEndian()) {
1827     AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1828     AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
1829   } else {
1830     AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
1831     AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1832   }
1833 }
1834
1835 static void emitGlobalConstantLargeInt(const ConstantInt *CI,
1836                                        unsigned AddrSpace, AsmPrinter &AP) {
1837   const DataLayout *TD = AP.TM.getDataLayout();
1838   unsigned BitWidth = CI->getBitWidth();
1839   assert((BitWidth & 63) == 0 && "only support multiples of 64-bits");
1840
1841   // We don't expect assemblers to support integer data directives
1842   // for more than 64 bits, so we emit the data in at most 64-bit
1843   // quantities at a time.
1844   const uint64_t *RawData = CI->getValue().getRawData();
1845   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1846     uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i];
1847     AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
1848   }
1849 }
1850
1851 static void emitGlobalConstantImpl(const Constant *CV, unsigned AddrSpace,
1852                                    AsmPrinter &AP) {
1853   const DataLayout *TD = AP.TM.getDataLayout();
1854   uint64_t Size = TD->getTypeAllocSize(CV->getType());
1855   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
1856     return AP.OutStreamer.EmitZeros(Size, AddrSpace);
1857
1858   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1859     switch (Size) {
1860     case 1:
1861     case 2:
1862     case 4:
1863     case 8:
1864       if (AP.isVerbose())
1865         AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1866                                                 CI->getZExtValue());
1867       AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace);
1868       return;
1869     default:
1870       emitGlobalConstantLargeInt(CI, AddrSpace, AP);
1871       return;
1872     }
1873   }
1874
1875   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
1876     return emitGlobalConstantFP(CFP, AddrSpace, AP);
1877
1878   if (isa<ConstantPointerNull>(CV)) {
1879     AP.OutStreamer.EmitIntValue(0, Size, AddrSpace);
1880     return;
1881   }
1882
1883   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
1884     return emitGlobalConstantDataSequential(CDS, AddrSpace, AP);
1885
1886   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
1887     return emitGlobalConstantArray(CVA, AddrSpace, AP);
1888
1889   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
1890     return emitGlobalConstantStruct(CVS, AddrSpace, AP);
1891
1892   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1893     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
1894     // vectors).
1895     if (CE->getOpcode() == Instruction::BitCast)
1896       return emitGlobalConstantImpl(CE->getOperand(0), AddrSpace, AP);
1897
1898     if (Size > 8) {
1899       // If the constant expression's size is greater than 64-bits, then we have
1900       // to emit the value in chunks. Try to constant fold the value and emit it
1901       // that way.
1902       Constant *New = ConstantFoldConstantExpression(CE, TD);
1903       if (New && New != CE)
1904         return emitGlobalConstantImpl(New, AddrSpace, AP);
1905     }
1906   }
1907
1908   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
1909     return emitGlobalConstantVector(V, AddrSpace, AP);
1910
1911   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
1912   // thread the streamer with EmitValue.
1913   AP.OutStreamer.EmitValue(lowerConstant(CV, AP), Size, AddrSpace);
1914 }
1915
1916 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1917 void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1918   uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType());
1919   if (Size)
1920     emitGlobalConstantImpl(CV, AddrSpace, *this);
1921   else if (MAI->hasSubsectionsViaSymbols()) {
1922     // If the global has zero size, emit a single byte so that two labels don't
1923     // look like they are at the same location.
1924     OutStreamer.EmitIntValue(0, 1, AddrSpace);
1925   }
1926 }
1927
1928 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1929   // Target doesn't support this yet!
1930   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1931 }
1932
1933 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
1934   if (Offset > 0)
1935     OS << '+' << Offset;
1936   else if (Offset < 0)
1937     OS << Offset;
1938 }
1939
1940 //===----------------------------------------------------------------------===//
1941 // Symbol Lowering Routines.
1942 //===----------------------------------------------------------------------===//
1943
1944 /// GetTempSymbol - Return the MCSymbol corresponding to the assembler
1945 /// temporary label with the specified stem and unique ID.
1946 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const {
1947   return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) +
1948                                       Name + Twine(ID));
1949 }
1950
1951 /// GetTempSymbol - Return an assembler temporary label with the specified
1952 /// stem.
1953 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const {
1954   return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+
1955                                       Name);
1956 }
1957
1958
1959 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
1960   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
1961 }
1962
1963 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
1964   return MMI->getAddrLabelSymbol(BB);
1965 }
1966
1967 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
1968 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
1969   return OutContext.GetOrCreateSymbol
1970     (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
1971      + "_" + Twine(CPID));
1972 }
1973
1974 /// GetJTISymbol - Return the symbol for the specified jump table entry.
1975 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
1976   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
1977 }
1978
1979 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
1980 /// FIXME: privatize to AsmPrinter.
1981 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
1982   return OutContext.GetOrCreateSymbol
1983   (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
1984    Twine(UID) + "_set_" + Twine(MBBID));
1985 }
1986
1987 /// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with
1988 /// global value name as its base, with the specified suffix, and where the
1989 /// symbol is forced to have private linkage if ForcePrivate is true.
1990 MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV,
1991                                                    StringRef Suffix,
1992                                                    bool ForcePrivate) const {
1993   SmallString<60> NameStr;
1994   Mang->getNameWithPrefix(NameStr, GV, ForcePrivate);
1995   NameStr.append(Suffix.begin(), Suffix.end());
1996   return OutContext.GetOrCreateSymbol(NameStr.str());
1997 }
1998
1999 /// GetExternalSymbolSymbol - Return the MCSymbol for the specified
2000 /// ExternalSymbol.
2001 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2002   SmallString<60> NameStr;
2003   Mang->getNameWithPrefix(NameStr, Sym);
2004   return OutContext.GetOrCreateSymbol(NameStr.str());
2005 }
2006
2007
2008
2009 /// PrintParentLoopComment - Print comments about parent loops of this one.
2010 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2011                                    unsigned FunctionNumber) {
2012   if (Loop == 0) return;
2013   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2014   OS.indent(Loop->getLoopDepth()*2)
2015     << "Parent Loop BB" << FunctionNumber << "_"
2016     << Loop->getHeader()->getNumber()
2017     << " Depth=" << Loop->getLoopDepth() << '\n';
2018 }
2019
2020
2021 /// PrintChildLoopComment - Print comments about child loops within
2022 /// the loop for this basic block, with nesting.
2023 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2024                                   unsigned FunctionNumber) {
2025   // Add child loop information
2026   for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){
2027     OS.indent((*CL)->getLoopDepth()*2)
2028       << "Child Loop BB" << FunctionNumber << "_"
2029       << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth()
2030       << '\n';
2031     PrintChildLoopComment(OS, *CL, FunctionNumber);
2032   }
2033 }
2034
2035 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2036 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2037                                        const MachineLoopInfo *LI,
2038                                        const AsmPrinter &AP) {
2039   // Add loop depth information
2040   const MachineLoop *Loop = LI->getLoopFor(&MBB);
2041   if (Loop == 0) return;
2042
2043   MachineBasicBlock *Header = Loop->getHeader();
2044   assert(Header && "No header for loop");
2045
2046   // If this block is not a loop header, just print out what is the loop header
2047   // and return.
2048   if (Header != &MBB) {
2049     AP.OutStreamer.AddComment("  in Loop: Header=BB" +
2050                               Twine(AP.getFunctionNumber())+"_" +
2051                               Twine(Loop->getHeader()->getNumber())+
2052                               " Depth="+Twine(Loop->getLoopDepth()));
2053     return;
2054   }
2055
2056   // Otherwise, it is a loop header.  Print out information about child and
2057   // parent loops.
2058   raw_ostream &OS = AP.OutStreamer.GetCommentOS();
2059
2060   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2061
2062   OS << "=>";
2063   OS.indent(Loop->getLoopDepth()*2-2);
2064
2065   OS << "This ";
2066   if (Loop->empty())
2067     OS << "Inner ";
2068   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2069
2070   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2071 }
2072
2073
2074 /// EmitBasicBlockStart - This method prints the label for the specified
2075 /// MachineBasicBlock, an alignment (if present) and a comment describing
2076 /// it if appropriate.
2077 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
2078   // Emit an alignment directive for this block, if needed.
2079   if (unsigned Align = MBB->getAlignment())
2080     EmitAlignment(Align);
2081
2082   // If the block has its address taken, emit any labels that were used to
2083   // reference the block.  It is possible that there is more than one label
2084   // here, because multiple LLVM BB's may have been RAUW'd to this block after
2085   // the references were generated.
2086   if (MBB->hasAddressTaken()) {
2087     const BasicBlock *BB = MBB->getBasicBlock();
2088     if (isVerbose())
2089       OutStreamer.AddComment("Block address taken");
2090
2091     std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB);
2092
2093     for (unsigned i = 0, e = Syms.size(); i != e; ++i)
2094       OutStreamer.EmitLabel(Syms[i]);
2095   }
2096
2097   // Print some verbose block comments.
2098   if (isVerbose()) {
2099     if (const BasicBlock *BB = MBB->getBasicBlock())
2100       if (BB->hasName())
2101         OutStreamer.AddComment("%" + BB->getName());
2102     emitBasicBlockLoopComments(*MBB, LI, *this);
2103   }
2104
2105   // Print the main label for the block.
2106   if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) {
2107     if (isVerbose() && OutStreamer.hasRawTextSupport()) {
2108       // NOTE: Want this comment at start of line, don't emit with AddComment.
2109       OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" +
2110                               Twine(MBB->getNumber()) + ":");
2111     }
2112   } else {
2113     OutStreamer.EmitLabel(MBB->getSymbol());
2114   }
2115 }
2116
2117 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2118                                 bool IsDefinition) const {
2119   MCSymbolAttr Attr = MCSA_Invalid;
2120
2121   switch (Visibility) {
2122   default: break;
2123   case GlobalValue::HiddenVisibility:
2124     if (IsDefinition)
2125       Attr = MAI->getHiddenVisibilityAttr();
2126     else
2127       Attr = MAI->getHiddenDeclarationVisibilityAttr();
2128     break;
2129   case GlobalValue::ProtectedVisibility:
2130     Attr = MAI->getProtectedVisibilityAttr();
2131     break;
2132   }
2133
2134   if (Attr != MCSA_Invalid)
2135     OutStreamer.EmitSymbolAttribute(Sym, Attr);
2136 }
2137
2138 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
2139 /// exactly one predecessor and the control transfer mechanism between
2140 /// the predecessor and this block is a fall-through.
2141 bool AsmPrinter::
2142 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2143   // If this is a landing pad, it isn't a fall through.  If it has no preds,
2144   // then nothing falls through to it.
2145   if (MBB->isLandingPad() || MBB->pred_empty())
2146     return false;
2147
2148   // If there isn't exactly one predecessor, it can't be a fall through.
2149   MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
2150   ++PI2;
2151   if (PI2 != MBB->pred_end())
2152     return false;
2153
2154   // The predecessor has to be immediately before this block.
2155   MachineBasicBlock *Pred = *PI;
2156
2157   if (!Pred->isLayoutSuccessor(MBB))
2158     return false;
2159
2160   // If the block is completely empty, then it definitely does fall through.
2161   if (Pred->empty())
2162     return true;
2163
2164   // Check the terminators in the previous blocks
2165   for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(),
2166          IE = Pred->end(); II != IE; ++II) {
2167     MachineInstr &MI = *II;
2168
2169     // If it is not a simple branch, we are in a table somewhere.
2170     if (!MI.isBranch() || MI.isIndirectBranch())
2171       return false;
2172
2173     // If we are the operands of one of the branches, this is not
2174     // a fall through.
2175     for (MachineInstr::mop_iterator OI = MI.operands_begin(),
2176            OE = MI.operands_end(); OI != OE; ++OI) {
2177       const MachineOperand& OP = *OI;
2178       if (OP.isJTI())
2179         return false;
2180       if (OP.isMBB() && OP.getMBB() == MBB)
2181         return false;
2182     }
2183   }
2184
2185   return true;
2186 }
2187
2188
2189
2190 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
2191   if (!S->usesMetadata())
2192     return 0;
2193
2194   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2195   gcp_map_type::iterator GCPI = GCMap.find(S);
2196   if (GCPI != GCMap.end())
2197     return GCPI->second;
2198
2199   const char *Name = S->getName().c_str();
2200
2201   for (GCMetadataPrinterRegistry::iterator
2202          I = GCMetadataPrinterRegistry::begin(),
2203          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2204     if (strcmp(Name, I->getName()) == 0) {
2205       GCMetadataPrinter *GMP = I->instantiate();
2206       GMP->S = S;
2207       GCMap.insert(std::make_pair(S, GMP));
2208       return GMP;
2209     }
2210
2211   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2212 }