1 //===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the LiveInterval analysis pass which is used
11 // by the Linear Scan Register allocator. This pass linearizes the
12 // basic blocks of the function in DFS order and uses the
13 // LiveVariables pass to conservatively compute live intervals for
14 // each virtual and physical register.
16 //===----------------------------------------------------------------------===//
18 #define DEBUG_TYPE "regalloc"
19 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
20 #include "LiveRangeCalc.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveVariables.h"
25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
26 #include "llvm/CodeGen/MachineDominators.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/Passes.h"
30 #include "llvm/CodeGen/VirtRegMap.h"
31 #include "llvm/IR/Value.h"
32 #include "llvm/Support/BlockFrequency.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Target/TargetInstrInfo.h"
38 #include "llvm/Target/TargetMachine.h"
39 #include "llvm/Target/TargetRegisterInfo.h"
45 char LiveIntervals::ID = 0;
46 char &llvm::LiveIntervalsID = LiveIntervals::ID;
47 INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
48 "Live Interval Analysis", false, false)
49 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
50 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
51 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
52 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
53 INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
54 "Live Interval Analysis", false, false)
57 static cl::opt<bool> EnablePrecomputePhysRegs(
58 "precompute-phys-liveness", cl::Hidden,
59 cl::desc("Eagerly compute live intervals for all physreg units."));
61 static bool EnablePrecomputePhysRegs = false;
64 void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
66 AU.addRequired<AliasAnalysis>();
67 AU.addPreserved<AliasAnalysis>();
68 // LiveVariables isn't really required by this analysis, it is only required
69 // here to make sure it is live during TwoAddressInstructionPass and
70 // PHIElimination. This is temporary.
71 AU.addRequired<LiveVariables>();
72 AU.addPreserved<LiveVariables>();
73 AU.addPreservedID(MachineLoopInfoID);
74 AU.addRequiredTransitiveID(MachineDominatorsID);
75 AU.addPreservedID(MachineDominatorsID);
76 AU.addPreserved<SlotIndexes>();
77 AU.addRequiredTransitive<SlotIndexes>();
78 MachineFunctionPass::getAnalysisUsage(AU);
81 LiveIntervals::LiveIntervals() : MachineFunctionPass(ID),
82 DomTree(0), LRCalc(0) {
83 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
86 LiveIntervals::~LiveIntervals() {
90 void LiveIntervals::releaseMemory() {
91 // Free the live intervals themselves.
92 for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
93 delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)];
94 VirtRegIntervals.clear();
97 RegMaskBlocks.clear();
99 for (unsigned i = 0, e = RegUnitRanges.size(); i != e; ++i)
100 delete RegUnitRanges[i];
101 RegUnitRanges.clear();
103 // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
104 VNInfoAllocator.Reset();
107 /// runOnMachineFunction - calculates LiveIntervals
109 bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
111 MRI = &MF->getRegInfo();
112 TM = &fn.getTarget();
113 TRI = TM->getRegisterInfo();
114 TII = TM->getInstrInfo();
115 AA = &getAnalysis<AliasAnalysis>();
116 Indexes = &getAnalysis<SlotIndexes>();
117 DomTree = &getAnalysis<MachineDominatorTree>();
119 LRCalc = new LiveRangeCalc();
121 // Allocate space for all virtual registers.
122 VirtRegIntervals.resize(MRI->getNumVirtRegs());
126 computeLiveInRegUnits();
128 if (EnablePrecomputePhysRegs) {
129 // For stress testing, precompute live ranges of all physical register
130 // units, including reserved registers.
131 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
138 /// print - Implement the dump method.
139 void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
140 OS << "********** INTERVALS **********\n";
142 // Dump the regunits.
143 for (unsigned i = 0, e = RegUnitRanges.size(); i != e; ++i)
144 if (LiveRange *LR = RegUnitRanges[i])
145 OS << PrintRegUnit(i, TRI) << ' ' << *LR << '\n';
147 // Dump the virtregs.
148 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
149 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
150 if (hasInterval(Reg))
151 OS << getInterval(Reg) << '\n';
155 for (unsigned i = 0, e = RegMaskSlots.size(); i != e; ++i)
156 OS << ' ' << RegMaskSlots[i];
162 void LiveIntervals::printInstrs(raw_ostream &OS) const {
163 OS << "********** MACHINEINSTRS **********\n";
164 MF->print(OS, Indexes);
167 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
168 void LiveIntervals::dumpInstrs() const {
173 LiveInterval* LiveIntervals::createInterval(unsigned reg) {
174 float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ?
175 llvm::huge_valf : 0.0F;
176 return new LiveInterval(reg, Weight);
180 /// computeVirtRegInterval - Compute the live interval of a virtual register,
181 /// based on defs and uses.
182 void LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
183 assert(LRCalc && "LRCalc not initialized.");
184 assert(LI.empty() && "Should only compute empty intervals.");
185 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
186 LRCalc->createDeadDefs(LI);
187 LRCalc->extendToUses(LI);
190 void LiveIntervals::computeVirtRegs() {
191 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
192 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
193 if (MRI->reg_nodbg_empty(Reg))
195 createAndComputeVirtRegInterval(Reg);
199 void LiveIntervals::computeRegMasks() {
200 RegMaskBlocks.resize(MF->getNumBlockIDs());
202 // Find all instructions with regmask operands.
203 for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
205 MachineBasicBlock *MBB = MBBI;
206 std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB->getNumber()];
207 RMB.first = RegMaskSlots.size();
208 for (MachineBasicBlock::iterator MI = MBB->begin(), ME = MBB->end();
210 for (MIOperands MO(MI); MO.isValid(); ++MO) {
211 if (!MO->isRegMask())
213 RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
214 RegMaskBits.push_back(MO->getRegMask());
216 // Compute the number of register mask instructions in this block.
217 RMB.second = RegMaskSlots.size() - RMB.first;
221 //===----------------------------------------------------------------------===//
222 // Register Unit Liveness
223 //===----------------------------------------------------------------------===//
225 // Fixed interference typically comes from ABI boundaries: Function arguments
226 // and return values are passed in fixed registers, and so are exception
227 // pointers entering landing pads. Certain instructions require values to be
228 // present in specific registers. That is also represented through fixed
232 /// computeRegUnitInterval - Compute the live range of a register unit, based
233 /// on the uses and defs of aliasing registers. The range should be empty,
234 /// or contain only dead phi-defs from ABI blocks.
235 void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) {
236 assert(LRCalc && "LRCalc not initialized.");
237 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
239 // The physregs aliasing Unit are the roots and their super-registers.
240 // Create all values as dead defs before extending to uses. Note that roots
241 // may share super-registers. That's OK because createDeadDefs() is
242 // idempotent. It is very rare for a register unit to have multiple roots, so
243 // uniquing super-registers is probably not worthwhile.
244 for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
245 for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true);
246 Supers.isValid(); ++Supers) {
247 if (!MRI->reg_empty(*Supers))
248 LRCalc->createDeadDefs(LR, *Supers);
252 // Now extend LR to reach all uses.
253 // Ignore uses of reserved registers. We only track defs of those.
254 for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
255 for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true);
256 Supers.isValid(); ++Supers) {
257 unsigned Reg = *Supers;
258 if (!MRI->isReserved(Reg) && !MRI->reg_empty(Reg))
259 LRCalc->extendToUses(LR, Reg);
265 /// computeLiveInRegUnits - Precompute the live ranges of any register units
266 /// that are live-in to an ABI block somewhere. Register values can appear
267 /// without a corresponding def when entering the entry block or a landing pad.
269 void LiveIntervals::computeLiveInRegUnits() {
270 RegUnitRanges.resize(TRI->getNumRegUnits());
271 DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
273 // Keep track of the live range sets allocated.
274 SmallVector<unsigned, 8> NewRanges;
276 // Check all basic blocks for live-ins.
277 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
279 const MachineBasicBlock *MBB = MFI;
281 // We only care about ABI blocks: Entry + landing pads.
282 if ((MFI != MF->begin() && !MBB->isLandingPad()) || MBB->livein_empty())
285 // Create phi-defs at Begin for all live-in registers.
286 SlotIndex Begin = Indexes->getMBBStartIdx(MBB);
287 DEBUG(dbgs() << Begin << "\tBB#" << MBB->getNumber());
288 for (MachineBasicBlock::livein_iterator LII = MBB->livein_begin(),
289 LIE = MBB->livein_end(); LII != LIE; ++LII) {
290 for (MCRegUnitIterator Units(*LII, TRI); Units.isValid(); ++Units) {
291 unsigned Unit = *Units;
292 LiveRange *LR = RegUnitRanges[Unit];
294 LR = RegUnitRanges[Unit] = new LiveRange();
295 NewRanges.push_back(Unit);
297 VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator());
299 DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI) << '#' << VNI->id);
302 DEBUG(dbgs() << '\n');
304 DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n");
306 // Compute the 'normal' part of the ranges.
307 for (unsigned i = 0, e = NewRanges.size(); i != e; ++i) {
308 unsigned Unit = NewRanges[i];
309 computeRegUnitRange(*RegUnitRanges[Unit], Unit);
314 /// shrinkToUses - After removing some uses of a register, shrink its live
315 /// range to just the remaining uses. This method does not compute reaching
316 /// defs for new uses, and it doesn't remove dead defs.
317 bool LiveIntervals::shrinkToUses(LiveInterval *li,
318 SmallVectorImpl<MachineInstr*> *dead) {
319 DEBUG(dbgs() << "Shrink: " << *li << '\n');
320 assert(TargetRegisterInfo::isVirtualRegister(li->reg)
321 && "Can only shrink virtual registers");
322 // Find all the values used, including PHI kills.
323 SmallVector<std::pair<SlotIndex, VNInfo*>, 16> WorkList;
325 // Blocks that have already been added to WorkList as live-out.
326 SmallPtrSet<MachineBasicBlock*, 16> LiveOut;
328 // Visit all instructions reading li->reg.
329 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(li->reg);
330 MachineInstr *UseMI = I.skipInstruction();) {
331 if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg))
333 SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
334 LiveQueryResult LRQ = li->Query(Idx);
335 VNInfo *VNI = LRQ.valueIn();
337 // This shouldn't happen: readsVirtualRegister returns true, but there is
338 // no live value. It is likely caused by a target getting <undef> flags
340 DEBUG(dbgs() << Idx << '\t' << *UseMI
341 << "Warning: Instr claims to read non-existent value in "
345 // Special case: An early-clobber tied operand reads and writes the
346 // register one slot early.
347 if (VNInfo *DefVNI = LRQ.valueDefined())
350 WorkList.push_back(std::make_pair(Idx, VNI));
353 // Create new live ranges with only minimal live segments per def.
355 for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
360 NewLR.addSegment(LiveRange::Segment(VNI->def, VNI->def.getDeadSlot(), VNI));
363 // Keep track of the PHIs that are in use.
364 SmallPtrSet<VNInfo*, 8> UsedPHIs;
366 // Extend intervals to reach all uses in WorkList.
367 while (!WorkList.empty()) {
368 SlotIndex Idx = WorkList.back().first;
369 VNInfo *VNI = WorkList.back().second;
371 const MachineBasicBlock *MBB = getMBBFromIndex(Idx.getPrevSlot());
372 SlotIndex BlockStart = getMBBStartIdx(MBB);
374 // Extend the live range for VNI to be live at Idx.
375 if (VNInfo *ExtVNI = NewLR.extendInBlock(BlockStart, Idx)) {
377 assert(ExtVNI == VNI && "Unexpected existing value number");
378 // Is this a PHIDef we haven't seen before?
379 if (!VNI->isPHIDef() || VNI->def != BlockStart || !UsedPHIs.insert(VNI))
381 // The PHI is live, make sure the predecessors are live-out.
382 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
383 PE = MBB->pred_end(); PI != PE; ++PI) {
384 if (!LiveOut.insert(*PI))
386 SlotIndex Stop = getMBBEndIdx(*PI);
387 // A predecessor is not required to have a live-out value for a PHI.
388 if (VNInfo *PVNI = li->getVNInfoBefore(Stop))
389 WorkList.push_back(std::make_pair(Stop, PVNI));
394 // VNI is live-in to MBB.
395 DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
396 NewLR.addSegment(LiveRange::Segment(BlockStart, Idx, VNI));
398 // Make sure VNI is live-out from the predecessors.
399 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
400 PE = MBB->pred_end(); PI != PE; ++PI) {
401 if (!LiveOut.insert(*PI))
403 SlotIndex Stop = getMBBEndIdx(*PI);
404 assert(li->getVNInfoBefore(Stop) == VNI &&
405 "Wrong value out of predecessor");
406 WorkList.push_back(std::make_pair(Stop, VNI));
410 // Handle dead values.
411 bool CanSeparate = false;
412 for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
417 LiveRange::iterator LRI = NewLR.FindSegmentContaining(VNI->def);
418 assert(LRI != NewLR.end() && "Missing segment for PHI");
419 if (LRI->end != VNI->def.getDeadSlot())
421 if (VNI->isPHIDef()) {
422 // This is a dead PHI. Remove it.
424 NewLR.removeSegment(LRI->start, LRI->end);
425 DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
428 // This is a dead def. Make sure the instruction knows.
429 MachineInstr *MI = getInstructionFromIndex(VNI->def);
430 assert(MI && "No instruction defining live value");
431 MI->addRegisterDead(li->reg, TRI);
432 if (dead && MI->allDefsAreDead()) {
433 DEBUG(dbgs() << "All defs dead: " << VNI->def << '\t' << *MI);
439 // Move the trimmed segments back.
440 li->segments.swap(NewLR.segments);
441 DEBUG(dbgs() << "Shrunk: " << *li << '\n');
445 void LiveIntervals::extendToIndices(LiveRange &LR,
446 ArrayRef<SlotIndex> Indices) {
447 assert(LRCalc && "LRCalc not initialized.");
448 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
449 for (unsigned i = 0, e = Indices.size(); i != e; ++i)
450 LRCalc->extend(LR, Indices[i]);
453 void LiveIntervals::pruneValue(LiveInterval *LI, SlotIndex Kill,
454 SmallVectorImpl<SlotIndex> *EndPoints) {
455 LiveQueryResult LRQ = LI->Query(Kill);
456 VNInfo *VNI = LRQ.valueOut();
460 MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
461 SlotIndex MBBStart, MBBEnd;
462 tie(MBBStart, MBBEnd) = Indexes->getMBBRange(KillMBB);
464 // If VNI isn't live out from KillMBB, the value is trivially pruned.
465 if (LRQ.endPoint() < MBBEnd) {
466 LI->removeSegment(Kill, LRQ.endPoint());
467 if (EndPoints) EndPoints->push_back(LRQ.endPoint());
471 // VNI is live out of KillMBB.
472 LI->removeSegment(Kill, MBBEnd);
473 if (EndPoints) EndPoints->push_back(MBBEnd);
475 // Find all blocks that are reachable from KillMBB without leaving VNI's live
476 // range. It is possible that KillMBB itself is reachable, so start a DFS
477 // from each successor.
478 typedef SmallPtrSet<MachineBasicBlock*, 9> VisitedTy;
480 for (MachineBasicBlock::succ_iterator
481 SuccI = KillMBB->succ_begin(), SuccE = KillMBB->succ_end();
482 SuccI != SuccE; ++SuccI) {
483 for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
484 I = df_ext_begin(*SuccI, Visited), E = df_ext_end(*SuccI, Visited);
486 MachineBasicBlock *MBB = *I;
488 // Check if VNI is live in to MBB.
489 tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
490 LiveQueryResult LRQ = LI->Query(MBBStart);
491 if (LRQ.valueIn() != VNI) {
492 // This block isn't part of the VNI segment. Prune the search.
497 // Prune the search if VNI is killed in MBB.
498 if (LRQ.endPoint() < MBBEnd) {
499 LI->removeSegment(MBBStart, LRQ.endPoint());
500 if (EndPoints) EndPoints->push_back(LRQ.endPoint());
505 // VNI is live through MBB.
506 LI->removeSegment(MBBStart, MBBEnd);
507 if (EndPoints) EndPoints->push_back(MBBEnd);
513 //===----------------------------------------------------------------------===//
514 // Register allocator hooks.
517 void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
518 // Keep track of regunit ranges.
519 SmallVector<std::pair<LiveRange*, LiveRange::iterator>, 8> RU;
521 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
522 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
523 if (MRI->reg_nodbg_empty(Reg))
525 LiveInterval *LI = &getInterval(Reg);
529 // Find the regunit intervals for the assigned register. They may overlap
530 // the virtual register live range, cancelling any kills.
532 for (MCRegUnitIterator Units(VRM->getPhys(Reg), TRI); Units.isValid();
534 LiveRange &RURanges = getRegUnit(*Units);
535 if (RURanges.empty())
537 RU.push_back(std::make_pair(&RURanges, RURanges.find(LI->begin()->end)));
540 // Every instruction that kills Reg corresponds to a segment range end
542 for (LiveInterval::iterator RI = LI->begin(), RE = LI->end(); RI != RE;
544 // A block index indicates an MBB edge.
545 if (RI->end.isBlock())
547 MachineInstr *MI = getInstructionFromIndex(RI->end);
551 // Check if any of the regunits are live beyond the end of RI. That could
552 // happen when a physreg is defined as a copy of a virtreg:
554 // %EAX = COPY %vreg5
555 // FOO %vreg5 <--- MI, cancel kill because %EAX is live.
558 // There should be no kill flag on FOO when %vreg5 is rewritten as %EAX.
559 bool CancelKill = false;
560 for (unsigned u = 0, e = RU.size(); u != e; ++u) {
561 LiveRange &RRanges = *RU[u].first;
562 LiveRange::iterator &I = RU[u].second;
563 if (I == RRanges.end())
565 I = RRanges.advanceTo(I, RI->end);
566 if (I == RRanges.end() || I->start >= RI->end)
568 // I is overlapping RI.
573 MI->clearRegisterKills(Reg, NULL);
575 MI->addRegisterKilled(Reg, NULL);
581 LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
582 // A local live range must be fully contained inside the block, meaning it is
583 // defined and killed at instructions, not at block boundaries. It is not
584 // live in or or out of any block.
586 // It is technically possible to have a PHI-defined live range identical to a
587 // single block, but we are going to return false in that case.
589 SlotIndex Start = LI.beginIndex();
593 SlotIndex Stop = LI.endIndex();
597 // getMBBFromIndex doesn't need to search the MBB table when both indexes
598 // belong to proper instructions.
599 MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
600 MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
601 return MBB1 == MBB2 ? MBB1 : NULL;
605 LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
606 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
608 const VNInfo *PHI = *I;
609 if (PHI->isUnused() || !PHI->isPHIDef())
611 const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
612 // Conservatively return true instead of scanning huge predecessor lists.
613 if (PHIMBB->pred_size() > 100)
615 for (MachineBasicBlock::const_pred_iterator
616 PI = PHIMBB->pred_begin(), PE = PHIMBB->pred_end(); PI != PE; ++PI)
617 if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(*PI)))
624 LiveIntervals::getSpillWeight(bool isDef, bool isUse,
625 const MachineBlockFrequencyInfo *MBFI,
626 const MachineInstr *MI) {
627 BlockFrequency Freq = MBFI->getBlockFreq(MI->getParent());
628 const float Scale = 1.0f / MBFI->getEntryFreq();
629 return (isDef + isUse) * (Freq.getFrequency() * Scale);
633 LiveIntervals::addSegmentToEndOfBlock(unsigned reg, MachineInstr* startInst) {
634 LiveInterval& Interval = createEmptyInterval(reg);
635 VNInfo* VN = Interval.getNextValue(
636 SlotIndex(getInstructionIndex(startInst).getRegSlot()),
637 getVNInfoAllocator());
638 LiveRange::Segment S(
639 SlotIndex(getInstructionIndex(startInst).getRegSlot()),
640 getMBBEndIdx(startInst->getParent()), VN);
641 Interval.addSegment(S);
647 //===----------------------------------------------------------------------===//
648 // Register mask functions
649 //===----------------------------------------------------------------------===//
651 bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
652 BitVector &UsableRegs) {
655 LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
657 // Use a smaller arrays for local live ranges.
658 ArrayRef<SlotIndex> Slots;
659 ArrayRef<const uint32_t*> Bits;
660 if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
661 Slots = getRegMaskSlotsInBlock(MBB->getNumber());
662 Bits = getRegMaskBitsInBlock(MBB->getNumber());
664 Slots = getRegMaskSlots();
665 Bits = getRegMaskBits();
668 // We are going to enumerate all the register mask slots contained in LI.
669 // Start with a binary search of RegMaskSlots to find a starting point.
670 ArrayRef<SlotIndex>::iterator SlotI =
671 std::lower_bound(Slots.begin(), Slots.end(), LiveI->start);
672 ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
674 // No slots in range, LI begins after the last call.
680 assert(*SlotI >= LiveI->start);
681 // Loop over all slots overlapping this segment.
682 while (*SlotI < LiveI->end) {
683 // *SlotI overlaps LI. Collect mask bits.
685 // This is the first overlap. Initialize UsableRegs to all ones.
687 UsableRegs.resize(TRI->getNumRegs(), true);
690 // Remove usable registers clobbered by this mask.
691 UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
692 if (++SlotI == SlotE)
695 // *SlotI is beyond the current LI segment.
696 LiveI = LI.advanceTo(LiveI, *SlotI);
699 // Advance SlotI until it overlaps.
700 while (*SlotI < LiveI->start)
701 if (++SlotI == SlotE)
706 //===----------------------------------------------------------------------===//
707 // IntervalUpdate class.
708 //===----------------------------------------------------------------------===//
710 // HMEditor is a toolkit used by handleMove to trim or extend live intervals.
711 class LiveIntervals::HMEditor {
714 const MachineRegisterInfo& MRI;
715 const TargetRegisterInfo& TRI;
718 SmallPtrSet<LiveRange*, 8> Updated;
722 HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
723 const TargetRegisterInfo& TRI,
724 SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
725 : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
726 UpdateFlags(UpdateFlags) {}
728 // FIXME: UpdateFlags is a workaround that creates live intervals for all
729 // physregs, even those that aren't needed for regalloc, in order to update
730 // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
731 // flags, and postRA passes will use a live register utility instead.
732 LiveRange *getRegUnitLI(unsigned Unit) {
734 return &LIS.getRegUnit(Unit);
735 return LIS.getCachedRegUnit(Unit);
738 /// Update all live ranges touched by MI, assuming a move from OldIdx to
740 void updateAllRanges(MachineInstr *MI) {
741 DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " << *MI);
742 bool hasRegMask = false;
743 for (MIOperands MO(MI); MO.isValid(); ++MO) {
748 // Aggressively clear all kill flags.
749 // They are reinserted by VirtRegRewriter.
751 MO->setIsKill(false);
753 unsigned Reg = MO->getReg();
756 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
757 LiveInterval &LI = LIS.getInterval(Reg);
758 updateRange(LI, Reg);
762 // For physregs, only update the regunits that actually have a
763 // precomputed live range.
764 for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
765 if (LiveRange *LR = getRegUnitLI(*Units))
766 updateRange(*LR, *Units);
769 updateRegMaskSlots();
773 /// Update a single live range, assuming an instruction has been moved from
774 /// OldIdx to NewIdx.
775 void updateRange(LiveRange &LR, unsigned Reg) {
776 if (!Updated.insert(&LR))
780 if (TargetRegisterInfo::isVirtualRegister(Reg))
781 dbgs() << PrintReg(Reg);
783 dbgs() << PrintRegUnit(Reg, &TRI);
784 dbgs() << ":\t" << LR << '\n';
786 if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
789 handleMoveUp(LR, Reg);
790 DEBUG(dbgs() << " -->\t" << LR << '\n');
794 /// Update LR to reflect an instruction has been moved downwards from OldIdx
797 /// 1. Live def at OldIdx:
798 /// Move def to NewIdx, assert endpoint after NewIdx.
800 /// 2. Live def at OldIdx, killed at NewIdx:
801 /// Change to dead def at NewIdx.
802 /// (Happens when bundling def+kill together).
804 /// 3. Dead def at OldIdx:
805 /// Move def to NewIdx, possibly across another live value.
807 /// 4. Def at OldIdx AND at NewIdx:
808 /// Remove segment [OldIdx;NewIdx) and value defined at OldIdx.
809 /// (Happens when bundling multiple defs together).
811 /// 5. Value read at OldIdx, killed before NewIdx:
812 /// Extend kill to NewIdx.
814 void handleMoveDown(LiveRange &LR) {
815 // First look for a kill at OldIdx.
816 LiveRange::iterator I = LR.find(OldIdx.getBaseIndex());
817 LiveRange::iterator E = LR.end();
818 // Is LR even live at OldIdx?
819 if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
822 // Handle a live-in value.
823 if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
824 bool isKill = SlotIndex::isSameInstr(OldIdx, I->end);
825 // If the live-in value already extends to NewIdx, there is nothing to do.
826 if (!SlotIndex::isEarlierInstr(I->end, NewIdx))
828 // Aggressively remove all kill flags from the old kill point.
829 // Kill flags shouldn't be used while live intervals exist, they will be
830 // reinserted by VirtRegRewriter.
831 if (MachineInstr *KillMI = LIS.getInstructionFromIndex(I->end))
832 for (MIBundleOperands MO(KillMI); MO.isValid(); ++MO)
833 if (MO->isReg() && MO->isUse())
834 MO->setIsKill(false);
835 // Adjust I->end to reach NewIdx. This may temporarily make LR invalid by
836 // overlapping ranges. Case 5 above.
837 I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
838 // If this was a kill, there may also be a def. Otherwise we're done.
844 // Check for a def at OldIdx.
845 if (I == E || !SlotIndex::isSameInstr(OldIdx, I->start))
847 // We have a def at OldIdx.
848 VNInfo *DefVNI = I->valno;
849 assert(DefVNI->def == I->start && "Inconsistent def");
850 DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
851 // If the defined value extends beyond NewIdx, just move the def down.
852 // This is case 1 above.
853 if (SlotIndex::isEarlierInstr(NewIdx, I->end)) {
854 I->start = DefVNI->def;
857 // The remaining possibilities are now:
858 // 2. Live def at OldIdx, killed at NewIdx: isSameInstr(I->end, NewIdx).
859 // 3. Dead def at OldIdx: I->end = OldIdx.getDeadSlot().
860 // In either case, it is possible that there is an existing def at NewIdx.
861 assert((I->end == OldIdx.getDeadSlot() ||
862 SlotIndex::isSameInstr(I->end, NewIdx)) &&
863 "Cannot move def below kill");
864 LiveRange::iterator NewI = LR.advanceTo(I, NewIdx.getRegSlot());
865 if (NewI != E && SlotIndex::isSameInstr(NewI->start, NewIdx)) {
866 // There is an existing def at NewIdx, case 4 above. The def at OldIdx is
867 // coalesced into that value.
868 assert(NewI->valno != DefVNI && "Multiple defs of value?");
869 LR.removeValNo(DefVNI);
872 // There was no existing def at NewIdx. Turn *I into a dead def at NewIdx.
873 // If the def at OldIdx was dead, we allow it to be moved across other LR
874 // values. The new range should be placed immediately before NewI, move any
875 // intermediate ranges up.
876 assert(NewI != I && "Inconsistent iterators");
877 std::copy(llvm::next(I), NewI, I);
879 = LiveRange::Segment(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
882 /// Update LR to reflect an instruction has been moved upwards from OldIdx
885 /// 1. Live def at OldIdx:
886 /// Hoist def to NewIdx.
888 /// 2. Dead def at OldIdx:
889 /// Hoist def+end to NewIdx, possibly move across other values.
891 /// 3. Dead def at OldIdx AND existing def at NewIdx:
892 /// Remove value defined at OldIdx, coalescing it with existing value.
894 /// 4. Live def at OldIdx AND existing def at NewIdx:
895 /// Remove value defined at NewIdx, hoist OldIdx def to NewIdx.
896 /// (Happens when bundling multiple defs together).
898 /// 5. Value killed at OldIdx:
899 /// Hoist kill to NewIdx, then scan for last kill between NewIdx and
902 void handleMoveUp(LiveRange &LR, unsigned Reg) {
903 // First look for a kill at OldIdx.
904 LiveRange::iterator I = LR.find(OldIdx.getBaseIndex());
905 LiveRange::iterator E = LR.end();
906 // Is LR even live at OldIdx?
907 if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
910 // Handle a live-in value.
911 if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
912 // If the live-in value isn't killed here, there is nothing to do.
913 if (!SlotIndex::isSameInstr(OldIdx, I->end))
915 // Adjust I->end to end at NewIdx. If we are hoisting a kill above
916 // another use, we need to search for that use. Case 5 above.
917 I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
919 // If OldIdx also defines a value, there couldn't have been another use.
920 if (I == E || !SlotIndex::isSameInstr(I->start, OldIdx)) {
921 // No def, search for the new kill.
922 // This can never be an early clobber kill since there is no def.
923 llvm::prior(I)->end = findLastUseBefore(Reg).getRegSlot();
928 // Now deal with the def at OldIdx.
929 assert(I != E && SlotIndex::isSameInstr(I->start, OldIdx) && "No def?");
930 VNInfo *DefVNI = I->valno;
931 assert(DefVNI->def == I->start && "Inconsistent def");
932 DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
934 // Check for an existing def at NewIdx.
935 LiveRange::iterator NewI = LR.find(NewIdx.getRegSlot());
936 if (SlotIndex::isSameInstr(NewI->start, NewIdx)) {
937 assert(NewI->valno != DefVNI && "Same value defined more than once?");
938 // There is an existing def at NewIdx.
939 if (I->end.isDead()) {
940 // Case 3: Remove the dead def at OldIdx.
941 LR.removeValNo(DefVNI);
944 // Case 4: Replace def at NewIdx with live def at OldIdx.
945 I->start = DefVNI->def;
946 LR.removeValNo(NewI->valno);
950 // There is no existing def at NewIdx. Hoist DefVNI.
951 if (!I->end.isDead()) {
952 // Leave the end point of a live def.
953 I->start = DefVNI->def;
957 // DefVNI is a dead def. It may have been moved across other values in LR,
958 // so move I up to NewI. Slide [NewI;I) down one position.
959 std::copy_backward(NewI, I, llvm::next(I));
960 *NewI = LiveRange::Segment(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
963 void updateRegMaskSlots() {
964 SmallVectorImpl<SlotIndex>::iterator RI =
965 std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(),
967 assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
968 "No RegMask at OldIdx.");
969 *RI = NewIdx.getRegSlot();
970 assert((RI == LIS.RegMaskSlots.begin() ||
971 SlotIndex::isEarlierInstr(*llvm::prior(RI), *RI)) &&
972 "Cannot move regmask instruction above another call");
973 assert((llvm::next(RI) == LIS.RegMaskSlots.end() ||
974 SlotIndex::isEarlierInstr(*RI, *llvm::next(RI))) &&
975 "Cannot move regmask instruction below another call");
978 // Return the last use of reg between NewIdx and OldIdx.
979 SlotIndex findLastUseBefore(unsigned Reg) {
981 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
982 SlotIndex LastUse = NewIdx;
983 for (MachineRegisterInfo::use_nodbg_iterator
984 UI = MRI.use_nodbg_begin(Reg),
985 UE = MRI.use_nodbg_end();
986 UI != UE; UI.skipInstruction()) {
987 const MachineInstr* MI = &*UI;
988 SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
989 if (InstSlot > LastUse && InstSlot < OldIdx)
995 // This is a regunit interval, so scanning the use list could be very
996 // expensive. Scan upwards from OldIdx instead.
997 assert(NewIdx < OldIdx && "Expected upwards move");
998 SlotIndexes *Indexes = LIS.getSlotIndexes();
999 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(NewIdx);
1001 // OldIdx may not correspond to an instruction any longer, so set MII to
1002 // point to the next instruction after OldIdx, or MBB->end().
1003 MachineBasicBlock::iterator MII = MBB->end();
1004 if (MachineInstr *MI = Indexes->getInstructionFromIndex(
1005 Indexes->getNextNonNullIndex(OldIdx)))
1006 if (MI->getParent() == MBB)
1009 MachineBasicBlock::iterator Begin = MBB->begin();
1010 while (MII != Begin) {
1011 if ((--MII)->isDebugValue())
1013 SlotIndex Idx = Indexes->getInstructionIndex(MII);
1015 // Stop searching when NewIdx is reached.
1016 if (!SlotIndex::isEarlierInstr(NewIdx, Idx))
1019 // Check if MII uses Reg.
1020 for (MIBundleOperands MO(MII); MO.isValid(); ++MO)
1022 TargetRegisterInfo::isPhysicalRegister(MO->getReg()) &&
1023 TRI.hasRegUnit(MO->getReg(), Reg))
1026 // Didn't reach NewIdx. It must be the first instruction in the block.
1031 void LiveIntervals::handleMove(MachineInstr* MI, bool UpdateFlags) {
1032 assert(!MI->isBundled() && "Can't handle bundled instructions yet.");
1033 SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1034 Indexes->removeMachineInstrFromMaps(MI);
1035 SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
1036 assert(getMBBStartIdx(MI->getParent()) <= OldIndex &&
1037 OldIndex < getMBBEndIdx(MI->getParent()) &&
1038 "Cannot handle moves across basic block boundaries.");
1040 HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1041 HME.updateAllRanges(MI);
1044 void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI,
1045 MachineInstr* BundleStart,
1047 SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1048 SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart);
1049 HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1050 HME.updateAllRanges(MI);
1054 LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
1055 MachineBasicBlock::iterator Begin,
1056 MachineBasicBlock::iterator End,
1057 ArrayRef<unsigned> OrigRegs) {
1058 // Find anchor points, which are at the beginning/end of blocks or at
1059 // instructions that already have indexes.
1060 while (Begin != MBB->begin() && !Indexes->hasIndex(Begin))
1062 while (End != MBB->end() && !Indexes->hasIndex(End))
1066 if (End == MBB->end())
1067 endIdx = getMBBEndIdx(MBB).getPrevSlot();
1069 endIdx = getInstructionIndex(End);
1071 Indexes->repairIndexesInRange(MBB, Begin, End);
1073 for (MachineBasicBlock::iterator I = End; I != Begin;) {
1075 MachineInstr *MI = I;
1076 if (MI->isDebugValue())
1078 for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(),
1079 MOE = MI->operands_end(); MOI != MOE; ++MOI) {
1081 TargetRegisterInfo::isVirtualRegister(MOI->getReg()) &&
1082 !hasInterval(MOI->getReg())) {
1083 createAndComputeVirtRegInterval(MOI->getReg());
1088 for (unsigned i = 0, e = OrigRegs.size(); i != e; ++i) {
1089 unsigned Reg = OrigRegs[i];
1090 if (!TargetRegisterInfo::isVirtualRegister(Reg))
1093 LiveInterval &LI = getInterval(Reg);
1094 // FIXME: Should we support undefs that gain defs?
1095 if (!LI.hasAtLeastOneValue())
1098 LiveInterval::iterator LII = LI.find(endIdx);
1099 SlotIndex lastUseIdx;
1100 if (LII != LI.end() && LII->start < endIdx)
1101 lastUseIdx = LII->end;
1105 for (MachineBasicBlock::iterator I = End; I != Begin;) {
1107 MachineInstr *MI = I;
1108 if (MI->isDebugValue())
1111 SlotIndex instrIdx = getInstructionIndex(MI);
1112 bool isStartValid = getInstructionFromIndex(LII->start);
1113 bool isEndValid = getInstructionFromIndex(LII->end);
1115 // FIXME: This doesn't currently handle early-clobber or multiple removed
1116 // defs inside of the region to repair.
1117 for (MachineInstr::mop_iterator OI = MI->operands_begin(),
1118 OE = MI->operands_end(); OI != OE; ++OI) {
1119 const MachineOperand &MO = *OI;
1120 if (!MO.isReg() || MO.getReg() != Reg)
1124 if (!isStartValid) {
1125 if (LII->end.isDead()) {
1126 SlotIndex prevStart;
1127 if (LII != LI.begin())
1128 prevStart = llvm::prior(LII)->start;
1130 // FIXME: This could be more efficient if there was a
1131 // removeSegment method that returned an iterator.
1132 LI.removeSegment(*LII, true);
1133 if (prevStart.isValid())
1134 LII = LI.find(prevStart);
1138 LII->start = instrIdx.getRegSlot();
1139 LII->valno->def = instrIdx.getRegSlot();
1140 if (MO.getSubReg() && !MO.isUndef())
1141 lastUseIdx = instrIdx.getRegSlot();
1143 lastUseIdx = SlotIndex();
1148 if (!lastUseIdx.isValid()) {
1149 VNInfo *VNI = LI.getNextValue(instrIdx.getRegSlot(),
1151 LiveRange::Segment S(instrIdx.getRegSlot(),
1152 instrIdx.getDeadSlot(), VNI);
1153 LII = LI.addSegment(S);
1154 } else if (LII->start != instrIdx.getRegSlot()) {
1155 VNInfo *VNI = LI.getNextValue(instrIdx.getRegSlot(),
1157 LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI);
1158 LII = LI.addSegment(S);
1161 if (MO.getSubReg() && !MO.isUndef())
1162 lastUseIdx = instrIdx.getRegSlot();
1164 lastUseIdx = SlotIndex();
1165 } else if (MO.isUse()) {
1166 // FIXME: This should probably be handled outside of this branch,
1167 // either as part of the def case (for defs inside of the region) or
1168 // after the loop over the region.
1169 if (!isEndValid && !LII->end.isBlock())
1170 LII->end = instrIdx.getRegSlot();
1171 if (!lastUseIdx.isValid())
1172 lastUseIdx = instrIdx.getRegSlot();