5413c9b5aff8f82910a74dca4123d2ee56bcccee
[oota-llvm.git] / lib / CodeGen / AsmPrinter / DwarfDebug.cpp
1 //===-- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing dwarf debug info into asm files.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "DwarfDebug.h"
15
16 #include "ByteStreamer.h"
17 #include "DwarfCompileUnit.h"
18 #include "DIE.h"
19 #include "DIEHash.h"
20 #include "DwarfUnit.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DIBuilder.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DebugInfo.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/ValueHandle.h"
34 #include "llvm/MC/MCAsmInfo.h"
35 #include "llvm/MC/MCSection.h"
36 #include "llvm/MC/MCStreamer.h"
37 #include "llvm/MC/MCSymbol.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/Dwarf.h"
41 #include "llvm/Support/Endian.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/FormattedStream.h"
44 #include "llvm/Support/LEB128.h"
45 #include "llvm/Support/MD5.h"
46 #include "llvm/Support/Path.h"
47 #include "llvm/Support/Timer.h"
48 #include "llvm/Target/TargetFrameLowering.h"
49 #include "llvm/Target/TargetLoweringObjectFile.h"
50 #include "llvm/Target/TargetMachine.h"
51 #include "llvm/Target/TargetOptions.h"
52 #include "llvm/Target/TargetRegisterInfo.h"
53 #include "llvm/Target/TargetSubtargetInfo.h"
54 using namespace llvm;
55
56 #define DEBUG_TYPE "dwarfdebug"
57
58 static cl::opt<bool>
59 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden,
60                          cl::desc("Disable debug info printing"));
61
62 static cl::opt<bool> UnknownLocations(
63     "use-unknown-locations", cl::Hidden,
64     cl::desc("Make an absence of debug location information explicit."),
65     cl::init(false));
66
67 static cl::opt<bool>
68 GenerateGnuPubSections("generate-gnu-dwarf-pub-sections", cl::Hidden,
69                        cl::desc("Generate GNU-style pubnames and pubtypes"),
70                        cl::init(false));
71
72 static cl::opt<bool> GenerateARangeSection("generate-arange-section",
73                                            cl::Hidden,
74                                            cl::desc("Generate dwarf aranges"),
75                                            cl::init(false));
76
77 namespace {
78 enum DefaultOnOff { Default, Enable, Disable };
79 }
80
81 static cl::opt<DefaultOnOff>
82 DwarfAccelTables("dwarf-accel-tables", cl::Hidden,
83                  cl::desc("Output prototype dwarf accelerator tables."),
84                  cl::values(clEnumVal(Default, "Default for platform"),
85                             clEnumVal(Enable, "Enabled"),
86                             clEnumVal(Disable, "Disabled"), clEnumValEnd),
87                  cl::init(Default));
88
89 static cl::opt<DefaultOnOff>
90 SplitDwarf("split-dwarf", cl::Hidden,
91            cl::desc("Output DWARF5 split debug info."),
92            cl::values(clEnumVal(Default, "Default for platform"),
93                       clEnumVal(Enable, "Enabled"),
94                       clEnumVal(Disable, "Disabled"), clEnumValEnd),
95            cl::init(Default));
96
97 static cl::opt<DefaultOnOff>
98 DwarfPubSections("generate-dwarf-pub-sections", cl::Hidden,
99                  cl::desc("Generate DWARF pubnames and pubtypes sections"),
100                  cl::values(clEnumVal(Default, "Default for platform"),
101                             clEnumVal(Enable, "Enabled"),
102                             clEnumVal(Disable, "Disabled"), clEnumValEnd),
103                  cl::init(Default));
104
105 static const char *const DWARFGroupName = "DWARF Emission";
106 static const char *const DbgTimerName = "DWARF Debug Writer";
107
108 //===----------------------------------------------------------------------===//
109
110 /// resolve - Look in the DwarfDebug map for the MDNode that
111 /// corresponds to the reference.
112 template <typename T> T DbgVariable::resolve(DIRef<T> Ref) const {
113   return DD->resolve(Ref);
114 }
115
116 bool DbgVariable::isBlockByrefVariable() const {
117   assert(Var.isVariable() && "Invalid complex DbgVariable!");
118   return Var.isBlockByrefVariable(DD->getTypeIdentifierMap());
119 }
120
121 DIType DbgVariable::getType() const {
122   DIType Ty = Var.getType().resolve(DD->getTypeIdentifierMap());
123   // FIXME: isBlockByrefVariable should be reformulated in terms of complex
124   // addresses instead.
125   if (Var.isBlockByrefVariable(DD->getTypeIdentifierMap())) {
126     /* Byref variables, in Blocks, are declared by the programmer as
127        "SomeType VarName;", but the compiler creates a
128        __Block_byref_x_VarName struct, and gives the variable VarName
129        either the struct, or a pointer to the struct, as its type.  This
130        is necessary for various behind-the-scenes things the compiler
131        needs to do with by-reference variables in blocks.
132
133        However, as far as the original *programmer* is concerned, the
134        variable should still have type 'SomeType', as originally declared.
135
136        The following function dives into the __Block_byref_x_VarName
137        struct to find the original type of the variable.  This will be
138        passed back to the code generating the type for the Debug
139        Information Entry for the variable 'VarName'.  'VarName' will then
140        have the original type 'SomeType' in its debug information.
141
142        The original type 'SomeType' will be the type of the field named
143        'VarName' inside the __Block_byref_x_VarName struct.
144
145        NOTE: In order for this to not completely fail on the debugger
146        side, the Debug Information Entry for the variable VarName needs to
147        have a DW_AT_location that tells the debugger how to unwind through
148        the pointers and __Block_byref_x_VarName struct to find the actual
149        value of the variable.  The function addBlockByrefType does this.  */
150     DIType subType = Ty;
151     uint16_t tag = Ty.getTag();
152
153     if (tag == dwarf::DW_TAG_pointer_type)
154       subType = resolve(DIDerivedType(Ty).getTypeDerivedFrom());
155
156     DIArray Elements = DICompositeType(subType).getElements();
157     for (unsigned i = 0, N = Elements.getNumElements(); i < N; ++i) {
158       DIDerivedType DT(Elements.getElement(i));
159       if (getName() == DT.getName())
160         return (resolve(DT.getTypeDerivedFrom()));
161     }
162   }
163   return Ty;
164 }
165
166 static LLVM_CONSTEXPR DwarfAccelTable::Atom TypeAtoms[] = {
167     DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset, dwarf::DW_FORM_data4),
168     DwarfAccelTable::Atom(dwarf::DW_ATOM_die_tag, dwarf::DW_FORM_data2),
169     DwarfAccelTable::Atom(dwarf::DW_ATOM_type_flags, dwarf::DW_FORM_data1)};
170
171 DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M)
172     : Asm(A), MMI(Asm->MMI), PrevLabel(nullptr), GlobalRangeCount(0),
173       InfoHolder(A, *this, "info_string", DIEValueAllocator),
174       UsedNonDefaultText(false),
175       SkeletonHolder(A, *this, "skel_string", DIEValueAllocator),
176       IsDarwin(Triple(A->getTargetTriple()).isOSDarwin()),
177       AccelNames(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset,
178                                        dwarf::DW_FORM_data4)),
179       AccelObjC(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset,
180                                       dwarf::DW_FORM_data4)),
181       AccelNamespace(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset,
182                                            dwarf::DW_FORM_data4)),
183       AccelTypes(TypeAtoms) {
184
185   DwarfInfoSectionSym = DwarfAbbrevSectionSym = DwarfStrSectionSym = nullptr;
186   DwarfDebugRangeSectionSym = DwarfDebugLocSectionSym = nullptr;
187   DwarfLineSectionSym = nullptr;
188   DwarfAddrSectionSym = nullptr;
189   DwarfAbbrevDWOSectionSym = DwarfStrDWOSectionSym = nullptr;
190   FunctionBeginSym = FunctionEndSym = nullptr;
191   CurFn = nullptr;
192   CurMI = nullptr;
193
194   // Turn on accelerator tables for Darwin by default, pubnames by
195   // default for non-Darwin, and handle split dwarf.
196   if (DwarfAccelTables == Default)
197     HasDwarfAccelTables = IsDarwin;
198   else
199     HasDwarfAccelTables = DwarfAccelTables == Enable;
200
201   if (SplitDwarf == Default)
202     HasSplitDwarf = false;
203   else
204     HasSplitDwarf = SplitDwarf == Enable;
205
206   if (DwarfPubSections == Default)
207     HasDwarfPubSections = !IsDarwin;
208   else
209     HasDwarfPubSections = DwarfPubSections == Enable;
210
211   unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion;
212   DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber
213                                     : MMI->getModule()->getDwarfVersion();
214
215   Asm->OutStreamer.getContext().setDwarfVersion(DwarfVersion);
216
217   {
218     NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
219     beginModule();
220   }
221 }
222
223 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h.
224 DwarfDebug::~DwarfDebug() { }
225
226 // Switch to the specified MCSection and emit an assembler
227 // temporary label to it if SymbolStem is specified.
228 static MCSymbol *emitSectionSym(AsmPrinter *Asm, const MCSection *Section,
229                                 const char *SymbolStem = nullptr) {
230   Asm->OutStreamer.SwitchSection(Section);
231   if (!SymbolStem)
232     return nullptr;
233
234   MCSymbol *TmpSym = Asm->GetTempSymbol(SymbolStem);
235   Asm->OutStreamer.EmitLabel(TmpSym);
236   return TmpSym;
237 }
238
239 static bool isObjCClass(StringRef Name) {
240   return Name.startswith("+") || Name.startswith("-");
241 }
242
243 static bool hasObjCCategory(StringRef Name) {
244   if (!isObjCClass(Name))
245     return false;
246
247   return Name.find(") ") != StringRef::npos;
248 }
249
250 static void getObjCClassCategory(StringRef In, StringRef &Class,
251                                  StringRef &Category) {
252   if (!hasObjCCategory(In)) {
253     Class = In.slice(In.find('[') + 1, In.find(' '));
254     Category = "";
255     return;
256   }
257
258   Class = In.slice(In.find('[') + 1, In.find('('));
259   Category = In.slice(In.find('[') + 1, In.find(' '));
260   return;
261 }
262
263 static StringRef getObjCMethodName(StringRef In) {
264   return In.slice(In.find(' ') + 1, In.find(']'));
265 }
266
267 // Helper for sorting sections into a stable output order.
268 static bool SectionSort(const MCSection *A, const MCSection *B) {
269   std::string LA = (A ? A->getLabelBeginName() : "");
270   std::string LB = (B ? B->getLabelBeginName() : "");
271   return LA < LB;
272 }
273
274 // Add the various names to the Dwarf accelerator table names.
275 // TODO: Determine whether or not we should add names for programs
276 // that do not have a DW_AT_name or DW_AT_linkage_name field - this
277 // is only slightly different than the lookup of non-standard ObjC names.
278 void DwarfDebug::addSubprogramNames(DISubprogram SP, DIE &Die) {
279   if (!SP.isDefinition())
280     return;
281   addAccelName(SP.getName(), Die);
282
283   // If the linkage name is different than the name, go ahead and output
284   // that as well into the name table.
285   if (SP.getLinkageName() != "" && SP.getName() != SP.getLinkageName())
286     addAccelName(SP.getLinkageName(), Die);
287
288   // If this is an Objective-C selector name add it to the ObjC accelerator
289   // too.
290   if (isObjCClass(SP.getName())) {
291     StringRef Class, Category;
292     getObjCClassCategory(SP.getName(), Class, Category);
293     addAccelObjC(Class, Die);
294     if (Category != "")
295       addAccelObjC(Category, Die);
296     // Also add the base method name to the name table.
297     addAccelName(getObjCMethodName(SP.getName()), Die);
298   }
299 }
300
301 /// isSubprogramContext - Return true if Context is either a subprogram
302 /// or another context nested inside a subprogram.
303 bool DwarfDebug::isSubprogramContext(const MDNode *Context) {
304   if (!Context)
305     return false;
306   DIDescriptor D(Context);
307   if (D.isSubprogram())
308     return true;
309   if (D.isType())
310     return isSubprogramContext(resolve(DIType(Context).getContext()));
311   return false;
312 }
313
314 /// Check whether we should create a DIE for the given Scope, return true
315 /// if we don't create a DIE (the corresponding DIE is null).
316 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) {
317   if (Scope->isAbstractScope())
318     return false;
319
320   // We don't create a DIE if there is no Range.
321   const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges();
322   if (Ranges.empty())
323     return true;
324
325   if (Ranges.size() > 1)
326     return false;
327
328   // We don't create a DIE if we have a single Range and the end label
329   // is null.
330   return !getLabelAfterInsn(Ranges.front().second);
331 }
332
333 template <typename Func> void forBothCUs(DwarfCompileUnit &CU, Func F) {
334   F(CU);
335   if (auto *SkelCU = CU.getSkeleton())
336     F(*SkelCU);
337 }
338
339 void DwarfDebug::constructAbstractSubprogramScopeDIE(LexicalScope *Scope) {
340   assert(Scope && Scope->getScopeNode());
341   assert(Scope->isAbstractScope());
342   assert(!Scope->getInlinedAt());
343
344   const MDNode *SP = Scope->getScopeNode();
345
346   ProcessedSPNodes.insert(SP);
347
348   // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
349   // was inlined from another compile unit.
350   auto &CU = SPMap[SP];
351   forBothCUs(*CU, [&](DwarfCompileUnit &CU) {
352     CU.constructAbstractSubprogramScopeDIE(Scope);
353   });
354 }
355
356 void DwarfDebug::addGnuPubAttributes(DwarfUnit &U, DIE &D) const {
357   if (!GenerateGnuPubSections)
358     return;
359
360   U.addFlag(D, dwarf::DW_AT_GNU_pubnames);
361 }
362
363 // Create new DwarfCompileUnit for the given metadata node with tag
364 // DW_TAG_compile_unit.
365 DwarfCompileUnit &DwarfDebug::constructDwarfCompileUnit(DICompileUnit DIUnit) {
366   StringRef FN = DIUnit.getFilename();
367   CompilationDir = DIUnit.getDirectory();
368
369   auto OwnedUnit = make_unique<DwarfCompileUnit>(
370       InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder);
371   DwarfCompileUnit &NewCU = *OwnedUnit;
372   DIE &Die = NewCU.getUnitDie();
373   InfoHolder.addUnit(std::move(OwnedUnit));
374   if (useSplitDwarf())
375     NewCU.setSkeleton(constructSkeletonCU(NewCU));
376
377   // LTO with assembly output shares a single line table amongst multiple CUs.
378   // To avoid the compilation directory being ambiguous, let the line table
379   // explicitly describe the directory of all files, never relying on the
380   // compilation directory.
381   if (!Asm->OutStreamer.hasRawTextSupport() || SingleCU)
382     Asm->OutStreamer.getContext().setMCLineTableCompilationDir(
383         NewCU.getUniqueID(), CompilationDir);
384
385   NewCU.addString(Die, dwarf::DW_AT_producer, DIUnit.getProducer());
386   NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
387                 DIUnit.getLanguage());
388   NewCU.addString(Die, dwarf::DW_AT_name, FN);
389
390   if (!useSplitDwarf()) {
391     NewCU.initStmtList(DwarfLineSectionSym);
392
393     // If we're using split dwarf the compilation dir is going to be in the
394     // skeleton CU and so we don't need to duplicate it here.
395     if (!CompilationDir.empty())
396       NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
397
398     addGnuPubAttributes(NewCU, Die);
399   }
400
401   if (DIUnit.isOptimized())
402     NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized);
403
404   StringRef Flags = DIUnit.getFlags();
405   if (!Flags.empty())
406     NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags);
407
408   if (unsigned RVer = DIUnit.getRunTimeVersion())
409     NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers,
410                   dwarf::DW_FORM_data1, RVer);
411
412   if (useSplitDwarf())
413     NewCU.initSection(Asm->getObjFileLowering().getDwarfInfoDWOSection(),
414                       DwarfInfoDWOSectionSym);
415   else
416     NewCU.initSection(Asm->getObjFileLowering().getDwarfInfoSection(),
417                       DwarfInfoSectionSym);
418
419   CUMap.insert(std::make_pair(DIUnit, &NewCU));
420   CUDieMap.insert(std::make_pair(&Die, &NewCU));
421   return NewCU;
422 }
423
424 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU,
425                                                   const MDNode *N) {
426   DIImportedEntity Module(N);
427   assert(Module.Verify());
428   if (DIE *D = TheCU.getOrCreateContextDIE(Module.getContext()))
429     D->addChild(TheCU.constructImportedEntityDIE(Module));
430 }
431
432 // Emit all Dwarf sections that should come prior to the content. Create
433 // global DIEs and emit initial debug info sections. This is invoked by
434 // the target AsmPrinter.
435 void DwarfDebug::beginModule() {
436   if (DisableDebugInfoPrinting)
437     return;
438
439   const Module *M = MMI->getModule();
440
441   FunctionDIs = makeSubprogramMap(*M);
442
443   NamedMDNode *CU_Nodes = M->getNamedMetadata("llvm.dbg.cu");
444   if (!CU_Nodes)
445     return;
446   TypeIdentifierMap = generateDITypeIdentifierMap(CU_Nodes);
447
448   // Emit initial sections so we can reference labels later.
449   emitSectionLabels();
450
451   SingleCU = CU_Nodes->getNumOperands() == 1;
452
453   for (MDNode *N : CU_Nodes->operands()) {
454     DICompileUnit CUNode(N);
455     DwarfCompileUnit &CU = constructDwarfCompileUnit(CUNode);
456     DIArray ImportedEntities = CUNode.getImportedEntities();
457     for (unsigned i = 0, e = ImportedEntities.getNumElements(); i != e; ++i)
458       ScopesWithImportedEntities.push_back(std::make_pair(
459           DIImportedEntity(ImportedEntities.getElement(i)).getContext(),
460           ImportedEntities.getElement(i)));
461     std::sort(ScopesWithImportedEntities.begin(),
462               ScopesWithImportedEntities.end(), less_first());
463     DIArray GVs = CUNode.getGlobalVariables();
464     for (unsigned i = 0, e = GVs.getNumElements(); i != e; ++i)
465       CU.getOrCreateGlobalVariableDIE(DIGlobalVariable(GVs.getElement(i)));
466     DIArray SPs = CUNode.getSubprograms();
467     for (unsigned i = 0, e = SPs.getNumElements(); i != e; ++i)
468       SPMap.insert(std::make_pair(SPs.getElement(i), &CU));
469     DIArray EnumTypes = CUNode.getEnumTypes();
470     for (unsigned i = 0, e = EnumTypes.getNumElements(); i != e; ++i) {
471       DIType Ty(EnumTypes.getElement(i));
472       // The enum types array by design contains pointers to
473       // MDNodes rather than DIRefs. Unique them here.
474       DIType UniqueTy(resolve(Ty.getRef()));
475       CU.getOrCreateTypeDIE(UniqueTy);
476     }
477     DIArray RetainedTypes = CUNode.getRetainedTypes();
478     for (unsigned i = 0, e = RetainedTypes.getNumElements(); i != e; ++i) {
479       DIType Ty(RetainedTypes.getElement(i));
480       // The retained types array by design contains pointers to
481       // MDNodes rather than DIRefs. Unique them here.
482       DIType UniqueTy(resolve(Ty.getRef()));
483       CU.getOrCreateTypeDIE(UniqueTy);
484     }
485     // Emit imported_modules last so that the relevant context is already
486     // available.
487     for (unsigned i = 0, e = ImportedEntities.getNumElements(); i != e; ++i)
488       constructAndAddImportedEntityDIE(CU, ImportedEntities.getElement(i));
489   }
490
491   // Tell MMI that we have debug info.
492   MMI->setDebugInfoAvailability(true);
493
494   // Prime section data.
495   SectionMap[Asm->getObjFileLowering().getTextSection()];
496 }
497
498 void DwarfDebug::finishVariableDefinitions() {
499   for (const auto &Var : ConcreteVariables) {
500     DIE *VariableDie = Var->getDIE();
501     assert(VariableDie);
502     // FIXME: Consider the time-space tradeoff of just storing the unit pointer
503     // in the ConcreteVariables list, rather than looking it up again here.
504     // DIE::getUnit isn't simple - it walks parent pointers, etc.
505     DwarfCompileUnit *Unit = lookupUnit(VariableDie->getUnit());
506     assert(Unit);
507     DbgVariable *AbsVar = getExistingAbstractVariable(Var->getVariable());
508     if (AbsVar && AbsVar->getDIE()) {
509       Unit->addDIEEntry(*VariableDie, dwarf::DW_AT_abstract_origin,
510                         *AbsVar->getDIE());
511     } else
512       Unit->applyVariableAttributes(*Var, *VariableDie);
513   }
514 }
515
516 void DwarfDebug::finishSubprogramDefinitions() {
517   for (const auto &P : SPMap)
518     forBothCUs(*P.second, [&](DwarfCompileUnit &CU) {
519       CU.finishSubprogramDefinition(DISubprogram(P.first));
520     });
521 }
522
523
524 // Collect info for variables that were optimized out.
525 void DwarfDebug::collectDeadVariables() {
526   const Module *M = MMI->getModule();
527
528   if (NamedMDNode *CU_Nodes = M->getNamedMetadata("llvm.dbg.cu")) {
529     for (MDNode *N : CU_Nodes->operands()) {
530       DICompileUnit TheCU(N);
531       // Construct subprogram DIE and add variables DIEs.
532       DwarfCompileUnit *SPCU =
533           static_cast<DwarfCompileUnit *>(CUMap.lookup(TheCU));
534       assert(SPCU && "Unable to find Compile Unit!");
535       DIArray Subprograms = TheCU.getSubprograms();
536       for (unsigned i = 0, e = Subprograms.getNumElements(); i != e; ++i) {
537         DISubprogram SP(Subprograms.getElement(i));
538         if (ProcessedSPNodes.count(SP) != 0)
539           continue;
540         SPCU->collectDeadVariables(SP);
541       }
542     }
543   }
544 }
545
546 void DwarfDebug::finalizeModuleInfo() {
547   finishSubprogramDefinitions();
548
549   finishVariableDefinitions();
550
551   // Collect info for variables that were optimized out.
552   collectDeadVariables();
553
554   // Handle anything that needs to be done on a per-unit basis after
555   // all other generation.
556   for (const auto &P : CUMap) {
557     auto &TheCU = *P.second;
558     // Emit DW_AT_containing_type attribute to connect types with their
559     // vtable holding type.
560     TheCU.constructContainingTypeDIEs();
561
562     // Add CU specific attributes if we need to add any.
563     // If we're splitting the dwarf out now that we've got the entire
564     // CU then add the dwo id to it.
565     auto *SkCU = TheCU.getSkeleton();
566     if (useSplitDwarf()) {
567       // Emit a unique identifier for this CU.
568       uint64_t ID = DIEHash(Asm).computeCUSignature(TheCU.getUnitDie());
569       TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
570                     dwarf::DW_FORM_data8, ID);
571       SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
572                     dwarf::DW_FORM_data8, ID);
573
574       // We don't keep track of which addresses are used in which CU so this
575       // is a bit pessimistic under LTO.
576       if (!AddrPool.isEmpty())
577         SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_addr_base,
578                               DwarfAddrSectionSym, DwarfAddrSectionSym);
579       if (!SkCU->getRangeLists().empty())
580         SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base,
581                               DwarfDebugRangeSectionSym,
582                               DwarfDebugRangeSectionSym);
583     }
584
585     // If we have code split among multiple sections or non-contiguous
586     // ranges of code then emit a DW_AT_ranges attribute on the unit that will
587     // remain in the .o file, otherwise add a DW_AT_low_pc.
588     // FIXME: We should use ranges allow reordering of code ala
589     // .subsections_via_symbols in mach-o. This would mean turning on
590     // ranges for all subprogram DIEs for mach-o.
591     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
592     if (unsigned NumRanges = TheCU.getRanges().size()) {
593       if (NumRanges > 1)
594         // A DW_AT_low_pc attribute may also be specified in combination with
595         // DW_AT_ranges to specify the default base address for use in
596         // location lists (see Section 2.6.2) and range lists (see Section
597         // 2.17.3).
598         U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0);
599       else
600         TheCU.setBaseAddress(TheCU.getRanges().front().getStart());
601       U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges());
602     }
603   }
604
605   // Compute DIE offsets and sizes.
606   InfoHolder.computeSizeAndOffsets();
607   if (useSplitDwarf())
608     SkeletonHolder.computeSizeAndOffsets();
609 }
610
611 void DwarfDebug::endSections() {
612   // Filter labels by section.
613   for (const SymbolCU &SCU : ArangeLabels) {
614     if (SCU.Sym->isInSection()) {
615       // Make a note of this symbol and it's section.
616       const MCSection *Section = &SCU.Sym->getSection();
617       if (!Section->getKind().isMetadata())
618         SectionMap[Section].push_back(SCU);
619     } else {
620       // Some symbols (e.g. common/bss on mach-o) can have no section but still
621       // appear in the output. This sucks as we rely on sections to build
622       // arange spans. We can do it without, but it's icky.
623       SectionMap[nullptr].push_back(SCU);
624     }
625   }
626
627   // Build a list of sections used.
628   std::vector<const MCSection *> Sections;
629   for (const auto &it : SectionMap) {
630     const MCSection *Section = it.first;
631     Sections.push_back(Section);
632   }
633
634   // Sort the sections into order.
635   // This is only done to ensure consistent output order across different runs.
636   std::sort(Sections.begin(), Sections.end(), SectionSort);
637
638   // Add terminating symbols for each section.
639   for (unsigned ID = 0, E = Sections.size(); ID != E; ID++) {
640     const MCSection *Section = Sections[ID];
641     MCSymbol *Sym = nullptr;
642
643     if (Section) {
644       // We can't call MCSection::getLabelEndName, as it's only safe to do so
645       // if we know the section name up-front. For user-created sections, the
646       // resulting label may not be valid to use as a label. (section names can
647       // use a greater set of characters on some systems)
648       Sym = Asm->GetTempSymbol("debug_end", ID);
649       Asm->OutStreamer.SwitchSection(Section);
650       Asm->OutStreamer.EmitLabel(Sym);
651     }
652
653     // Insert a final terminator.
654     SectionMap[Section].push_back(SymbolCU(nullptr, Sym));
655   }
656 }
657
658 // Emit all Dwarf sections that should come after the content.
659 void DwarfDebug::endModule() {
660   assert(CurFn == nullptr);
661   assert(CurMI == nullptr);
662
663   // If we aren't actually generating debug info (check beginModule -
664   // conditionalized on !DisableDebugInfoPrinting and the presence of the
665   // llvm.dbg.cu metadata node)
666   if (!DwarfInfoSectionSym)
667     return;
668
669   // End any existing sections.
670   // TODO: Does this need to happen?
671   endSections();
672
673   // Finalize the debug info for the module.
674   finalizeModuleInfo();
675
676   emitDebugStr();
677
678   // Emit all the DIEs into a debug info section.
679   emitDebugInfo();
680
681   // Corresponding abbreviations into a abbrev section.
682   emitAbbreviations();
683
684   // Emit info into a debug aranges section.
685   if (GenerateARangeSection)
686     emitDebugARanges();
687
688   // Emit info into a debug ranges section.
689   emitDebugRanges();
690
691   if (useSplitDwarf()) {
692     emitDebugStrDWO();
693     emitDebugInfoDWO();
694     emitDebugAbbrevDWO();
695     emitDebugLineDWO();
696     emitDebugLocDWO();
697     // Emit DWO addresses.
698     AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection());
699   } else
700     // Emit info into a debug loc section.
701     emitDebugLoc();
702
703   // Emit info into the dwarf accelerator table sections.
704   if (useDwarfAccelTables()) {
705     emitAccelNames();
706     emitAccelObjC();
707     emitAccelNamespaces();
708     emitAccelTypes();
709   }
710
711   // Emit the pubnames and pubtypes sections if requested.
712   if (HasDwarfPubSections) {
713     emitDebugPubNames(GenerateGnuPubSections);
714     emitDebugPubTypes(GenerateGnuPubSections);
715   }
716
717   // clean up.
718   SPMap.clear();
719   AbstractVariables.clear();
720 }
721
722 // Find abstract variable, if any, associated with Var.
723 DbgVariable *DwarfDebug::getExistingAbstractVariable(const DIVariable &DV,
724                                                      DIVariable &Cleansed) {
725   LLVMContext &Ctx = DV->getContext();
726   // More then one inlined variable corresponds to one abstract variable.
727   // FIXME: This duplication of variables when inlining should probably be
728   // removed. It's done to allow each DIVariable to describe its location
729   // because the DebugLoc on the dbg.value/declare isn't accurate. We should
730   // make it accurate then remove this duplication/cleansing stuff.
731   Cleansed = cleanseInlinedVariable(DV, Ctx);
732   auto I = AbstractVariables.find(Cleansed);
733   if (I != AbstractVariables.end())
734     return I->second.get();
735   return nullptr;
736 }
737
738 DbgVariable *DwarfDebug::getExistingAbstractVariable(const DIVariable &DV) {
739   DIVariable Cleansed;
740   return getExistingAbstractVariable(DV, Cleansed);
741 }
742
743 void DwarfDebug::createAbstractVariable(const DIVariable &Var,
744                                         LexicalScope *Scope) {
745   auto AbsDbgVariable = make_unique<DbgVariable>(Var, DIExpression(), this);
746   InfoHolder.addScopeVariable(Scope, AbsDbgVariable.get());
747   AbstractVariables[Var] = std::move(AbsDbgVariable);
748 }
749
750 void DwarfDebug::ensureAbstractVariableIsCreated(const DIVariable &DV,
751                                                  const MDNode *ScopeNode) {
752   DIVariable Cleansed = DV;
753   if (getExistingAbstractVariable(DV, Cleansed))
754     return;
755
756   createAbstractVariable(Cleansed, LScopes.getOrCreateAbstractScope(ScopeNode));
757 }
758
759 void
760 DwarfDebug::ensureAbstractVariableIsCreatedIfScoped(const DIVariable &DV,
761                                                     const MDNode *ScopeNode) {
762   DIVariable Cleansed = DV;
763   if (getExistingAbstractVariable(DV, Cleansed))
764     return;
765
766   if (LexicalScope *Scope = LScopes.findAbstractScope(ScopeNode))
767     createAbstractVariable(Cleansed, Scope);
768 }
769
770 // Collect variable information from side table maintained by MMI.
771 void DwarfDebug::collectVariableInfoFromMMITable(
772     SmallPtrSetImpl<const MDNode *> &Processed) {
773   for (const auto &VI : MMI->getVariableDbgInfo()) {
774     if (!VI.Var)
775       continue;
776     Processed.insert(VI.Var);
777     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
778
779     // If variable scope is not found then skip this variable.
780     if (!Scope)
781       continue;
782
783     DIVariable DV(VI.Var);
784     DIExpression Expr(VI.Expr);
785     ensureAbstractVariableIsCreatedIfScoped(DV, Scope->getScopeNode());
786     ConcreteVariables.push_back(make_unique<DbgVariable>(DV, Expr, this));
787     DbgVariable *RegVar = ConcreteVariables.back().get();
788     RegVar->setFrameIndex(VI.Slot);
789     InfoHolder.addScopeVariable(Scope, RegVar);
790   }
791 }
792
793 // Get .debug_loc entry for the instruction range starting at MI.
794 static DebugLocEntry::Value getDebugLocValue(const MachineInstr *MI) {
795   const MDNode *Expr = MI->getDebugExpression();
796   const MDNode *Var = MI->getDebugVariable();
797
798   assert(MI->getNumOperands() == 4);
799   if (MI->getOperand(0).isReg()) {
800     MachineLocation MLoc;
801     // If the second operand is an immediate, this is a
802     // register-indirect address.
803     if (!MI->getOperand(1).isImm())
804       MLoc.set(MI->getOperand(0).getReg());
805     else
806       MLoc.set(MI->getOperand(0).getReg(), MI->getOperand(1).getImm());
807     return DebugLocEntry::Value(Var, Expr, MLoc);
808   }
809   if (MI->getOperand(0).isImm())
810     return DebugLocEntry::Value(Var, Expr, MI->getOperand(0).getImm());
811   if (MI->getOperand(0).isFPImm())
812     return DebugLocEntry::Value(Var, Expr, MI->getOperand(0).getFPImm());
813   if (MI->getOperand(0).isCImm())
814     return DebugLocEntry::Value(Var, Expr, MI->getOperand(0).getCImm());
815
816   llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!");
817 }
818
819 /// Determine whether two variable pieces overlap.
820 static bool piecesOverlap(DIExpression P1, DIExpression P2) {
821   if (!P1.isVariablePiece() || !P2.isVariablePiece())
822     return true;
823   unsigned l1 = P1.getPieceOffset();
824   unsigned l2 = P2.getPieceOffset();
825   unsigned r1 = l1 + P1.getPieceSize();
826   unsigned r2 = l2 + P2.getPieceSize();
827   // True where [l1,r1[ and [r1,r2[ overlap.
828   return (l1 < r2) && (l2 < r1);
829 }
830
831 /// Build the location list for all DBG_VALUEs in the function that
832 /// describe the same variable.  If the ranges of several independent
833 /// pieces of the same variable overlap partially, split them up and
834 /// combine the ranges. The resulting DebugLocEntries are will have
835 /// strict monotonically increasing begin addresses and will never
836 /// overlap.
837 //
838 // Input:
839 //
840 //   Ranges History [var, loc, piece ofs size]
841 // 0 |      [x, (reg0, piece 0, 32)]
842 // 1 | |    [x, (reg1, piece 32, 32)] <- IsPieceOfPrevEntry
843 // 2 | |    ...
844 // 3   |    [clobber reg0]
845 // 4        [x, (mem, piece 0, 64)] <- overlapping with both previous pieces of x.
846 //
847 // Output:
848 //
849 // [0-1]    [x, (reg0, piece  0, 32)]
850 // [1-3]    [x, (reg0, piece  0, 32), (reg1, piece 32, 32)]
851 // [3-4]    [x, (reg1, piece 32, 32)]
852 // [4- ]    [x, (mem,  piece  0, 64)]
853 void
854 DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc,
855                               const DbgValueHistoryMap::InstrRanges &Ranges) {
856   SmallVector<DebugLocEntry::Value, 4> OpenRanges;
857
858   for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) {
859     const MachineInstr *Begin = I->first;
860     const MachineInstr *End = I->second;
861     assert(Begin->isDebugValue() && "Invalid History entry");
862
863     // Check if a variable is inaccessible in this range.
864     if (Begin->getNumOperands() > 1 &&
865         Begin->getOperand(0).isReg() && !Begin->getOperand(0).getReg()) {
866       OpenRanges.clear();
867       continue;
868     }
869
870     // If this piece overlaps with any open ranges, truncate them.
871     DIExpression DIExpr = Begin->getDebugExpression();
872     auto Last = std::remove_if(OpenRanges.begin(), OpenRanges.end(),
873                                [&](DebugLocEntry::Value R) {
874       return piecesOverlap(DIExpr, R.getExpression());
875     });
876     OpenRanges.erase(Last, OpenRanges.end());
877
878     const MCSymbol *StartLabel = getLabelBeforeInsn(Begin);
879     assert(StartLabel && "Forgot label before DBG_VALUE starting a range!");
880
881     const MCSymbol *EndLabel;
882     if (End != nullptr)
883       EndLabel = getLabelAfterInsn(End);
884     else if (std::next(I) == Ranges.end())
885       EndLabel = FunctionEndSym;
886     else
887       EndLabel = getLabelBeforeInsn(std::next(I)->first);
888     assert(EndLabel && "Forgot label after instruction ending a range!");
889
890     DEBUG(dbgs() << "DotDebugLoc: " << *Begin << "\n");
891
892     auto Value = getDebugLocValue(Begin);
893     DebugLocEntry Loc(StartLabel, EndLabel, Value);
894     bool couldMerge = false;
895
896     // If this is a piece, it may belong to the current DebugLocEntry.
897     if (DIExpr.isVariablePiece()) {
898       // Add this value to the list of open ranges.
899       OpenRanges.push_back(Value);
900
901       // Attempt to add the piece to the last entry.
902       if (!DebugLoc.empty())
903         if (DebugLoc.back().MergeValues(Loc))
904           couldMerge = true;
905     }
906
907     if (!couldMerge) {
908       // Need to add a new DebugLocEntry. Add all values from still
909       // valid non-overlapping pieces.
910       if (OpenRanges.size())
911         Loc.addValues(OpenRanges);
912
913       DebugLoc.push_back(std::move(Loc));
914     }
915
916     // Attempt to coalesce the ranges of two otherwise identical
917     // DebugLocEntries.
918     auto CurEntry = DebugLoc.rbegin();
919     auto PrevEntry = std::next(CurEntry);
920     if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry))
921       DebugLoc.pop_back();
922
923     DEBUG({
924       dbgs() << CurEntry->getValues().size() << " Values:\n";
925       for (auto Value : CurEntry->getValues()) {
926         Value.getVariable()->dump();
927         Value.getExpression()->dump();
928       }
929       dbgs() << "-----\n";
930     });
931   }
932 }
933
934
935 // Find variables for each lexical scope.
936 void
937 DwarfDebug::collectVariableInfo(DwarfCompileUnit &TheCU, DISubprogram SP,
938                                 SmallPtrSetImpl<const MDNode *> &Processed) {
939   // Grab the variable info that was squirreled away in the MMI side-table.
940   collectVariableInfoFromMMITable(Processed);
941
942   for (const auto &I : DbgValues) {
943     DIVariable DV(I.first);
944     if (Processed.count(DV))
945       continue;
946
947     // Instruction ranges, specifying where DV is accessible.
948     const auto &Ranges = I.second;
949     if (Ranges.empty())
950       continue;
951
952     LexicalScope *Scope = nullptr;
953     if (MDNode *IA = DV.getInlinedAt()) {
954       DebugLoc DL = DebugLoc::getFromDILocation(IA);
955       Scope = LScopes.findInlinedScope(DebugLoc::get(
956           DL.getLine(), DL.getCol(), DV.getContext(), IA));
957     } else
958       Scope = LScopes.findLexicalScope(DV.getContext());
959     // If variable scope is not found then skip this variable.
960     if (!Scope)
961       continue;
962
963     Processed.insert(DV);
964     const MachineInstr *MInsn = Ranges.front().first;
965     assert(MInsn->isDebugValue() && "History must begin with debug value");
966     ensureAbstractVariableIsCreatedIfScoped(DV, Scope->getScopeNode());
967     ConcreteVariables.push_back(make_unique<DbgVariable>(MInsn, this));
968     DbgVariable *RegVar = ConcreteVariables.back().get();
969     InfoHolder.addScopeVariable(Scope, RegVar);
970
971     // Check if the first DBG_VALUE is valid for the rest of the function.
972     if (Ranges.size() == 1 && Ranges.front().second == nullptr)
973       continue;
974
975     // Handle multiple DBG_VALUE instructions describing one variable.
976     RegVar->setDotDebugLocOffset(DotDebugLocEntries.size());
977
978     DotDebugLocEntries.resize(DotDebugLocEntries.size() + 1);
979     DebugLocList &LocList = DotDebugLocEntries.back();
980     LocList.CU = &TheCU;
981     LocList.Label =
982         Asm->GetTempSymbol("debug_loc", DotDebugLocEntries.size() - 1);
983
984     // Build the location list for this variable.
985     buildLocationList(LocList.List, Ranges);
986   }
987
988   // Collect info for variables that were optimized out.
989   DIArray Variables = SP.getVariables();
990   for (unsigned i = 0, e = Variables.getNumElements(); i != e; ++i) {
991     DIVariable DV(Variables.getElement(i));
992     assert(DV.isVariable());
993     if (!Processed.insert(DV).second)
994       continue;
995     if (LexicalScope *Scope = LScopes.findLexicalScope(DV.getContext())) {
996       ensureAbstractVariableIsCreatedIfScoped(DV, Scope->getScopeNode());
997       DIExpression NoExpr;
998       ConcreteVariables.push_back(make_unique<DbgVariable>(DV, NoExpr, this));
999       InfoHolder.addScopeVariable(Scope, ConcreteVariables.back().get());
1000     }
1001   }
1002 }
1003
1004 // Return Label preceding the instruction.
1005 MCSymbol *DwarfDebug::getLabelBeforeInsn(const MachineInstr *MI) {
1006   MCSymbol *Label = LabelsBeforeInsn.lookup(MI);
1007   assert(Label && "Didn't insert label before instruction");
1008   return Label;
1009 }
1010
1011 // Return Label immediately following the instruction.
1012 MCSymbol *DwarfDebug::getLabelAfterInsn(const MachineInstr *MI) {
1013   return LabelsAfterInsn.lookup(MI);
1014 }
1015
1016 // Process beginning of an instruction.
1017 void DwarfDebug::beginInstruction(const MachineInstr *MI) {
1018   assert(CurMI == nullptr);
1019   CurMI = MI;
1020   // Check if source location changes, but ignore DBG_VALUE locations.
1021   if (!MI->isDebugValue()) {
1022     DebugLoc DL = MI->getDebugLoc();
1023     if (DL != PrevInstLoc && (!DL.isUnknown() || UnknownLocations)) {
1024       unsigned Flags = 0;
1025       PrevInstLoc = DL;
1026       if (DL == PrologEndLoc) {
1027         Flags |= DWARF2_FLAG_PROLOGUE_END;
1028         PrologEndLoc = DebugLoc();
1029       }
1030       if (PrologEndLoc.isUnknown())
1031         Flags |= DWARF2_FLAG_IS_STMT;
1032
1033       if (!DL.isUnknown()) {
1034         const MDNode *Scope = DL.getScope(Asm->MF->getFunction()->getContext());
1035         recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
1036       } else
1037         recordSourceLine(0, 0, nullptr, 0);
1038     }
1039   }
1040
1041   // Insert labels where requested.
1042   DenseMap<const MachineInstr *, MCSymbol *>::iterator I =
1043       LabelsBeforeInsn.find(MI);
1044
1045   // No label needed.
1046   if (I == LabelsBeforeInsn.end())
1047     return;
1048
1049   // Label already assigned.
1050   if (I->second)
1051     return;
1052
1053   if (!PrevLabel) {
1054     PrevLabel = MMI->getContext().CreateTempSymbol();
1055     Asm->OutStreamer.EmitLabel(PrevLabel);
1056   }
1057   I->second = PrevLabel;
1058 }
1059
1060 // Process end of an instruction.
1061 void DwarfDebug::endInstruction() {
1062   assert(CurMI != nullptr);
1063   // Don't create a new label after DBG_VALUE instructions.
1064   // They don't generate code.
1065   if (!CurMI->isDebugValue())
1066     PrevLabel = nullptr;
1067
1068   DenseMap<const MachineInstr *, MCSymbol *>::iterator I =
1069       LabelsAfterInsn.find(CurMI);
1070   CurMI = nullptr;
1071
1072   // No label needed.
1073   if (I == LabelsAfterInsn.end())
1074     return;
1075
1076   // Label already assigned.
1077   if (I->second)
1078     return;
1079
1080   // We need a label after this instruction.
1081   if (!PrevLabel) {
1082     PrevLabel = MMI->getContext().CreateTempSymbol();
1083     Asm->OutStreamer.EmitLabel(PrevLabel);
1084   }
1085   I->second = PrevLabel;
1086 }
1087
1088 // Each LexicalScope has first instruction and last instruction to mark
1089 // beginning and end of a scope respectively. Create an inverse map that list
1090 // scopes starts (and ends) with an instruction. One instruction may start (or
1091 // end) multiple scopes. Ignore scopes that are not reachable.
1092 void DwarfDebug::identifyScopeMarkers() {
1093   SmallVector<LexicalScope *, 4> WorkList;
1094   WorkList.push_back(LScopes.getCurrentFunctionScope());
1095   while (!WorkList.empty()) {
1096     LexicalScope *S = WorkList.pop_back_val();
1097
1098     const SmallVectorImpl<LexicalScope *> &Children = S->getChildren();
1099     if (!Children.empty())
1100       WorkList.append(Children.begin(), Children.end());
1101
1102     if (S->isAbstractScope())
1103       continue;
1104
1105     for (const InsnRange &R : S->getRanges()) {
1106       assert(R.first && "InsnRange does not have first instruction!");
1107       assert(R.second && "InsnRange does not have second instruction!");
1108       requestLabelBeforeInsn(R.first);
1109       requestLabelAfterInsn(R.second);
1110     }
1111   }
1112 }
1113
1114 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) {
1115   // First known non-DBG_VALUE and non-frame setup location marks
1116   // the beginning of the function body.
1117   for (const auto &MBB : *MF)
1118     for (const auto &MI : MBB)
1119       if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) &&
1120         !MI.getDebugLoc().isUnknown()) {
1121         // Did the target forget to set the FrameSetup flag for CFI insns?
1122         assert(!MI.isCFIInstruction() &&
1123                "First non-frame-setup instruction is a CFI instruction.");
1124         return MI.getDebugLoc();
1125       }
1126   return DebugLoc();
1127 }
1128
1129 // Gather pre-function debug information.  Assumes being called immediately
1130 // after the function entry point has been emitted.
1131 void DwarfDebug::beginFunction(const MachineFunction *MF) {
1132   CurFn = MF;
1133
1134   // If there's no debug info for the function we're not going to do anything.
1135   if (!MMI->hasDebugInfo())
1136     return;
1137
1138   auto DI = FunctionDIs.find(MF->getFunction());
1139   if (DI == FunctionDIs.end())
1140     return;
1141
1142   // Grab the lexical scopes for the function, if we don't have any of those
1143   // then we're not going to be able to do anything.
1144   LScopes.initialize(*MF);
1145   if (LScopes.empty())
1146     return;
1147
1148   assert(DbgValues.empty() && "DbgValues map wasn't cleaned!");
1149
1150   // Make sure that each lexical scope will have a begin/end label.
1151   identifyScopeMarkers();
1152
1153   // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function
1154   // belongs to so that we add to the correct per-cu line table in the
1155   // non-asm case.
1156   LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
1157   // FnScope->getScopeNode() and DI->second should represent the same function,
1158   // though they may not be the same MDNode due to inline functions merged in
1159   // LTO where the debug info metadata still differs (either due to distinct
1160   // written differences - two versions of a linkonce_odr function
1161   // written/copied into two separate files, or some sub-optimal metadata that
1162   // isn't structurally identical (see: file path/name info from clang, which
1163   // includes the directory of the cpp file being built, even when the file name
1164   // is absolute (such as an <> lookup header)))
1165   DwarfCompileUnit *TheCU = SPMap.lookup(FnScope->getScopeNode());
1166   assert(TheCU && "Unable to find compile unit!");
1167   if (Asm->OutStreamer.hasRawTextSupport())
1168     // Use a single line table if we are generating assembly.
1169     Asm->OutStreamer.getContext().setDwarfCompileUnitID(0);
1170   else
1171     Asm->OutStreamer.getContext().setDwarfCompileUnitID(TheCU->getUniqueID());
1172
1173   // Emit a label for the function so that we have a beginning address.
1174   FunctionBeginSym = Asm->GetTempSymbol("func_begin", Asm->getFunctionNumber());
1175   // Assumes in correct section after the entry point.
1176   Asm->OutStreamer.EmitLabel(FunctionBeginSym);
1177
1178   // Calculate history for local variables.
1179   calculateDbgValueHistory(MF, Asm->TM.getSubtargetImpl()->getRegisterInfo(),
1180                            DbgValues);
1181
1182   // Request labels for the full history.
1183   for (const auto &I : DbgValues) {
1184     const auto &Ranges = I.second;
1185     if (Ranges.empty())
1186       continue;
1187
1188     // The first mention of a function argument gets the FunctionBeginSym
1189     // label, so arguments are visible when breaking at function entry.
1190     DIVariable DIVar(Ranges.front().first->getDebugVariable());
1191     if (DIVar.isVariable() && DIVar.getTag() == dwarf::DW_TAG_arg_variable &&
1192         getDISubprogram(DIVar.getContext()).describes(MF->getFunction())) {
1193       LabelsBeforeInsn[Ranges.front().first] = FunctionBeginSym;
1194       if (Ranges.front().first->getDebugExpression().isVariablePiece()) {
1195         // Mark all non-overlapping initial pieces.
1196         for (auto I = Ranges.begin(); I != Ranges.end(); ++I) {
1197           DIExpression Piece = I->first->getDebugExpression();
1198           if (std::all_of(Ranges.begin(), I,
1199                           [&](DbgValueHistoryMap::InstrRange Pred) {
1200                 return !piecesOverlap(Piece, Pred.first->getDebugExpression());
1201               }))
1202             LabelsBeforeInsn[I->first] = FunctionBeginSym;
1203           else
1204             break;
1205         }
1206       }
1207     }
1208
1209     for (const auto &Range : Ranges) {
1210       requestLabelBeforeInsn(Range.first);
1211       if (Range.second)
1212         requestLabelAfterInsn(Range.second);
1213     }
1214   }
1215
1216   PrevInstLoc = DebugLoc();
1217   PrevLabel = FunctionBeginSym;
1218
1219   // Record beginning of function.
1220   PrologEndLoc = findPrologueEndLoc(MF);
1221   if (!PrologEndLoc.isUnknown()) {
1222     DebugLoc FnStartDL =
1223         PrologEndLoc.getFnDebugLoc(MF->getFunction()->getContext());
1224     recordSourceLine(
1225         FnStartDL.getLine(), FnStartDL.getCol(),
1226         FnStartDL.getScope(MF->getFunction()->getContext()),
1227         // We'd like to list the prologue as "not statements" but GDB behaves
1228         // poorly if we do that. Revisit this with caution/GDB (7.5+) testing.
1229         DWARF2_FLAG_IS_STMT);
1230   }
1231 }
1232
1233 // Gather and emit post-function debug information.
1234 void DwarfDebug::endFunction(const MachineFunction *MF) {
1235   assert(CurFn == MF &&
1236       "endFunction should be called with the same function as beginFunction");
1237
1238   if (!MMI->hasDebugInfo() || LScopes.empty() ||
1239       !FunctionDIs.count(MF->getFunction())) {
1240     // If we don't have a lexical scope for this function then there will
1241     // be a hole in the range information. Keep note of this by setting the
1242     // previously used section to nullptr.
1243     PrevCU = nullptr;
1244     CurFn = nullptr;
1245     return;
1246   }
1247
1248   // Define end label for subprogram.
1249   FunctionEndSym = Asm->GetTempSymbol("func_end", Asm->getFunctionNumber());
1250   // Assumes in correct section after the entry point.
1251   Asm->OutStreamer.EmitLabel(FunctionEndSym);
1252
1253   // Set DwarfDwarfCompileUnitID in MCContext to default value.
1254   Asm->OutStreamer.getContext().setDwarfCompileUnitID(0);
1255
1256   LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
1257   DISubprogram SP(FnScope->getScopeNode());
1258   DwarfCompileUnit &TheCU = *SPMap.lookup(SP);
1259
1260   SmallPtrSet<const MDNode *, 16> ProcessedVars;
1261   collectVariableInfo(TheCU, SP, ProcessedVars);
1262
1263   // Add the range of this function to the list of ranges for the CU.
1264   TheCU.addRange(RangeSpan(FunctionBeginSym, FunctionEndSym));
1265
1266   // Under -gmlt, skip building the subprogram if there are no inlined
1267   // subroutines inside it.
1268   if (TheCU.getCUNode().getEmissionKind() == DIBuilder::LineTablesOnly &&
1269       LScopes.getAbstractScopesList().empty() && !IsDarwin) {
1270     assert(InfoHolder.getScopeVariables().empty());
1271     assert(DbgValues.empty());
1272     // FIXME: This wouldn't be true in LTO with a -g (with inlining) CU followed
1273     // by a -gmlt CU. Add a test and remove this assertion.
1274     assert(AbstractVariables.empty());
1275     LabelsBeforeInsn.clear();
1276     LabelsAfterInsn.clear();
1277     PrevLabel = nullptr;
1278     CurFn = nullptr;
1279     return;
1280   }
1281
1282 #ifndef NDEBUG
1283   size_t NumAbstractScopes = LScopes.getAbstractScopesList().size();
1284 #endif
1285   // Construct abstract scopes.
1286   for (LexicalScope *AScope : LScopes.getAbstractScopesList()) {
1287     DISubprogram SP(AScope->getScopeNode());
1288     assert(SP.isSubprogram());
1289     // Collect info for variables that were optimized out.
1290     DIArray Variables = SP.getVariables();
1291     for (unsigned i = 0, e = Variables.getNumElements(); i != e; ++i) {
1292       DIVariable DV(Variables.getElement(i));
1293       assert(DV && DV.isVariable());
1294       if (!ProcessedVars.insert(DV).second)
1295         continue;
1296       ensureAbstractVariableIsCreated(DV, DV.getContext());
1297       assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes
1298              && "ensureAbstractVariableIsCreated inserted abstract scopes");
1299     }
1300     constructAbstractSubprogramScopeDIE(AScope);
1301   }
1302
1303   TheCU.constructSubprogramScopeDIE(FnScope);
1304   if (auto *SkelCU = TheCU.getSkeleton())
1305     if (!LScopes.getAbstractScopesList().empty())
1306       SkelCU->constructSubprogramScopeDIE(FnScope);
1307
1308   // Clear debug info
1309   // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the
1310   // DbgVariables except those that are also in AbstractVariables (since they
1311   // can be used cross-function)
1312   InfoHolder.getScopeVariables().clear();
1313   DbgValues.clear();
1314   LabelsBeforeInsn.clear();
1315   LabelsAfterInsn.clear();
1316   PrevLabel = nullptr;
1317   CurFn = nullptr;
1318 }
1319
1320 // Register a source line with debug info. Returns the  unique label that was
1321 // emitted and which provides correspondence to the source line list.
1322 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S,
1323                                   unsigned Flags) {
1324   StringRef Fn;
1325   StringRef Dir;
1326   unsigned Src = 1;
1327   unsigned Discriminator = 0;
1328   if (DIScope Scope = DIScope(S)) {
1329     assert(Scope.isScope());
1330     Fn = Scope.getFilename();
1331     Dir = Scope.getDirectory();
1332     if (Scope.isLexicalBlockFile())
1333       Discriminator = DILexicalBlockFile(S).getDiscriminator();
1334
1335     unsigned CUID = Asm->OutStreamer.getContext().getDwarfCompileUnitID();
1336     Src = static_cast<DwarfCompileUnit &>(*InfoHolder.getUnits()[CUID])
1337               .getOrCreateSourceID(Fn, Dir);
1338   }
1339   Asm->OutStreamer.EmitDwarfLocDirective(Src, Line, Col, Flags, 0,
1340                                          Discriminator, Fn);
1341 }
1342
1343 //===----------------------------------------------------------------------===//
1344 // Emit Methods
1345 //===----------------------------------------------------------------------===//
1346
1347 // Emit initial Dwarf sections with a label at the start of each one.
1348 void DwarfDebug::emitSectionLabels() {
1349   const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
1350
1351   // Dwarf sections base addresses.
1352   DwarfInfoSectionSym =
1353       emitSectionSym(Asm, TLOF.getDwarfInfoSection(), "section_info");
1354   if (useSplitDwarf()) {
1355     DwarfInfoDWOSectionSym =
1356         emitSectionSym(Asm, TLOF.getDwarfInfoDWOSection(), "section_info_dwo");
1357     DwarfTypesDWOSectionSym =
1358         emitSectionSym(Asm, TLOF.getDwarfTypesDWOSection(), "section_types_dwo");
1359   }
1360   DwarfAbbrevSectionSym =
1361       emitSectionSym(Asm, TLOF.getDwarfAbbrevSection(), "section_abbrev");
1362   if (useSplitDwarf())
1363     DwarfAbbrevDWOSectionSym = emitSectionSym(
1364         Asm, TLOF.getDwarfAbbrevDWOSection(), "section_abbrev_dwo");
1365   if (GenerateARangeSection)
1366     emitSectionSym(Asm, TLOF.getDwarfARangesSection());
1367
1368   DwarfLineSectionSym =
1369       emitSectionSym(Asm, TLOF.getDwarfLineSection(), "section_line");
1370   if (GenerateGnuPubSections) {
1371     DwarfGnuPubNamesSectionSym =
1372         emitSectionSym(Asm, TLOF.getDwarfGnuPubNamesSection());
1373     DwarfGnuPubTypesSectionSym =
1374         emitSectionSym(Asm, TLOF.getDwarfGnuPubTypesSection());
1375   } else if (HasDwarfPubSections) {
1376     emitSectionSym(Asm, TLOF.getDwarfPubNamesSection());
1377     emitSectionSym(Asm, TLOF.getDwarfPubTypesSection());
1378   }
1379
1380   DwarfStrSectionSym =
1381       emitSectionSym(Asm, TLOF.getDwarfStrSection(), "info_string");
1382   if (useSplitDwarf()) {
1383     DwarfStrDWOSectionSym =
1384         emitSectionSym(Asm, TLOF.getDwarfStrDWOSection(), "skel_string");
1385     DwarfAddrSectionSym =
1386         emitSectionSym(Asm, TLOF.getDwarfAddrSection(), "addr_sec");
1387     DwarfDebugLocSectionSym =
1388         emitSectionSym(Asm, TLOF.getDwarfLocDWOSection(), "skel_loc");
1389   } else
1390     DwarfDebugLocSectionSym =
1391         emitSectionSym(Asm, TLOF.getDwarfLocSection(), "section_debug_loc");
1392   DwarfDebugRangeSectionSym =
1393       emitSectionSym(Asm, TLOF.getDwarfRangesSection(), "debug_range");
1394 }
1395
1396 // Recursively emits a debug information entry.
1397 void DwarfDebug::emitDIE(DIE &Die) {
1398   // Get the abbreviation for this DIE.
1399   const DIEAbbrev &Abbrev = Die.getAbbrev();
1400
1401   // Emit the code (index) for the abbreviation.
1402   if (Asm->isVerbose())
1403     Asm->OutStreamer.AddComment("Abbrev [" + Twine(Abbrev.getNumber()) +
1404                                 "] 0x" + Twine::utohexstr(Die.getOffset()) +
1405                                 ":0x" + Twine::utohexstr(Die.getSize()) + " " +
1406                                 dwarf::TagString(Abbrev.getTag()));
1407   Asm->EmitULEB128(Abbrev.getNumber());
1408
1409   const SmallVectorImpl<DIEValue *> &Values = Die.getValues();
1410   const SmallVectorImpl<DIEAbbrevData> &AbbrevData = Abbrev.getData();
1411
1412   // Emit the DIE attribute values.
1413   for (unsigned i = 0, N = Values.size(); i < N; ++i) {
1414     dwarf::Attribute Attr = AbbrevData[i].getAttribute();
1415     dwarf::Form Form = AbbrevData[i].getForm();
1416     assert(Form && "Too many attributes for DIE (check abbreviation)");
1417
1418     if (Asm->isVerbose()) {
1419       Asm->OutStreamer.AddComment(dwarf::AttributeString(Attr));
1420       if (Attr == dwarf::DW_AT_accessibility)
1421         Asm->OutStreamer.AddComment(dwarf::AccessibilityString(
1422             cast<DIEInteger>(Values[i])->getValue()));
1423     }
1424
1425     // Emit an attribute using the defined form.
1426     Values[i]->EmitValue(Asm, Form);
1427   }
1428
1429   // Emit the DIE children if any.
1430   if (Abbrev.hasChildren()) {
1431     for (auto &Child : Die.getChildren())
1432       emitDIE(*Child);
1433
1434     Asm->OutStreamer.AddComment("End Of Children Mark");
1435     Asm->EmitInt8(0);
1436   }
1437 }
1438
1439 // Emit the debug info section.
1440 void DwarfDebug::emitDebugInfo() {
1441   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1442
1443   Holder.emitUnits(DwarfAbbrevSectionSym);
1444 }
1445
1446 // Emit the abbreviation section.
1447 void DwarfDebug::emitAbbreviations() {
1448   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1449
1450   Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection());
1451 }
1452
1453 // Emit the last address of the section and the end of the line matrix.
1454 void DwarfDebug::emitEndOfLineMatrix(unsigned SectionEnd) {
1455   // Define last address of section.
1456   Asm->OutStreamer.AddComment("Extended Op");
1457   Asm->EmitInt8(0);
1458
1459   Asm->OutStreamer.AddComment("Op size");
1460   Asm->EmitInt8(Asm->getDataLayout().getPointerSize() + 1);
1461   Asm->OutStreamer.AddComment("DW_LNE_set_address");
1462   Asm->EmitInt8(dwarf::DW_LNE_set_address);
1463
1464   Asm->OutStreamer.AddComment("Section end label");
1465
1466   Asm->OutStreamer.EmitSymbolValue(
1467       Asm->GetTempSymbol("section_end", SectionEnd),
1468       Asm->getDataLayout().getPointerSize());
1469
1470   // Mark end of matrix.
1471   Asm->OutStreamer.AddComment("DW_LNE_end_sequence");
1472   Asm->EmitInt8(0);
1473   Asm->EmitInt8(1);
1474   Asm->EmitInt8(1);
1475 }
1476
1477 void DwarfDebug::emitAccel(DwarfAccelTable &Accel, const MCSection *Section,
1478                            StringRef TableName, StringRef SymName) {
1479   Accel.FinalizeTable(Asm, TableName);
1480   Asm->OutStreamer.SwitchSection(Section);
1481   auto *SectionBegin = Asm->GetTempSymbol(SymName);
1482   Asm->OutStreamer.EmitLabel(SectionBegin);
1483
1484   // Emit the full data.
1485   Accel.Emit(Asm, SectionBegin, this, DwarfStrSectionSym);
1486 }
1487
1488 // Emit visible names into a hashed accelerator table section.
1489 void DwarfDebug::emitAccelNames() {
1490   emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(),
1491             "Names", "names_begin");
1492 }
1493
1494 // Emit objective C classes and categories into a hashed accelerator table
1495 // section.
1496 void DwarfDebug::emitAccelObjC() {
1497   emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(),
1498             "ObjC", "objc_begin");
1499 }
1500
1501 // Emit namespace dies into a hashed accelerator table.
1502 void DwarfDebug::emitAccelNamespaces() {
1503   emitAccel(AccelNamespace,
1504             Asm->getObjFileLowering().getDwarfAccelNamespaceSection(),
1505             "namespac", "namespac_begin");
1506 }
1507
1508 // Emit type dies into a hashed accelerator table.
1509 void DwarfDebug::emitAccelTypes() {
1510   emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(),
1511             "types", "types_begin");
1512 }
1513
1514 // Public name handling.
1515 // The format for the various pubnames:
1516 //
1517 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU
1518 // for the DIE that is named.
1519 //
1520 // gnu pubnames - offset/index value/name tuples where the offset is the offset
1521 // into the CU and the index value is computed according to the type of value
1522 // for the DIE that is named.
1523 //
1524 // For type units the offset is the offset of the skeleton DIE. For split dwarf
1525 // it's the offset within the debug_info/debug_types dwo section, however, the
1526 // reference in the pubname header doesn't change.
1527
1528 /// computeIndexValue - Compute the gdb index value for the DIE and CU.
1529 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU,
1530                                                         const DIE *Die) {
1531   dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC;
1532
1533   // We could have a specification DIE that has our most of our knowledge,
1534   // look for that now.
1535   DIEValue *SpecVal = Die->findAttribute(dwarf::DW_AT_specification);
1536   if (SpecVal) {
1537     DIE &SpecDIE = cast<DIEEntry>(SpecVal)->getEntry();
1538     if (SpecDIE.findAttribute(dwarf::DW_AT_external))
1539       Linkage = dwarf::GIEL_EXTERNAL;
1540   } else if (Die->findAttribute(dwarf::DW_AT_external))
1541     Linkage = dwarf::GIEL_EXTERNAL;
1542
1543   switch (Die->getTag()) {
1544   case dwarf::DW_TAG_class_type:
1545   case dwarf::DW_TAG_structure_type:
1546   case dwarf::DW_TAG_union_type:
1547   case dwarf::DW_TAG_enumeration_type:
1548     return dwarf::PubIndexEntryDescriptor(
1549         dwarf::GIEK_TYPE, CU->getLanguage() != dwarf::DW_LANG_C_plus_plus
1550                               ? dwarf::GIEL_STATIC
1551                               : dwarf::GIEL_EXTERNAL);
1552   case dwarf::DW_TAG_typedef:
1553   case dwarf::DW_TAG_base_type:
1554   case dwarf::DW_TAG_subrange_type:
1555     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC);
1556   case dwarf::DW_TAG_namespace:
1557     return dwarf::GIEK_TYPE;
1558   case dwarf::DW_TAG_subprogram:
1559     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage);
1560   case dwarf::DW_TAG_constant:
1561   case dwarf::DW_TAG_variable:
1562     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage);
1563   case dwarf::DW_TAG_enumerator:
1564     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE,
1565                                           dwarf::GIEL_STATIC);
1566   default:
1567     return dwarf::GIEK_NONE;
1568   }
1569 }
1570
1571 /// emitDebugPubNames - Emit visible names into a debug pubnames section.
1572 ///
1573 void DwarfDebug::emitDebugPubNames(bool GnuStyle) {
1574   const MCSection *PSec =
1575       GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection()
1576                : Asm->getObjFileLowering().getDwarfPubNamesSection();
1577
1578   emitDebugPubSection(GnuStyle, PSec, "Names",
1579                       &DwarfCompileUnit::getGlobalNames);
1580 }
1581
1582 void DwarfDebug::emitDebugPubSection(
1583     bool GnuStyle, const MCSection *PSec, StringRef Name,
1584     const StringMap<const DIE *> &(DwarfCompileUnit::*Accessor)() const) {
1585   for (const auto &NU : CUMap) {
1586     DwarfCompileUnit *TheU = NU.second;
1587
1588     const auto &Globals = (TheU->*Accessor)();
1589
1590     if (Globals.empty())
1591       continue;
1592
1593     if (auto *Skeleton = TheU->getSkeleton())
1594       TheU = Skeleton;
1595     unsigned ID = TheU->getUniqueID();
1596
1597     // Start the dwarf pubnames section.
1598     Asm->OutStreamer.SwitchSection(PSec);
1599
1600     // Emit the header.
1601     Asm->OutStreamer.AddComment("Length of Public " + Name + " Info");
1602     MCSymbol *BeginLabel = Asm->GetTempSymbol("pub" + Name + "_begin", ID);
1603     MCSymbol *EndLabel = Asm->GetTempSymbol("pub" + Name + "_end", ID);
1604     Asm->EmitLabelDifference(EndLabel, BeginLabel, 4);
1605
1606     Asm->OutStreamer.EmitLabel(BeginLabel);
1607
1608     Asm->OutStreamer.AddComment("DWARF Version");
1609     Asm->EmitInt16(dwarf::DW_PUBNAMES_VERSION);
1610
1611     Asm->OutStreamer.AddComment("Offset of Compilation Unit Info");
1612     Asm->EmitSectionOffset(TheU->getLabelBegin(), TheU->getSectionSym());
1613
1614     Asm->OutStreamer.AddComment("Compilation Unit Length");
1615     Asm->EmitInt32(TheU->getLength());
1616
1617     // Emit the pubnames for this compilation unit.
1618     for (const auto &GI : Globals) {
1619       const char *Name = GI.getKeyData();
1620       const DIE *Entity = GI.second;
1621
1622       Asm->OutStreamer.AddComment("DIE offset");
1623       Asm->EmitInt32(Entity->getOffset());
1624
1625       if (GnuStyle) {
1626         dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity);
1627         Asm->OutStreamer.AddComment(
1628             Twine("Kind: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + ", " +
1629             dwarf::GDBIndexEntryLinkageString(Desc.Linkage));
1630         Asm->EmitInt8(Desc.toBits());
1631       }
1632
1633       Asm->OutStreamer.AddComment("External Name");
1634       Asm->OutStreamer.EmitBytes(StringRef(Name, GI.getKeyLength() + 1));
1635     }
1636
1637     Asm->OutStreamer.AddComment("End Mark");
1638     Asm->EmitInt32(0);
1639     Asm->OutStreamer.EmitLabel(EndLabel);
1640   }
1641 }
1642
1643 void DwarfDebug::emitDebugPubTypes(bool GnuStyle) {
1644   const MCSection *PSec =
1645       GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection()
1646                : Asm->getObjFileLowering().getDwarfPubTypesSection();
1647
1648   emitDebugPubSection(GnuStyle, PSec, "Types",
1649                       &DwarfCompileUnit::getGlobalTypes);
1650 }
1651
1652 // Emit visible names into a debug str section.
1653 void DwarfDebug::emitDebugStr() {
1654   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1655   Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection());
1656 }
1657
1658 /// Emits an optimal (=sorted) sequence of DW_OP_pieces.
1659 void DwarfDebug::emitLocPieces(ByteStreamer &Streamer,
1660                                const DITypeIdentifierMap &Map,
1661                                ArrayRef<DebugLocEntry::Value> Values) {
1662   assert(std::all_of(Values.begin(), Values.end(), [](DebugLocEntry::Value P) {
1663         return P.isVariablePiece();
1664       }) && "all values are expected to be pieces");
1665   assert(std::is_sorted(Values.begin(), Values.end()) &&
1666          "pieces are expected to be sorted");
1667
1668   unsigned Offset = 0;
1669   for (auto Piece : Values) {
1670     DIExpression Expr = Piece.getExpression();
1671     unsigned PieceOffset = Expr.getPieceOffset();
1672     unsigned PieceSize = Expr.getPieceSize();
1673     assert(Offset <= PieceOffset && "overlapping or duplicate pieces");
1674     if (Offset < PieceOffset) {
1675       // The DWARF spec seriously mandates pieces with no locations for gaps.
1676       Asm->EmitDwarfOpPiece(Streamer, (PieceOffset-Offset)*8);
1677       Offset += PieceOffset-Offset;
1678     }
1679
1680     Offset += PieceSize;
1681
1682     const unsigned SizeOfByte = 8;
1683 #ifndef NDEBUG
1684     DIVariable Var = Piece.getVariable();
1685     assert(!Var.isIndirect() && "indirect address for piece");
1686     unsigned VarSize = Var.getSizeInBits(Map);
1687     assert(PieceSize+PieceOffset <= VarSize/SizeOfByte
1688            && "piece is larger than or outside of variable");
1689     assert(PieceSize*SizeOfByte != VarSize
1690            && "piece covers entire variable");
1691 #endif
1692     if (Piece.isLocation() && Piece.getLoc().isReg())
1693       Asm->EmitDwarfRegOpPiece(Streamer,
1694                                Piece.getLoc(),
1695                                PieceSize*SizeOfByte);
1696     else {
1697       emitDebugLocValue(Streamer, Piece);
1698       Asm->EmitDwarfOpPiece(Streamer, PieceSize*SizeOfByte);
1699     }
1700   }
1701 }
1702
1703
1704 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer,
1705                                    const DebugLocEntry &Entry) {
1706   const DebugLocEntry::Value Value = Entry.getValues()[0];
1707   if (Value.isVariablePiece())
1708     // Emit all pieces that belong to the same variable and range.
1709     return emitLocPieces(Streamer, TypeIdentifierMap, Entry.getValues());
1710
1711   assert(Entry.getValues().size() == 1 && "only pieces may have >1 value");
1712   emitDebugLocValue(Streamer, Value);
1713 }
1714
1715 void DwarfDebug::emitDebugLocValue(ByteStreamer &Streamer,
1716                                    const DebugLocEntry::Value &Value) {
1717   DIVariable DV = Value.getVariable();
1718   // Regular entry.
1719   if (Value.isInt()) {
1720     DIBasicType BTy(resolve(DV.getType()));
1721     if (BTy.Verify() && (BTy.getEncoding() == dwarf::DW_ATE_signed ||
1722                          BTy.getEncoding() == dwarf::DW_ATE_signed_char)) {
1723       Streamer.EmitInt8(dwarf::DW_OP_consts, "DW_OP_consts");
1724       Streamer.EmitSLEB128(Value.getInt());
1725     } else {
1726       Streamer.EmitInt8(dwarf::DW_OP_constu, "DW_OP_constu");
1727       Streamer.EmitULEB128(Value.getInt());
1728     }
1729     // The proper way to describe a constant value is 
1730     // DW_OP_constu <const>, DW_OP_stack_value. 
1731     // Unfortunately, DW_OP_stack_value was not available until DWARF-4,
1732     // so we will continue to generate DW_OP_constu <const> for DWARF-2
1733     // and DWARF-3. Technically, this is incorrect since DW_OP_const <const>
1734     // actually describes a value at a constant addess, not a constant value. 
1735     // However, in the past there was no better way  to describe a constant 
1736     // value, so the producers and consumers started to rely on heuristics 
1737     // to disambiguate the value vs. location status of the expression. 
1738     // See PR21176 for more details.
1739     if (getDwarfVersion() >= 4)
1740       Streamer.EmitInt8(dwarf::DW_OP_stack_value, "DW_OP_stack_value");
1741   } else if (Value.isLocation()) {
1742     MachineLocation Loc = Value.getLoc();
1743     DIExpression Expr = Value.getExpression();
1744     if (!Expr)
1745       // Regular entry.
1746       Asm->EmitDwarfRegOp(Streamer, Loc, DV.isIndirect());
1747     else {
1748       // Complex address entry.
1749       unsigned N = Expr.getNumElements();
1750       unsigned i = 0;
1751       if (N >= 2 && Expr.getElement(0) == dwarf::DW_OP_plus) {
1752         if (Loc.getOffset()) {
1753           i = 2;
1754           Asm->EmitDwarfRegOp(Streamer, Loc, DV.isIndirect());
1755           Streamer.EmitInt8(dwarf::DW_OP_deref, "DW_OP_deref");
1756           Streamer.EmitInt8(dwarf::DW_OP_plus_uconst, "DW_OP_plus_uconst");
1757           Streamer.EmitSLEB128(Expr.getElement(1));
1758         } else {
1759           // If first address element is OpPlus then emit
1760           // DW_OP_breg + Offset instead of DW_OP_reg + Offset.
1761           MachineLocation TLoc(Loc.getReg(), Expr.getElement(1));
1762           Asm->EmitDwarfRegOp(Streamer, TLoc, DV.isIndirect());
1763           i = 2;
1764         }
1765       } else {
1766         Asm->EmitDwarfRegOp(Streamer, Loc, DV.isIndirect());
1767       }
1768
1769       // Emit remaining complex address elements.
1770       for (; i < N; ++i) {
1771         uint64_t Element = Expr.getElement(i);
1772         if (Element == dwarf::DW_OP_plus) {
1773           Streamer.EmitInt8(dwarf::DW_OP_plus_uconst, "DW_OP_plus_uconst");
1774           Streamer.EmitULEB128(Expr.getElement(++i));
1775         } else if (Element == dwarf::DW_OP_deref) {
1776           if (!Loc.isReg())
1777             Streamer.EmitInt8(dwarf::DW_OP_deref, "DW_OP_deref");
1778         } else if (Element == dwarf::DW_OP_piece) {
1779           i += 3;
1780           // handled in emitDebugLocEntry.
1781         } else
1782           llvm_unreachable("unknown Opcode found in complex address");
1783       }
1784     }
1785   }
1786   // else ... ignore constant fp. There is not any good way to
1787   // to represent them here in dwarf.
1788   // FIXME: ^
1789 }
1790
1791 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocEntry &Entry) {
1792   Asm->OutStreamer.AddComment("Loc expr size");
1793   MCSymbol *begin = Asm->OutStreamer.getContext().CreateTempSymbol();
1794   MCSymbol *end = Asm->OutStreamer.getContext().CreateTempSymbol();
1795   Asm->EmitLabelDifference(end, begin, 2);
1796   Asm->OutStreamer.EmitLabel(begin);
1797   // Emit the entry.
1798   APByteStreamer Streamer(*Asm);
1799   emitDebugLocEntry(Streamer, Entry);
1800   // Close the range.
1801   Asm->OutStreamer.EmitLabel(end);
1802 }
1803
1804 // Emit locations into the debug loc section.
1805 void DwarfDebug::emitDebugLoc() {
1806   // Start the dwarf loc section.
1807   Asm->OutStreamer.SwitchSection(
1808       Asm->getObjFileLowering().getDwarfLocSection());
1809   unsigned char Size = Asm->getDataLayout().getPointerSize();
1810   for (const auto &DebugLoc : DotDebugLocEntries) {
1811     Asm->OutStreamer.EmitLabel(DebugLoc.Label);
1812     const DwarfCompileUnit *CU = DebugLoc.CU;
1813     for (const auto &Entry : DebugLoc.List) {
1814       // Set up the range. This range is relative to the entry point of the
1815       // compile unit. This is a hard coded 0 for low_pc when we're emitting
1816       // ranges, or the DW_AT_low_pc on the compile unit otherwise.
1817       if (auto *Base = CU->getBaseAddress()) {
1818         Asm->EmitLabelDifference(Entry.getBeginSym(), Base, Size);
1819         Asm->EmitLabelDifference(Entry.getEndSym(), Base, Size);
1820       } else {
1821         Asm->OutStreamer.EmitSymbolValue(Entry.getBeginSym(), Size);
1822         Asm->OutStreamer.EmitSymbolValue(Entry.getEndSym(), Size);
1823       }
1824
1825       emitDebugLocEntryLocation(Entry);
1826     }
1827     Asm->OutStreamer.EmitIntValue(0, Size);
1828     Asm->OutStreamer.EmitIntValue(0, Size);
1829   }
1830 }
1831
1832 void DwarfDebug::emitDebugLocDWO() {
1833   Asm->OutStreamer.SwitchSection(
1834       Asm->getObjFileLowering().getDwarfLocDWOSection());
1835   for (const auto &DebugLoc : DotDebugLocEntries) {
1836     Asm->OutStreamer.EmitLabel(DebugLoc.Label);
1837     for (const auto &Entry : DebugLoc.List) {
1838       // Just always use start_length for now - at least that's one address
1839       // rather than two. We could get fancier and try to, say, reuse an
1840       // address we know we've emitted elsewhere (the start of the function?
1841       // The start of the CU or CU subrange that encloses this range?)
1842       Asm->EmitInt8(dwarf::DW_LLE_start_length_entry);
1843       unsigned idx = AddrPool.getIndex(Entry.getBeginSym());
1844       Asm->EmitULEB128(idx);
1845       Asm->EmitLabelDifference(Entry.getEndSym(), Entry.getBeginSym(), 4);
1846
1847       emitDebugLocEntryLocation(Entry);
1848     }
1849     Asm->EmitInt8(dwarf::DW_LLE_end_of_list_entry);
1850   }
1851 }
1852
1853 struct ArangeSpan {
1854   const MCSymbol *Start, *End;
1855 };
1856
1857 // Emit a debug aranges section, containing a CU lookup for any
1858 // address we can tie back to a CU.
1859 void DwarfDebug::emitDebugARanges() {
1860   // Start the dwarf aranges section.
1861   Asm->OutStreamer.SwitchSection(
1862       Asm->getObjFileLowering().getDwarfARangesSection());
1863
1864   typedef DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> SpansType;
1865
1866   SpansType Spans;
1867
1868   // Build a list of sections used.
1869   std::vector<const MCSection *> Sections;
1870   for (const auto &it : SectionMap) {
1871     const MCSection *Section = it.first;
1872     Sections.push_back(Section);
1873   }
1874
1875   // Sort the sections into order.
1876   // This is only done to ensure consistent output order across different runs.
1877   std::sort(Sections.begin(), Sections.end(), SectionSort);
1878
1879   // Build a set of address spans, sorted by CU.
1880   for (const MCSection *Section : Sections) {
1881     SmallVector<SymbolCU, 8> &List = SectionMap[Section];
1882     if (List.size() < 2)
1883       continue;
1884
1885     // Sort the symbols by offset within the section.
1886     std::sort(List.begin(), List.end(),
1887               [&](const SymbolCU &A, const SymbolCU &B) {
1888       unsigned IA = A.Sym ? Asm->OutStreamer.GetSymbolOrder(A.Sym) : 0;
1889       unsigned IB = B.Sym ? Asm->OutStreamer.GetSymbolOrder(B.Sym) : 0;
1890
1891       // Symbols with no order assigned should be placed at the end.
1892       // (e.g. section end labels)
1893       if (IA == 0)
1894         return false;
1895       if (IB == 0)
1896         return true;
1897       return IA < IB;
1898     });
1899
1900     // If we have no section (e.g. common), just write out
1901     // individual spans for each symbol.
1902     if (!Section) {
1903       for (const SymbolCU &Cur : List) {
1904         ArangeSpan Span;
1905         Span.Start = Cur.Sym;
1906         Span.End = nullptr;
1907         if (Cur.CU)
1908           Spans[Cur.CU].push_back(Span);
1909       }
1910     } else {
1911       // Build spans between each label.
1912       const MCSymbol *StartSym = List[0].Sym;
1913       for (size_t n = 1, e = List.size(); n < e; n++) {
1914         const SymbolCU &Prev = List[n - 1];
1915         const SymbolCU &Cur = List[n];
1916
1917         // Try and build the longest span we can within the same CU.
1918         if (Cur.CU != Prev.CU) {
1919           ArangeSpan Span;
1920           Span.Start = StartSym;
1921           Span.End = Cur.Sym;
1922           Spans[Prev.CU].push_back(Span);
1923           StartSym = Cur.Sym;
1924         }
1925       }
1926     }
1927   }
1928
1929   unsigned PtrSize = Asm->getDataLayout().getPointerSize();
1930
1931   // Build a list of CUs used.
1932   std::vector<DwarfCompileUnit *> CUs;
1933   for (const auto &it : Spans) {
1934     DwarfCompileUnit *CU = it.first;
1935     CUs.push_back(CU);
1936   }
1937
1938   // Sort the CU list (again, to ensure consistent output order).
1939   std::sort(CUs.begin(), CUs.end(), [](const DwarfUnit *A, const DwarfUnit *B) {
1940     return A->getUniqueID() < B->getUniqueID();
1941   });
1942
1943   // Emit an arange table for each CU we used.
1944   for (DwarfCompileUnit *CU : CUs) {
1945     std::vector<ArangeSpan> &List = Spans[CU];
1946
1947     // Describe the skeleton CU's offset and length, not the dwo file's.
1948     if (auto *Skel = CU->getSkeleton())
1949       CU = Skel;
1950
1951     // Emit size of content not including length itself.
1952     unsigned ContentSize =
1953         sizeof(int16_t) + // DWARF ARange version number
1954         sizeof(int32_t) + // Offset of CU in the .debug_info section
1955         sizeof(int8_t) +  // Pointer Size (in bytes)
1956         sizeof(int8_t);   // Segment Size (in bytes)
1957
1958     unsigned TupleSize = PtrSize * 2;
1959
1960     // 7.20 in the Dwarf specs requires the table to be aligned to a tuple.
1961     unsigned Padding =
1962         OffsetToAlignment(sizeof(int32_t) + ContentSize, TupleSize);
1963
1964     ContentSize += Padding;
1965     ContentSize += (List.size() + 1) * TupleSize;
1966
1967     // For each compile unit, write the list of spans it covers.
1968     Asm->OutStreamer.AddComment("Length of ARange Set");
1969     Asm->EmitInt32(ContentSize);
1970     Asm->OutStreamer.AddComment("DWARF Arange version number");
1971     Asm->EmitInt16(dwarf::DW_ARANGES_VERSION);
1972     Asm->OutStreamer.AddComment("Offset Into Debug Info Section");
1973     Asm->EmitSectionOffset(CU->getLabelBegin(), CU->getSectionSym());
1974     Asm->OutStreamer.AddComment("Address Size (in bytes)");
1975     Asm->EmitInt8(PtrSize);
1976     Asm->OutStreamer.AddComment("Segment Size (in bytes)");
1977     Asm->EmitInt8(0);
1978
1979     Asm->OutStreamer.EmitFill(Padding, 0xff);
1980
1981     for (const ArangeSpan &Span : List) {
1982       Asm->EmitLabelReference(Span.Start, PtrSize);
1983
1984       // Calculate the size as being from the span start to it's end.
1985       if (Span.End) {
1986         Asm->EmitLabelDifference(Span.End, Span.Start, PtrSize);
1987       } else {
1988         // For symbols without an end marker (e.g. common), we
1989         // write a single arange entry containing just that one symbol.
1990         uint64_t Size = SymSize[Span.Start];
1991         if (Size == 0)
1992           Size = 1;
1993
1994         Asm->OutStreamer.EmitIntValue(Size, PtrSize);
1995       }
1996     }
1997
1998     Asm->OutStreamer.AddComment("ARange terminator");
1999     Asm->OutStreamer.EmitIntValue(0, PtrSize);
2000     Asm->OutStreamer.EmitIntValue(0, PtrSize);
2001   }
2002 }
2003
2004 // Emit visible names into a debug ranges section.
2005 void DwarfDebug::emitDebugRanges() {
2006   // Start the dwarf ranges section.
2007   Asm->OutStreamer.SwitchSection(
2008       Asm->getObjFileLowering().getDwarfRangesSection());
2009
2010   // Size for our labels.
2011   unsigned char Size = Asm->getDataLayout().getPointerSize();
2012
2013   // Grab the specific ranges for the compile units in the module.
2014   for (const auto &I : CUMap) {
2015     DwarfCompileUnit *TheCU = I.second;
2016
2017     if (auto *Skel = TheCU->getSkeleton())
2018       TheCU = Skel;
2019
2020     // Iterate over the misc ranges for the compile units in the module.
2021     for (const RangeSpanList &List : TheCU->getRangeLists()) {
2022       // Emit our symbol so we can find the beginning of the range.
2023       Asm->OutStreamer.EmitLabel(List.getSym());
2024
2025       for (const RangeSpan &Range : List.getRanges()) {
2026         const MCSymbol *Begin = Range.getStart();
2027         const MCSymbol *End = Range.getEnd();
2028         assert(Begin && "Range without a begin symbol?");
2029         assert(End && "Range without an end symbol?");
2030         if (auto *Base = TheCU->getBaseAddress()) {
2031           Asm->EmitLabelDifference(Begin, Base, Size);
2032           Asm->EmitLabelDifference(End, Base, Size);
2033         } else {
2034           Asm->OutStreamer.EmitSymbolValue(Begin, Size);
2035           Asm->OutStreamer.EmitSymbolValue(End, Size);
2036         }
2037       }
2038
2039       // And terminate the list with two 0 values.
2040       Asm->OutStreamer.EmitIntValue(0, Size);
2041       Asm->OutStreamer.EmitIntValue(0, Size);
2042     }
2043   }
2044 }
2045
2046 // DWARF5 Experimental Separate Dwarf emitters.
2047
2048 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die,
2049                                   std::unique_ptr<DwarfUnit> NewU) {
2050   NewU->addString(Die, dwarf::DW_AT_GNU_dwo_name,
2051                   U.getCUNode().getSplitDebugFilename());
2052
2053   if (!CompilationDir.empty())
2054     NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
2055
2056   addGnuPubAttributes(*NewU, Die);
2057
2058   SkeletonHolder.addUnit(std::move(NewU));
2059 }
2060
2061 // This DIE has the following attributes: DW_AT_comp_dir, DW_AT_stmt_list,
2062 // DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges, DW_AT_dwo_name, DW_AT_dwo_id,
2063 // DW_AT_addr_base, DW_AT_ranges_base.
2064 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) {
2065
2066   auto OwnedUnit = make_unique<DwarfCompileUnit>(
2067       CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder);
2068   DwarfCompileUnit &NewCU = *OwnedUnit;
2069   NewCU.initSection(Asm->getObjFileLowering().getDwarfInfoSection(),
2070                     DwarfInfoSectionSym);
2071
2072   NewCU.initStmtList(DwarfLineSectionSym);
2073
2074   initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit));
2075
2076   return NewCU;
2077 }
2078
2079 // Emit the .debug_info.dwo section for separated dwarf. This contains the
2080 // compile units that would normally be in debug_info.
2081 void DwarfDebug::emitDebugInfoDWO() {
2082   assert(useSplitDwarf() && "No split dwarf debug info?");
2083   // Don't pass an abbrev symbol, using a constant zero instead so as not to
2084   // emit relocations into the dwo file.
2085   InfoHolder.emitUnits(/* AbbrevSymbol */ nullptr);
2086 }
2087
2088 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the
2089 // abbreviations for the .debug_info.dwo section.
2090 void DwarfDebug::emitDebugAbbrevDWO() {
2091   assert(useSplitDwarf() && "No split dwarf?");
2092   InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection());
2093 }
2094
2095 void DwarfDebug::emitDebugLineDWO() {
2096   assert(useSplitDwarf() && "No split dwarf?");
2097   Asm->OutStreamer.SwitchSection(
2098       Asm->getObjFileLowering().getDwarfLineDWOSection());
2099   SplitTypeUnitFileTable.Emit(Asm->OutStreamer);
2100 }
2101
2102 // Emit the .debug_str.dwo section for separated dwarf. This contains the
2103 // string section and is identical in format to traditional .debug_str
2104 // sections.
2105 void DwarfDebug::emitDebugStrDWO() {
2106   assert(useSplitDwarf() && "No split dwarf?");
2107   const MCSection *OffSec =
2108       Asm->getObjFileLowering().getDwarfStrOffDWOSection();
2109   InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(),
2110                          OffSec);
2111 }
2112
2113 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) {
2114   if (!useSplitDwarf())
2115     return nullptr;
2116   if (SingleCU)
2117     SplitTypeUnitFileTable.setCompilationDir(CU.getCUNode().getDirectory());
2118   return &SplitTypeUnitFileTable;
2119 }
2120
2121 static uint64_t makeTypeSignature(StringRef Identifier) {
2122   MD5 Hash;
2123   Hash.update(Identifier);
2124   // ... take the least significant 8 bytes and return those. Our MD5
2125   // implementation always returns its results in little endian, swap bytes
2126   // appropriately.
2127   MD5::MD5Result Result;
2128   Hash.final(Result);
2129   return *reinterpret_cast<support::ulittle64_t *>(Result + 8);
2130 }
2131
2132 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
2133                                       StringRef Identifier, DIE &RefDie,
2134                                       DICompositeType CTy) {
2135   // Fast path if we're building some type units and one has already used the
2136   // address pool we know we're going to throw away all this work anyway, so
2137   // don't bother building dependent types.
2138   if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed())
2139     return;
2140
2141   const DwarfTypeUnit *&TU = DwarfTypeUnits[CTy];
2142   if (TU) {
2143     CU.addDIETypeSignature(RefDie, *TU);
2144     return;
2145   }
2146
2147   bool TopLevelType = TypeUnitsUnderConstruction.empty();
2148   AddrPool.resetUsedFlag();
2149
2150   auto OwnedUnit = make_unique<DwarfTypeUnit>(
2151       InfoHolder.getUnits().size() + TypeUnitsUnderConstruction.size(), CU, Asm,
2152       this, &InfoHolder, getDwoLineTable(CU));
2153   DwarfTypeUnit &NewTU = *OwnedUnit;
2154   DIE &UnitDie = NewTU.getUnitDie();
2155   TU = &NewTU;
2156   TypeUnitsUnderConstruction.push_back(
2157       std::make_pair(std::move(OwnedUnit), CTy));
2158
2159   NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
2160                 CU.getLanguage());
2161
2162   uint64_t Signature = makeTypeSignature(Identifier);
2163   NewTU.setTypeSignature(Signature);
2164
2165   if (useSplitDwarf())
2166     NewTU.initSection(Asm->getObjFileLowering().getDwarfTypesDWOSection());
2167   else {
2168     CU.applyStmtList(UnitDie);
2169     NewTU.initSection(
2170         Asm->getObjFileLowering().getDwarfTypesSection(Signature));
2171   }
2172
2173   NewTU.setType(NewTU.createTypeDIE(CTy));
2174
2175   if (TopLevelType) {
2176     auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction);
2177     TypeUnitsUnderConstruction.clear();
2178
2179     // Types referencing entries in the address table cannot be placed in type
2180     // units.
2181     if (AddrPool.hasBeenUsed()) {
2182
2183       // Remove all the types built while building this type.
2184       // This is pessimistic as some of these types might not be dependent on
2185       // the type that used an address.
2186       for (const auto &TU : TypeUnitsToAdd)
2187         DwarfTypeUnits.erase(TU.second);
2188
2189       // Construct this type in the CU directly.
2190       // This is inefficient because all the dependent types will be rebuilt
2191       // from scratch, including building them in type units, discovering that
2192       // they depend on addresses, throwing them out and rebuilding them.
2193       CU.constructTypeDIE(RefDie, CTy);
2194       return;
2195     }
2196
2197     // If the type wasn't dependent on fission addresses, finish adding the type
2198     // and all its dependent types.
2199     for (auto &TU : TypeUnitsToAdd)
2200       InfoHolder.addUnit(std::move(TU.first));
2201   }
2202   CU.addDIETypeSignature(RefDie, NewTU);
2203 }
2204
2205 // Accelerator table mutators - add each name along with its companion
2206 // DIE to the proper table while ensuring that the name that we're going
2207 // to reference is in the string table. We do this since the names we
2208 // add may not only be identical to the names in the DIE.
2209 void DwarfDebug::addAccelName(StringRef Name, const DIE &Die) {
2210   if (!useDwarfAccelTables())
2211     return;
2212   AccelNames.AddName(Name, InfoHolder.getStringPool().getSymbol(*Asm, Name),
2213                      &Die);
2214 }
2215
2216 void DwarfDebug::addAccelObjC(StringRef Name, const DIE &Die) {
2217   if (!useDwarfAccelTables())
2218     return;
2219   AccelObjC.AddName(Name, InfoHolder.getStringPool().getSymbol(*Asm, Name),
2220                     &Die);
2221 }
2222
2223 void DwarfDebug::addAccelNamespace(StringRef Name, const DIE &Die) {
2224   if (!useDwarfAccelTables())
2225     return;
2226   AccelNamespace.AddName(Name, InfoHolder.getStringPool().getSymbol(*Asm, Name),
2227                          &Die);
2228 }
2229
2230 void DwarfDebug::addAccelType(StringRef Name, const DIE &Die, char Flags) {
2231   if (!useDwarfAccelTables())
2232     return;
2233   AccelTypes.AddName(Name, InfoHolder.getStringPool().getSymbol(*Asm, Name),
2234                      &Die);
2235 }