1 //===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the CriticalAntiDepBreaker class, which
11 // implements register anti-dependence breaking along a blocks
12 // critical path during post-RA scheduler.
14 //===----------------------------------------------------------------------===//
16 #include "CriticalAntiDepBreaker.h"
17 #include "llvm/CodeGen/MachineBasicBlock.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include "llvm/Target/TargetInstrInfo.h"
23 #include "llvm/Target/TargetRegisterInfo.h"
24 #include "llvm/Target/TargetSubtargetInfo.h"
28 #define DEBUG_TYPE "post-RA-sched"
30 CriticalAntiDepBreaker::CriticalAntiDepBreaker(MachineFunction &MFi,
31 const RegisterClassInfo &RCI)
32 : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()),
33 TII(MF.getSubtarget().getInstrInfo()),
34 TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI),
35 Classes(TRI->getNumRegs(), nullptr), KillIndices(TRI->getNumRegs(), 0),
36 DefIndices(TRI->getNumRegs(), 0), KeepRegs(TRI->getNumRegs(), false) {}
38 CriticalAntiDepBreaker::~CriticalAntiDepBreaker() {
41 void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
42 const unsigned BBSize = BB->size();
43 for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
44 // Clear out the register class data.
47 // Initialize the indices to indicate that no registers are live.
49 DefIndices[i] = BBSize;
52 // Clear "do not change" set.
55 bool IsReturnBlock = (BBSize != 0 && BB->back().isReturn());
57 // Examine the live-in regs of all successors.
58 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
59 SE = BB->succ_end(); SI != SE; ++SI)
60 for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
61 E = (*SI)->livein_end(); I != E; ++I) {
62 for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
64 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
65 KillIndices[Reg] = BBSize;
66 DefIndices[Reg] = ~0u;
70 // Mark live-out callee-saved registers. In a return block this is
71 // all callee-saved registers. In non-return this is any
72 // callee-saved register that is not saved in the prolog.
73 const MachineFrameInfo *MFI = MF.getFrameInfo();
74 BitVector Pristine = MFI->getPristineRegs(MF);
75 for (const MCPhysReg *I = TRI->getCalleeSavedRegs(&MF); *I; ++I) {
76 if (!IsReturnBlock && !Pristine.test(*I)) continue;
77 for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
79 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
80 KillIndices[Reg] = BBSize;
81 DefIndices[Reg] = ~0u;
86 void CriticalAntiDepBreaker::FinishBlock() {
91 void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count,
92 unsigned InsertPosIndex) {
93 // Kill instructions can define registers but are really nops, and there might
94 // be a real definition earlier that needs to be paired with uses dominated by
97 // FIXME: It may be possible to remove the isKill() restriction once PR18663
98 // has been properly fixed. There can be value in processing kills as seen in
99 // the AggressiveAntiDepBreaker class.
100 if (MI->isDebugValue() || MI->isKill())
102 assert(Count < InsertPosIndex && "Instruction index out of expected range!");
104 for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
105 if (KillIndices[Reg] != ~0u) {
106 // If Reg is currently live, then mark that it can't be renamed as
107 // we don't know the extent of its live-range anymore (now that it
108 // has been scheduled).
109 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
110 KillIndices[Reg] = Count;
111 } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
112 // Any register which was defined within the previous scheduling region
113 // may have been rescheduled and its lifetime may overlap with registers
114 // in ways not reflected in our current liveness state. For each such
115 // register, adjust the liveness state to be conservatively correct.
116 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
118 // Move the def index to the end of the previous region, to reflect
119 // that the def could theoretically have been scheduled at the end.
120 DefIndices[Reg] = InsertPosIndex;
124 PrescanInstruction(MI);
125 ScanInstruction(MI, Count);
128 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up
130 static const SDep *CriticalPathStep(const SUnit *SU) {
131 const SDep *Next = nullptr;
132 unsigned NextDepth = 0;
133 // Find the predecessor edge with the greatest depth.
134 for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
136 const SUnit *PredSU = P->getSUnit();
137 unsigned PredLatency = P->getLatency();
138 unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
139 // In the case of a latency tie, prefer an anti-dependency edge over
140 // other types of edges.
141 if (NextDepth < PredTotalLatency ||
142 (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
143 NextDepth = PredTotalLatency;
150 void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) {
151 // It's not safe to change register allocation for source operands of
152 // instructions that have special allocation requirements. Also assume all
153 // registers used in a call must not be changed (ABI).
154 // FIXME: The issue with predicated instruction is more complex. We are being
155 // conservative here because the kill markers cannot be trusted after
157 // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14]
159 // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395]
160 // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12]
161 // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8)
163 // The first R6 kill is not really a kill since it's killed by a predicated
164 // instruction which may not be executed. The second R6 def may or may not
165 // re-define R6 so it's not safe to change it since the last R6 use cannot be
167 bool Special = MI->isCall() ||
168 MI->hasExtraSrcRegAllocReq() ||
169 TII->isPredicated(MI);
171 // Scan the register operands for this instruction and update
172 // Classes and RegRefs.
173 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
174 MachineOperand &MO = MI->getOperand(i);
175 if (!MO.isReg()) continue;
176 unsigned Reg = MO.getReg();
177 if (Reg == 0) continue;
178 const TargetRegisterClass *NewRC = nullptr;
180 if (i < MI->getDesc().getNumOperands())
181 NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF);
183 // For now, only allow the register to be changed if its register
184 // class is consistent across all uses.
185 if (!Classes[Reg] && NewRC)
186 Classes[Reg] = NewRC;
187 else if (!NewRC || Classes[Reg] != NewRC)
188 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
190 // Now check for aliases.
191 for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
192 // If an alias of the reg is used during the live range, give up.
193 // Note that this allows us to skip checking if AntiDepReg
194 // overlaps with any of the aliases, among other things.
195 unsigned AliasReg = *AI;
196 if (Classes[AliasReg]) {
197 Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
198 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
202 // If we're still willing to consider this register, note the reference.
203 if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
204 RegRefs.insert(std::make_pair(Reg, &MO));
206 // If this reg is tied and live (Classes[Reg] is set to -1), we can't change
207 // it or any of its sub or super regs. We need to use KeepRegs to mark the
208 // reg because not all uses of the same reg within an instruction are
209 // necessarily tagged as tied.
210 // Example: an x86 "xor %eax, %eax" will have one source operand tied to the
211 // def register but not the second (see PR20020 for details).
212 // FIXME: can this check be relaxed to account for undef uses
213 // of a register? In the above 'xor' example, the uses of %eax are undef, so
214 // earlier instructions could still replace %eax even though the 'xor'
215 // itself can't be changed.
216 if (MI->isRegTiedToUseOperand(i) &&
217 Classes[Reg] == reinterpret_cast<TargetRegisterClass *>(-1)) {
218 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
219 SubRegs.isValid(); ++SubRegs) {
220 KeepRegs.set(*SubRegs);
222 for (MCSuperRegIterator SuperRegs(Reg, TRI);
223 SuperRegs.isValid(); ++SuperRegs) {
224 KeepRegs.set(*SuperRegs);
228 if (MO.isUse() && Special) {
229 if (!KeepRegs.test(Reg)) {
230 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
231 SubRegs.isValid(); ++SubRegs)
232 KeepRegs.set(*SubRegs);
238 void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI,
241 // Proceeding upwards, registers that are defed but not used in this
242 // instruction are now dead.
243 assert(!MI->isKill() && "Attempting to scan a kill instruction");
245 if (!TII->isPredicated(MI)) {
246 // Predicated defs are modeled as read + write, i.e. similar to two
248 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
249 MachineOperand &MO = MI->getOperand(i);
252 for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i)
253 if (MO.clobbersPhysReg(i)) {
254 DefIndices[i] = Count;
255 KillIndices[i] = ~0u;
257 Classes[i] = nullptr;
261 if (!MO.isReg()) continue;
262 unsigned Reg = MO.getReg();
263 if (Reg == 0) continue;
264 if (!MO.isDef()) continue;
266 // If we've already marked this reg as unchangeable, carry on.
267 if (KeepRegs.test(Reg)) continue;
269 // Ignore two-addr defs.
270 if (MI->isRegTiedToUseOperand(i)) continue;
272 // For the reg itself and all subregs: update the def to current;
273 // reset the kill state, any restrictions, and references.
274 for (MCSubRegIterator SRI(Reg, TRI, true); SRI.isValid(); ++SRI) {
275 unsigned SubregReg = *SRI;
276 DefIndices[SubregReg] = Count;
277 KillIndices[SubregReg] = ~0u;
278 KeepRegs.reset(SubregReg);
279 Classes[SubregReg] = nullptr;
280 RegRefs.erase(SubregReg);
282 // Conservatively mark super-registers as unusable.
283 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR)
284 Classes[*SR] = reinterpret_cast<TargetRegisterClass *>(-1);
287 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
288 MachineOperand &MO = MI->getOperand(i);
289 if (!MO.isReg()) continue;
290 unsigned Reg = MO.getReg();
291 if (Reg == 0) continue;
292 if (!MO.isUse()) continue;
294 const TargetRegisterClass *NewRC = nullptr;
295 if (i < MI->getDesc().getNumOperands())
296 NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF);
298 // For now, only allow the register to be changed if its register
299 // class is consistent across all uses.
300 if (!Classes[Reg] && NewRC)
301 Classes[Reg] = NewRC;
302 else if (!NewRC || Classes[Reg] != NewRC)
303 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
305 RegRefs.insert(std::make_pair(Reg, &MO));
307 // It wasn't previously live but now it is, this is a kill.
308 // Repeat for all aliases.
309 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
310 unsigned AliasReg = *AI;
311 if (KillIndices[AliasReg] == ~0u) {
312 KillIndices[AliasReg] = Count;
313 DefIndices[AliasReg] = ~0u;
319 // Check all machine operands that reference the antidependent register and must
320 // be replaced by NewReg. Return true if any of their parent instructions may
321 // clobber the new register.
323 // Note: AntiDepReg may be referenced by a two-address instruction such that
324 // it's use operand is tied to a def operand. We guard against the case in which
325 // the two-address instruction also defines NewReg, as may happen with
326 // pre/postincrement loads. In this case, both the use and def operands are in
327 // RegRefs because the def is inserted by PrescanInstruction and not erased
328 // during ScanInstruction. So checking for an instruction with definitions of
329 // both NewReg and AntiDepReg covers it.
331 CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin,
332 RegRefIter RegRefEnd,
335 for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) {
336 MachineOperand *RefOper = I->second;
338 // Don't allow the instruction defining AntiDepReg to earlyclobber its
339 // operands, in case they may be assigned to NewReg. In this case antidep
340 // breaking must fail, but it's too rare to bother optimizing.
341 if (RefOper->isDef() && RefOper->isEarlyClobber())
344 // Handle cases in which this instruction defines NewReg.
345 MachineInstr *MI = RefOper->getParent();
346 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
347 const MachineOperand &CheckOper = MI->getOperand(i);
349 if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg))
352 if (!CheckOper.isReg() || !CheckOper.isDef() ||
353 CheckOper.getReg() != NewReg)
356 // Don't allow the instruction to define NewReg and AntiDepReg.
357 // When AntiDepReg is renamed it will be an illegal op.
358 if (RefOper->isDef())
361 // Don't allow an instruction using AntiDepReg to be earlyclobbered by
363 if (CheckOper.isEarlyClobber())
366 // Don't allow inline asm to define NewReg at all. Who knows what it's
368 if (MI->isInlineAsm())
375 unsigned CriticalAntiDepBreaker::
376 findSuitableFreeRegister(RegRefIter RegRefBegin,
377 RegRefIter RegRefEnd,
380 const TargetRegisterClass *RC,
381 SmallVectorImpl<unsigned> &Forbid)
383 ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC);
384 for (unsigned i = 0; i != Order.size(); ++i) {
385 unsigned NewReg = Order[i];
386 // Don't replace a register with itself.
387 if (NewReg == AntiDepReg) continue;
388 // Don't replace a register with one that was recently used to repair
389 // an anti-dependence with this AntiDepReg, because that would
390 // re-introduce that anti-dependence.
391 if (NewReg == LastNewReg) continue;
392 // If any instructions that define AntiDepReg also define the NewReg, it's
393 // not suitable. For example, Instruction with multiple definitions can
394 // result in this condition.
395 if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue;
396 // If NewReg is dead and NewReg's most recent def is not before
397 // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
398 assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
399 && "Kill and Def maps aren't consistent for AntiDepReg!");
400 assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
401 && "Kill and Def maps aren't consistent for NewReg!");
402 if (KillIndices[NewReg] != ~0u ||
403 Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
404 KillIndices[AntiDepReg] > DefIndices[NewReg])
406 // If NewReg overlaps any of the forbidden registers, we can't use it.
407 bool Forbidden = false;
408 for (SmallVectorImpl<unsigned>::iterator it = Forbid.begin(),
409 ite = Forbid.end(); it != ite; ++it)
410 if (TRI->regsOverlap(NewReg, *it)) {
414 if (Forbidden) continue;
418 // No registers are free and available!
422 unsigned CriticalAntiDepBreaker::
423 BreakAntiDependencies(const std::vector<SUnit>& SUnits,
424 MachineBasicBlock::iterator Begin,
425 MachineBasicBlock::iterator End,
426 unsigned InsertPosIndex,
427 DbgValueVector &DbgValues) {
428 // The code below assumes that there is at least one instruction,
429 // so just duck out immediately if the block is empty.
430 if (SUnits.empty()) return 0;
432 // Keep a map of the MachineInstr*'s back to the SUnit representing them.
433 // This is used for updating debug information.
435 // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap
436 DenseMap<MachineInstr*,const SUnit*> MISUnitMap;
438 // Find the node at the bottom of the critical path.
439 const SUnit *Max = nullptr;
440 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
441 const SUnit *SU = &SUnits[i];
442 MISUnitMap[SU->getInstr()] = SU;
443 if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
449 DEBUG(dbgs() << "Critical path has total latency "
450 << (Max->getDepth() + Max->Latency) << "\n");
451 DEBUG(dbgs() << "Available regs:");
452 for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
453 if (KillIndices[Reg] == ~0u)
454 DEBUG(dbgs() << " " << TRI->getName(Reg));
456 DEBUG(dbgs() << '\n');
460 // Track progress along the critical path through the SUnit graph as we walk
462 const SUnit *CriticalPathSU = Max;
463 MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
465 // Consider this pattern:
474 // There are three anti-dependencies here, and without special care,
475 // we'd break all of them using the same register:
484 // because at each anti-dependence, B is the first register that
485 // isn't A which is free. This re-introduces anti-dependencies
486 // at all but one of the original anti-dependencies that we were
487 // trying to break. To avoid this, keep track of the most recent
488 // register that each register was replaced with, avoid
489 // using it to repair an anti-dependence on the same register.
490 // This lets us produce this:
499 // This still has an anti-dependence on B, but at least it isn't on the
500 // original critical path.
502 // TODO: If we tracked more than one register here, we could potentially
503 // fix that remaining critical edge too. This is a little more involved,
504 // because unlike the most recent register, less recent registers should
505 // still be considered, though only if no other registers are available.
506 std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0);
508 // Attempt to break anti-dependence edges on the critical path. Walk the
509 // instructions from the bottom up, tracking information about liveness
510 // as we go to help determine which registers are available.
512 unsigned Count = InsertPosIndex - 1;
513 for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) {
514 MachineInstr *MI = --I;
515 // Kill instructions can define registers but are really nops, and there
516 // might be a real definition earlier that needs to be paired with uses
517 // dominated by this kill.
519 // FIXME: It may be possible to remove the isKill() restriction once PR18663
520 // has been properly fixed. There can be value in processing kills as seen
521 // in the AggressiveAntiDepBreaker class.
522 if (MI->isDebugValue() || MI->isKill())
525 // Check if this instruction has a dependence on the critical path that
526 // is an anti-dependence that we may be able to break. If it is, set
527 // AntiDepReg to the non-zero register associated with the anti-dependence.
529 // We limit our attention to the critical path as a heuristic to avoid
530 // breaking anti-dependence edges that aren't going to significantly
531 // impact the overall schedule. There are a limited number of registers
532 // and we want to save them for the important edges.
534 // TODO: Instructions with multiple defs could have multiple
535 // anti-dependencies. The current code here only knows how to break one
536 // edge per instruction. Note that we'd have to be able to break all of
537 // the anti-dependencies in an instruction in order to be effective.
538 unsigned AntiDepReg = 0;
539 if (MI == CriticalPathMI) {
540 if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) {
541 const SUnit *NextSU = Edge->getSUnit();
543 // Only consider anti-dependence edges.
544 if (Edge->getKind() == SDep::Anti) {
545 AntiDepReg = Edge->getReg();
546 assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
547 if (!MRI.isAllocatable(AntiDepReg))
548 // Don't break anti-dependencies on non-allocatable registers.
550 else if (KeepRegs.test(AntiDepReg))
551 // Don't break anti-dependencies if a use down below requires
552 // this exact register.
555 // If the SUnit has other dependencies on the SUnit that it
556 // anti-depends on, don't bother breaking the anti-dependency
557 // since those edges would prevent such units from being
558 // scheduled past each other regardless.
560 // Also, if there are dependencies on other SUnits with the
561 // same register as the anti-dependency, don't attempt to
563 for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(),
564 PE = CriticalPathSU->Preds.end(); P != PE; ++P)
565 if (P->getSUnit() == NextSU ?
566 (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
567 (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
573 CriticalPathSU = NextSU;
574 CriticalPathMI = CriticalPathSU->getInstr();
576 // We've reached the end of the critical path.
577 CriticalPathSU = nullptr;
578 CriticalPathMI = nullptr;
582 PrescanInstruction(MI);
584 SmallVector<unsigned, 2> ForbidRegs;
586 // If MI's defs have a special allocation requirement, don't allow
587 // any def registers to be changed. Also assume all registers
588 // defined in a call must not be changed (ABI).
589 if (MI->isCall() || MI->hasExtraDefRegAllocReq() || TII->isPredicated(MI))
590 // If this instruction's defs have special allocation requirement, don't
591 // break this anti-dependency.
593 else if (AntiDepReg) {
594 // If this instruction has a use of AntiDepReg, breaking it
595 // is invalid. If the instruction defines other registers,
596 // save a list of them so that we don't pick a new register
597 // that overlaps any of them.
598 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
599 MachineOperand &MO = MI->getOperand(i);
600 if (!MO.isReg()) continue;
601 unsigned Reg = MO.getReg();
602 if (Reg == 0) continue;
603 if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) {
607 if (MO.isDef() && Reg != AntiDepReg)
608 ForbidRegs.push_back(Reg);
612 // Determine AntiDepReg's register class, if it is live and is
613 // consistently used within a single class.
614 const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg]
616 assert((AntiDepReg == 0 || RC != nullptr) &&
617 "Register should be live if it's causing an anti-dependence!");
618 if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
621 // Look for a suitable register to use to break the anti-dependence.
623 // TODO: Instead of picking the first free register, consider which might
625 if (AntiDepReg != 0) {
626 std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
627 std::multimap<unsigned, MachineOperand *>::iterator>
628 Range = RegRefs.equal_range(AntiDepReg);
629 if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second,
631 LastNewReg[AntiDepReg],
633 DEBUG(dbgs() << "Breaking anti-dependence edge on "
634 << TRI->getName(AntiDepReg)
635 << " with " << RegRefs.count(AntiDepReg) << " references"
636 << " using " << TRI->getName(NewReg) << "!\n");
638 // Update the references to the old register to refer to the new
640 for (std::multimap<unsigned, MachineOperand *>::iterator
641 Q = Range.first, QE = Range.second; Q != QE; ++Q) {
642 Q->second->setReg(NewReg);
643 // If the SU for the instruction being updated has debug information
644 // related to the anti-dependency register, make sure to update that
646 const SUnit *SU = MISUnitMap[Q->second->getParent()];
648 for (DbgValueVector::iterator DVI = DbgValues.begin(),
649 DVE = DbgValues.end(); DVI != DVE; ++DVI)
650 if (DVI->second == Q->second->getParent())
651 UpdateDbgValue(DVI->first, AntiDepReg, NewReg);
654 // We just went back in time and modified history; the
655 // liveness information for the anti-dependence reg is now
656 // inconsistent. Set the state as if it were dead.
657 Classes[NewReg] = Classes[AntiDepReg];
658 DefIndices[NewReg] = DefIndices[AntiDepReg];
659 KillIndices[NewReg] = KillIndices[AntiDepReg];
660 assert(((KillIndices[NewReg] == ~0u) !=
661 (DefIndices[NewReg] == ~0u)) &&
662 "Kill and Def maps aren't consistent for NewReg!");
664 Classes[AntiDepReg] = nullptr;
665 DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
666 KillIndices[AntiDepReg] = ~0u;
667 assert(((KillIndices[AntiDepReg] == ~0u) !=
668 (DefIndices[AntiDepReg] == ~0u)) &&
669 "Kill and Def maps aren't consistent for AntiDepReg!");
671 RegRefs.erase(AntiDepReg);
672 LastNewReg[AntiDepReg] = NewReg;
677 ScanInstruction(MI, Count);