Plug memory leaks in AsmWriterEmitter::EmitPrintAliasInstruction.
[oota-llvm.git] / lib / CodeGen / CriticalAntiDepBreaker.cpp
1 //===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CriticalAntiDepBreaker class, which
11 // implements register anti-dependence breaking along a blocks
12 // critical path during post-RA scheduler.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "CriticalAntiDepBreaker.h"
17 #include "llvm/CodeGen/MachineBasicBlock.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include "llvm/Target/TargetInstrInfo.h"
23 #include "llvm/Target/TargetRegisterInfo.h"
24 #include "llvm/Target/TargetSubtargetInfo.h"
25
26 using namespace llvm;
27
28 #define DEBUG_TYPE "post-RA-sched"
29
30 CriticalAntiDepBreaker::CriticalAntiDepBreaker(MachineFunction &MFi,
31                                                const RegisterClassInfo &RCI)
32     : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()),
33       TII(MF.getSubtarget().getInstrInfo()),
34       TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI),
35       Classes(TRI->getNumRegs(), nullptr), KillIndices(TRI->getNumRegs(), 0),
36       DefIndices(TRI->getNumRegs(), 0), KeepRegs(TRI->getNumRegs(), false) {}
37
38 CriticalAntiDepBreaker::~CriticalAntiDepBreaker() {
39 }
40
41 void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
42   const unsigned BBSize = BB->size();
43   for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
44     // Clear out the register class data.
45     Classes[i] = nullptr;
46
47     // Initialize the indices to indicate that no registers are live.
48     KillIndices[i] = ~0u;
49     DefIndices[i] = BBSize;
50   }
51
52   // Clear "do not change" set.
53   KeepRegs.reset();
54
55   bool IsReturnBlock = (BBSize != 0 && BB->back().isReturn());
56
57   // Examine the live-in regs of all successors.
58   for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
59          SE = BB->succ_end(); SI != SE; ++SI)
60     for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
61            E = (*SI)->livein_end(); I != E; ++I) {
62       for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
63         unsigned Reg = *AI;
64         Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
65         KillIndices[Reg] = BBSize;
66         DefIndices[Reg] = ~0u;
67       }
68     }
69
70   // Mark live-out callee-saved registers. In a return block this is
71   // all callee-saved registers. In non-return this is any
72   // callee-saved register that is not saved in the prolog.
73   const MachineFrameInfo *MFI = MF.getFrameInfo();
74   BitVector Pristine = MFI->getPristineRegs(MF);
75   for (const MCPhysReg *I = TRI->getCalleeSavedRegs(&MF); *I; ++I) {
76     if (!IsReturnBlock && !Pristine.test(*I)) continue;
77     for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
78       unsigned Reg = *AI;
79       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
80       KillIndices[Reg] = BBSize;
81       DefIndices[Reg] = ~0u;
82     }
83   }
84 }
85
86 void CriticalAntiDepBreaker::FinishBlock() {
87   RegRefs.clear();
88   KeepRegs.reset();
89 }
90
91 void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count,
92                                      unsigned InsertPosIndex) {
93   // Kill instructions can define registers but are really nops, and there might
94   // be a real definition earlier that needs to be paired with uses dominated by
95   // this kill.
96
97   // FIXME: It may be possible to remove the isKill() restriction once PR18663
98   // has been properly fixed. There can be value in processing kills as seen in
99   // the AggressiveAntiDepBreaker class.
100   if (MI->isDebugValue() || MI->isKill())
101     return;
102   assert(Count < InsertPosIndex && "Instruction index out of expected range!");
103
104   for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
105     if (KillIndices[Reg] != ~0u) {
106       // If Reg is currently live, then mark that it can't be renamed as
107       // we don't know the extent of its live-range anymore (now that it
108       // has been scheduled).
109       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
110       KillIndices[Reg] = Count;
111     } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
112       // Any register which was defined within the previous scheduling region
113       // may have been rescheduled and its lifetime may overlap with registers
114       // in ways not reflected in our current liveness state. For each such
115       // register, adjust the liveness state to be conservatively correct.
116       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
117
118       // Move the def index to the end of the previous region, to reflect
119       // that the def could theoretically have been scheduled at the end.
120       DefIndices[Reg] = InsertPosIndex;
121     }
122   }
123
124   PrescanInstruction(MI);
125   ScanInstruction(MI, Count);
126 }
127
128 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up
129 /// critical path.
130 static const SDep *CriticalPathStep(const SUnit *SU) {
131   const SDep *Next = nullptr;
132   unsigned NextDepth = 0;
133   // Find the predecessor edge with the greatest depth.
134   for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
135        P != PE; ++P) {
136     const SUnit *PredSU = P->getSUnit();
137     unsigned PredLatency = P->getLatency();
138     unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
139     // In the case of a latency tie, prefer an anti-dependency edge over
140     // other types of edges.
141     if (NextDepth < PredTotalLatency ||
142         (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
143       NextDepth = PredTotalLatency;
144       Next = &*P;
145     }
146   }
147   return Next;
148 }
149
150 void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) {
151   // It's not safe to change register allocation for source operands of
152   // instructions that have special allocation requirements. Also assume all
153   // registers used in a call must not be changed (ABI).
154   // FIXME: The issue with predicated instruction is more complex. We are being
155   // conservative here because the kill markers cannot be trusted after
156   // if-conversion:
157   // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14]
158   // ...
159   // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395]
160   // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12]
161   // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8)
162   //
163   // The first R6 kill is not really a kill since it's killed by a predicated
164   // instruction which may not be executed. The second R6 def may or may not
165   // re-define R6 so it's not safe to change it since the last R6 use cannot be
166   // changed.
167   bool Special = MI->isCall() ||
168     MI->hasExtraSrcRegAllocReq() ||
169     TII->isPredicated(MI);
170
171   // Scan the register operands for this instruction and update
172   // Classes and RegRefs.
173   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
174     MachineOperand &MO = MI->getOperand(i);
175     if (!MO.isReg()) continue;
176     unsigned Reg = MO.getReg();
177     if (Reg == 0) continue;
178     const TargetRegisterClass *NewRC = nullptr;
179
180     if (i < MI->getDesc().getNumOperands())
181       NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF);
182
183     // For now, only allow the register to be changed if its register
184     // class is consistent across all uses.
185     if (!Classes[Reg] && NewRC)
186       Classes[Reg] = NewRC;
187     else if (!NewRC || Classes[Reg] != NewRC)
188       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
189
190     // Now check for aliases.
191     for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
192       // If an alias of the reg is used during the live range, give up.
193       // Note that this allows us to skip checking if AntiDepReg
194       // overlaps with any of the aliases, among other things.
195       unsigned AliasReg = *AI;
196       if (Classes[AliasReg]) {
197         Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
198         Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
199       }
200     }
201
202     // If we're still willing to consider this register, note the reference.
203     if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
204       RegRefs.insert(std::make_pair(Reg, &MO));
205
206     // If this reg is tied and live (Classes[Reg] is set to -1), we can't change
207     // it or any of its sub or super regs. We need to use KeepRegs to mark the
208     // reg because not all uses of the same reg within an instruction are
209     // necessarily tagged as tied.
210     // Example: an x86 "xor %eax, %eax" will have one source operand tied to the
211     // def register but not the second (see PR20020 for details).
212     // FIXME: can this check be relaxed to account for undef uses
213     // of a register? In the above 'xor' example, the uses of %eax are undef, so
214     // earlier instructions could still replace %eax even though the 'xor'
215     // itself can't be changed.
216     if (MI->isRegTiedToUseOperand(i) &&
217         Classes[Reg] == reinterpret_cast<TargetRegisterClass *>(-1)) {
218       for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
219            SubRegs.isValid(); ++SubRegs) {
220         KeepRegs.set(*SubRegs);
221       }
222       for (MCSuperRegIterator SuperRegs(Reg, TRI);
223            SuperRegs.isValid(); ++SuperRegs) {
224         KeepRegs.set(*SuperRegs);
225       }
226     }
227
228     if (MO.isUse() && Special) {
229       if (!KeepRegs.test(Reg)) {
230         for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
231              SubRegs.isValid(); ++SubRegs)
232           KeepRegs.set(*SubRegs);
233       }
234     }
235   }
236 }
237
238 void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI,
239                                              unsigned Count) {
240   // Update liveness.
241   // Proceeding upwards, registers that are defed but not used in this
242   // instruction are now dead.
243   assert(!MI->isKill() && "Attempting to scan a kill instruction");
244
245   if (!TII->isPredicated(MI)) {
246     // Predicated defs are modeled as read + write, i.e. similar to two
247     // address updates.
248     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
249       MachineOperand &MO = MI->getOperand(i);
250
251       if (MO.isRegMask())
252         for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i)
253           if (MO.clobbersPhysReg(i)) {
254             DefIndices[i] = Count;
255             KillIndices[i] = ~0u;
256             KeepRegs.reset(i);
257             Classes[i] = nullptr;
258             RegRefs.erase(i);
259           }
260
261       if (!MO.isReg()) continue;
262       unsigned Reg = MO.getReg();
263       if (Reg == 0) continue;
264       if (!MO.isDef()) continue;
265
266       // If we've already marked this reg as unchangeable, carry on.
267       if (KeepRegs.test(Reg)) continue;
268       
269       // Ignore two-addr defs.
270       if (MI->isRegTiedToUseOperand(i)) continue;
271
272       // For the reg itself and all subregs: update the def to current;
273       // reset the kill state, any restrictions, and references.
274       for (MCSubRegIterator SRI(Reg, TRI, true); SRI.isValid(); ++SRI) {
275         unsigned SubregReg = *SRI;
276         DefIndices[SubregReg] = Count;
277         KillIndices[SubregReg] = ~0u;
278         KeepRegs.reset(SubregReg);
279         Classes[SubregReg] = nullptr;
280         RegRefs.erase(SubregReg);
281       }
282       // Conservatively mark super-registers as unusable.
283       for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR)
284         Classes[*SR] = reinterpret_cast<TargetRegisterClass *>(-1);
285     }
286   }
287   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
288     MachineOperand &MO = MI->getOperand(i);
289     if (!MO.isReg()) continue;
290     unsigned Reg = MO.getReg();
291     if (Reg == 0) continue;
292     if (!MO.isUse()) continue;
293
294     const TargetRegisterClass *NewRC = nullptr;
295     if (i < MI->getDesc().getNumOperands())
296       NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF);
297
298     // For now, only allow the register to be changed if its register
299     // class is consistent across all uses.
300     if (!Classes[Reg] && NewRC)
301       Classes[Reg] = NewRC;
302     else if (!NewRC || Classes[Reg] != NewRC)
303       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
304
305     RegRefs.insert(std::make_pair(Reg, &MO));
306
307     // It wasn't previously live but now it is, this is a kill.
308     // Repeat for all aliases.
309     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
310       unsigned AliasReg = *AI;
311       if (KillIndices[AliasReg] == ~0u) {
312         KillIndices[AliasReg] = Count;
313         DefIndices[AliasReg] = ~0u;
314       }
315     }
316   }
317 }
318
319 // Check all machine operands that reference the antidependent register and must
320 // be replaced by NewReg. Return true if any of their parent instructions may
321 // clobber the new register.
322 //
323 // Note: AntiDepReg may be referenced by a two-address instruction such that
324 // it's use operand is tied to a def operand. We guard against the case in which
325 // the two-address instruction also defines NewReg, as may happen with
326 // pre/postincrement loads. In this case, both the use and def operands are in
327 // RegRefs because the def is inserted by PrescanInstruction and not erased
328 // during ScanInstruction. So checking for an instruction with definitions of
329 // both NewReg and AntiDepReg covers it.
330 bool
331 CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin,
332                                                 RegRefIter RegRefEnd,
333                                                 unsigned NewReg)
334 {
335   for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) {
336     MachineOperand *RefOper = I->second;
337
338     // Don't allow the instruction defining AntiDepReg to earlyclobber its
339     // operands, in case they may be assigned to NewReg. In this case antidep
340     // breaking must fail, but it's too rare to bother optimizing.
341     if (RefOper->isDef() && RefOper->isEarlyClobber())
342       return true;
343
344     // Handle cases in which this instruction defines NewReg.
345     MachineInstr *MI = RefOper->getParent();
346     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
347       const MachineOperand &CheckOper = MI->getOperand(i);
348
349       if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg))
350         return true;
351
352       if (!CheckOper.isReg() || !CheckOper.isDef() ||
353           CheckOper.getReg() != NewReg)
354         continue;
355
356       // Don't allow the instruction to define NewReg and AntiDepReg.
357       // When AntiDepReg is renamed it will be an illegal op.
358       if (RefOper->isDef())
359         return true;
360
361       // Don't allow an instruction using AntiDepReg to be earlyclobbered by
362       // NewReg.
363       if (CheckOper.isEarlyClobber())
364         return true;
365
366       // Don't allow inline asm to define NewReg at all. Who knows what it's
367       // doing with it.
368       if (MI->isInlineAsm())
369         return true;
370     }
371   }
372   return false;
373 }
374
375 unsigned CriticalAntiDepBreaker::
376 findSuitableFreeRegister(RegRefIter RegRefBegin,
377                          RegRefIter RegRefEnd,
378                          unsigned AntiDepReg,
379                          unsigned LastNewReg,
380                          const TargetRegisterClass *RC,
381                          SmallVectorImpl<unsigned> &Forbid)
382 {
383   ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC);
384   for (unsigned i = 0; i != Order.size(); ++i) {
385     unsigned NewReg = Order[i];
386     // Don't replace a register with itself.
387     if (NewReg == AntiDepReg) continue;
388     // Don't replace a register with one that was recently used to repair
389     // an anti-dependence with this AntiDepReg, because that would
390     // re-introduce that anti-dependence.
391     if (NewReg == LastNewReg) continue;
392     // If any instructions that define AntiDepReg also define the NewReg, it's
393     // not suitable.  For example, Instruction with multiple definitions can
394     // result in this condition.
395     if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue;
396     // If NewReg is dead and NewReg's most recent def is not before
397     // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
398     assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
399            && "Kill and Def maps aren't consistent for AntiDepReg!");
400     assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
401            && "Kill and Def maps aren't consistent for NewReg!");
402     if (KillIndices[NewReg] != ~0u ||
403         Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
404         KillIndices[AntiDepReg] > DefIndices[NewReg])
405       continue;
406     // If NewReg overlaps any of the forbidden registers, we can't use it.
407     bool Forbidden = false;
408     for (SmallVectorImpl<unsigned>::iterator it = Forbid.begin(),
409            ite = Forbid.end(); it != ite; ++it)
410       if (TRI->regsOverlap(NewReg, *it)) {
411         Forbidden = true;
412         break;
413       }
414     if (Forbidden) continue;
415     return NewReg;
416   }
417
418   // No registers are free and available!
419   return 0;
420 }
421
422 unsigned CriticalAntiDepBreaker::
423 BreakAntiDependencies(const std::vector<SUnit>& SUnits,
424                       MachineBasicBlock::iterator Begin,
425                       MachineBasicBlock::iterator End,
426                       unsigned InsertPosIndex,
427                       DbgValueVector &DbgValues) {
428   // The code below assumes that there is at least one instruction,
429   // so just duck out immediately if the block is empty.
430   if (SUnits.empty()) return 0;
431
432   // Keep a map of the MachineInstr*'s back to the SUnit representing them.
433   // This is used for updating debug information.
434   //
435   // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap
436   DenseMap<MachineInstr*,const SUnit*> MISUnitMap;
437
438   // Find the node at the bottom of the critical path.
439   const SUnit *Max = nullptr;
440   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
441     const SUnit *SU = &SUnits[i];
442     MISUnitMap[SU->getInstr()] = SU;
443     if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
444       Max = SU;
445   }
446
447 #ifndef NDEBUG
448   {
449     DEBUG(dbgs() << "Critical path has total latency "
450           << (Max->getDepth() + Max->Latency) << "\n");
451     DEBUG(dbgs() << "Available regs:");
452     for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
453       if (KillIndices[Reg] == ~0u)
454         DEBUG(dbgs() << " " << TRI->getName(Reg));
455     }
456     DEBUG(dbgs() << '\n');
457   }
458 #endif
459
460   // Track progress along the critical path through the SUnit graph as we walk
461   // the instructions.
462   const SUnit *CriticalPathSU = Max;
463   MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
464
465   // Consider this pattern:
466   //   A = ...
467   //   ... = A
468   //   A = ...
469   //   ... = A
470   //   A = ...
471   //   ... = A
472   //   A = ...
473   //   ... = A
474   // There are three anti-dependencies here, and without special care,
475   // we'd break all of them using the same register:
476   //   A = ...
477   //   ... = A
478   //   B = ...
479   //   ... = B
480   //   B = ...
481   //   ... = B
482   //   B = ...
483   //   ... = B
484   // because at each anti-dependence, B is the first register that
485   // isn't A which is free.  This re-introduces anti-dependencies
486   // at all but one of the original anti-dependencies that we were
487   // trying to break.  To avoid this, keep track of the most recent
488   // register that each register was replaced with, avoid
489   // using it to repair an anti-dependence on the same register.
490   // This lets us produce this:
491   //   A = ...
492   //   ... = A
493   //   B = ...
494   //   ... = B
495   //   C = ...
496   //   ... = C
497   //   B = ...
498   //   ... = B
499   // This still has an anti-dependence on B, but at least it isn't on the
500   // original critical path.
501   //
502   // TODO: If we tracked more than one register here, we could potentially
503   // fix that remaining critical edge too. This is a little more involved,
504   // because unlike the most recent register, less recent registers should
505   // still be considered, though only if no other registers are available.
506   std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0);
507
508   // Attempt to break anti-dependence edges on the critical path. Walk the
509   // instructions from the bottom up, tracking information about liveness
510   // as we go to help determine which registers are available.
511   unsigned Broken = 0;
512   unsigned Count = InsertPosIndex - 1;
513   for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) {
514     MachineInstr *MI = --I;
515     // Kill instructions can define registers but are really nops, and there
516     // might be a real definition earlier that needs to be paired with uses
517     // dominated by this kill.
518     
519     // FIXME: It may be possible to remove the isKill() restriction once PR18663
520     // has been properly fixed. There can be value in processing kills as seen
521     // in the AggressiveAntiDepBreaker class.
522     if (MI->isDebugValue() || MI->isKill())
523       continue;
524
525     // Check if this instruction has a dependence on the critical path that
526     // is an anti-dependence that we may be able to break. If it is, set
527     // AntiDepReg to the non-zero register associated with the anti-dependence.
528     //
529     // We limit our attention to the critical path as a heuristic to avoid
530     // breaking anti-dependence edges that aren't going to significantly
531     // impact the overall schedule. There are a limited number of registers
532     // and we want to save them for the important edges.
533     //
534     // TODO: Instructions with multiple defs could have multiple
535     // anti-dependencies. The current code here only knows how to break one
536     // edge per instruction. Note that we'd have to be able to break all of
537     // the anti-dependencies in an instruction in order to be effective.
538     unsigned AntiDepReg = 0;
539     if (MI == CriticalPathMI) {
540       if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) {
541         const SUnit *NextSU = Edge->getSUnit();
542
543         // Only consider anti-dependence edges.
544         if (Edge->getKind() == SDep::Anti) {
545           AntiDepReg = Edge->getReg();
546           assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
547           if (!MRI.isAllocatable(AntiDepReg))
548             // Don't break anti-dependencies on non-allocatable registers.
549             AntiDepReg = 0;
550           else if (KeepRegs.test(AntiDepReg))
551             // Don't break anti-dependencies if a use down below requires
552             // this exact register.
553             AntiDepReg = 0;
554           else {
555             // If the SUnit has other dependencies on the SUnit that it
556             // anti-depends on, don't bother breaking the anti-dependency
557             // since those edges would prevent such units from being
558             // scheduled past each other regardless.
559             //
560             // Also, if there are dependencies on other SUnits with the
561             // same register as the anti-dependency, don't attempt to
562             // break it.
563             for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(),
564                  PE = CriticalPathSU->Preds.end(); P != PE; ++P)
565               if (P->getSUnit() == NextSU ?
566                     (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
567                     (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
568                 AntiDepReg = 0;
569                 break;
570               }
571           }
572         }
573         CriticalPathSU = NextSU;
574         CriticalPathMI = CriticalPathSU->getInstr();
575       } else {
576         // We've reached the end of the critical path.
577         CriticalPathSU = nullptr;
578         CriticalPathMI = nullptr;
579       }
580     }
581
582     PrescanInstruction(MI);
583
584     SmallVector<unsigned, 2> ForbidRegs;
585
586     // If MI's defs have a special allocation requirement, don't allow
587     // any def registers to be changed. Also assume all registers
588     // defined in a call must not be changed (ABI).
589     if (MI->isCall() || MI->hasExtraDefRegAllocReq() || TII->isPredicated(MI))
590       // If this instruction's defs have special allocation requirement, don't
591       // break this anti-dependency.
592       AntiDepReg = 0;
593     else if (AntiDepReg) {
594       // If this instruction has a use of AntiDepReg, breaking it
595       // is invalid.  If the instruction defines other registers,
596       // save a list of them so that we don't pick a new register
597       // that overlaps any of them.
598       for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
599         MachineOperand &MO = MI->getOperand(i);
600         if (!MO.isReg()) continue;
601         unsigned Reg = MO.getReg();
602         if (Reg == 0) continue;
603         if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) {
604           AntiDepReg = 0;
605           break;
606         }
607         if (MO.isDef() && Reg != AntiDepReg)
608           ForbidRegs.push_back(Reg);
609       }
610     }
611
612     // Determine AntiDepReg's register class, if it is live and is
613     // consistently used within a single class.
614     const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg]
615                                                     : nullptr;
616     assert((AntiDepReg == 0 || RC != nullptr) &&
617            "Register should be live if it's causing an anti-dependence!");
618     if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
619       AntiDepReg = 0;
620
621     // Look for a suitable register to use to break the anti-dependence.
622     //
623     // TODO: Instead of picking the first free register, consider which might
624     // be the best.
625     if (AntiDepReg != 0) {
626       std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
627                 std::multimap<unsigned, MachineOperand *>::iterator>
628         Range = RegRefs.equal_range(AntiDepReg);
629       if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second,
630                                                      AntiDepReg,
631                                                      LastNewReg[AntiDepReg],
632                                                      RC, ForbidRegs)) {
633         DEBUG(dbgs() << "Breaking anti-dependence edge on "
634               << TRI->getName(AntiDepReg)
635               << " with " << RegRefs.count(AntiDepReg) << " references"
636               << " using " << TRI->getName(NewReg) << "!\n");
637
638         // Update the references to the old register to refer to the new
639         // register.
640         for (std::multimap<unsigned, MachineOperand *>::iterator
641              Q = Range.first, QE = Range.second; Q != QE; ++Q) {
642           Q->second->setReg(NewReg);
643           // If the SU for the instruction being updated has debug information
644           // related to the anti-dependency register, make sure to update that
645           // as well.
646           const SUnit *SU = MISUnitMap[Q->second->getParent()];
647           if (!SU) continue;
648           for (DbgValueVector::iterator DVI = DbgValues.begin(),
649                  DVE = DbgValues.end(); DVI != DVE; ++DVI)
650             if (DVI->second == Q->second->getParent())
651               UpdateDbgValue(DVI->first, AntiDepReg, NewReg);
652         }
653
654         // We just went back in time and modified history; the
655         // liveness information for the anti-dependence reg is now
656         // inconsistent. Set the state as if it were dead.
657         Classes[NewReg] = Classes[AntiDepReg];
658         DefIndices[NewReg] = DefIndices[AntiDepReg];
659         KillIndices[NewReg] = KillIndices[AntiDepReg];
660         assert(((KillIndices[NewReg] == ~0u) !=
661                 (DefIndices[NewReg] == ~0u)) &&
662              "Kill and Def maps aren't consistent for NewReg!");
663
664         Classes[AntiDepReg] = nullptr;
665         DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
666         KillIndices[AntiDepReg] = ~0u;
667         assert(((KillIndices[AntiDepReg] == ~0u) !=
668                 (DefIndices[AntiDepReg] == ~0u)) &&
669              "Kill and Def maps aren't consistent for AntiDepReg!");
670
671         RegRefs.erase(AntiDepReg);
672         LastNewReg[AntiDepReg] = NewReg;
673         ++Broken;
674       }
675     }
676
677     ScanInstruction(MI, Count);
678   }
679
680   return Broken;
681 }